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Abstract
Given the increasing amounts of data and high feature dimensionalities in forecasting problems, it is challenging to build
regression models that are both computationally efficient and highly accurate. Moreover, regression models commonly suffer
from low interpretability when using a single kernel function or a composite of multi-kernel functions to address nonlinear fitting
problems. In this paper, we propose a bi-sparse optimization-based regression (BSOR) model and corresponding algorithm with
reconstructed row and column kernel matrices in the framework of support vector regression (SVR). The BSOR model can
predict continuous output values for given input points while using the zero-norm regularization method to achieve sparse
instance and feature sets. Experiments were run on 16 datasets to compare BSOR to SVR, linear programming SVR
(LPSVR), least squares SVR (LSSVR), multi-kernel learning SVR (MKLSVR), least absolute shrinkage and selection operator
regression (LASSOR), and relevance vector regression (RVR). BSOR significantly outperformed the other six regressionmodels
in predictive accuracy, identification of the fewest representative instances, selection of the fewest important features, and
interpretability of results, apart from its slightly high runtime.
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1 Introduction

Regression is an important data mining technique that is
known to fit input points from training data with high accura-
cy. Value prediction is a common application of regression
that can be found in many domains, such as finance, telecom-
munication, economics and management, power and energy,
web customer management, industrial production, and scien-
tific computing [40, 59]. Regression predicts values by con-
structing functions that can estimate the relationship between

independent and dependent variables. Many regression
methods have been proposed for value prediction [3, 6].
These include linear regression [22], nonlinear regression
[59], polynomial regression [13], ridge regression [28], step-
wise regression [25], quantile regression [44], least angle re-
gression [27], lasso regression [77], elastic net regression [89],
neural networks, and support vector regression (SVR) [5, 68].

SVR is considered an effective prediction method for value
forecasting because of its higher generalization on small and
medium datasets than that of some traditional methods. SVR
can identify a small number of support vectors from the train-
ing set and use them to define the regression function.
Particularly, in SVR, a tube hyperplane with a smaller radius
is first constructed so that most training data are within the
tube and the minority are outside the tube with errors. Then
SVR can be defined as a quadratic optimization problem that
employs a regularization parameter to trade-off between mod-
el complexity and total fitting error [1, 5, 19, 36, 68, 73]. The
former can be used to minimize the ℓ2 − norm of the weight
vector, and the latter to minimize the sum of errors of input
points with constraint violations. Although SVR can find sup-
port vectors from the training set, it can’t distinguish important
features from other features. That is, SVR has no ability of
feature selection for value prediction, hence it has a lack of
result explainability.
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Some variations of SVR with advanced features have been
developed in the last two decades. According to the dual op-
timization problem of SVR, the weight vector is expressed as
a linear combination of input points and Lagrange multipliers.
If the ℓ2 − normof the weight vector in SVR is replaced with
the ℓ1 − normof Lagrange multipliers, then we have the ℓ1 −
norm SVR (L1SVR) model [39, 85, 88]. Because L1SVR is
essentially a linear programming (LP) problem, it is also
called LPSVR [39, 82, 85]. LPSVR can predict output values
and it can find fewer support vectors than SVR. However, for
LPSVR more variables are required to remove absolute value
function, which leads to highly computational complexity.

Different from SVR, least squares SVR (LSSVR) mini-
mizes the sum of squared errors instead of the sum of errors
[53, 63, 72]. Due to simple constraints, the computational
complexity is remarkably reduced when solving the dual
problem of LSSVR. The dual LSSVR model can be formu-
lated as a system of linear equations or an unconstrained con-
vex quadratic optimization problem. In the dual LSSVRmod-
el the inverse of the regularization constant is added to the
diagonal elements of the Hessian matrix. But LSSVR can
hardly identify important instances and features for value
prediction.

Multi-kernel learning (MKL) methods that substitute the
single kernel in the SVR model (MKLSVR) for the convex
combination of multi-kernel functions of different features
have recently been proposed [34, 54, 55]. MKLmethods have
been applied to many practical problems [35, 49, 52]. In light
of the way of combining various kernels, MKL is classified
the types ofMKL as linear and nonlinear. Considering the role
of data in the model, MKL has both data-dependent (data-
driven) and data-independent methods [29, 38, 54, 69, 70,
87]. These methods generally combine MKL with SVR or
LSSVR [65], and they can achieve better predictive accuracy
than some single kernel methods. However, these methods
have likewise no ability of feature selection in addition to high
computational cost.

The above regression methods have a notable drawback: they
are unable to simultaneously identify important instances and
features from the training set to obtain interpretable results by
using instance sparsity and feature selection, especially for large-
scale and high-dimensional data. To address this problem, one
line of research has focused on feature transformation or feature
selection, also called dimensionality reduction [11, 16, 21, 45].
These methods mainly adopt a ranking filter [26], relief algo-
rithm [43], decision tree [84], principle component analysis
(PCA) [14, 47, 64], discriminant analysis (DA) [2, 47, 48], sin-
gular value decomposition [80], rough set [45, 76], function data
analysis [7, 9, 10, 56, 57]. However, feature selection and regres-
sion are often conducted in different feature spaces. Due to the
potential inconsistency and loss of information, it is difficult to
achieve high accuracy and sufficient interpretability with the fea-
ture selection approach.

Other researchers have integrated sparse learning methods
into regression or classification models to implement proto-
type discovery or feature selection [3, 8, 15, 18, 60, 71, 75].
These sparse learning methods mainly contain concave
minimization,ℓ0 − norm regularization, and ℓ1 − norm
regularizations [12, 39, 46, 50, 82]. The concaveminimization
approach for feature selection uses an exponential function to
approximate the number of nonzero elements of the weight
vector. The ℓ0 − norm regularization can achieve the sparse
solution in theory, however, due to its discontinuity, it is dif-
ficult to directly solve the corresponding mathematical prob-
lem. Thus, a proper approximation function is first defined to
replace the ℓ0 − norm and obtain the sparse instance and fea-
ture sets. Although the ℓ1 − normis a non-smooth function, it
is convex and can be used for feature sparsification. Some
hybrid methods of different norms have been proposed to
obtain instance- or feature-reduction. These methods include
sparsity-based gradient descent [32], least absolute shrinkage
and selection operator (LASSO) [51, 58, 74, 77, 83, 90], least
angle regression (LAR) [27], relevance vector machine [20,
78], sure independence screening (SIS) [30], and elastic net
[89]. However, their application is limited to either feature
selection or instance reduction. The instance-sparsity methods
showed that prototype instances can be used as a benchmark
for predicting output values of unseen input points [17, 37, 41,
42, 61, 85]. Specifically, the relevance vector regression
(RVR) introduces a probabilistic Bayesian learning frame-
work for obtaining sparse solutions to value prediction and it
uses fewer support vectors to achieve the better predictive
performance than SVR [20, 78]. However, it has no ability
to select a feature subset from a given training set. For the
LASSO regression (LASSOR), by using the ℓ1 − norm regu-
larization [62, 67], some important features are selected from
the initial feature set. But it is unable to obtain sparse instance
set and it is very difficult to introduce the kernel trick to the
primal LASSO regression model to solve nonlinearly predic-
tive problems. Under the framework of LSSVR, a least
squares regression model based on bi-sparse optimization is
proposed to address the problem unable to obtain sparse in-
stance and feature solutions for LSSVR [86]. By solving two
systems of equations or two unconstrained quadratic program-
ming problems sparse instance and feature solutions are ob-
tained. Besides, the regression prediction method verifies that
combining both instance and feature sparsity increased the
predictive performance and model interpretability.

This study’s main motivation is to construct a bi-sparse opti-
mization-based regression (BSOR) to enhance accuracy, gener-
alization, and interpretability in value prediction. In the frame-
work of SVR, the proposed regression model can select both
relevant instances and features with sparsificationmethods based
on the reconstructed row and column kernel matrices. These
representative instances and important features are taken as a
benchmark for predicting output values of unseen input points.
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The weighted distance with respect to a coefficient vector from
an unseen input point to prototype instances is a benchmark for
prediction and explanation, while another weighted distance re-
garding a weight vector between the features of an unseen input
point and important features is the basis for forecasting and in-
terpretation. Obviously, sparse coefficient or weight vector indi-
cates whether an input point or attribute is a prototype instance or
an important feature or not respectively. By using the instance-
and feature-sparsity methods, the predictive accuracy, generali-
zation, and interpretability can be enhanced, which has great
practical implications. Therefore, this is our main contribution
to predictive regression.

The rest of this paper is organized as follows: We first
review the basic theories of SVR. Then we present the
BSOR model, corresponding algorithm, and simulation.
Next, we describe the experimental results of predictive eval-
uation on real datasets, the predictive results and comparison
analysis, importance analysis of instances and features extract-
ed by BSOR, and analysis of experimental results. We con-
clude after discussing the study’s implications.

2 Support vector regression

In this section, we briefly review the basic principles of SVR, the
dual representation theory, and kernel tricks [19, 24, 36] for
value prediction. For a regression problem, given training data T

¼ xi; yið Þf gni¼1 (i ∈ℕ) with an attribute or feature set F ¼
f mf gdm¼1 (m ∈ℕ, fm ∈ℝn), each input point or instance xi (xi ∈

ℝd) corresponds to a continuous output value yi (yi ∈ℝ), where d
is the dimensional size of the input space and n is the sample size.

Given the training set T, and a basis function ϕ(x) that maps
any input point x (x ∈ℝd) from the input space to a high-
dimensional feature space, the regression function is defined
as y =wTϕ(x) + b, where w (w ∈ℝp, p ≥ d) is a weight vector
and b (b ∈ℝ) is a scalar. At the same time, two ε − band
hyperplanes y − (wTϕ(x) + b) = ε and (wTϕ(x) + b) − y = ε are
constructed so that as many input points as possible are inside
a tube with diameter 2ε between two ε − band hyperplanes,
where ε is a user-specified parameter. For those input points

that are outside the tube, the slack variable ξ ¼
ξ1;⋯; ξn; ξ

*
1;⋯; ξ*n

� �T
(ξi; ξ

*
i ≥0, i = 1,⋯, n) is used to mea-

sure the errors of input points deviating from two parallel
hyperplanes. Thus the primal optimization problem of the
SVR model is expressed as

min
w;b;ξ

1

2
wk k22 þ C ∑

n

i¼1
ξi þ ξ*i
� �

s:t: wTϕ xið Þ þ b
� �

−yi≤ε

þ ξi; yi− wTϕ xið Þ þ b
� �

≤εþ ξ*i ; ξi; ξ
*
i ≥0; i

¼ 1;⋯; n; ð1Þ

where C (C > 0) is a user-defined penalty factor that trades off
between the model complexity and the total fitting errors and ε
(ε > 0) is a sufficiently small constant as an input parameter.

The dot product ϕ(xi)
Tϕ(xj) of any two input points xi and xj

(i, j = 1, ⋯, n) in the high-dimensional feature space can be
replaced by a kernel function K(xi, xj). Furthermore, by con-
structing the Lagrange function of the SVR model (1), we can
use the KKT optimality and complementary conditions to
obtain the dual optimization problem of the SVR model,
which has the form

min
α

1

2
αT K −K

−K K

� �
αþ εeþ y

εe−y

� �T

α s:t:
e
−e

� �T

α

¼ 0; 0≤α≤Ce;
ð2Þ

where α ¼ α1;⋯;αn;α*
1;⋯;α*

n

� �T
(αi;α*

i ≥0; i ¼ 1;⋯; n )
is the Lagrange multiplier vector, K (K ∈ℝn × n) is the kernel
matrix derived from the training set T, and e = (1,⋯, 1)T (e ∈
ℝn).

After solving the quadratic programming (QP) problem (2)
with the sequential minimal optimization (SMO) algorithm,
we can obtain the optimal solution

α ¼ α1;⋯;αn;α*
1;⋯;α*

n

� �T
. According to the KKT com-

plementarity conditions, those input points xi on two ε − band
hyperplanes with 0 < αi < C or 0 < α*

i < C are called sup-

port vectors (SVs). If αi ¼ 0 or α*
i ¼ 0, then the input point xi

lies inside two ε − band hyperplanes, while if αi ¼ C or
α*
i ¼ C, then the input point xi is outside two ε −

bandhyperplanes. The weight vector wis

w ¼ ∑
n

i¼1
α
*

i −αi

� �
ϕ xið Þ ð3Þ

For any input point xj with 0 < α j < C or 0 < α*
j < C,

the intercept b can be computed by

b ¼ 1

jj0 < α j;α
*

j < C
� ����� ���� ∑

0<α j ;α
*

j<C

y j− ∑

0<αi;α
*

i <C

α
*

i −αi

� �
K
	
xi; x j


0B@
1CA

ð4Þ
where ∣ ⋅ ∣ is the cardinality of a set.

Thus the output value y of a new input point x from a test
set is predicted by the regression function

g xð Þ ¼ ∑

0<αi;α
*

i <C

α
*

i −αi

� �
K xi; xð Þ þ b ð5Þ

In this paper, the radial basis function (RBF) is used as the
kernel function, which for any two input points xi and xj is
defined as.
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K xi; x j
� � ¼ exp −

xi−x j
�� ��2

2

2σ2

 !
σ > 0ð Þ ð6Þ

where the bandwidth σ is an input parameter.

3 Bi-sparse optimization-based regression
approach

We propose bi-sparse optimization-based regression (BSOR)
under the framework of SVR to solve value-forecasting prob-
lems. Two reconstructed kernels based on various features are
first demonstrated. Then the mathematical model and corre-
sponding algorithm of BSORwith simultaneous instance- and
feature-sparsification is described. Finally, we report the re-
sults of a simulation based on a real dataset to evaluate the
proposed regression model and algorithm.

3.1 BSOR model

The BSOR model is based on the ideas of the ℓ0 − norm reg-
ularization support vector classifier model [39, 82], dual rep-
resentations, and multi-kernel learning methods [34, 85, 86].
Apart from value prediction, the BSOR model alternates be-
tween selecting relevant input points and selecting relevant
features until convergence. It has two interrelated parts, which
are described as follows.

In the first-stage of the BSOR model, for any two input
points xi and xj (i, j = 1, ⋯, n) from the training set T, given
the basis functionψ(xim) of the feature value xim (m = 1,⋯, d),
which maps different feature values from the original input
space to a new feature space, their kernel vector hij (hij ∈ℝd)
with respect to d features is

hij ¼ ψ xi1ð Þψ x j1
� �

;⋯;ψ xidð Þψ xjd
� �� �T

¼ k xi1; x j1
� �

;⋯; k
	
xid; xjd


	 
T
;

ð7Þ

where k(xim, xjm) is a kernel function value of any two input
points xi and xj with respect to the mth feature.

If the weight vector μ(t)(μ(t) ∈ℝd) of d features is provided
in the tth iteration, then the row kernel vector ai(ai ∈ℝn + 1)

with respect to the input point xi is

ai ¼ μ tð Þ
	 
T

hi1;⋯; μ tð Þ
	 
T

hin; 1
� 
T

ð8Þ

Thus, the row kernel matrix A (A ∈ℝ(n + 1) × n) for all input
points in the training set T has the form

A ¼ a1;⋯; anð Þ ð9Þ
where the initial value of μ(t) is set to μ(0) = (1/d,⋯, 1/d)T. An
iterative counter t is initialized to 1.

For the purpose of instance-sparsification, the ℓ0 − norm

with respect to the augmented coefficient vector λ
tð Þ

(λ
tð Þ ¼ λ tð Þ

1 ;⋯;λ tð Þ
n ;λ tð Þ

nþ1

	 
T
, and λ

tð Þ ¼ λ tð Þ;λ tð Þ
nþ1

	 

if

λ tð Þ ¼ λ tð Þ
1 ;⋯;λ tð Þ

n

	 
T
, λ tð Þ

i ∈ℝ, i = 1, ⋯, n + 1) is approxi-

mated by λ
tð Þ��� ���

0
∝ λ

tð Þ	 
T
diag θ tð Þ

	 

λ

tð Þ
. The ith element

θ tð Þ
i of the diagonal matrix diag(θ(t)) (diag(θ(t)) ∈ℝ(n + 1) × (n +

1)) in the tth iteration is computed by

θ tð Þ
i ¼

1

λ t−1ð Þ
i

	 
2 ; if λ t−1ð Þ
i

��� ��� > ρ;

1

ρ2
; otherwise;

8>>><>>>: ð10Þ

where ρ(ρ > 0) is a sufficiently small constant and the

initial value of λ
tð Þ

is set to λ
0ð Þ ¼ 1;⋯; 1ð ÞT . When

t→ + ∞, we have λ tð Þ�� ��
0
¼ ijλ*

i ≠0; i ¼ 1;⋯; n
� ��� �� for

all n instances, where λ*
i is the optimal coefficient value

regarding input point xi. That is, the ℓ0 − norm of the
coefficient vector λ(t) amounts to the number of those

important instances with λ*
i ≠0, so it should be mini-

mized. Therefore, to effectively identify important or
representative input points from the training set T, the
first-stage model of BSOR for instance-sparsification
can be defined by the following primal optimization
problem:

min

λ
tð Þ
;η

1

2
λ tð Þ
	 
T

diag θ tð Þ
	 


λ tð Þ þ C1 ∑
n

i¼1
ηi þ η*i
� �

s:t: λ tð Þ
	 
T

ai−yi≤εþ ηi;
yi− λ

tð Þ� �T

ai≤εþ η*i ;

λ
tð Þ
ϵℝnþ1; ηi; η

*
i ≥0; i ¼ 1;⋯; n;

ð11Þ

where η ¼ η1;⋯; ηn; η
*
1;⋯; η*n

� �T
is the slack variable corre-

sponding to those input points with constraint violations, λn +
1can be regarded as the intercept of the regression function AT

λ
tð Þ ¼ y (y ∈ℝn), and C1 (C1 > 0) is a user-defined parameter.
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The regression model (11) can be transformed to the cor-
responding dual optimization problem by constructing a
Lagrange function. For the primal model of the first-stage

BSOR (11), we can construct the corresponding Lagrange
optimization problem as

maxbγ tð Þ
;bω tð Þ

inf

λ
tð Þ
;η

L Λð Þ ¼ 1

2
λ

tð Þ� �T

diag θ tð Þ
	 


λ
tð Þ
þ C1 ∑

n

i¼1
ηi þ η*i
� �þ

∑n
i¼1γ

tð Þ
i λ

tð Þ� �T

ai−yi−ε−ηi

" #
− ∑

n

i¼1
ωiηi þ

∑n
i¼1γ

* tð Þ
i yi− λ

tð Þ� �T

ai−ε−η*i

" #
− ∑

n

i¼1
ω*
i η

*
i s:t:bγ tð Þ

; bω tð Þ
≥0;

ð12Þ

where bγ tð Þ ¼ γ tð Þ; γ tð Þ*� � ¼ γ tð Þ
1 ;⋯; γ tð Þ

n ; γ tð Þ*
1 ;⋯; γ tð Þ*

n

	 
T
(bγ tð Þ∈ℝ2n ) and bω tð Þ ¼ ω tð Þ;ω tð Þ*� � ¼ ðω tð Þ

1 ;⋯;ω tð Þ
n ; ω tð Þ*

1 ;⋯;

ω tð Þ*
n ÞT (bω tð Þ∈ℝ2n ) are two Lagrange multiplier vectors and

Λ ¼ bγ tð Þ; bω tð Þ;λ
tð Þ
; η

h i
.

Suppose that Λ
0 ¼ bγ 0

; bω0
;λ

0
; η

0
h i

is a solution of the

Lagrange optimization problem (12). Since the primal objec-
tive function in (11) is convex, the Lagrange function L(Λ) has
a unique optimal solutionΛ′. Thus, the solutionΛ′ satisfies the
Karush-Kuhn-Tucker (KKT) optimality conditions

∂L Λð Þ
∂λ

tð Þ ¼ diag θ tð Þ
	 


λ
tð Þ
þ ∑

n

i¼1
γ tð Þ
i ai− ∑

n

i¼1
γ tð Þ*
i ai ¼ 0 ð13Þ

∂L Λð Þ
∂ηi

¼ C1−γi−ωi ¼ 0 ð14Þ

∂L Λð Þ
∂η*i

¼ C1−γ*i −ω
*
i ¼ 0 ð15Þ

Then from the KKT optimality condition in (13) we get

λ
tð Þ
¼ diag θ tð Þ

	 
h i−1
A γ tð Þ*−γ tð Þ
	 


ð16Þ

Combining the constraint in the optimization problem (12)
and the KKT optimality conditions in eq. (14) and eq. (15), we
have

0≤γ tð Þ; γ tð Þ*≤C1e ð17Þ

If the Hessian matrix M (M ∈ℝn × n) is defined as

M ¼ AT diag θ tð Þ
	 
h i−1

A ð18Þ

and we integrate the results in eq. (14), eq. (15), eq. (16), and
eq. (18) in the Lagrange optimization problem (12), then we
have

L Λð Þ ¼ 1

2
diag θ tð Þ

	 
h i−1
A γ* tð Þ−γ tð Þ
	 
� �T

diag θ tð Þ
	 


diag θ tð Þ
	 
h i−1

�

A γ* tð Þ−γ tð Þ
	 


þ C1η
* þ C1eTη* þ diag θ tð Þ

	 
h i−1
A γ* tð Þ−γ tð Þ
	 
� �T

Aγ tð Þ−

yTγ tð Þ−εeTγ tð Þ− γ tð Þ
	 
T

ηþ yTγ* tð Þ− diag θ tð Þ
	 
h i−1

A γ* tð Þ−γ tð Þ
	 
� �T

Aγ tð Þ−

εeTγ* tð Þ− γ* tð Þ
	 
T

η*−Ψ*η− Ψ*� �T
η*

¼ −
1

2
γ* tð Þ−γ tð Þ
	 
T

M γ* tð Þ−γ tð Þ
	 


þ yt γ* tð Þ−γ tð Þ
	 


−eT γ* tð Þ−γ tð Þ
	 


¼ −
1

2
bγt
� �T

M −M
−M M

� �bγ tð Þ
− εeþ y

εe−y

� �Tbγ tð Þ

ð19Þ
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Thus, according to eq. (19) and the range in eq. (17) of
Lagrange multipliers, we obtain the dual optimization prob-
lem of the first-stage BSOR model (11).

minbγ tð Þ
ϵℝn

1

2
bγt
� �T

M −M
−M M

� �bγt
þ εeþ y

εe−y

� �Tbγ tð Þ
s:t: 0≤bγt

≤C1e

ð20Þ

where bγ tð Þ ¼ γ tð Þ; γ* tð Þ� � ¼ γ tð Þ
1 ;⋯; γ tð Þ

n ; γ* tð Þ
1 ;⋯; γ* tð Þ

n

	 
T
(γ(t) ∈ℝn, γ∗(t) ∈ℝn, bγ tð Þ∈ℝ2n ) is a Lagrange multiplier vector

and its initial value bγ 0ð Þ is set to (0,⋯, 0, 0,⋯, 0)T.
By solving the box- or bound-constrained QP prob-

lem (20) with the modified SMO algorithm, we can

obtain the optimal solution bγ tð Þ for the tth iteration andbγ tð Þ ¼ γ tð Þ; γ* tð Þ� �
, so the coefficient vector λ

tð Þ
is direct-

ly computed by

λ
tð Þ
¼ diag θ tð Þ

	 
h i−1
Α γ* tð Þ−γ tð Þ
	 


ð21Þ

without solving the primal optimization problem (11).

Then the new diagonal matrix diag(θ(t + 1)) with λ
tð Þ
is up-

dated by eq. (10), the optimization problem (20) is solved

again and the optimal solution bγ tþ1ð Þ for the (t + 1)th iteration

is obtained. Thus, the new coefficient vector λ
tþ1ð Þ

is calcu-
lated by eq. (21). Accordingly, with a given weight vector μ(t),
the above five steps, which are composed of constructing the
row kernel matrix A in eq. (9), updating the diagonal matrix
diag(θ(t)) with eq. (10), computing the Hessian matrixΜ in eq.
(13), solving the optimization problem (20), and computing

the new coefficient vector λ
tþ1ð Þ

by eq. (21) in order of prior-
ity, form an iterative process until the termination condition

with respect to the two adjacent multiplier vectors bγ t−1ð Þ andbγ tð Þ,

max bγ tð Þ
−bγ t−1ð Þ���� ���� < τ ð22Þ

is satisfied, where τ (τ > 0) is a sufficiently small con-
stant specified by the user, or the maximum number of
iterations is reached. That is, when the maximum of the

difference of bγ t−1ð Þ and bγ tð Þ remains the same, they are
considered to be approximately equal.

When the optimal augmented coefficient vector λ
*

¼ λ*;λ*
nþ1

� �
is obtained, for the optimal coefficient vec-

tor λ* ¼ λ*
1;⋯;λ*

n

� �T
, if λ*

i

�� �� > ρ (i = 1, ⋯, n), the

corresponding input point xi is regarded as a represen-
tative point that is important for regression. Otherwise,

the input point xi with λ*
i ¼ 0 (let λ*

i ¼ 0 if λ*
i

�� ��≤ρ ) is

noisy or unimportant and can be removed from the in-
stance set. Since the first-stage BSOR model generates
the sparse instance set, it can use those representative
instances as a benchmark for prediction and result
explanation.

Regarding the second-stage BSOR model, for any feature
fm (fm ∈ F, fm ∈ℝn, m = 1,⋯, d) from the training set T, given
the mapping function ψ(xim) of the feature value xim (i = 1,⋯,
n), the outer product matrix D (D ∈ℝn × n) of fm is computed
by

D ¼ f m f
T
m

¼
h
ψ ψ x1mð Þ;⋯;ψ xnmð Þ½ �

¼
ψ x1mð Þψ x1mð Þ … ψ x1mð Þψ xnmð Þ

⋮ ⋱ ⋮
ψ xnmð Þψ x1mð Þ ⋯ ψ xnmð Þψ xnmð Þ

0@ 1A
¼

k x1m; x1mð Þ … k x1m; xnmð Þ
⋮ ⋱ ⋮

k xnm; x1mð Þ ⋯ k xnm; xnmð Þ

0@ 1A:

ð23Þ

Because the coefficient vector λ(t) (λ tð Þ ¼ λ tð Þ
1 ;⋯;λ tð Þ

n

	 
T
,

λ tð Þ
j ∈ℝ ) can be obtained from eq. (21), the weighted kernel

vector vm (vm = (v1m,⋯, vnm)
T, vim ∈ℝ) with respect to themth

feature fm and the coefficient vector λ(t) is defined as

vm ¼ Dλ tð Þ

¼
k x1m; x1mð Þ … k x1m; xnmð Þ

⋮ ⋱ ⋮
k xnm; x1mð Þ ⋯ k xnm; xnmð Þ

0@ 1A λ tð Þ
1
⋮
λ tð Þ
n

24 35
¼ ∑

n

j¼1
λ tð Þ
j k x1m; xjm
� �

;⋯; ∑
n

j¼1
λ tð Þ
j k
	
xnm; xjm


" #T
:

ð24Þ

From the result of (24), for any input point xi (i = 1, ⋯, n)
the column kernel value vim (vim ∈ℝ,m = 1,⋯, d) with respect
to the mth feature has the form

vim ¼ ∑
n

j¼1
λ tð Þ
j k xim; xjm
� �

: ð25Þ

The column kernel vector bi (bi ∈ℝd + 1) of the input point
xi can be written as

bi ¼ vi1;⋯; vid; 1ð ÞT ð26Þ
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and the column kernel matrix B (B ∈ℝ(d + 1) × n) for all input
points in the training set T is

B ¼ b1;⋯; bnð Þ ð27Þ

Similarly, for the purpose of feature-sparsification, the ℓ0 −
normwith respect to the augmented weight vector μ tð Þ

(μ tð Þ ¼ μ tð Þ
1 ;⋯;μ tð Þ

d ;μ tð Þ
dþ1

	 
T
, and μ tð Þ ¼ μ tð Þ;μ tð Þ

dþ1

	 

if

μ tð Þ ¼ μ tð Þ
1 ;⋯;μ tð Þ

d

	 
T
, μ tð Þ

j ∈ℝ, j = 1, ⋯, d + 1) is estimated

by μ tð Þ�� ��
0
∝ μ tð Þ� �T

diag π tð Þ� �
μ tð Þ. Then, the jthelement π tð Þ

j of

the diagonal matrix diag(π(t)) (diag(π(t)) ∈ℝ(d + 1) × (d + 1)) in
the tth iteration is defined as

π tð Þ
j ¼

1

μ t−1ð Þ
j

	 
2 ; if μ t−1ð Þ
j

��� ��� > ρ;

1

ρ2
; otherwise;

8>>><>>>: ð28Þ

where the initial value μ 0ð Þ for the weight vector μ tð Þ is set to

(μ(0), 1/d). Likewise, whent→ + ∞, we have μ tð Þ�� ��
0
¼

jjμ*
j≠0; j ¼ 1;⋯; d

n o��� ��� for all d features, where μ*
j is the

optimal weight value regarding the feature fj. That is, the ℓ0
− norm of weight vector μ(t) equals the number of those im-

portant features with μ tð Þ
j ≠0, so it should be minimized.

Algorithm 1. The BSOR algorithm

Inputs: a training set, a test set, and input parameters 1C , 2C , and .  

Outputs: regression functions and predictive results. 
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Hence, in the interest of identifying important features for
regression, the second-stage model of BSOR for feature-
sparsification can be defined as the primal optimization prob-
lem:

min

μ
tð Þ
;ς

1

2
μ

tð Þ� �T

diag π tð Þ
	 


μ
tð Þ
þ C2 ∑

n

i¼1
ς i þ ς*i
� �

s:t: μ
tð Þ� �T

bi−yi≤εþ ς i;

yi− μ
tð Þ� �T

bi≤εþ ς*i ;

μ
tð Þ
∈ℝ dþ1; ς i; ς

*
i ≥0; i ¼ 1;⋯; n;

ð29Þ

where ς = (ς,⋯, ς, ς∗,⋯, ς∗)T is the slack vector of input
points with fitting errors, μd + 1 can be considered the intercept

of the regression function BTμ tð Þ ¼ y, and C2 (C2 > 0) is a
user-specified parameter.

For the second-stage BSOR model (29), we can construct
the corresponding Lagrange function to obtain its dual opti-
mization problem. Similarly, the dual optimization model can
be written as

minbφ tð Þ
∈ℝn

1

2
bφ tð Þ� � Tð Þ

N −N
−N N

� �bφ tð Þ
þ εeþ y

εe−y

� �T bφ tð Þ

s:t: 0≤ bφ tð Þ
≤C2e;

ð30Þ

where bφ tð Þ ¼ φ tð Þ;φ* tð Þ� � ¼ φ tð Þ
1 ;⋯;φ tð Þ

n ;φ* tð Þ
1 ;⋯;φ* tð Þ

n

	 
T
(φ(t) ∈ℝn, φ∗(t) ∈ℝn, bφ tð Þ∈ℝ2n ) is a Lagrange multiplier vec-

tor whose initial value bφ 0ð Þ is assigned to (0,⋯, 0, 0,⋯, 0)T.
The Hessian matrix Ν (Ν ∈ℝn × n) is calculated by

Ν ¼ BT diag π tð Þ
	 
h i−1

B ð31Þ

When solving the box- or bound-constrained QP problem
(30) with the modified SMO algorithm, the optimal solutionbφ tð Þ for the tth iteration is obtained, and bφ tð Þ ¼ φ tð Þ;φ* tð Þ� �

.
There is no need to solve the optimization problem (29), the

weight vector μ tð Þ is directly computed by

μ
tð Þ
¼ diag π tð Þ

	 
h i−1
Β φ* tð Þ−φ tð Þ
	 


ð32Þ

Then the new diagonal matrix diag(π(t + 1)) with μ tð Þ can be
updated by formulation (28), the optimization problem (30) is

solved again and the optimal solution bφ tþ1ð Þ for the (t + 1)th
iteration is found. We can calculate the new weight vector

μ tþ1ð Þ by eq. (32). So, with a given coefficient vector λ(t),
the above five steps, which consist of constructing the column
kernel matrix B in eq. (27), updating the diagonal matrix
diag(π(t)) with eq. (28), calculating the Hessian matrix Ν in
eq. (31), solving the optimization problem (30), and comput-

ing the new weight vector μ tþ1ð Þ by eq. (32), is virtually an
iterative process until the stopping condition with respect to

the two adjacent multiplier vectors bφ t−1ð Þ and bφ tð Þ is satisfied
by

max bφ tð Þ
−bφ t−1ð Þ���� ���� < τ ð33Þ

Similarly, when the maximum difference of bφ t−1ð Þ and bφ tð Þ

does not change, they are considered to be approximately
equal.

Once we gain the optimal augmented weight vector
μ* ¼ μ*;μ*

dþ1

� �
, for the optimal weight vector

μ* ¼ μ*
1;⋯;μ*

d

� �T
, if μ*

j

��� ��� > ρ (j = 1, ⋯, d), then the

corresponding feature fj is considered an important var-
iable that contributes to regression. Otherwise, the fea-

ture fj with μ*
j ¼ 0 (let μ*

j ¼ 0 if μ*
j

��� ���≤ρ ) is redundant

and can be removed from the feature set. Because the
second-stage BSOR model produces the sparse feature
set, it can employ those important features for causal
analysis in decision-making.

From the global perspective of associating the first and
second stages of the BSORmodel, after assigning the initial

value μ 0ð Þ, by solving the quadratic optimization problem

(20) with the weight vector μ t−1ð Þ in the (t − 1)th iteration,
we can use eq. (21) to compute the new coefficient vector

λ
tð Þ
based on the solution bγ tð Þ. By solving the quadratic

optimization problem (30) with the obtained coefficient

vector λ
tð Þ
, eq. (32) is used to calculate the new weight

vector μ tð Þ based on the solution bφ tð Þ for the tth iteration.

Then the weight vector μ tð Þ is further used to obtain the

new coefficient vector λ
tþ1ð Þ

and new weight vector μ tþ1ð Þ.
Because of the convergence of the Lagrange multipliers bγ tð Þ

in eq. (22) and bφ tð Þ in eq. (33), the optimal augmented coef-

ficient vector λ
*
and optimal augmented weight vectorμ*

are obtained by eq. (21) and eq. (32), respectively.
Otherwise, the iterative counter t is incremented by 1, and
the iterative process of searching the optimal augmented
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coefficient vector λ
*
and weight vector μ* continues until

the maximum number of iterations is reached.
The output value y for a new input point x from an

independent test set can be predicted by the regression
functions below. According to the optimal augmented

coefficient vector λ
*
(let λ*

i ¼ 0 if λ*
i

�� ��≤ρ, i = 1, ⋯, n)
and the row kernel vector ax (ax ∈ ℝn + 1) with respect to
input point x, the regression function is written as

g xð Þ ¼ λ
*

� �T

ax ð34Þ

Moreover, given the optimal augmented weight vector μ*

(let μ*
j ¼ 0 if μ*

j

��� ���≤ρ, j = 1, ⋯, d) and the column kernel

vector bx (bx ∈ℝd + 1) with respect to input point x, the regres-
sion function is defined as

g xð Þ ¼ μ
*

� �T

bx ð35Þ

where the vectors ax and bx can be computed by eq. (8) and eq.
(26), respectively. Thus one of two regression functions can
be used to predict the output values of any input point.We can
use the mean of two predictive output values to gain the final
forecasting value of any input point.

For computing the row and column kernel matrices, the
RBF kernel of two input points xi and xj with respect to the
mth feature is defined as.

k xi;m; x j;m
� � ¼ exp −

xi;m−x j;m
� �2

2σ2

 !
σ > 0ð Þ ð36Þ

Overall, when the two-stage BSOR model is applied to
solve regression problems, apart from value prediction, it
can simultaneously select relevant instances and features.
Specifically, in the first-stage, the BSOR model can ef-
fectively identify a comparatively small number of repre-
sentative or prototype instances, while in the second-
stage, it can efficiently extract a comparatively small
number of important features. The former generates the
sparse coefficient vector λ∗, where the coefficient value

λ*
i (λ*

i ≠0 ) indicates the degree of importance for predic-
tion, and the latter produces the sparse weight vector μ∗,
where the weight value μ*

j (μ
*
j≠0 ) indicates the degree of

importance of each feature for forecasting.
From the above regression functions in eq. (34) and eq.

(35), for a new input points its predictive output value can
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(c)  #IIs or #SVs found by the seven regression models 

Fig. 1 Evaluating the seven regression methods on the bodyfat dataset. (a)
#IIs identified by BSOR decreases with the increasing iterations. (b) #IFs
extracted by BSOR decreases with the increasing iterations. (c) #IIs or
#SVs found by the seven regression models. (d) Curve fitting of predictive
results for the seven regression models on the bodyfat test set
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be obtained by the weighted distance with respect to the coef-
ficient vector of prototype instances and the corresponding
row kernel vector which is composed of the distances from
the new input point to prototype instances, and the weighted
distance with respect to the weight vector of important fea-
tures and the corresponding column kernel vector which is
constituted of the distances between the features of the new
input point and important features. In other words, represen-
tative instances with important features are good enough for
the similarity based on distance without using all instances
and features in the training set. Consequently, the accuracy,
generalization, and interpretability of BSOR on the reduced
dataset are all enhanced, which are critical for the regression
application in large-scale and high-dimensional datasets.

3.2 BSOR algorithm

The BSOR algorithm corresponding to the above model,
can be summarized Algorithm 1, including inputs, out-
puts, initialization, iterative processing steps, and regres-
sion functions.

3.2.1 Simulation

To intuitively evaluate the new BSOR method, we ran a
simulation on the real bodyfat dataset from the StatLib
repository (http://lib.stat.cmu.edu/datasets/). For each of
252 men, 14 numeric features were used to estimate the
percentage of body fat determined by underwater
weighing and various body-condition measures. These
conditional features consist of density (gm/cm3), age
(years), weight (lbs), height (inches), neck circumfer-
ence (cm), chest circumference (cm), abdomen circum-
ference (cm), hip circumference (cm), thigh circumfer-
ence (cm), knee circumference (cm), ankle circumfer-
ence (cm), biceps circumference (cm), forearm circum-
ference (cm), and wrist circumference (cm). The dataset
was partitioned into a training set with 200 instances

and an independent test set with 52 instances. The
SVR, LPSVR, LSSVR, MKLSVR, LASSOR, RVR,
and BSOR methods were trained on the training set
and tested on the independent test set. Then, the number
of important instances (#IIs) identified by BSOR, the
number of features (#IFs) extracted by BSOR, #IIs or
the number of SVs (#SVs) found by the seven regres-
sion models, curve fitting of actual and predicted
values, and Pearson residuals (also called standardized
residuals) are demonstrated in Fig. 1.

Three common measures to evaluate the predictive perfor-
mance of various regressionmodels, are the mean square error
(MSE), mean absolute error (MAE), and mean absolute per-
centage error (MAPE), defined as

MSE ¼ 1

n
∑
n

i¼1
yi−byi	 
2

ð37Þ

MAE ¼ 1

n
∑
n

i¼1
yi−byi��� ��� ð38Þ

MAPE ¼ 1

n
∑
n

i¼1

yi−byi
yi

�����
������ 100% ð39Þ

where yi is the actual output value and byi is the predictive
output value with respect to the input point xi (i = 1, ⋯, n).
The evaluation results for the bodyfat dataset are listed in
Table 1.

As the iterative process demonstrates in Fig. 1(a), BSOR
converges and identifies six important instances with

x53(λ
*
53 ¼ −2:28 ), x93 (λ*

93 ¼ 1:65 ), x111 (λ*
111 ¼ 6:02 ),

x128 (λ*
128 ¼ 3:60 ) , x186 (λ*

186 ¼ −13:53 ) , and x198
(λ*

198 ¼ −2:34 ) (λ*
i ¼ 0 for i = 1, ⋯, 200, and i ≠ 20, 42,

Table 1 Predictive evaluation of the seven regression models on the
bodyfat test set

Regression models MSE MAE MAPE

SVR 0.0016 0.0320 1.1543

LPSVR 0.0031 0.0404 1.5239

LSSVR 0.0037 0.0451 1.7102

MKLSVR 0.0100 0.0631 2.6530

LASSOR 0.0567 0.2020 7.6536

RVR 0.0123 0.0891 3.4800

BSOR 0.0001 0.0077 0.2624

Note: The bold statistics show that the regression model has the better
predictive performance than others (the same below)

Table 2 Fifteen datasets for experiments

Datasets #Features #Instances

Abalone 10 4177

Autoprice 15 159

Carbolenes 1142 37

Cpuact 21 8192

Housing 14 506

Lowbwt 10 189

Parkinsonsupdrs 22 5875

Pdgfr 320 79

Phenetyl1 628 22

Sensory 11 576

Strupcz 1142 34

Topo21 266 8885

Triazines 60 186

Winequalityred 11 1599

Wisconsin 32 194
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121, 139, 170) after 13 iterations, while SVR, LPSVR,
LSSVR, MKLSVR, LASSOR, and RVR, respectively select
116, 141, 200, 135, 200, and 7 (x80, x115, x128, x137, x174, x186,
and x190 with the coefficients 1.56, −1.69, −0.11, 4.69, −1.93,
−3.79, and − 0.38 respectively) support vectors from 200 in-
stances, as shown in Fig. 1(c). As shown in Fig. 1(b), BSOR
extracts one important feature after the same number of itera-
tions, i.e., the body density with f1(μ*

1 ¼ 0:15 ) (μ*
j ¼ 0 for

j = 2,⋯, 14) is considered the most important feature for body
fat prediction, while the other five regression models employ
the entire feature set except for LASSOR with 6 selected fea-
tures (f1, f2, f4, f7, f9, andf13 with the weights −1.10, 0.31, 1.13,
1.00, 0.06, and 0.23 respectively). For BSOR, in order to
predict the percentage of body fat of a new unseen man, we
just use six representative men (x53, x93, x111, x128, x186, and
x198) with an important feature (f1) that have been selected by
the BSOR algorithm to compute its output value based on
their dot product in eq. (34) and eq. (35). From the curve
fitting of predictive results shown in Fig. 1(d), we find
that BSOR generally has better predictive accuracy than
the other regression models, especially for those points
marked with different symbols in regression curves. For
the seven regression models, all residuals lie on the
interval [−3.2, 3.2]. For BSOR, the majority of
Pearson residuals are normally distributed between −2
and 2 except for two residuals, so it achieves the best
predictive accuracy. As the predictive performance
shows in Table 1, we find that the predictive accuracy
of BSOR generally is better than that of the other re-
gression methods. The definitions of parametric sets for
the seven regression models can be found in the exper-
iment design section in Section 4.2. For the above pre-
dictive results, the best parameters are C = 50and σ = 1
for SVR; C = 100and σ = 0.5 for LPSVR; C = 20and σ =
1 for LSSVR; C = 100 for MKLSVR; C = 2 for
LASSOR; and C1 = 50, C2 = 5, and σ = 0.1 for BSOR.
Compared with SVR, LPSVR, LSSVR, MKLSVR, and
BSOR, the LASSOR model provided the poor predic-
tive accuracy (see Fig. 1(d) and Table 1), although it
employed the second smallest number of features.
Similarly, the RVR model used the second smallest
number of support vectors, but it also gave the poor
predictive performance (see Fig. 1(d) and Table 1).
Overall, the above experimental results show that the
predictive accuracy and interpretability are obviously
enhanced after instances and features in the bodyfat
dataset are simultaneously reduced by BSOR. For CPU
time (in seconds), the training time and test time are
0.0450 and 0.0033 for SVR, 0.4785 and 0.0332 for
LPSVR, 0.0135 and 0.0061 for LSSVR, 0.7389 and
0.0183 for MKLSVR, 0.1363 and 0.0067, 0.1417 and
0.0049, and 1.2803 and 0.0082 for BSOR, respectively.

4 Experiments

BSOR and the other six regression models were applied to 15
real datasets to further evaluate the predictive performance.
This section includes datasets, experiment design, experimen-
tal results and comparison analysis, importance analysis of
extracted instances and features by the BSOR model, and
analysis of experimental results.

4.1 Datasets

In this experiment, 15 datasets were used to evaluate SVR,
LPSVR, LSSVR, MKLSVR, LASSOR, RVR, and BSOR.
Among them, the abalone, autoprice, cpuact, housing,
lowbwt, parkinsonsupdrs, sensory, triazines, winequalityred,
and Wisconsin datasets were sourced from the online StatLib
(http://lib.stat.cmu.edu/datasets) and UCI Machine Learning
Repository [4], while carbolenes, pdgfr, phenetyl1, strupcz,
and topo21 were selected from drug-design datasets (www.
molecular-networks.com/software/adrianacode). The number
of features (#Features) and number of instances (#Instances)
in the 15 datasets are shown in Table 2.

As the characteristics of the 15 datasets show in Table 2,
we see that the abalone, cpuact, parkinsonsupdrs, and
winequalityred datasets are relatively large; the carbolenes,
pdgfr, phenetyl1, strupcz, and triazines are high-
dimensional; topo21 is both large-scale and high-
dimensional; and the others are small.

The abalone data are used to predict the age of abalone
from physical measurements. The age of an abalone is deter-
mined by cutting the shell through the cone, staining it, and
counting the number of rings through a microscope. The
autoprice data include the specification of an auto, its assigned
insurance risk rating, and its normalized losses in use com-
pared to other cars. Its 14 numeric attributes and one nominal
attribute are employed to forecast the price of an auto. The
cpuact dataset was collected from a Sun Sparcstation running
in a multi-user university department, and was used to predict
the portion of time that CPUs run in user mode from different
attributes. The housing dataset mainly concerns housing
values in suburbs of Boston. The lowbwt dataset was gener-
ated by the Baystate Medical Center, Springfield,
Massachusetts, in 1986. It was used to identify risk factors
associated with giving birth to a low-birth-weight (less than
2, 500 g) baby. Data were collected on 189 women, 59 with
low-birth-weight babies and 130 with normal birth weight
babies. The parkinsonsupdrs dataset was created by
Athanasios Tsanas and Max Little of the University of
Oxford, who developed a telemonitoring device to record
speech signals. The original study used a range of linear and
nonlinear regression methods to predict a clinician’s
Parkinson’s disease symptom score on the UPDRS scale.
The sensory dataset was used for the sensory evaluation
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experiment, which involved two phases of a viticultural ex-
periment and a produce evaluation. The winequalityred
dataset, which is related to red variants of Portuguese Vinho
Verde wine, was created in 2009, using red wine samples. The
inputs included objective tests (e.g. pH values), and the output
was based on sensory data (median of at least three evalua-
tions by wine experts). Each expert graded the wine quality
between 0 (very bad) and 10 (very excellent). The triazines
dataset is a pyrimidine QSAR dataset. The goal is to predict
the inhibition of dihydrofolate reductase by pyrimidines. In
the wisconsin dataset, each record represents follow-up data
for one breast cancer case. Thirty features were computed
from a digitized image of a fine needle aspirate (FNA) of a
breast mass. They describe characteristics of the cell nuclei
present in the image. The output feature recorded the recurrent
time of a breast cancer, so the dataset is used to predict recur-
rent time.

The drug-design datasets, the carbolenes dataset was
sourced from a study of comparative molecular moment
analysis by Silverman and Platt [66]. The pdgfr dataset is
for the prediction and interpretation of the biological ac-
tivity of a set of PDGFR inhibitors. The phenetyl1 dataset
comes from a study of finding a new remedy for a certain
disease using the QSAR tool to aid scientists in drug
design. The strupcz dataset is used for concept validation
of the neighbourhood behavior of molecular diversity de-
scriptors. Finally, the topo21 dataset is applied to the tox-
icological prediction in drug design.

4.2 Experiment design

In our experiment, we randomly selected 3000, 100, 25,
5000, 400, 150, 4000, 70, 15, 400, 25, 5000, 100, 1000,
and 150 instances from the abalone, autoprice, carbolenes,
cpuact, housing, lowbwt, parkinsonsupdrs, pdgfr,
phene ty l1 , sensory , s t rupcz , topo21 , t r i az ines ,
winequalityred, and wisconsin datasets, respectively, to
form the training sets, and the remainders were used as
the independent test sets. First, the grid search method
based on predefined parametric sets was employed. Then
the 5-fold cross-validation (CV) method was used to train
SVR, LPSVR, LSSVR, MKLSVR, LASSOR, RVR, and
BSOR on different training sets. They were validated on
validation subsets and the optimal regression models with
the best parameters corresponding to 5-fold CV were se-
lected. Finally, the best predictive performance using the
optimal regression functions on independent test sets was
determined.

For each of the 15 datasets, values of different features
were normalized to the interval [0, 1] by min-max standardi-
zation, i.e., a new input point x′ for the original input point x
was obtained by

x
0 ¼ x−xmax

xmax−xmin
ð40Þ

where the vectors xmax and xmin are calculated from the union
of a training set and the corresponding test set. For a large and
positive output value y in a training set and the corresponding
test set, the logarithmic function was employed to obtain its
stationary output value. At the same time, for non-positive
output value y, a proper offset term Δy (Δy > 0) was added
to the original output value y so as to avoid dividing by zero
when computing the performance measure of MAPE in eq.
(39). Thus the new output value y′ was computed by

y
0 ¼ log yþΔyð Þ ð41Þ

Some datasets, including abalone, housing, lowbwt, senso-
ry, and bodyfat in the simulation section, used the transforma-
tion method in eq. (41) for their output values.

The grid search method was used in this experiment to find
the best parameters of the seven regression models, i.e., the
penalty factor C for SVR, LPSVR, LSSVR, MKLSVR, and
LASSOR, and the penalty constants C1 and C2 for BSOR
were defined as the discrete set {1, 2, 5, 10, 20, 50, 100}.
The bandwidth σ for the RBF kernel was set to the finite set
{0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10}. The small constants ε, ρ, τ,
and the maximum iterative times were respectively set to 0.02,

1e-6, 1e-2, and 50. The initial weight vector μ 0ð Þ was assigned
to (1/d,⋯, 1/d)T. In this paper, the RBF kernel in eq. (6) and
the polynomial kernel were used in MKLSVR. The polyno-
mial kernel of any two input points xi and xj is defined as

K xi; x j
� � ¼ xTi x j þ 1

� �δ ð42Þ

where the degree δ (δ ≥ 1) is a user-defined parameter from the
set {1, 2, 3}. For MKLSVR, the parametric sets of the band-
width σ and degree δ were used in the experiment. For RVR,
the expectation-maximization algorithm is used to estimate
unknown parameters.

For BSOR the number of important instances (#IIs) and
the number of important features (#IFs) were used to eval-
uate the efficiencies of regression models and selected in-
stances and features that could be utilized to obtain inter-
pretable results for forecasting. The important instances are
composed of representative or prototype instances in ob-
servation data, while the important features consist of im-
portant and relevant variables in feature set. But, for SVR,
LPSVR, LSSVR, MKLSVR, and RVR, important in-
stances are called SVs and they are unable to extract im-
portant features. LASSOR can select important features,
whereas it is unable to identify important instances.

To evaluate a given regression model’s ability to select
important instances and features and remove noisy or re-
dundant instances and features, the instance reduction rate
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(IRR) and feature reduction rate (FRR) with #IIs and #IFs
are respectively defined as

IRR ¼ 1−
#IIs
Tj j

� �
� 100% ð43Þ

FRR ¼ 1−
#IFs
Fj j

� �
� 100% ð44Þ

For BSOR, based on the optimal coefficient vector λ∗ and
weight vector μ∗, the relative importance of instances (II) and
relative importance of features (FI) for value prediction can be
respectively computed by

II xið Þ ¼ λ*
i

∑n
i¼1 λ*

i

�� �� � 100%; i ¼ 1;⋯; n ð45Þ

Table 3 Predictive evaluation for MSE on 15 independent test sets

DATASETS SEVEN REGRESSION MODELS

SVR LPSVR LSSVR MKLSVR LASSOR RVR BSOR

Abalone 0.0299 0.0286 0.0287 0.0798 0.0291 0.0300 0.0271

Autoprice 0.0262 0.0319 0.0291 0.1900 0.2105 0.0215 0.0232

Carbolenes 0.0346 0.0284 0.0150 0.0842 0.0415 0.0437 0.0125

Cpuact 0.0035 0.0319 0.0035 0.4629 0.1634 0.1503 0.0026

Housing 0.0213 0.0184 0.0206 0.1406 0.0766 0.0500 0.0307

Lowbwt 0.0134 0.0101 0.0226 0.0709 0.8969 0.0261 0.0042

Parkinsonsupdrs 0.0013 0.0014 0.0015 0.0089 0.0023 0.0019 0.0015

Pdgfr 0.0699 0.0188 0.0189 0.0520 0.0246 0.0265 0.0079

Phenetyl1 0.0404 0.0194 0.0109 0.0332 0.0240 0.0075 0.0050

Sensory 0.0031 0.0028 0.0028 0.0031 0.0368 0.0028 0.0025

Strupcz 0.0023 0.0070 0.0032 0.0012 0.0004 0.0026 0.0007

Topo21 0.0008 0.0008 0.0007 0.0008 0.0010 0.0010 0.0008

Triazines 0.0227 0.0224 0.0220 0.0297 0.0269 0.0231 0.0159

Winequalityred 0.0171 0.0172 0.0166 0.0246 0.0191 0.0188 0.0159

Wisconsin 0.0658 0.0604 0.0644 0.0738 0.0490 0.0371 0.0429

Table 4 Predictive evaluation for MAE on 15 independent test sets

DATASETS SEVEN REGRESSION MODELS

SVR LPSVR LSSVR MKLSVR LASSOR RVR BSOR

Abalone 0.1338 0.1312 0.1298 0.2140 0.1296 0.1290 0.1264

Autoprice 0.1263 0.1319 0.1370 0.3298 0.3971 0.1068 0.1224

Carbolenes 0.1598 0.1407 0.0956 0.2392 0.1801 0.1798 0.0771

Cpuact 0.0420 0.0655 0.0400 0.2662 0.2680 0.2448 0.0363

Housing 0.1017 0.0944 0.0995 0.2776 0.1798 0.1504 0.1241

Lowbwt 0.0970 0.0784 0.1182 0.2505 0.7251 0.1264 0.0578

Parkinsonsupdrs 0.0267 0.0265 0.0261 0.0681 0.0362 0.0331 0.0282

Pdgfr 0.1880 0.0872 0.1032 0.1696 0.1389 0.1322 0.0766

Phenetyl1 0.1607 0.1163 0.0897 0.1468 0.1304 0.0780 0.0624

Sensory 0.0476 0.0433 0.0435 0.0447 0.1561 0.0427 0.0406

Strupcz 0.0341 0.0393 0.0459 0.0292 0.0132 0.0451 0.0213

Topo21 0.0203 0.0198 0.0197 0.0188 0.0199 0.0200 0.0186

Triazines 0.1077 0.1041 0.1059 0.1278 0.1302 0.1153 0.0933

Winequalityred 0.1007 0.1010 0.1000 0.1326 0.1079 0.1057 0.0968

Wisconsin 0.2181 0.2088 0.2138 0.2310 0.1896 0.1562 0.1773
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FI f j

	 

¼ μ*

j

∑d
j¼1 μ*

j

��� ��� � 100%; j ¼ 1;⋯; d ð46Þ

where xiis the ith instance in a training set and fj is the j-
thfeature in an original feature set.

According to the importance measure II (xi) (λ
*
i ≠0 ) of

instances in eq. (38), if λ*
i > 0 ( λ*

i

�� �� > ρ ) then the II

value of the input point xi is greater than 0 and it has a
positive contribution to regression. Otherwise, it has a
negative contribution. The larger the absolute value of
II, the more important the input point xi, and it is consid-
ered a more representative or prototype instance.
Obviously, if the II percentage of the input point xi is zero

( le t λ*
i ¼ 0 if λ*

i

�� ��≤ρ ) , then i t may be noise or

Table 5 Predictive evaluation for MAPE (%) on 15 independent test sets

DATASETS SEVEN REGRESSION MODELS

SVR LPSVR LSSVR MKLSVR LASSOR RVR BSOR

Abalone 5.6773 5.5171 5.5615 9.0456 5.2674 5.2547 5.0950

Autoprice 1.3487 1.3897 1.4730 3.4669 4.3166 1.1437 1.3191

Carbolenes 38.1121 26.7350 18.9236 71.7956 34.3588 32.8202 16.8096

Cpuact 1.2634 3.8168 1.3523 20.4029 12.5387 11.5267 1.0550

Housing 3.6501 3.5961 3.5646 8.7288 6.1830 5.1818 4.2671

Lowbwt 1.2597 1.0135 1.5013 3.2371 9.0120 1.6026 0.7458

Parkinsonsupdrs 14.5976 13.1840 13.1101 33.2094 19.0936 17.3491 15.1888

Pdgfr 100.9529 16.8198 22.0317 60.8667 23.0945 20.3880 13.0025

Phenetyl1 92.8691 27.0226 23.6310 22.4161 22.6113 24.1058 23.6935

Sensory 1.6900 1.5988 1.5964 1.6571 5.7341 1.5716 1.5001

Strupcz 28.0019 18.1159 39.6220 23.4518 12.1454 37.4012 15.4822

Topo21 1.9608 1.9146 1.9161 1.8156 2.1393 2.1553 1.7900

Triazines 30.0280 30.3953 30.5569 35.2671 31.2660 28.1462 21.8780

Winequalityred 20.3013 20.3495 20.3644 26.4903 22.2907 21.8146 19.7983

Wisconsin 65.4162 68.3766 92.0629 71.2009 81.4570 58.6001 63.3174

Table 6 Predictive evaluation for #IIs (IRR %) on 15 training sets

DATASETS SEVEN REGRESSION MODELS

SVR LPSVR LSSVR MKLSVR LASSOR RVR BSOR

Abalone 2054 (14.42) 215 (91.04) 2400 (0.00) 2124 (11.50) 2400 (0.00) 6 (99.75) 85 (96.46)

Autoprice 64 (20.00) 38 (52.50) 80 (0.00) 76 (5.00) 80 (0.00) 7 (91.25) 2 (97.50)

Carbolenes 18 (10.00) 18 (10.00) 20 (0.00) 19 (5.00) 20 (0.00) 5 (60.00) 1 (95.00)

Cpuact 813 (79.68) 130 (96.75) 4000 (0.00) 1912 (52.20) 4000 (0.00) 11 (99.73) 6 (99.85)

Housing 222 (30.63) 223 (30.31) 320 (0.00) 297 (7.19) 320 (0.00) 6 (98.13) 10 (96.88)

Lowbwt 110 (8.33) 63 (47.50) 120 (0.00) 106 (11.67) 120 (0.00) 6 (95.00) 1 (99.17)

Parkinsonsupdrs 1273 (60.22) 242 (92.44) 3200 (0.00) 2455 (23.28) 3200 (0.00) 14 (99.56) 34 (98.94)

Pdgfr 50 (10.71) 49 (12.50) 56 (0.00) 51 (8.93) 56 (0.00) 4 (92.86) 4 (92.86)

Phenetyl1 11 (8.33) 6 (50.00) 12 (0.00) 10 (16.67) 12 (0.00) 9 (25.00) 1 (91.67)

Sensory 220 (31.25) 77 (75.94) 319 (0.31) 240 (25.00) 320 (0.00) 5 (98.44) 2 (99.38)

Strupcz 13 (35.00) 11 (45.00) 20 (0.00) 16 (20.00) 20 (0.00) 15 (25.00) 2 (90.00)

Topo21 1945 (51.38) 110 (97.25) 4000 (0.00) 1363 (65.93) 4000 (0.00) 10 (99.75) 1 (99.98)

Triazines 64 (20.00) 17 (78.75) 80 (0.00) 70 (12.50) 80 (0.00) 7 (91.25) 1 (98.75)

Winequalityred 670 (16.25) 44 (94.50) 800 (0.00) 734 (8.25) 800 (0.00) 5 (99.38) 2 (99.75)

Wisconsin 115 (4.17) 51 (57.50) 120 (0.00) 118 (1.67) 120 (0.00) 4 (96.67) 1 (99.17)
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redundancy, and it can be removed from the training set.
Similarity, for the importance measure FI (fj) (μ*

j≠0 ) of

features in eq. (39), if μ*
j > 0 ( μ*

j

��� ��� > ρ ), then the FI

value of the feature fj is greater than zero and is positively
correlated with regression, and it is negatively correlated
if the converse is true. The larger the absolute value of FI,
the more important the feature fj, which is considered an
important feature. If the FI percentage of the feature fj is

zero (let μ*
j ¼ 0 if μ*

j

��� ���≤ρ ), then it is unimportant and

redundant and can be removed from the feature set. With
sparse instance and feature sets, the computational effi-
ciency and interpretability of BSOR are enhanced in
real-world applications.

All of experiments using SVR, LPSVR, LSSVR,
MKLSVR, LASSOR, RVR, and BSOR were implemented
on the MATLAB 8.1 (http://www.mathworks.com). To be

Table 7 Predictive evaluation for #IFs (FRR %) on 15 training sets

DATASETS SEVEN REGRESSION MODELS

SVR LPSVR LSSVR MKLSVR LASSOR RVR BSOR

Abalone 10 (0.00) 10 (0.00) 10 (0.00) 10 (0.00) 9 (10.00) 10 (0.00) 7 (30.00)

Autoprice 15 (0.00) 15 (0.00) 15 (0.00) 15 (0.00) 8 (46.67) 15 (0.00) 2 (86.67)

Carbolenes 1142 (0.00) 1142 (0.00) 1142 (0.00) 1142 (0.00) 4 (99.65) 1142 (0.00) 1 (99.91)

Cpuact 21 (0.00) 21 (0.00) 21 (0.00) 21 (0.00) 8 (61.90) 21 (0.00) 7 (66.67)

Housing 14 (0.00) 14 (0.00) 14 (0.00) 14 (0.00) 5 (57.14) 14 (0.00) 8 (42.86)

Lowbwt 10 (0.00) 10 (0.00) 10 (0.00) 10 (0.00) 5 (50.00) 10 (0.00) 2 (80.00)

Parkinsonsupdrs 22 (0.00) 22 (0.00) 22 (0.00) 22 (0.00) 10 (54.55) 22 (0.00) 8 (63.64)

Pdgfr 320 (0.00) 320 (0.00) 320 (0.00) 320 (0.00) 6 (98.13) 320 (0.00) 13 (95.94)

Phenetyl1 628 (0.00) 628 (0.00) 628 (0.00) 628 (0.00) 11 (98.25) 628 (0.00) 11 (98.25)

Sensory 11 (0.00) 11 (0.00) 11 (0.00) 11 (0.00) 11 (0.00) 11 (0.00) 4 (63.64)

Strupcz 1142 (0.00) 1142 (0.00) 1142 (0.00) 1142 (0.00) 26 (97.72) 1142 (0.00) 1 (99.91)

Topo21 266 (0.00) 266 (0.00) 266 (0.00) 266 (0.00) 5 (98.12) 266 (0.00) 9 (96.62)

Triazines 60 (0.00) 60 (0.00) 60 (0.00) 60 (0.00) 2 (96.67) 60 (0.00) 3 (95.00)

Winequalityred 11 (0.00) 11 (0.00) 11 (0.00) 11 (0.00) 5 (54.55) 11 (0.00) 5 (54.55)

Wisconsin 32 (0.00) 32 (0.00) 32 (0.00) 32 (0.00) 4 (87.50) 32 (0.00) 3 (90.63)

Table 8 Predictive evaluation for the training time (seconds) on 15 training sets

DATASETS SEVEN REGRESSION MODELS

SVR LPSVR LSSVR MKLSVR LASSOR RVR BSOR

Abalone 1.4284 13.0092 0.3006 124.6196 4.3902 71.1834 162.7950

Autoprice 0.0065 0.2193 0.0037 0.1009 0.0593 0.0630 0.2727

Carbolenes 0.0064 0.2123 0.0037 0.1218 0.9996 0.0280 0.1113

Cpuact 3.2304 44.1243 0.9884 502.9674 24.9945 253.9874 689.8515

Housing 0.0402 0.7085 0.0080 0.4304 0.1001 0.3270 5.1335

Lowbwt 0.0071 0.2292 0.0038 0.3380 0.1136 0.0693 0.6204

Parkinsonsupdrs 2.4173 39.0570 0.6119 188.5887 11.8648 191.1649 539.2717

Pdgfr 0.0067 0.2202 0.0041 0.0835 0.1393 0.0412 1.4577

Phenetyl1 0.0067 0.2112 0.0034 0.0674 0.3435 0.0204 0.0664

Sensory 0.0171 0.5274 0.0078 0.3251 0.0946 0.2205 3.4673

Strupcz 0.0009 0.2106 0.0037 0.0978 0.6823 0.0245 0.0527

Topo21 3.6367 132.1501 2.9286 263.6716 27.9960 266.2104 919.1724

Triazines 0.0068 0.2367 0.0038 0.1582 0.0655 0.0623 0.1934

Winequalityred 0.5928 1.2169 0.2933 44.3602 7.7791 2.1055 16.4682

Wisconsin 0.0079 0.2260 0.0041 0.7373 0.0640 0.0792 0.9691
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specific, the convex QP problems of SVR were solved by the
SMO algorithm programmed in C++ MEX functions. The
linear programming problem of LPSVR was solved by
MATLAB with the ellipsoid or interior point algorithm. The
system of linear equations of LSSVR was solved with
MATLAB, and MKLSVR was sourced from the
SimpleMKL toolbox [55]. The QP problem of the LASSOR
model was solved with the modified SpaSM [67], which is a
MATLAB toolbox for sparse statistical modeling. The RVR
model based on expectation-maximization algorithm was
solved with the pattern regression MATLAB toolbox [20].
In this study, the SMO algorithm was modified by us as a fast
solver for the bound-constrained QP problems, and the com-
putation of the row and column kernel matrices and the re-
vised SMO algorithm were implemented in C++ MEX func-
tions that we defined. Finally, the bound-constrained QP prob-
lems of BSOR were solved by using these C++ MEX func-
tions from the MATLAB platform.

4.3 Predictive results and comparative analysis

On the 15 training sets, SVR, LPSVR, LSSVR,
MKLSVR, RVR, and BSOR with the RBF kernels along
with LASSOR were trained and the optimal regression
models with the best performance were found by using
the grid search and 5-fold CV methods. Their regression
functions were applied to the independent test sets and the
corresponding predictive output values were obtained.
Thus, for each of 15 test sets, based on the actual and
predictive output values, MSE, MAE, MAPE, #IIs, #IFs,

IRR, FRR, the training time (seconds), and the test time
(seconds) were computed, and their values are shown in
Tables 3, 4, 5, 6, 7, 8 and 9. It should be pointed out that
for the sake of further analysis of the significant prototype
instances and the most important features the best predic-
tive performance on test sets regarding the 5-fold CV
method is selected and reported.

The statistics in Table 3 show that BSOR obtained a better
MSE than the other regression models on the 9 of the 15
independent test sets. SVR achieved the best MSE on the
parkinsonsupdrs dataset, while LPSVR obtained the best
MSE on the housing dataset. On the topo21 dataset, the
MSE of LSSVRwas better than that of the other six regression
models. At the same time, SVR, LPSVR, MKLSVR, and
BSOR had nearly the same MSE on the topo21 dataset.
LASSOR had the best MSE on the strupcz dataset, whereas
RVR obtained the best MSE on the autoprice and wisconsin
datasets.

The statistics in Table 4 show that the MAE values of
BSORwere generally lower than those of the other regression
models on 10 of the 15 independent test sets. However,
LPSVR had the best MAE on the housing dataset, and
LSSVR had the best MAE on the parkinsonsupdrs dataset.
Similar to MSE, the best MAE was also obtained by
LASSOR on the strupcz dataset, and RVR on the autoprice
and wisconsin datasets, respectively.

The results in Table 5 show that the MAPE statistics of
BSOR were better than those of the others on 9 of the 15
independent test sets. However, LSSVR had lower MAPE
statistics on the housing and parkinsonsupdrs datasets than

Table 9 Predictive evaluation for the test time (seconds) on 15 independent test sets

DATASETS SEVEN REGRESSION MODELS

SVR LPSVR LSSVR MKLSVR LASSOR RVR BSOR

Abalone 0.0766 0.0244 0.0960 0.7537 0.0082 0.0066 0.6320

Autoprice 0.0016 0.0041 0.0039 0.0104 0.0038 0.0035 0.0066

Carbolenes 0.0018 0.0043 0.0040 0.0556 0.0059 0.0036 0.0099

Cpuact 0.1108 0.0249 0.5347 2.1016 0.0064 0.0046 4.8403

Housing 0.0024 0.0052 0.0051 0.0205 0.0039 0.0037 0.0138

Lowbwt 0.0015 0.0041 0.0035 0.0084 0.0058 0.0035 0.0058

Parkinsonsupdrs 0.1029 0.0275 0.2521 1.3861 0.0054 0.0042 2.7063

Pdgfr 0.0016 0.0040 0.0041 0.0110 0.0041 0.0033 0.0083

Phenetyl1 0.0016 0.0039 0.0038 0.0250 0.0047 0.0035 0.0067

Sensory 0.0016 0.0046 0.0055 0.0218 0.0040 0.0035 0.0177

Strupcz 0.0005 0.0042 0.0039 0.0535 0.0048 0.0035 0.0083

Topo21 2.1521 0.1367 4.4906 1.9596 0.0120 0.0040 69.0944

Triazines 0.0018 0.0042 0.0042 0.0126 0.0040 0.0054 0.0098

Winequalityred 0.1443 0.0066 0.1468 1.0931 0.0052 0.0036 0.1063

Wisconsin 0.0017 0.0040 0.0041 0.0108 0.0042 0.0035 0.0081
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the other regression models, and MKLSVR had the best
MAPE on the phenetyl1 dataset. Similarly, LASSOR
achieved the best MAPE on the strupcz dataset, while RVR
obtained the best MAPE on the autoprice and wisconsin
datasets.

Looking at the results of #IIs and IRR in Table 6, BSOR
identified the fewest important instances or prototypes in 12 of
the 15 training sets than the other six regression models.
Similarly, BSOR generally obtained better IRR results than
the other six regression models. For #IIs and corresponding
IRR, RVRwas in second place and LPSVRwas in third place.
Specifically, RVR achieved the best IRR on the abalone,
housing, and parkinsonsupdrs datasets, and it had the same
IRR as BSOR on the pdgfr dataset. Apparently, we found that
LSSVR and LASSOR can hardly obtain the sparse instance
set. After using instance-sparsification, BSOR improved the
predictive performance with fewer instances (important or
representative input points) in different datasets (see
Tables 3, 4, and 5). At the same time, the interpretability of
BSOR was evidently enhanced because only a small number
of important or representative instances are extracted from the
training sets. In other words, these instances can be used as a
benchmark or prototype for value predictions of unseen data
based on a measure of similarity or distance between them.

The results of #IFs and FRR in Table 7 show that apart
from instance-sparsification, BSOR extracted the fewest im-
portant features from 10 of the 15 training sets, while the other
five regression models employed all the features, except for
LASSOR. Concretely, LASSOR selected the minimum num-
ber of features from the housing, pdgfr, topo21, and triazines

datasets, and it and BSOR selected the equal number of fea-
tures on the phenetyl1 and winequalityred datasets. FRR
showed that BSOR outperforms the other five regression
models. Obviously, after using feature-sparsification, BSOR
increased predictive accuracy and interpretability for forecast-
ing by regression (see Tables 3, 4, and 5). That is to say, after
removing redundant or irrelevant features from dataset, BSOR
only used a small quantity of important features to produce a
better predictive generalization. At the same time, BSOR can
provide interpretable results for users by using the analysis of
important factors based on the statistical correlation between
selected relevant features and output values.

From the perspective of the comparative CPU time, for the
seven regression models of SVR, LPSVR, LSSVR,
MKLSVR, RVR, and BSORwith the RBF kernels along with
LASSOR, the averages of their training and test time
(seconds) on 15 datasets by using the 5-fold CV method are
collected and reported in Tables 8 and 9 respectively.

As the training time shown in Table 8, LSSVR spent the
less training time than the other six regression models on 14 of
the 15 training sets. At the same time, SVR occupied the least
training time on the strupcz dataset, and it is in second place
for the training time. And then there are LASSOR, LPSVR,
and RVR with the low CPU usage. MKLSVR took more
training time than others due to the simultaneous usage of
polynomial and RBF kernels. Similarly, BSOR iteratively
solved two bound-constrained QP problems so that more
training time is spent by it than that of others.

As the test time shown in Table 9, SVR utilized the less test
time than the other six regression models on 10 of the 15

Table 10 The best parameters for seven regression models on 15 datasets

DATASETS SVR LPSVR LSSVR MKLSVR LASSOR RVR BSOR

C σ C σ C σ C σ, δ C – C1 C2 σ

Abalone 1 0.2 50 0.5 50 1 5 – 1 – 5 10 0.01

Autoprice 1 2 50 5 50 5 1 – 5 – 2 10 0.5

Carbolenes 1 2 2 0.01 5 10 10 – 1 – 50 50 2

Cpuact 20 1 1 0.5 100 1 20 – 10 – 1 20 0.2

Housing 100 2 100 0.5 50 1 2 – 5 – 20 50 0.1

Lowbwt 1 10 20 10 1 0.2 10 – 5 – 20 2 0.5

Parkinsonsupdrs 1 1 50 1 100 1 1 – 1 – 100 100 0.01

Pdgfr 1 1 100 2 100 2 2 – 1 – 5 50 0.1

Phenetyl1 2 10 5 10 100 10 1 – 1 – 100 20 0.1

Sensory 5 5 5 1 1 0.5 2 – 2 – 20 20 2

Strupcz 2 10 2 2 1 5 2 – 1 – 50 100 1

Topo21 100 0.01 10 2 1 2 1 – 1 – 2 5 0.01

Triazines 1 10 20 5 2 2 20 – 1 – 2 20 0.5

Winequalityred 1 1 20 1 2 0.5 2 – 1 – 5 10 0.2

Wisconsin 1 2 50 10 50 10 100 – 1 – 10 20 0.2
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Fig. 2 The II analysis for BSOR on the 15 datasets
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Fig. 3 The FI analysis for BSOR on the 15 datasets
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independent test sets. RVR took the least training time on 5 of
the 15 independent test sets, and it is therefore second place.
For BSOR with the similar time complexity to MKLSVR,
owing to the minimum number of instances and features se-
lected by BSOR, it spent the less test time than the former.

Besides, for the penalty factors C, C1, and C2, the band-
width σfor the RBF kernel, and the degree δ for the polyno-
mial kernel, the best parametric values found by the grid
search method of seven regression models on 15 datasets are
collected and reported in Table 10.

Finally, it should be pointed out thatMKLSVR has employed
the whole parametric sets of the bandwidth σ for the RBF kernel
and the degree δ for the polynomial kernel by using multiple
kernel learning, whereas RVR utilized the expectation-
maximization algorithm to estimate unknown parameters.

4.4 Importance analysis of extracted instances
and features

Compared with SVR, LPSVR, LSSVR, MKLSVR,
LASSOR, and RVR, BSOR generally identified the minimum
number of important instances from 15 training sets (see
Table 6). Based on the optimal coefficient vector λ∗, these

extracted instances with λ*
i

�� ��≠0 (i = 1,⋯, n) were considered
as prototypes or representatives, which are important evidence
for decision-making. Similarly, BSOR extracted the minimum
number of important features from 15 training sets (see
Table 7) while the other five regression models used all the
features except for LASSOR. According to the optimal weight

vector μ∗, those selected features with μ*
j

��� ���≠0 (j = 1, ⋯, d)

were regarded as critical factors, which are important

Table 12 Performance
comparison for p values (TT /
WSRT / FT) of nine measures

PERFORMANCE

MEASURES

BSOR vs Others

SVR LPSVR LSSVR MKLSVR LASSOR RVR

MSE 0.0397 /
0.0043 /
0.0045

0.0117 /
0.0043 /
0.0045

0.0350 /
0.0051 /
0.0045

0.0341 /
0.0001 /
0.0001

0.1180 /
0.0006 /
0.0005

0.0931 /
0.0044 /
0.0027

MAE 0.0146 /
0.0038 /
0.0027

0.0111 /
0.0061 /
0.0027

0.0082 /
0.0041 /
0.0027

0.0003 /
0.0004 /
0.0001

0.0169 /
0.0009 /
0.0005

0.0220 /
0.0057 /
0.0027

MAPE 0.0746 /
0.0084 /
0.0027

0.0147 /
0.0072 /
0.0027

0.0633 /
0.0131 /
0.0124

0.0118 /
0.0007 /
0.0005

0.0022 /
0.0027 /
0.0027

0.0230 /
0.0052 /
0.0027

#IIs (IRR) 0.0129 /
0.0004 /
0.0001

0.0002 /
0.0004 /
0.0001

0.0191 /
0.0004 /
0.0001

0.0120 /
0.0004 /
0.0001

0.0191 /
0.0004 /
0.0001

0.6672 /
0.1548 /
0.0201

#IFs (FRR) 0.0429 /
0.0004 /
0.0001

0.0429 /
0.0004 /
0.0001

0.0429 /
0.0004 /
0.0001

0.0429 /
0.0004 /
0.0001

0.1744 /
0.1788 /
0.1088

0.0429 /
0.0004 /
0.0001

trTime 0.0651 /
0.0004 /
0.0001

0.0628 /
0.0045 /
0.0455

0.0650 /
0.0004 /
0.0001

0.1165 /
0.0113 /
0.0455

0.0661 /
0.0052 /
0.0124

0.0698 /
0.0004 /
0.0001

tsTime 0.2787 /
0.0038 /
0.0005

0.2783 /
0.0032 /
0.0005

0.2809 /
0.0038 /
0.0005

0.3132 /
0.2342 /
0.0124

0.2779 /
0.0001 /
0.0001

0.2778 /
0.0004 /
0.0001

Table 11 The MIIs and MIFs with their HII and HFI values on 15
datasets

Datasets MIIs HII (%) MIFs HFI (%)

Abalone x965 4.82 f7 −27.51
Autoprice x12 −60.23 f7 64.89

Carbolenes x18 100.00 f892 100.00

Cpuact x171 −28.97 f7 36.92

Housing x14 16.96 f9 36.52

Lowbwt x29 100.00 f1 98.89

Parkinsonsupdrs x977 −7.09 f1 37.26

Pdgfr x50 40.50 f181 17.65

Phenetyl1 x9 100.00 f156 100.00

Sensory x164 50.01 f7 16.88

Strupcz x1 −99.18 f113 100.00

Topo21 x2111 100.00 f165 12.46

Triazines x38 100.00 f10 46.90

Winequalityred x746 70.90 f10 42.79

Wisconsin x49 100.00 f4 46.93
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references for reason tracking and explanation. Therefore, for
each of the 15 datasets, corresponding with the best predictive
performance of the optimal BSOR model found by the comb-
ing grid search and 5-fold CV method, the optimal coefficient
vector λ∗ and optimal weight vector μ∗ were selected, and
their II and FI values, defined by eq. (45) and eq. (46), respec-
tively, were computed and are reported in Figs. 2 and 3.

As shown in Figs. 2 and 3, some representative instances
and important features were identified and extracted from each
dataset. At the same time, other noisy or redundant instances
and unimportant or irrelevant features were automatically re-
moved by BSOR. Because the number of representative in-
stances and important features in some datasets was greater
than 10, for the II values, the top 10 instances of the abalone
and parkinsonsupdrs datasets are listed, and for the FI values,
the top 10 features of the pdgfr and phenetyl1 datasets are
given. The IIs and FIs are shown in decreasing order for all
the datasets. Obviously, for each of 15 datasets, the most im-
portant instances (MIIs), their highest II (HII) values, the most
important features (MIFs), and their highest FI (HFI) values
are respectively reported in Table 11.

For the above HII or HFI values of MIIs or MFIs in
Table 11, if a value is greater than zero, then the correspond-
ing instance or feature had a positive correlation with forecast-
ing. Otherwise, it has a negative correlation with value predic-
tion. Finally, for each dataset in practical applications, we can
provide the prototype and factor analysis for forecasting based
on selected important instances and features. Hence the pre-
diction by BSOR is traceable and interpretable.

4.5 Analysis of experimental results

The simulation, experimental results, comparative analysis,
and importance analysis of instances and features show that
BSOR generally performs better than SVR, LPSVR, LSSVR,
MKLSVR, LASSOR, and RVR on 16 real datasets (a simu-
lation and 15 experimental datasets), i.e., BSOR extracts and
employs the minimal number of instances and features with-
out sacrificing predictive performance (see Tables 3, 4, and 5).
At the same time, the BSORmodel enhances the interpretabil-
ity of forecasting by selecting relevant instances and features.
Thus we say that the proposedmodel has multiple functions of
instance identification, feature selection, and value prediction.
Generally, we also find that BSOR has better instance- and
feature-reduction than the other six regression models, espe-
cially for high-dimensional datasets (see Tables 6 and 7). It
should be noted that since BSOR iteratively solves two qua-
dratic optimization problems until convergence, its model
training sometimes may consume more system time than the
other regression models. At the same time, the bottom-up
computation of the reconstructed row and column kernel ma-
trices may affect the training and test time of BSOR (see
Tables 8 and 9). For instance-sparsity, the best regression

model is BSOR, and then we have RVR in second place,
LPSVR in third place, SVR and MKLSVR in fourth place.
LSSVR and LASSOR utilize almost the entire sets of in-
stances and features, i.e., they are unable to generate sparse
instance sets. For feature-sparsity, the best regression model is
BSOR and LASSOR is in second place. We also find that
SVR, LPSVR, MKLSVR, and RVR cannot identify the im-
portant features, hence these methods are not helpful in pro-
viding interpretable results for value prediction in many prac-
tical applications.

5 Discussion

To objectively and fairly evaluate the differences between
BSOR and the other six regression models, we employed the
statistical tests for the above seven measures of MSE, MAE,
MAPE, #IIs (IRR), #IFs (FRR), the training time (trTime),
and the test time (tsTime). Specifically, parametric and non-
parametric statistical comparisons with the two-sample t-test
(TT), two-sample Wilcoxon signed-ranks test (WSRT), and
Friedman’s test (FT) were conducted on 16 datasets (1 simu-
lation +15 experimental datasets) [23, 31, 33, 79, 81, 86]. The
p values of the TT,WSRT, and FT statistics for nine measures
were calculated and are reported in Table 12.

We chose 0.05 as the threshold value for p. To put it an-
other way, we should reject the null hypothesis that there is no
significant difference between BSOR and another regression
model if the p-value from TT, WSRT, or FT is less than 0.05.
Otherwise, we should accept it. As the p-values in Table 12
demonstrate, for the TT statistics, in general, there was a sta-
tistically significant difference between BSOR and the other
six regression models. At the same time, from the p-values in
Table 12, at the 0.05 level of significance there was no signif-
icant difference between BSOR and the other four models of
SVRwith 0.0746 for MAPE, LSSVRwith 0.0633 for MAPE,
LASSOR with 0.1180 for MSE and 0.1744 for #IFs (FRR),
and RVR with 0.0931 for MSE and 0.6672 for #IIs (IRR).
Similarly, for the WSRT statistics, there was a statistically
significant difference between BSOR and the other six regres-
sion models. For MSE, MAE, MAPE, #IIs (IRR), and #IFs
(FRR), the p-values show that the predictive performance of
BSOR is generally better than those of SVR, LPSVR,
LSSVR, MKLSVR, LASSOR, and RVR on the 16 test sets.
Except that at the 0.05 level of significance there was no
significant difference between BSOR and the other two
models of LASSOR with 0.1788 for #IFs (FRR) and RVR
with 0.1548 for #IIs (IRR). Besides, for the FT statistics, the
p-values showed that the predictive performance of BSOR
was generally better than that of SVR, LPSVR, LSSVR,
MKLSVR, LASSOR, and RVR on the 16 test sets except
for LASSOR with 0.1088 for #IFs (FRR). Although
LASSOR and BSOR had no significant difference in #IFs
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(FRR) on some datasets, MSE, MAE, MAPE, and #IIs (IRR)
showed that the predictive performance of LASSOR was sig-
nificantly degraded. At the same time, RVR and BSOR had
the similar #IIs (IRR) on some datasets, but MSE, MAE,
MAPE, and #IFs (FRR) showed that RVR for instance-
sparsity causes the degraded accuracy. Obviously, simulta-
neous instance- and feature-sparsity does not cause informa-
tion loss, instead BSOR provides the best predictive perfor-
mance. Under equal predictive performance, BSOR extracts
and employs the minimal number of instances and features for
value forecasting.

For the TT statistics of trTime and tsTime, at the 0.05 level
of significance their p-values show that there was no statisti-
cally significant difference between BSOR and the other six
regression models. However, for the WSRT and FT statistics
of trTime and tsTime, at the 0.05 level of significance their p-
values show that there was a statistically significant difference
between BSOR and the other six regressionmodels, except for
MKLSVR with the WSRT statistic equalling 0.2342 for
tsTime.

Finally, computational complexity measures how many
basic steps an algorithm uses to solve a problem as a function
of its size. Here, we only consider time complexity. SVR and
LASSOR employ the SMO algorithm to solve the QP prob-
lem (2) with time complexity O(n3), where n is the sample
size. LPSVR employs the ellipsoid or interior point algorithm
to solve the LP problem with polynomial time complexities
O(n6d2) andO(n3.5d2), respectively, where d is the dimension-
al size. LSSVR solves the unconstrained QP problem or the
system of linear equations with the same time complexity
O(n3). RVR needs to compute the posterior weight covariance
matrix, which requires a Cholesky decomposition with the
order O(N3) complexity, where N is the number of basis func-
tions. MKLSVR combines the multi-kernel learning method
and the SMO algorithm to solve a QP problem with time
complexity O(Kn3), where K (K ∈ℕ) is determined by the
type of kernel function and the number of kernel parameters.
For Algorithm 1, BSOR solves the bound-constrained QP
problems (20) and (30) using the modified SMO algorithm
with time complexity O(Mn3), where M (M ∈ℕ) is the maxi-
mum number of iterations.

6 Conclusion

We have proposed a novel regression (BSOR) approach based
on the reconstructed row and column kernel matrices and the
iterative bi-sparse optimization. In addition to value predic-
tion, BSOR can simultaneously identify prototype instances
with the most important features. Then they are used as a
benchmark to obtain interpretable predictions of unseen input
points. On the 16 real datasets, BSOR generally achieved
better predictive performance than SVR, LPSVR, LSSVR,

MKLSVR, LASSOR, and RVR. The parametric and nonpara-
metric statistics and their p-values of a two-sample t-test, two-
sampleWilcoxon signed-ranks test, and Friedman’s test show
that there is a statistically significant difference between
BSOR and the other six regression models, except for the
inconsistency between parametric and nonparametric tests in
the CPU time. Simulations based on the practical dataset, ex-
perimental results, comparison analysis, and importance anal-
ysis of selected instances and features have shown that BSOR
is an effective regression method for predicting continuous
values, discovering representative instances, and identifying
important features, and it can give the best reduction for high-
dimensional data and the interpretability for forecasting. So, it
has great potential as a forecasting approach for other real-
world applications. In this study, because BSOR needs to
iteratively solve two convex QP problems, its training time
sometimes exceeds those of the other six regression models.
Thus we plan to construct an online learning-based bi-sparse
regression model with simultaneous value prediction and se-
lection of relevant instances and features that can be used to
efficiently solve large-scale and high-dimensional forecasting
problems in real-world applications.
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