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Abstract
Multiview feature selection technique is specifically designed to reduce the dimensionality of multiview data and has
received much attention. Most proposed multiview supervised feature selection methods suffer from the problem of
efficiently handling the large-scale and high-dimensional data. To address this, this paper designs an efficient supervised
multiview feature selection method for multiclass problems by combining the distributed optimization method in the
Alternating Direction Method of Multipliers (ADMM). Specifically, the distributed strategy is reflected in two aspects.
On the one hand, a sample-partition based distributed strategy is adopted, which calculates the loss term of each category
individually. On the other hand, a view-partition based distributed strategy is used to explore the consistent and characteristic
information of views. We adopt the individual regularization on each view and the common loss term which is obtained
by fusing different views to jointly share the label matrix. Benefited from the distributed framework, the model can realize
a distributed solution for the transformation matrix and reduce the complexity for multiview feature selection. Extensive
experiments have demonstrated that the proposed method achieves a great improvement on training time, and the comparable
or better performance compared to several state-of-the-art supervised feature selection algorithms.

Keywords Feature selection · Multiview learning · Distributed strategy · ADMM

1 Introduction

In practical application, the collected data are becoming
increasingly high-dimensional and large-scale, which will
bring the considerable challenges because the computa-
tional complexity is dramatically increased when dealing
with the big data. Therefore, establishing the fast and effec-
tive algorithm becomes more and more important. One of
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the efficient solutions is to get a low-dimensional represen-
tation of the original data so as to enhance the generalization
while reducing the probability of over-fitting. Among the
dimensionality reduction techniques, feature selection [11,
39] has been proven to be an efficient method. It removes
the irrelevant and redundant features, and finds out the
optimal subset from the original dataset without altering
the semantics of features. According to the availability of
label, the feature selection algorithms can be divided into
three categories: supervised feature selection algorithms
[35, 43], semi-supervised feature selection algorithms [12,
33], and unsupervised feature selection algorithms [31, 42].
The supervised feature selection uses class labels to select
the discriminative features. The unsupervised feature selec-
tion selects the relevant features by mining the underlying
correlation information among the unlabeled samples. The
semi-supervised feature selection is designed to handle the
dataset with a few available labels and it can be seen as
a compromise between the supervised and unsupervised
feature selection.

In recent years, the structured sparsity-inducing feature
selection (SSFS) methods have demonstrated the powerful
performance for specific tasks, such as classification and
clustering. SSFS selects the most discriminative features
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via joint structured sparsity. Lasso [24] is the representative
SSFS method for the binary classification problem. Subse-
quently, many variants of lasso have been developed, such
as fused lasso [25] and group lasso [37]. Compared to lasso
which is expressed in vector form, many matrix-based SSFS
methods are proposed for solving the multiclass problems.
For instance, the L2,1-norm regularization [16] was used
to select features across all data points with joint sparsity.
In [2], the L2,0-norm was employed on feature selection
and achieved the good performance. In [27], the G2,1-
norm regularization was proposed to exploit the importance
of different views and perform feature selection across
views. In [29], the G1-norm regularization was developed
to capture the group structures among the heterogeneous
features and enforce sparsity at group level. A compre-
hensive summary of SSFS methods was exhibited in [8].

With the rapid development of data acquisition devices
and feature extraction techniques, an object is often
described by multiple modalities (views) or comes from
multiple sources. For example, in image processing, an
image has multiple heterogeneous features via different
descriptors, such as HOG [5], LBP [18], SIFT [14], GIST
[19] and so on. Compared with the single-view data
exhibited in one homogeneous feature space, the multiview
data have multiple representations which can provide much
richer information about the data. In real life, the multiview
data are often defined in a high-dimensional space, which
may result in the curse of dimensionality, so the multiview
feature selection is a vital research topic. In this paper, we
focus on the supervised multiview SSFS methods. Xiao
et al. [32] proposed a two-view feature selection method
for cross-sensor iris recognition. Wang et al. [29] used
the G1-norm to integrate heterogeneous features beyond
two views. There are many other supervised multiview
SSFS algorithms [3, 34, 40, 41] that have also been
proposed in recent years. They have successfully selected
the representative features through exploring the correlation
across views and mining the contributions of different
views. However, it is noted that these methods usually
combine features from multiple representations into a high-
dimensional vector and then take this concatenation as
the inputs directly, which is usually confronted with the
complicated calculation and high computational cost in the
process of matrix operations. Moreover, considering the
explosion boost of data size, it is crucial to design a powerful
model to learn problems with large scale data.

Alternating Direction Method of Multipliers (ADMM)
[1], as an efficient algorithm with the superior convergence
properties, is successful applied to the distributed optimiza-
tion problems, such as consensus and sharing. Enlightened
by this, we design an efficient supervised multiview feature
selection method through the distributed learning strategy.
Specifically, to reduce the computational cost of large scale

data, we split the original dataset intomultiple subsets according
to category, and use the capped l2-norm based loss function
on each subset to deal with outliers efficiently. To fully exploit
the characteristics and consistency of views, we minimize the
individual view-based regularization and the common loss
term which is obtained by combining all views together to
share a label matrix. By incorporating the distributed strat-
egy into multiview feature selection, the proposed method
can not only capture the relationship among views, but also
learn the transformation submatrices in a parallel manner,
which can greatly reduce the computational complexity.

In summary, the main contributions of this paper are
listed below:

1. A distributed learning strategy is incorporated into the
multiview feature selection by adopting the sample-
partition and view-partition. The sample-partition is bene-
ficial to improve the computing power of the solution
algorithm since the loss term is calculated in blocks.

2. The consistency and characteristics of multiple view
representations are protected via the common loss term
across views and individual regularization on each view.

3. Compared with the traditional supervised multiview
feature selection methods which obtain the entire trans-
formation matrix directly, we realize the distributed
solution from different view subspace, which can pro-
vide a new choose to multiview feature selection.

The structural framework of this paper is as follows. In
Section 2, we review the related work on multiview SSFS
methods. In Section 3, we introduce the proposed model and
the solution procedure in detail. The experimental setting up
and results are exhibited in Section 4. Finally, we make a
conclusion in Section 5.

2 Related work

The multiview SSFS feature selection algorithms emphasize
the correlation of different views and bring a certain
boost on feature selection performance. In this section, we
review the recent work on the multiview SSFS methods,
including supervised, semi-supervised and unsupervised
ones.

2.1 Supervisedmethods

The supervised multiview SSFS methods use class labels
to perform feature selection. Xiao et al. [32] proposed a
two-view supervised feature selection method for cross-
sensor iris recognition. Then, Wang et al. [29] introduced
the G1-norm regularization for handling datasets beyond
two views. In [40], the G2,1-norm and L2,1-norm joint
structured sparsity regularization terms were used to enforce
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the sparsity between features of different views. Cheng
et al. [3] added a hypergraph based regularization to
enhance the inherent association of data and combined
a low-rank constraint with the L2,1-norm to perform
feature selection. Wang et al. [30] proposed a supervised
multiview feature selection method based on the weighted
hinge loss (WHMVFS) that can learn the corresponding
weight for each view and implement sparsity across views.
Yang et al. [34] proposed a multiview feature learning
framework with a discriminative regression and learned
the weights of different views adaptively. Zhang et al.
[41] proposed a self-weighted supervised feature selection
method with the L2,1-norm regularization to solve an
orthogonal linear discriminant analysis problem. Yang et al.
[36] proposed a sparse lasso based mutltiview feature
selection method for binary classification, which can
capture the contribute of different samples and views.
Lin et al. [13] proposed a multiview feature selection
method by adopting a common penalty for all views and a
structured sparsity-inducing norm for each view. Yang et al.
[35] proposed a joint local-and-global multiview feature
selection method, in which the local neighbor structure
and global label-relevant analysis are combined to select
the final features. You et al. [38] proposed Multiview
Common Component Discriminant Analysis (MvCCDA) to
handle view discrepancy, discriminability and nonlinearity
in a joint manner. Specifically, it incorporated supervised
information and local geometric information to learn a
discriminant common subspace.

2.2 Semi-supervisedmethods

The semi-supervised multiview SSFS methods use a small
proportion of labels to perform feature selection. Sindhwani
et al. [22] proposed a co-regularization framework for
multiview semi-supervised learning. They adopted the least
square loss term over the labeled samples and the laplacian
regularization over the unlabeled samples. Li et al. [12]
constructed a view-based manifold regularization to design
a semi-supervised multiview feature selection method. Xue
et al. [33] proposed a semi-supervised multiview feature
selection algorithm, and it can simultaneously capture
individual information in each view and correlations among
multiple views by learning a common component. Nie et al.
[17] studied a multiview semi-supervised classification
framework by modeling the importance of each view with
a parameter-free manner. Considering the different roles of
labeled and unlabeled samples, Tao et al. [26] added a score
for each sample and designed a semi-supervised multiview
classification framework with L2,1-norm loss function for
each view, and the final object function is formulated as the
linear weighted combination of all loss functions. Shi et al.
[21] designed a novel semi-supervised feature selection

framework by utilizing the multiview Hessian regularization
to combine the correlated and complementary information
of multiview data.

2.3 Unsupervisedmethods

The unsupervised multiview SSFS algorithms usually con-
struct the similar graph structure and latent subspace to
preserve the intrinsic structure of multiview data. Wang
et al. [31] proposed an adaptive multiview feature selection
(AMFS) method by constructing the view-based Lapla-
cian graphs to preserve the local geometric structure of
multiview data. Hou et al. [9] proposed an unsupervised
multiview feature selection method which can learn a
common similarity matrix among all views to character-
ize the structures across different views, and the weights
of views were also learned. Wang et al. [28] designed a
multiview clustering and feature learning framework with
the structured sparsity. Their model explored the unsuper-
vised heterogeneous data fusion and clustering analysis by
emphasizing structured sparsity across views. Feng et al. [7]
proposed an adaptive unsupervised multiview feature selec-
tion (AUMFS) method by adding the view-based Laplacian
graphs and L2,1-norm regularization. Shao et al. [20] pro-
cessed the multiview data chunk by chunk and proposed an
unsupervised feature selection method via the nonnegative
matrix factorization (NMF) and graph regularization. Tang
et al. [23] embedded the multiview feature selection into
an NMF based clustering framework and added weights for
measuring the importance of different views.

It is worth noting that some unsupervised multiview
SSFS models combine non-negative matrix factorization
and clustering framework to conduct feature selection.
With the above strategies, these models can learn the
transformation submatrices from different view spaces
simultaneously [20, 23]. However, for supervised multiview
SSFS methods, since all views are combined together to
determine the attribute of an object, they usually need to
concatenate features in different representation spaces into a
high-dimensional vector to calculate the loss term [3, 34, 40,
41]. Under these circumstances, the transformation matrix
has to be calculated in an overall way, which will result in
a heavy computation when handling high-dimensional data.
So, it is challenging for the traditional supervised SSFS
models to effectively deal with large scale data.

3 Proposedmodel

In this section, we first describe the objective function of the
proposed method. Then the derivation procedure of solution
is given in detail. The computational complexity of the
designed algorithm is analyzed in the third part.
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3.1 Objective function

In this paper, matrices and vectors are denoted by the
boldface uppercase letters and boldface lowercase letters,
respectively. Given a multiview dataset X ∈ R

n×d with C

categories and V views, where n is the number of objects
and d is the dimension of each object. Denote Xi =
[x1i ; x2i ; ...; xni

i ] ∈ R
ni×d(i = 1, 2, .., C) the ith category,

where ni is the number of the ith category, and xq
i represents

the qth sample of the ith category. For the ith class, letXiv ∈
R

ni×dv (v = 1, 2, ..., V ) be the subset from the vth view,
where dv represents the dimension of the vth view. Here, we
have n = ∑C

i=1 ni and d = ∑V
v=1 dv . Let Y ∈ {0, 1}n×C

be the label matrix. The label matrix of the ith category is
defined by Yi = [y1i ; y2i ; ...; yni

i ] ∈ R
ni×C . The L2,1-norm

in this paper is represented as: ‖W‖2,1 = ∑m
p=1 ‖wp‖2,

wherewp means the pth row ofW. In this paper, we attempt
to learn a transformation matrixW ∈ R

d×C to help us select
features.

We will introduce our model from the sample level
and feature level. Firstly, according to the sample-partition
based distributed strategy, we split X and Y by categories

X =

⎡

⎢
⎢
⎢
⎣

X1

X2
...

XC

⎤

⎥
⎥
⎥
⎦

,Y =

⎡

⎢
⎢
⎢
⎣

Y1

Y2
...

YC

⎤

⎥
⎥
⎥
⎦

(1)

We attempt to calculate the loss function of each category
separately and then combine them as a whole loss term.
Specifically, with the training data Xi and the label matrix
Yi for the ith category, the traditional least squares loss
function with l2-norm for the ith block of data can be
summarized as follows

Li (W) =
ni∑

q=1

‖xq
i W + b − yq

i ‖22 (2)

where b ∈ R
d is the bias. We can absorb b into W when

the constant value 1 is added as an additional dimension for
each data xq

i . Then the loss term becomes

Li (W) =
ni∑

q=1

‖xq
i W − yq

i ‖22 (3)

To improve the robustness of the regressionmodel, we adopt
the capped l2-norm based loss function [10]. However, differ-
ent from [10] which applies the capped l2-norm to the whole
training data to calculate the loss function, the proposed
model calculates the loss term on each category separately

Li (W) =
ni∑

q=1

min
W

(‖xq
i W − yq

i ‖2, ε
)
, i = 1, 2, ...C (4)

where ε > 0 is the thresholding parameter to identify the
latent outliers.

Denote a diagonal matrix Fi , and define the qth diagonal
element of Fi as

(Fi )q,q = 1

2
‖xq

i W − yq
i ‖−1

2 · I
(‖xq

i W − yq
i ‖2 ≤ ε

)
(5)

where I (·) is an indicative function. It is equal to 1 if
‖xq

i W − yq
i ‖2 ≤ ε, and 0 otherwise. Then the (4) can be

converted to

Li (W) =
ni∑

q=1

(Fi )q,q ‖xq
i W − yq

i ‖22 (6)

which is equivalent to

Li (W) = tr
[
(XiW − Yi )

T Fi (XiW − Yi )
]

(7)

Considering the loss of all C categories, we get the
following loss term

min
Wv, Fi

C∑

i=1

tr
[
(XiW − Yi )

T Fi (XiW − Yi )
]

(8)

Secondly, a view-partition based distributed strategy is
used for emphasizing the characteristics and consistency
of views. We adopt the individual regularization on each
view and the common loss term which is obtained by fusing
different views to jointly share the label matrix. Specifically,
we split Xi and transformation matrixW into V views

X =

⎡

⎢
⎢
⎢
⎣

X1
1 X2

1 · · ·XV
1

X1
2 X2

2 · · ·XV
2

...
...

. . .
...

X1
C X2

C · · ·XV
C

⎤

⎥
⎥
⎥
⎦

,W =

⎡

⎢
⎢
⎢
⎣

W1

W2
...

WV

⎤

⎥
⎥
⎥
⎦

(9)

Then, (8) can be rewritten as follows

min
Wv, Fi

C∑

i=1

tr

⎡

⎣

(
V∑

v=1

XivWv−Yi

)T

Fi

(
V∑

v=1

XivWv−Yi

)⎤

⎦ (10)

With the individual L2,1-norm regularization based on each
view, our model is built as follows:

min
Wv, Fi

C∑

i=1

tr

⎡

⎣

(
V∑

v=1

XivWv−Yi

)T

Fi

(
V∑

v=1

XivWv−Yi

)⎤

⎦

+λ

V∑

v=1

‖Wv‖2,1 (11)

where λ > 0 is the trade-off parameter for balancing the
weight of loss term and regularization. In this model, we
implement distributed feature learning from two aspects. We
first adopt the sample-partition scheme to segment the loss
term according to each category, providing the feasibility
for the distributed solution. Then, the view-partition scheme
with individual regularization and common loss term is
incorporated into the model, which is conducive to explore
the correlations of views.
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3.2 Optimization and solution

The optimization problem (11) is convex with respect to
one variable when the other variables are fixed. We will
alternatively update Wv and Fi via the ADMM [1]. By
introducing an auxiliary variable Ziv = XivWv , we can
rewrite (11) in ADMM form

min
Wv,Ziv ,Fi

C∑

i=1

tr

⎡

⎣

(
V∑

v=1

Ziv−Yi

)T

Fi

(
V∑

v=1

Ziv − Yi

)⎤

⎦

+ λ

V∑

v=1

‖Wv‖2,1
s.t . Ziv = XivWv (12)

The augmented lagrangian of (12) is

L (Wv,Ziv,Fi ,Piv)

=
C∑

i=1

tr

⎡

⎣

(
V∑

v=1

Ziv − Yi

)T

Fi

(
V∑

v=1

Ziv − Yi

)⎤

⎦

+λ

V∑

v=1

‖Wv‖2,1 +
C∑

i=1

V∑

v=1

tr
[
PT

iv(Ziv − XivWv)
]

+ρ

2

C∑

i=1

V∑

v=1

‖Ziv − XivWv‖2F (13)

where Piv is the Lagrangian multiplier and ρ is a non-
negative constant to penalize the equality constraints.
Since

C∑

i=1

V∑

v=1

tr
[
PT

iv (Ziv − XivWv)
]

+ρ

2

C∑

i=1

V∑

v=1

‖Ziv − XivWv‖2F

= ρ

2

C∑

i=1

V∑

v=1

(

‖Ziv − XivWv + 1

ρ
Piv‖2F − ‖ 1

ρ
Piv‖2F

)

(14)

The (13) can be rewritten as

L (Wv,Ziv,Fi ,Piv)

=
C∑

i=1

tr

⎡

⎣

(
V∑

v=1

Ziv − Yi

)T

Fi

(
V∑

v=1

Ziv − Yi

)⎤

⎦

+λ

V∑

v=1

‖Wv‖2,1 + ρ

2

C∑

i=1

V∑

v=1
(

‖Ziv − XivWv + 1

ρ
Piv‖2F − ‖ 1

ρ
Piv‖2F

)

(15)

According to the distributed optimization learning via
ADMM [1], the entire transformation matrix W can be

obtained by learning V transformation submatricesWv . For
the vth subproblem, ADMM consists of the iterations

Wv
(k+1) := argmin

Wv

(

λ‖Wv‖2,1 + ρ

2

C∑

i=1

‖Ziv
(k)

−XivWv + 1

ρ
Piv

(k)‖2F
)

(16)

Ziv
(k+1) := argmin

Ziv

⎛

⎝tr

⎡

⎣

(
V∑

v=1

Ziv − Yi

)T

×Fi
(k)

(
V∑

v=1

Ziv − Yi

)]

+ρ

2

V∑

v=1

‖Ziv − XivWv
(k+1)

+ 1

ρ
Piv

(k)‖2F
⎞

⎠ (17)

(Fi )
(k+1)
q,q = 1

2

∥
∥

(
V∑

v=1

Ziv
(k+1) − Yi

)

q

∥
∥−1
2

·I
⎛

⎝
∥
∥

(
V∑

v=1

Ziv
(k+1) − Yi

)

q

∥
∥
2 ≤ ε

⎞

⎠ (18)

Piv
(k+1) = Piv

(k) + ρ
(
Ziv

(k+1) − XivWv
(k+1)

)
(19)

where Wv
(k),Ziv

(k),Fi
(k),Piv

(k) are the values of the kth

iteration,
∥
∥

(∑V
v=1 Ziv

(k+1) − Yi

)

q

∥
∥
2 in (18) means the

loss of the qth samples in ith class. The optimization
problems (16)-(19) can be inverted into a concise form
according to the following theorem.

Theorem 1 Equations (16)-(19) is equivalent to (20)-(23).

Wv
(k+1) := argmin

Wv

(

λ‖Wv‖2,1 + ρ

2

C∑

i=1

‖XivWv

−
(
XivWv

(k) + Zi
(k) − XiW

(k)

+ 1

ρ
Pi

(k)
)

‖2F
)

(20)

Zi
(k+1) := argmin

Zi

(
tr

[(
VZi −Yi

)T
Fi

(k)
(
VZi −Yi

)]

+ρV

2
‖Zi −XiW

(k+1)+ 1

ρ
Pi

(k)‖2F
)

(21)

(Fi )
(k+1)
q,q = 1

2
‖(VZi

(k+1) − Yi )q‖−1
2

·I
(
‖(VZi

k+1 − Yi )q‖2 ≤ ε
)

(22)
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Pi
(k+1) = Pi

(k) + ρ
(
Zi

(k+1) − XiW
(k+1)

)
(23)

where Zi = 1
V

∑V
v=1 Ziv , XiW = 1

V

∑V
v=1XivWv , and

Pi = 1
V

∑V
v=1 Piv .

Proof See the Appendix.

It can be seen from the simplified problems that we
only need to calculate a matrix Zi in the (21) instead of
calculating Ziv(v = 1, ..., V ) in (17) for fixed i. The same
strategy for computing the matrix Pi rather than Piv is used
in (23).

According to the (20)-(23), the solution of Wv , Zi , Fi

and Pi are presented as follows.

1) UpdatingWv , where v = 1, 2, ..., V
To updateWv , we fix all other variables. By setting

the derivative of (20) w.r.t.Wv to zero, we have

2λDvWv+ρ

C∑

i=1

XT
iv

(

XivWv−
(
XivWv

(k)+ Zi
(k)

−XiW
(k) + 1

ρ
Pi

(k)
))

= 0

(24)

where Dv is a diagonal matrix with the hth diagonal
element (Dv)h,h = 1

2‖wh
v‖2 , where w

h
v means the h row

of Wv . Then, we have

Wv
(k+1) = ρ

(

2λDv + ρ

C∑

i=1

XT
ivXiv

)−1

×
(

C∑

i=1

XT
iv

(
XivWv

(k)+ Zi
(k)−XiW

(k)

+ 1

ρ
Pi

(k)
))

(25)

2) Updating Zi , where i = 1, 2, ..., C
By setting the derivative of (21) w.r.t.Zi to zero with

currentWv
(k+1),Fi

(k),Pi
(k)
, we have

2VFi
(k)

(
VZi −Yi

)+ρV

(

Zi − XiW
(k+1)+ 1

ρ
Pi

(k)
)

=0

(26)

Then, we have

Zi
(k+1) =

(
2VFi

(k) + ρIi
)−1

×
(
2Fi

(k)Yi + ρXiW
(k+1) − Pi

(k)
)

(27)

where Ii ∈ R
ni×ni is an identity matrix.

3) Updating Fi and Pi , where i = 1, 2, ..., C

WithWv
(k+1) and Zi

(k+1)
, we calculate Fi

(k+1) and
Pi

(k+1)
according to (22) and (23), respectively.

In summary, the complete procedure of our algorithm is
shown in Algorithm 1. In each iteration, the transformation
submatrices Wv (v = 1, ..., V ) are calculated in parallel
with the current Zi and Pi (i = 1, ...C). We repeat
this iteration procedure until it satisfies the convergence
condition.

3.3 Complexity analysis

As is shown in Algorithm 1, we need to update four
variables in each iteration, i.e. Wv , Fi , Zi , Pi . In the
process of calculating Wv , the complexity of matrix
multiplication is O(dvn(dv + C)) and the computational
complexity of matrix inversion isO(d3

v ). The computational
complexity of XiW is nidC, and the complexity for
solving Zi is O(n3i + n2i C + nidC). The complexity
of Fi-update is O(niC). The complexity of updating Pi

is included in the XiW-update. So, the total complexity

of each iteration is O
(∑V

v=1(d
3
v + d2

vnC) + 2dnC + nC

+ ∑C
i=1(n

3
i + n2i C)

)
.
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Instead of computing the entire matrix inversion with
size of n × n or d × d in the traditional feature selection
methods, the matrix inversion of the proposed algorithm is
divided into blocks, with size of ni ×ni or dv×dv . Similarly,
the matrix multiplication is also calculated in blocks, such
as XivWv instead of XW. So, the distributed learning
strategy can exceedingly cut down the computational cost
on multiview feature selection.

4 Experiments

In this section, a series of experiments are conducted on
public multiview datesets to compare the efficiency of the
proposed method with one single-view supervised feature
selection algorithm and five multiview supervised feature
selection algorithms.

4.1 Datasets

Eight datasets are employed to validate the performances of
competitors. The detailed descriptions about these datasets
are as follows. And Table 1 shows the detailed information
about the datasets used in experiments.

• Multiple Features (MF) [6]1: This dataset consists of
2,000 handwritten numerals (‘0’–‘9’) with 10 classes.
These digits are shown with six feature sets: 76-D
Fourier coefficients of the character shapes, 216-D
profile correlations, 64-D Karhunen-Love coefficients,
240-D pixel averages in 2 x 3 windows, 47-D Zernike
moments and 6-D morphological features.

• Internet Advertisements Dataset (Ads)2: This dataset
contains 3,279 (2,821 nonads and 458 ads) instances
with five types of representations for each instance:
457-D features from url terms, 495-D features from
origurl terms, 472-D features from ancurl terms, 111-D
features from alt terms and 19-D features from caption
terms.

• COIL20 [15]3: This dataset contains 1,440 grayscale
images for 20 objects. This paper extracts four different
features via different feature descriptors, including 512-
D GIST, 1764-D HOG, 1239-D LBP and 1000-D SIFT.

• Animals with Attributes4: This dataset consists of
30,475 images for 50 animals with six feature repre-
sentations for each image: 2688-D Color Histogram
features, 2000-D Local Self-Similarity features, 252-D
Pyramid HOG features, 2000-D SIFT features, 2000-D
SIFT features and 2000-D SURF features. In this paper,

1http://archive.ics.uci.edu/ml/datasets/Multiple+Features
2https://archive.ics.uci.edu/ml/datasets/internet+advertisements
3http://www.cs.columbia.edu/CAVE/software/softlib/COIL-20.php
4https://cvml.ist.ac.at/AwA/

we select the first 20 classes in the alphabetical order
(named Animal20) as the training data.

• NUS-WIDE-OBJECT (NWO) [4]5: This dataset con-
tains 30,000 objects for 31 classes with six types of low-
level features, including 64-D color histogram, 144-D
color correlogram, 73-D edge direction histogram, 128-
D wavelet texture, 225-D block-wise color moments
and 500-D bag of words based on SIFT descriptions. In
this paper, we select the first 5 classes, 10 classes from
NUS-WIDE-OBJECT training dataset in the alphabet-
ical order (named NWO1 and NWO2) and adopt all
samples (named NWO3) as the training data.

• NUS-WIDE (NW)5: This dataset contains 81 classes
with five types of low-level features, including 64-D
color histogram, 144-D color correlogram, 73-D edge
direction histogram, 128-D wavelet texture and 225-
D block-wise color moments. We have removed the
unlabeled samples and three categories whose number
exceeds 30000. The final NW dataset used in this exper-
iments contains 104542 samples with 79 categories.

4.2 Experimental setup

To justify the superiority of the proposed method, we
compare it with six state-of-the-art feature selection algo-
rithms: DSML-FS [40], SSD-FS [41], HLR-FS [3], SCM
[10], AWD [34] and SFS [13]. The detailed descriptions
about these compared methods are as follows.

1. DSML-FS: It is a supervised multimodal feature
selection method which adopts theL2,1-norm andG2,1-
norm based joint structured sparsity regularization.
There are two trade-off parameters λ1 and λ2 in this
model.

2. SSD-FS: It is a supervised multiview self-weighted
feature selection method established by introducing the
sparsity-inducing regularization into a self-weighted
orthogonal linear discriminant analysis. A trade-off
parameter λ is set in this model.

3. HLR-FS: It is a supervised multiview feature selection
method, and adopts the hypergraph based manifold
regularization to enhance the inherent association of all
points. There are two trade-off parameters λ1 and λ2 in
this model.

4. SCM: It is a single-view supervised feature selection
method which emphasizes the capped-l2 norm loss
and the L2,p-norm regularizer minimization simultane-
ously. This model has two parameters λ and ε, where
λ is the trade-off parameter and ε is the threshold
parameter defined in the capped l2-norm based loss
term.

5https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Table 1 Multiple view representations of different datasets

Views MF Ads COIL20 Animal20 NWO1/2/3 NW

1 FOU(76) URL(457) GIST(512) CH(2688) CH(64) CH(64)

2 FAC(216) ORIGURL(495) HOG(1764) LSS(2000) CORR(144) CORR(144)

3 KAR(64) ANCURL(472) LBP(1239) PHOG(252) EDH(73) EDH(73)

4 PIX(240) ALT(111) SIFT(1000) REGIFT(2000) WT(128) WT(128)

5 ZER(47) CAPTION(19) SIFT(2000) CM(225) CM(225)

6 MOR(6) SURF(2000) SIFT(500)

dimension 649 1554 4515 10940 1134 634

classes 10 2 20 20 5/10/31 79

samples 2000 3279 1440 14112 3415/5789/30000 104542

5. AWD: It is a supervised multiview feature selection
method established by employing the discriminative
regression and adapted-weighting coefficients on each
view. A trade-off parameter λ is set in this model.

6. SFS: It is a supervised multiview feature selection
method with the sharing category via the ADMM. A
trade-off parameter λ is set in this model.

In the multi-view feature selection process, KNN and
SVM classifiers are commonly used for the subsequent
classification in feature selection. Thus, we adopt the
KNN and SVM classifiers in the experiments. For SVM
classifier, we apply the Gaussian kernel and linear kernel.
The Gaussian kernel value in SVM classifier ranges
{10−3, ..., 101}. To avoid the experimental deviation and
overfitting problem, we embed an inner 5-fold cross
validation into the outer 5-fold cross validation for searching
the optimal classifier parameters. The whole dataset is
first divided into five equal parts. One of them is used as
the testing set and the remaining four sets are merged as
the training set. Then, an inner 5-fold cross validation is
employed on the training set to find the optimal parameters
which are then used for the testing process. For all feature
selection methods, the trade-off parameter λ, λ1 and λ2
are all searched in the range of {10−3, 10−2, ..., 102, 103}.
The experiments are implemented in MATLAB 2016b with
Intel(R) Core(TM) i7-8700, CPU 3.20 GHz 3.19 GHz and
RAM 8 GB.

4.3 Experimental results and analysis

Firstly, we conduct experiments on five small scale datasets
including Multiple Features, Ads, COIL20, NWO1 and
NWO2. Both KNN and SVM are adopted to test the
performance of compared methods. For each dataset, the
detailed classification accuracies6 in the different top-K

6Ads is an unbalanced dataset, classification accuracy obtained by
SVMmay not work. So we use F1 scores as the evaluation criterion on
Ads dataset when adopting the SVM classifier.

feature cases are listed in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10
and 11, respectively. From the results of these tables,
we can make some conclusions: (1) The accuracy is not
positively related to the number of selected features, i.e.
the classification accuracy does not always increase when
the number of selected features increases. (2) The proposed
method obtains the best results on more than half of the
experiments in terms of KNN classifier. On the SVM
classifier, our algorithm achieves the best results in almost
half of the experiments.

In order to analyze the computational complexity of
different algorithms, the training times for getting the
transformation matrix W on five datasets are shown in
Fig. 1. We can see that the proposed method and SFS exceed
the other five algorithms on four datasets (MF, Ads, NWO1
and NWO2). Specifically, compared with DSML-FS and
SCM, the proposed method takes less than a quarter of
their training time. Since the proposed method includes the
optimization of the outlier ratio parameter ε, it is slightly
lower than SFS. However, in terms of the classification
accuracy, the proposed method outperforms SFS.

Next, to verify the superiority of the proposed model
when there are a large number of training samples or
features, we further conduct experiments on Animal20,
NWO3 and NW datasets. Since the SVM classifier takes
too long time on large-scale and high-dimensional datasets,
we only use KNN classifier in this part. The detailed
results including classification accuracy, optimal parameter
combination and the training time are shown in Table 12 and
Fig. 2. Particularly, the symbol “−” in Table 12 represents
an algorithm running for more than 60 hours or exceeding
the memory of the computer. For the HLR-FS algorithm, it
needs to calculate the singular value decomposition (SVD)
and matrix inversion, which requires high computational
cost when dealing with the high-dimensional and large-
scale datasets. The SSD-FS algorithm also has to compute
the SVD based on the feature dimensionality, so it is
hard to handle the high-dimensional datasets well. In the
solution procedure of SCM algorithm, an n×n based matrix

2756 M. Men et al.
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Fig. 1 Comparisons of the training time for getting the transformation matrixW by DSML-FS, HLR-FS, SSD-FS, SCM, AWD, SFS and Ours on
five datasets

inversion needs to be calculated, which is easy to face
memory overflow problems when handling the large-scale
datasets. For DSML-FS and AWD algorithms, they need to
calculate the matrix multiplication with size of n×n, which
requires high computer memory when dealing with large
scale dataset.

From the results in Table 12 and Fig. 2, we can get
the following conclusions: (1) The proposed method and
SFS require less training time. The HLR-FS, SSD-FS and
SCM method run too much longer than the other methods
on Animal20 or NWO3 dataset. This suggests that these
three methods have obvious inferiority when solving the
high-dimensional or large-scale problems. On NW dataset,
except the proposed method and SFS, the other methods
can not obtain the classification accuracies because of the
memory overflow. (2) The DSML-FS method obtains the
best accuracies on Animal20 and NWO3 datasets and our
method ranks about 2% less than the best ones. However, in
terms of time complexity, the training time of our method is
19 times faster than that of DSML-FS method on Animal20

Table 12 Classification accuracies of the compared methods on
Animal20, NWO3 and NW datasets (KNN)

Data DSML-FS HLR-FS SSD-FS SCM AWD SFS Ours

Sets (λ1, λ2) (λ1, λ2) λ (λ, ε) λ λ (λ, ε)

Animal20 0.2874 ± 0.0118 − − 0.2580±0.0120 0.2591± 0.0035 0.2696± 0.0094 0.2662± 0.0045

(1, 1) − − (1, 0.1) 0.1 0.001 (0.1, 0.01)

NWO3 0.3602 ± 0.0047 − 0.3118±0.0045 − 0.3408± 0.0047 0.3392±0.0054 0.3439± 0.0040

(1, 1) − 0.001 − 0.1 0.001 (0.01, 0.01)

NW − − − − − 0.1671±0.0023 0.1885 ± 0.0025

− − − − − 10 (10,0.01)

dataset and 295 times faster than that of DSML-FS
method on NWO3 dataset, which demonstrates that the
proposed method brings great superiority on reducing the
computational cost. (3) Compared with SFS, the proposed
method is weaker in the training time, but the accuracies on
these big datasets are generally higher than those of SFS.

4.4 Friedman statistical analysis

Based on the experimental results in Tables 2-11, Friedman
statistical hypothesis tests are adopted to determine whether
the performances of these algorithms are different. Firstly,
based on the Tables 2-6, we calculate the variable

τχ2 = 12N

k(k + 1)

(
k∑

i=1

r2i − k(k + 1)2

4

)

= 107.21 (28)

where ri represents the average rank of the ith method listed
in Table 13, N = 35 is the number of cases and k = 7 is
the number of methods. τχ2 obeys the χ2 distribution with
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Fig. 2 Comparisons of the
training time for getting the
transformation matrixW by
different feature selection
methods on NWO3 and
Animal20 datasets

DSML-FS SCM AWD SFS Ours
Feature selection methods

0

1

2

3

4

5

6

7

T
im

es
(s

)

× 104 Animal
20

 Dataset

DSML-FSAWD SSD-FS SFS Ours
Feature selection methods

0

2

4

6

8

10

T
im

es
(s

)

× 104 NWO3 Dataset

k − 1 degrees of freedom. The Friedman statistics variable
is then calculated by

τF = (N − 1)τχ2

N(k − 1) − τχ2
= 50.1 (29)

where τF obeys the F distribution with k − 1 and (k −
1)(N − 1) degrees of freedom. When the significance level
α = 0.05, the critical value Fα(6, 204) = 2.14 and it
is less than τF = 50.1, which means the performances
of these algorithms are significantly different. In order to
further distinguish the performance difference among these
algorithms, we compute the critical difference (CD) value
by adopting Nemenyi test

CD = 2.949

√
k(k + 1)

6N
= 1.523 (30)

Since the differences between the proposed method and the
compared methods are as follows

d(DSML-FS − Ours) = 1.143 < 1.523,

d(HLR-FS − Ours) = 2.143 > 1.523

d(SSD-FS − Ours) = 3.943 > 1.523,

d(SCM − Ours) = 1.172 < 1.523

d(SFS − Ours) = 3.7 > 1.523,

d(AWD − Ours) = 3.7 > 1.523

where d(i − j ) means the difference between the algorithm
i and j . We can then conclude that the proposed
method outperforms the HLR-FS, SSD-FS, SFS and
AWD algorithms because the differences are bigger than
the critical difference. There is no significant difference
between DSML-FS, SCM and the proposed method.

Secondly, based on the Tables 7-11, we calculate the
variable

τχ2 = 12N

k(k + 1)

(
k∑

i=1

r2i − k(k + 1)2

4

)

= 98.963 (31)

The Friedman statistics variable is then calculated by

τF = (N − 1)τχ2

N(k − 1) − τχ2
= 30.303 (32)

The critical value F0.05(6, 204) = 2.14 is less than τF =
30.303, which means the performances of these algorithms

are significantly different. With the CD = 2.949
√

k(k+1)
6N =

1.523, the differences between the proposed method and the
compared methods are as follows

d(DSML-FS − Ours) = 0.057 < 1.523,

d(HLR-FS − Ours) = 2.386 > 1.523

d(SSD-FS − Ours) = 3.357 > 1.523,

d(SCM − Ours) = 1.514 < 1.523

d(SFS − Ours) = 3.529 > 1.523,

d(AWD − Ours) = 2.757 > 1.523

We can then conclude that the proposed method outper-
forms the HLR-FS, SSD-FS, SFS and AWD algorithms
because the differences are bigger than the critical differ-
ence. There is no significant difference between DSML-FS,
SCM and the proposed method. The SVM based statistical
analysis results are the same as that of KNN.

4.5 Verification experiment analysis

To verify how the capped l2-norm based loss function
effects the performance of experimental results, we further

Table 13 The average rank of
different feature selection
methods

Methods DSML-FS HLR-FS SSD-FS SCM AWD SFS Ours

KNN 2.885 3.885 5.685 2.914 5.442 5.442 1.742

SVM 2.014 4.457 5.428 3.585 5.600 4.828 2.071

2763Distributed learning for supervised multiview feature selection



Fig. 3 Classification accuracies
of (33) and Ours on NWO1 and
NWO2 datasets
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Fig. 4 Classification accuracies of the proposed method with respect to λ under different number of selected features, where λ is tuned from
{0.001, 0.01, 0.1, 1, 10, 100, 1000}
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add some experiments on NWO1 and NWO2 datasets with
KNN classifier to compare the performance between the
capped l2-norm and traditional l2-norm. By replacing the
capped l2-norm with l2-norm, the proposed model can be
changed as follows.

min
Wv

C∑

i=1

V∑

v=1

‖XivWv − Yi‖2F + λ

V∑

v=1

‖Wv‖2,1 (33)

The KNN based classification accuracies of the (33) and
ours are shown in Fig. 3. We can see that the classification
accuracies of the capped l2-norm based loss term get 2%
higher than traditional l2-norm on these two datasets, which
validates that the proposed model has robustness to noise
and is helpful to subsequent classification task.

4.6 Parameter analysis

In this part, the parameter sensitivity of the proposed model
is analyzed. We research the influence of λ and the ratio of
outliers on experimental results, respectively. The ratio of
outliers determines the value of threshold ε. The value of
another parameter is fixed when we investigate the effect of
one parameter.

Firstly, we vary λ in the range {0.001, 0.01, 0.1, 1, 10,
100, 1000} with fixed ratio of outliers. The classification
accuracies by KNN with respect to λ on six datasets are
shown in Fig. 4. We can see that the classification accuracies
are not sensitive to the value of λ on MF and Ads datasets,

but they have a certain degree of fluctuation on the other
datasets. Particularly, the better results are usually achieved
in the range {0.001, 0.01, 0.1}.

Secondly, considering that there may be potential outliers
in the datasets, we set the ratio of outliers to all data points
as {0, 0.01, 0.05, 0.1, 0.2} and fix the value of λ to exploit
how the accuracies change when removing different number
of latent outliers. The classification accuracies by KNN
with respect to the ratio of outliers on four datasets are
shown in Fig. 5. We can observe that the proposed model
is less sensitive with respect to the ratio of outliers on MF
and Ads datasets but more sensitive to the ratio of outliers
on NWO1 and NWO2 datasets, which may suggest that
there exists some noises and outliers in these two datasets.
From the results on NWO1 and NWO2 datasets, we can
see that as the ratio of outliers increases, the accuracies first
increase and then decrease in most cases. The reason may
be that our model is removing outliers and noises when the
ratio gradually rises. But when the ratio reaches a certain
value, the accuracies start to decrease because too much
data points are removed. In summary, the feature selection
performance obtains a certain improvement when removing
a proportion of potential outliers. The better results are
usually obtained in the proportion of {0.01, 0.05}.

4.7 Convergence analysis

To verify the convergence performance of Algorithm 1,
we conduct some experiments on eight datasets. For each

Fig. 5 Classification accuracies
of the proposed method with
respect to the ratio of outliers
under different number of
selected features, where the ratio
of outliers is tuned from
{0, 0.01, 0.05, 0.1, 0.2}
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Fig. 6 Convergence curve of Algorithm 1

2766 M. Men et al.



dataset, the parameters λ and ε are fixed as the optimal
combination. Figure 6 shows how the convergence criterion
term er in Algorithm 1 changes as the number of iteration
increases. We can see that the value of er gradually reduces
and then tends to zero, which means that the proposed
method can satisfy the convergence condition within 15
iterations.

5 Conclusion

In this paper, an efficient multiview feature selection frame-
work is designed via the distributed learning strategy.
The proposed method adopts the sample-partition based
distributed strategy to compute the loss term on each cate-
gory and uses the view-partition based distributed strategy
by minimizing the individual regularization of each view
and common loss term across views. The capped l2-norm
based loss term instead of traditional l2-norm is used to
improve the robustness to outliers. Based on the distributed
strategy, the proposed method has great superiority on
reducing the computational complexity and fastening the
running time of feature selection. The comparison exper-
iments show the effectiveness of the proposed model in
terms of the training time and classification accuracy.

In our model, the relationship of different views is taken
into account via the distributed multiview learning. In the
future work, we will try to introduce a set of weight
parameters on different views to design a more fitting model
for multiview learning.
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Appendix

Theorem 2 Equations (16)-(19) is equivalent to (20)-(23).

Proof 1) For fixed i, the solution in (17) is obtained by
updating V matrices Ziv ∈ R

ni×C(v = 1, 2...V ) with
totally niCV variables. Now, we will carry it out by
solving the (21) with only niC variables.

Let Zi = 1
V

∑V
v=1 Ziv , the (17) can be rewritten as

min
Zi ,Ziv

tr
[(

VZi − Yi

)T
Fi

(k)
(
VZi − Yi

)]

+ρ

2

V∑

v=1

‖Ziv − XivWv
(k+1) + 1

ρ
Piv

(k)‖2F

s.t . Zi = 1

V

V∑

v=1

Ziv (34)

Minimizing over Ziv(v = 1, 2, ..., V ) with Zi fixed
has the solution

Ziv − XivWv
(k+1) + 1

ρ
Piv

(k) = 0 (35)

Let XiW = 1
V

∑V
v=1XivWv,Pi = 1

V

∑V
v=1 Piv .

Then, we have

Zi − XiW
(k+1) + 1

ρ
Pi

(k) = 0 (36)

Combining (35) and (36), we have

Ziv = XivWv
(k+1) − 1

ρ
Piv

(k) +Zi −XiW
(k+1) + 1

ρ
Pi

(k)

(37)

Substituting (37) into (34),we get the following
equation.

min
Zi

tr
[(

VZi − Yi

)T
Fi

(k)
(
VZi − Yi

)]

+ρV

2
‖Zi − XiW

(k+1) + 1

ρ
Pi

(k)‖2F (38)

Based on the above derivation, we can see that
solving (17) is equivalent to solving (21).

2) Similarly, for fixed i, the Piv-update in (19) can be
carried out by solving the (23) with only niC variables.
Replacing Ziv in (37) with Ziv

(k+1) obtains

Ziv
(k+1) = XivWv

(k+1) − 1

ρ
Piv

(k) + Zi
(k+1)

−XiW
(k+1) + 1

ρ
Pi

(k)
(39)

Substituting (39) into (19) gives

Piv
(k+1) = ρ

(
Zi

(k+1) − XiW
(k+1)

)
+ Pi

(k)
(40)

(40) shows that the variables Piv
(k+1)(v = 1, 2, ..., V )

are all equal for fixed i. So we can get Piv
(k+1) =

1
V

∑V
v=1 Piv

(k+1) = Pi
(k+1)

. Then, we have

Pi
k+1 = ρ

(
Zi

(k+1) − XiW
(k+1)

)
+ Pi

(k)
(41)

Based on the above derivation, we can see that solving
(19) is equivalent to solving (23).

3) By replacing Ziv in (37) with Ziv
(k) and substituting

Ziv
(k) into (16), we have

Wv
(k+1) := arg

Wv

min

(

λ‖Wv‖2,1+ ρ

2

C∑

i=1

‖XivWv

−
(

XivWv
(k) + Zi

(k)−XiW
(k)

+ 1

ρ
Pi

(k)
)

‖2F
)

(42)
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Based on the above derivation, we can see that solving
(16) is equivalent to solving (20).

4) According to Zi = 1
V

∑V
v=1 Ziv , we can see that

solving (18) is equivalent to solving (22).
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