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Abstract
The increment of new words and text categories requires more accurate and robust classification methods. In this paper, we
propose a novel multi-label text classification method that combines dynamic semantic representation model and deep neural
network (DSRM-DNN). DSRM-DNN first utilizes word embedding model and clustering algorithm to select semantic words.
Then the selected words are designated as the elements of DSRM-DNN and quantified by the weighted combination of word
attributes. Finally, we construct a text classifier by combining deep belief network and back-propagation neural network. During
the classification process, the low-frequency words and new words are re-expressed by the existing semantic words under sparse
constraint. We evaluate the performance of DSRM-DNN on RCV1-v2, Reuters-21578, EUR-Lex, and Bookmarks.
Experimental results show that our method outperforms the state-of-the-art methods.
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1 Introduction

The development of computer technology and the explo-
sive growth of text data cause the increase of text pro-
cessing workload [8], and promote the research of many
subfields in natural language processing (NLP). Text clas-
sification, which refers to dividing the texts into different
categories according to its topic, content, and attributes,
has gradually become a hot issue. Furthermore, multi-
label text classification is to assign one or more category
labels to each text, which is widely used in sentiment
analysis, information retrieval [9], news subject classifi-
cation, and spam detection [20].

However, there are still many problems to be solved in
multi-label text classification. For example, the appear-
ance of new words reduces the accuracy of the classifier,
a great number of textual data affect the convergence of
neural networks and some semantic information is

ignored during the text quantization. Besides, due to the
rapid growth of unstructured texts from social networks,
mail systems and other platforms, text mining as the basis
of text classification has also attracted great attention from
researchers.

To address the above issues, we propose a novel text classifi-
cation method that combines dynamic semantic representation
model and deep neural network classifier (DSRM-DNN). The
proposed method improves the classification performance by
updating text mining technology and optimizing text classifiers.
In summary, the contributions of the paper are as follows:

& Dynamic semantic representationmodel is proposed to quan-
tify the texts. The model combines word embedding model
and clustering algorithm to select semantic words, then uti-
lizes bag of words (BOW) and word attributes to obtain
textual features. Dynamic semantic representation not only
greatly reduces the complexity of the existing BOW, but also
lays the foundation for the expression of new words.

& A sparse constraint is adopted to build the relationship be-
tween new words and the existing semantic words. By uti-
lizing the semantic words in DSRM to obtain the sparse
representation of low-frequencywords and newwords, more
words can be quantified and used in the training data.

& An efficient multi-label text classifier is constructed based
on deep belief network (DBN) and BP network. DBN is
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used to preprocess the input of the BP network, which
reduces the risk of falling into local optimum and acceler-
ates the convergence of the classifier network.

The rest of the paper is organized as follows. Section 2
introduces the related work of multi-label text classification.
In Section 3, the details of the proposed method are described.
Experimental results and discussions are presented in
Section 4. Finally, Section 5 summarizes work and gives fur-
ther research direction.

2 Related work

Compared with simple classification tasks, multi-label text
classification has two characteristics. On one hand, the corpus
cannot be directly input into the classifier, and the texts must
be quantified for further purposes. On the other hand, different
from the multi-class classifier, each sample in multi-label data
belongs to several target domains that are unrelated to each
other. The final performance of multi-label text classification
is jointly affected by the text quantization methods and multi-
label text classifiers.

2.1 Text quantization

The text quantization methods [5, 6, 13, 15] can be roughly
divided into three categories: the traditional language models,
the sequence or structured language models, and the attention
language models. The traditional language models based on
BOW [14] are widely used in the data pre-processing of var-
ious research fields, such as text classification, cross-modal
retrieval [10, 23], and so on. The second kind of language
models can use sequence or structured models to quantify
texts, mainly including convolutional neural network, recur-
rent neural network, recursive auto-encoders, etc. The third
kind of language models is based on attention mechanisms
to build quantification features by scoring the words or
sentences differentially. The attention mechanisms are com-
monly known as hierarchical attention and self-attention.

In the traditional representation models, textual data are
usually unordered word sets that ignore grammar and the or-
der of words, but they are widely used in NLP because of their
simplicity and efficiency. To reduce the resource consump-
tion, some representative words in the corpus are selected as
the basic elements of BOW. Statistical methods and theme
models [33] are commonly used for keyword selection. The
statistical method mainly extracts keywords according to the
word attributes (i.e. term frequency, TF-IDF, etc.), and the
theme model is based on the following two assumptions: each
document is a mixed distribution of several topics and each
topic follows the probability distribution of words. At present,
the LDA theme model that combines PLSA model and

Dirichlet prior distribution is widely used. In addition to the
above two methods, the methods based on graph theory [32]
and complex networks can also be used to extract keywords.

2.2 Multi-label classifier

With the development of neural network research, deep learn-
ing has been extensively studied and widely used in many
areas. The construction of text classifiers can be divided into
two categories: one is based on the traditional machine learn-
ing algorithm, the other is based on deep neural network.

Before the emergence of deep neural networks, most of the
studies were based on traditional machine learning algorithms,
namely the artificial definition of machine learning algorithms
and the construction of experimental models. At present, a
large number of machine learning methods are applied in the
text categorization system, such as Naive Bayes [26] based on
Bayesian theory and characteristic conditional independence
hypothesis, the support vector machine (SVM) based on the
statistical learning VC theory and the structural risk minimum
principle, and the decision tree method [4] of the optimal
scheme which is obtained by comparing different schemes
with probability and tree in graph theory. In addition, there
are also k-nearest neighbor classification models [3], classifi-
cation methods based on association rules and so on [11, 21,
22]. Although time complexity of the above models is low, the
context and potential semantic relationship of text words are
not fully considered.

Deep neural networks [1] can mine more complex text
semantics and provide a new research direction for NLP. At
present, convolutional neural network [7, 12], back-
propagation network and recurrent neural network have been
applied in text classification and achieved good experimental
results.

3 The proposed method

In this section, we introduce the overall process of DSRM-
DNN shown in Fig. 1. The proposed method consists of the
text quantization module and the classifier module. The text
quantization module is divided into three subtasks: semantic
word extraction, word feature construction, and dynamic rep-
resentation. First, DSRM-DNN selects semantic words by
combining word embedding model and clustering algorithm.
Then the selected words are taken as the elements of DSRM-
DNN and quantified by the weighted combination of word
attributes. During the classification process, DSRM-DNN
can represent the low-frequency words and new words ac-
cording to the existing words in DSRM-DNN through sparse
representation. In the classifier module, deep belief network
and back-propagation neural network are utilized to construct
a text classifier.
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3.1 Semantic word extraction

Before extracting semantic words, we preprocess the corpuseD∼, including uniform format, word segmentation and
stopword elimination. Therefore, we can obtain the
preprocessed corpus D and the word sets Tj corresponding to
the j th text.

During the words extraction, word embedding model is
trained on the word sets. Specifically, the skip-grammodel based
on hierarchical softmax is adopted to obtain the embedding vec-
tors. Thus, the text semantics are quantized and stored in the
word embedding vectors. In the word embedding model, we
can regard each leaf node of the binary tree as a word, and each
non-leaf node is equivalent to a perceptron that outputs 0 or 1.

Text Preprocessing:

Word Segmentation

and Stopword Elimination

Training Set

Word Embedding

Dynamic Semantic 

Representation

Clustering

Test Set

Textual Vector 

Construction

BP Neural 

Network

Semantic word extraction

Label

Text Quantization

Dynamic representation

Deep Belief 

Network

Multi-label classifier

Fig. 1 The framework of the text
classification

Fig. 2 a is the skim-gram model
concept diagram with window
size 5,w(t) is a word in the current
position t in the text, and other
marks are defined in the same
way. b is the skim-gram network
structure diagram, v(w) is the
vector representation of w
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Each word in the datasets can be represented by a unique
encoding, and its encoding sequence corresponds to the sequence
of events. Skip-gram is a language model that predicts the con-
text according to the current words, and Fig. 2 shows the model.
For ease of reference, Table 1 lists the major notations used in the
embedding model and their mathematical meanings.

The learning objective of the embedding model can be
written as the maximum likelihood function:

L ¼ ∑
w∈c

logp Context wð Þjwð Þ ð1Þ

The probability function of the language model is

p Context wð Þjwð Þ ¼ ∏
u∈Context wð Þ

p ujwð Þ ð2Þ

where w is the word in the corpus, u is the word in the context
of w. Each u is independent of each other in the Hierarchical
Softmax, so we get:

p ujwð Þ ¼ ∏
lu

j¼2
p duj jv wð Þ; θuj−1
� �

ð3Þ

where each multiplier in (3) is logistic regression:

p duj jv wð Þ; θuj−1
� �

¼
σ v wð Þ; θuj−1
� �

; duj ¼ 0

1−σ v wð Þ; θuj−1
� �

; duj ¼ 1

8<: ð4Þ

Given that d is 0 or 1, we can easily express (4) in expo-
nential form:

p duj jv wð Þ; θuj−1
� �

¼ σ v wð Þ; θuj−1
� �h i1−duj

⋅ 1−σ v wð Þ; θuj−1
� �h iduj ð5Þ

Substituting (2), (3), (5) into (1), we get the new objective
function:

L ¼ ∑
w∈u

∑
u∈Context wð Þ

∑
lu

j¼2
1−duj

� �
⋅log σ v wð Þ; θuj−1

� �h i
þ duj ⋅log 1−σ v wð Þ; θuj−1

� �h i
ð6Þ

Each item in the objective function is denoted as:

L w; u; jð Þ ¼ 1−duj
� �

⋅log σ v wð Þ; θuj−1
� �h i

þduj ⋅log 1−σ v wð Þ; θuj−1
� �h i ð7Þ

u is certain for a given training instancew and its context {u
∈ c}, so there are only two variables v(w) and θuj−1 in (7).

The partial derivatives of L w; u; jð Þ with respect to v(w)
and θuj−1 are given as follows:

∂L w; u; jð Þ
∂θuj−1

¼ 1−duj−σ v wð Þ; θuj−1
� �h i

v wð Þ ð8Þ

∂L w; u; jð Þ
∂v wð Þ ¼ 1−duj−σ v wð Þ; θuj−1

� �h i
θuj−1 ð9Þ

Therefore, we get the update functions for v(w) and θuj−1:

θuj−1 ¼ θuj−1 þ η 1−duj−σ v wð Þ; θuj−1
� �h i

v wð Þ ð10Þ

v wð Þ ¼ v wð Þ þ η ∑
u∈Context wð Þ

∑
lu

j¼2

∂L w; u; jð Þ
∂v wð Þ ð11Þ

where η is the learning rate.

After several update iterations, we can get the embedding
vector v(w) of each word and the feature matrix Ti, where each
column in the feature matrix is the feature representation of a
word. Then clustering analysis [16–18] is carried out for each
text, and the words with similar semantics are divided into the
same class. During each clustering process, the clustering cen-
ter is extracted as the semantic words of the text.

Assuming that the set of embedding vectors of a text is
{w1,w2,⋯ ,wn}, S is defined as the similarity matrix between
samples, and s(i,j) > s(i,k) if and only if the similarity between
wi and wj is greater than that between wi and wk. In addition,

Table 1 Summary of symbols in the word embedding model

Symbols Meanings

pw the path from the root node to the leaf node

lw the number of nodes in the path pw

pw1 ; p
w
2 ;⋯ ; pwlw each node in the path pw

dw2 ; d
w
3 ;⋯ ; dwlw dwj is the code of the j th node in the path p

w

θw1 ; θ
w
2 ;⋯ ; θwlw−1 parameter vector corresponding to

non-leaf nodes in path pw
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we defined R as the responsibility matrix and A as the avail-
ability matrix, where r(i,k) describes the suitability of wk for
the clustering center ofwi and a(i,k) describes the suitability of
wi to select wk as its clustering center, and the elements of
matrices R and A are initialized to 0.

The clustering algorithm is implemented by iteratively
updating the responsibility r(i,k) and availability a(i,k):

Rtþ1 i; kð Þ ¼ 1−λð ÞRtþ1 i; kð Þ þ λRt i; kð Þ ð12Þ

where Rtþ1 i; kð Þ ¼ S i; kð Þ−max
j≠k

�
At i; kð Þ þ Rt i; kð Þ; i≠kS

i; kð Þ−max
j≠k

S i; kð Þ; i ¼ k ;λ is the damping coefficient.

Atþ1 i; kð Þ ¼ 1−λð ÞAtþ1 i; kð Þ þ λAt i; kð Þ ð13Þ
w h e r e Atþ1 i; kð Þ ¼ min0;f Rtþ1 k; kð Þ þ ∑ j≠i;kmax

0;Rtþ1 j; kð Þ; i≠k∑ j≠kmax0;Rtþ1 j; kð Þ; i ¼ k . The algorithm

stops until the clustering centers remain unchanged after sev-
eral iterations or the execution iteration number of the algo-
rithm exceeds the predefined number of iterations.

Based on the above method, we can replace the text with
the corresponding semantic words {sw1,sw2,⋯ }. Moreover,
DSRM-DNN can update the semantic words dynamically
when classifying the texts, and further improves the adaptive
ability of the model. Details are described in Section 3.3.

3.2 Word feature construction

According to the method in Section 3.1, the selected words are
saved in the DSRM-DNN. The model contains n semantic
words {sw1,sw2,sw3,⋯ ,swn}, each of which has a unique
index (that is, swi≠swj, i,j= 1,2,3,⋯ ,n and i≠j). To maintain
the representation ability of textual vectors and accelerate the
training of the classifier, we construct a fusion feature to re-
place semantic words in the DSRM-DNN. Therefore, each
text in the datasets can be represented by a n-dimensional
vector, the expression formula is:

xi ¼ M T F swið Þ ð14Þ

where M_TF(⋅) is the feature fusion function. Different from
the traditional bag of words (BOW) using statistical features to
represent all of the words, the statistical features are the statis-
tics of the number, position and span of words in the text.

Word frequency is the number that a word appears in
the text. The higher the word frequency is, the more
important the word is. It is one of the commonly used
word attributes for statistical features. For the calculation
of word frequency factor frei, we adopt the nonlinear
function as:

f rei ¼ n
nþ 1

ð15Þ

where n is the number of appearance of the word swi.
The nonlinear function has two advantages: one is that
the word frequency factor is positively proportional to
the word frequency; the other is that when the word
frequency increases to a certain extent, the values of
the word frequency factor will decrease, which conforms
to the language reality.

Part-of-speech factor is a quantification of part-of-
speech. Part-of-speech analysis of existing semantic
words shows that most of them are nouns. Compared
with nouns, verbs and adjectives have relatively little
influence. Since different part-of-speech has different ef-
fect on text classification, we divide the words into three
categories according to their parts-of-speech as follows:

posi ¼
1; wi∈nouns:
0:8; wi∈verbs: or ad jectives:
0:6; wi∈otherwise:

8<: ð16Þ

The processing function of word length factor is as following:

lenthi ¼ leni
max lenið Þ ð17Þ

where leni is the word length of the i th word swi, andmax(leni) is
the maximum length of all words in the text.

The position of a word in the text is also of great value in
judging its importance. Different words appear in different
positions in the text, and their ability to express the theme of
the text is often different. Words in the title can better reflect
the theme of the text than words in the abstract, the first par-
agraph and the body. We define the function according to
different positions:

loci ¼
0:75; wi in title;
0:67; wi in abstract or paragraphf irst;
0:5; wi in body part:

8<: ð18Þ

The word span factor can effectively reduce the influence
of local words on full-text words. To improve the existing
original calculation method, we define the word span factor
formula as follows:

A multi-label text classification method via dynamic semantic representation model and deep neural network 2343



spani ¼ lasti− f irsti þ 1

sumi
� di

Di
ð19Þ

where firsti is the position the word swi first appears, lasti is the
position the word swi last appears, sumi is the total number of
words in the text, di is the number of paragraphs that contain
the word swi, and Di is the total number of paragraphs.

Here we construct the fusion feature to represent the se-
mantic words, and the new feature is computed as follows:

M T F swið Þ ¼ α1 f rei þ α2posi þ α3lenthi
þα4loci þ α5spani

ð20Þ

where frei is the word frequency factor, posi is the part-of-speech
factor, lenthi is the word length factor, loci is the word position
factor, spani is the word span factor,α1,α2,α3,α4 andα5 are the
weights of feature factors. Therefore, according to (14) we can
use {x1,x2,x3,⋯ ,xn}j to represent Tj with n semantic words.

3.3 Dynamic representation

Since training set and test set are assigned randomly and
semantic words in the DSRM-DNN are composed of the
words in the training set, while the words extracted from
the test set may not appear in the DSRM-DNN. If the
words extracted from the test text do not appear in the
DSRM-DNN (denoted as wordout−DSRM), we sparsely
represent these words using other semantic words or
non-semantic words (swin−DSRM or wordin−DSRM). The ob-
jective function is as follows:

argmin
α

∥y−αX∥2
2 s:t:∥α∥1≤ε ð21Þ

or

argmin
α

∥y−αX∥2
2 þ λ∥α∥1 ð22Þ

where y is the sample that needs to be reconstructed, X is
a matrix of the embedding vectors, ε and λ are both
small positive constants.

Although l1-norm plays an implicit role in the selection of
training samples in regression, the computational cost of the
iterative solution is very high, so we replace the regularization
termwith l2-norm. The objective function can be expressed as:

argmin
α

∥y−αX∥2
2 þ λ∥α∥2

2 ð23Þ

To improve the efficiency of sparse representation, new
semantic representation words can be divided into the follow-
ing two situations:

argminxi∥ki−xiK∥
2
2 þ λ∥xi∥2

2; m1= m1 þ m2ð Þ < α;
argminyi∥ki−yiW∥2

2 þ λ∥yi∥
2
2;m1= m1 þ m2ð Þ≥α

(
ð24Þ

where λ is the weight parameter, ki is the i th semantic word in
thewordout−DSRM, xi∈Rm2 is the reconstruction vector,K∈Rm2�n

is composed of m2 semantic words in swin−DSRM, yi∈Rm3 is the
reconstruction vector, W∈Rm3�n is composed of m3 non-
semantic words in wordin−DSRM, and m1 = num(wordout−DSRM),
m2 = num(swin−DSRM), m3 = num(wordin−DSRM). Besides, new
semantic words in the test texts (denoted as swout−DSRM) can be
added to DSRM-DNN to further improve the representation and
adaptability of DSRM-DNN.

3.4 Classifier construction

BP network is multilayer feedforward neural network based
on error backward propagation algorithm. The principle is to
calculate the difference between the actual output and the
expected output recursively, and then adjust the weights ac-
cording to the difference. In order to reduce the computational
cost of neural network training, we construct a BP network
including an input layer, an output layer and two hidden
layers, as shown in Fig. 3. We input the obtained feature ma-
trix Hm×n to the network for training. The activation function
and its derivative are given as follows:

S xð Þ ¼ 1

1þ e−x
ð25Þ

S ′ xð Þ ¼ e−x

1þ e−xð Þ2 ¼ S xð Þ 1−S xð Þð Þ ð26Þ

Since the randomly initialized parameters may make the net-
work convergence to the local optimum and reduce the training
effect, this paper adopts the deep belief network (DBN) co-
constructed by BP network and restricted Boltzmann machine
[2] to initialize the parameters of BP network.

T. Wang et al.2344



Each restricted Boltzmann machine has n visible elements
and m hidden elements, and the states of visible elements and
hidden elements are represented by vectors a and b respective-
ly, then the energy function is:

E v; h; θð Þ ¼ − ∑
n

i¼1
∑
m

j¼1
viWi jh j− ∑

n

i¼1
aivi− ∑

m

j¼1
bjh j ð27Þ

where θ ¼ Wij; ai; bj
� �

is the parameter of RBM, Wij is the
connection weight between visible element i and hidden ele-
ment j, ai and bj are the bias of element i and j. We get the joint
probability distribution function and likelihood function of v
and h:

p v; hjθð Þ ¼ e−E v;hjθð Þ=Z θð Þ; Z θð Þ ¼ ∑
v;h

e−E v;hjθð Þ ð28Þ

p vjθð Þ ¼ ∑
h
e−E v;hjθð Þ=Z θð Þ ð29Þ

where Z θð Þ ¼ ∑v;he
−E v;hjθð Þ is the normalization factor.

4 Experiments

In this section, we introduce the experiments in detail and
report the results of DSRM-DNN and comparative methods

on benchmark datasets. To comprehensively analyze the per-
formance of the proposed methods, we mainly perform five
experiments. The first experiment studies the related setting of
semantic words extraction, including the dimension of word
embedding, the size of the context window, and the number of
semantic words. In the second and third experiments, we an-
alyze the effects of different word attributes and dynamic rep-
resentation. The fourth experiment compares the performance
of different classification methods. Finally, we test DSRM-
DNN and compare it with nine baselines respectively on four
datasets Fig. 3.

4.1 Datasets

We use four representative datasets to evaluate the proposed
method as shown in Table 2. The datasets are split into training
sets and test sets, and 80% of the randomly selected texts are
used to train classifiers and the remaining texts are used to
verify the effect of text classification methods.

4.2 Baselines

To make the experimental comparison more comprehensive
and objective, we not only use the traditional machine

v1 v2

h1

v3 vn1

h2 hn2

i1 i2 i3 in3

h1 h2 hn5

o1 o2 o3 on6
...

...

...

...

...

...
RBM

RBM

BP

Fine tuning

Fine tuning

Back-
Propaga�on

W1

W2

W3

W4

W5

Labels

h2h1 hn4

Fig. 3 The structure diagram of
BP network and DBN

Table 2 Datasets statistics. D_num is the number of total texts, L_num is the number of labels, Vo_size is the size of total vocabulary, L_ave is the
average number of labels per text, Tr_num is the number of train texts, Te_num is the number of test texts

Datasets D_num L_num Vo_size L_ave Tr_num Te_num

RCV1-v2 804414 103 47236 3.24 723531 160883
EUR-Lex 19348 3993 26575 5.32 15478 3870
Reuters-21578 10789 90 18637 1.13 8631 2158
Bookmarks 87856 208 2150 2.03 70285 17571
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learning algorithms such as decision tree, k-nearest neighbor,
but also use the latest methods such as neural networks for
comparative analysis. The details of these methods are as
follows:

& Multi-label decision tree (ML-DT) [31] adopts decision
tree techniques to process multi-label data, where an in-
formation gain criterion based on multi-label entropy is
utilized to build the decision tree recursively.

& Multi-label k-nearest neighbor (ML-KNN) [30] adopts
k-nearest neighbor techniques to process multi-label data,
where maximum posterior probability is utilized to predict
the labels of nearest samples.

& Binary relevance (BR) transforms the multi-label learn-
ing problem into multiple independent binary classifica-
tion problems, where each binary classification problem
corresponds to a possible label in the label space.

& Classifier chains (CC) transforms the multi-label learn-
ing problem into a chain of binary classification problems,
in which subsequent binary classifiers in the chain build
on the predictions of preceding ones. In BR and CC, we
use the Euclidean-SVMs [24] as the base classifiers.

& Multi-label neural networks (ML-NN) [28] represents
the multi-label classification problem as a neural network
with multiple output nodes. Each label in the dataset cor-
responds to an output node of the network, and the output
layer can model the dependencies between different
categories.

& Hierarchical ARAMneural network (HARAM) [27] is
an extension of the fuzzy Adaptive Resonance
Associative Map (ARAM), to speed up the classification
on high-dimensional and large-scale datasets.

& Convolutional and recurrent neural networks (CNN-
RNN) [29] utilizes the ensemble application of
convolutional and recurrent neural networks to capture the

RCV1-v2 Reuters-21578 EUR-Lex Bookmarks
Datasets
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global and local textual semantics, and to model label corre-
lations while having a tractable computational complexity.

& Hierarchical label set expansion (HLSE) [19] regular-
izes data labels and considers extreme multi-class and
multi-label text classification when defining hierarchical
label set.

& Supervised representation learning (SERL) [25] is the
framework based on neural networks, which can learn
global feature representation by jointly considering all la-
bels in an effective supervised manner.

4.3 Evaluation metrics

For evaluating the performance of multi-label classifiers, we
use One-error, Hamming Loss, Rank Loss and Micro/Macro-

averaged Precision, Recall, F1-Score to test the efficiency of
the experiment. The details are as follows:

& One-error (O-error) shows the proportion that the label
with the highest ranking score is not in the correct label
set.

& Hamming loss (H-Loss) computes the symmetric differ-
ence between the predicted labels and the relevant labels
and calculates the fraction of its difference in the label space.

& Ranking loss (R-Loss) evaluates the fraction of reversely
ordered label pairs, e.g. an irrelevant label is ranked higher
than a relevant label.

& Precision, Recall and F1-score are calculated based on the
number of true positives (tp), true negatives (tn), false posi-
tives (fp) and false negatives (fn). There are two ways to
calculate these metrics over the whole test data: Micro-
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averaged and Macro-averaged. The former counts all true
positives, true negatives, false positives and false negatives
first among all labels and then has a binary evaluation for its
overall counts, while the latter refers to the average perfor-
mance (Precision, Recall and F1-score) over labels. To be
specific, the computations of Micro/Macro-averaged
Precision, Recall, F1-score are illustrated below:

Pmicro ¼ ΣL
l¼1tpl

ΣL
l¼1tpl þ f pl

; Rmicro ¼ ΣL
l¼1tpl

ΣL
l¼1tpl þ f nl

;

F1micro ¼ ΣL
l¼12tpl

ΣL
l¼12tpl þ f pl þ f nl

Pmacro ¼ 1

L
ΣL

l¼1

tpl
tpl þ f pl

; Rmacro ¼ 1

L
ΣL

l¼1

tpl
tpl þ f nl

;

F1macro ¼ 1

L
ΣL

l¼1

2tpl
2tpl þ f pl þ f nl

4.4 Experimental results and analysis

4.4.1 Semantic words extraction

In the process of semantic words extraction, we analyze the
effect of embedding dimension and context window size by
fixing other variables. Note that we set the minimum word
frequency of the input embedding model to 3 (that is, words
that occur more than three times in the text are trained to
generate the embedding vectors). The setting reduces the in-
fluence of uncommon words on the training process and im-
proves the training speed of the word embedding model.

The results show that the Micro-averaged F1-Score (MiF)
with word embedding dimension e = 100 is significantly higher
than the MiF with e = 50, which indicates that the beneficial
semantic information of embedding vectors increases as embed-
ding dimension does. As shown in Fig. 4, the size of the context
window has less impact on the classification performance than

the dimension of word embedding. Besides, the increment of
MiF decreases graduallywith the increase of the context window,
which indicates that the correlation of words decreases rapidly
with the increase of distance between them. Note that in Fig. 5a
the increase of vector dimension or context window enriches the
semantic information of the word embedding, but the training
time also increases greatly.

To obtain a reasonable number of semantic words, we set
the number of semantic words in each text to 5, or 5%, 10%,
20% of the number of words in the text. In general, with the
increase of selected words from each text, the final results
are gradually improved, because the semantic representa-
tion ability of text vectors is more suitable for the training of
classifiers. On RCV1-v2, the MiF with n = 20% is signifi-
cantly lower than that with n = 10%. The reason is that
DSRM-DNN contains most of the words that are conduc-
tive to classification when n = 10%. As n continues to in-
crease, the newly selected words are irrelevant and interfere
with the performance of the existing words, so the increase
of semantic words reduces the training effect of the classi-
fier. The experimental results in Figs. 5b and 6 show that
the proposed method obtains excellent accuracy when n =
10% and 20% respectively, but the training time of classi-
fier increases rapidly with the growth of DSRM-DNN.

4.4.2 Word feature construction

There are many ways to quantify words in NLP, among which
TF-IDF and word frequency are widely used. In the experi-
ment, we test the influence of word attributes on RCV1-v2,
and make a quantitative analysis of the representation ability
of part-of-speech.

As shown in Fig. 7a, we test several possible com-
binations of part-of-speech weights. Note that part-of-
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Table 3 Comparison of different methods on benchmark datasets

Evaluation Metrics

Dataset Method H/R-loss O-error MiP MiR MiF MaP MaR MaF

RCV1-v2 ML-DT 0.0102 0.0393 0.6347 0.7497 0.6874 0.3961 0.5626 0.4649

ML-KNN 0.0081 0.0287 0.7712 0.7836 0.7774 0.5741 0.5676 0.5708

BR 0.0088 0.0125 0.8984 0.8125 0.8533 0.7946 0.6237 0.6989

CC 0.0093 0.0454 0.8863 0.8114 0.8472 0.7682 0.6449 0.7012

HARAM 0.0074 0.0215 0.9046 0.7824 0.8391 0.7756 0.5693 0.6566

BP-MLL 0.0089 0.0349 0.6685 0.7695 0.7155 0.4385 0.5803 0.4995

CNN-RNN 0.0086 0.0102 0.8895 0.8150 0.8506 0.8034 0.6465 0.7165

HLSE 0.0079 0.0132 0.8673 0.7736 0.8178 0.7825 0.5876 0.6712

SERL 0.0081 0.0245 0.9137 0.7984 0.8522 0.8015 0.6215 0.7001

DSRM-DNN-1 0.0076 0.0119 0.9124 0.8062 0.8560 0.8164 0.6413 0.7183

DSRM-DNN-2 0.0072 0.0109 0.9196 0.8225 0.8683 0.8326 0.6395 0.7234

Reuters-21578 ML-DT 0.0054 0.1698 0.7876 0.8096 0.7984 0.3510 0.2806 0.3119

ML-KNN 0.0088 0.4742 0.8038 0.4734 0.5959 0.3422 0.2056 0.2569

BR 0.0032 0.0911 0.9403 0.8239 0.8782 0.4645 0.3507 0.3997

CC 0.0031 0.0844 0.9374 0.8286 0.8796 0.4706 0.3613 0.4088

HARAM 0.0066 0.1127 0.7480 0.7756 0.7616 0.2981 0.2424 0.2674

BP-MLL 0.0049 0.0868 0.7876 0.8616 0.8229 0.4809 0.4761 0.4785

CNN-RNN 0.0038 0.0836 0.9025 0.8131 0.8555 0.3697 0.2875 0.3235

HLSE 0.0047 0.0984 0.9258 0.8215 0.8705 0.4582 0.3974 0.4256

SERL 0.0053 0.1332 0.9431 0.8684 0.9042 0.4796 0.4520 0.4654

DSRM-DNN-1 0.0029 0.0842 0.9426 0.8791 0.9097 0.4913 0.4831 0.4872

DSRM-DNN-2 0.0025 0.0855 0.9585 0.8842 0.9199 0.6147 0.4785 0.5381

EUR-Lex ML-DT 0.0894 0.6060 0.2113 0.5495 0.3052 0.1567 0.2254 0.1849

ML-KNN 0.0572 0.3052 0.3913 0.1716 0.2386 0.5141 0.2318 0.3195

BR 0.0642 0.1918 0.6124 0.4945 0.5472 0.4260 0.3643 0.3927

CC 0.0386 0.7329 0.1508 0.5426 0.2360 0.2618 0.3012 0.2801

HARAM 0.0164 0.1851 0.6735 0.4777 0.5589 0.4158 0.3271 0.3662

BP-MLL 0.0209 0.2258 0.3294 0.4138 0.3668 0.2331 0.3063 0.2647

CNN-RNN 0.0193 0.2014 0.6226 0.4710 0.5363 0.3727 0.3103 0.3387

HLSE 0.0284 0.2134 0.6387 0.5576 0.5954 0.3854 0.3942 0.3898

SERL 0.0182 0.2349 0.6668 0.5761 0.6181 0.4085 0.3853 0.3966

DSRM-DNN-1 0.0153 0.1632 0.6423 0.5861 0.6129 0.4298 0.3932 0.4109

DSRM-DNN-2 0.0134 0.1714 0.6714 0.5874 0.6266 0.4315 0.4107 0.4208

Book marks ML-DT 0.1084 0.5598 0.1153 0.2067 0.1480 0.1324 0.1458 0.1388

ML-KNN 0.0964 0.5574 0.3143 0.3518 0.3320 0.2514 0.2780 0.2640

BR 0.0993 0.5318 0.2821 0.2546 0.2676 0.1950 0.1880 0.1914

CC 0.0895 0.5428 0.1922 0.3967 0.2589 0.1642 0.3104 0.2148

HARAM 0.0707 0.4876 0.3924 0.3951 0.3937 0.3614 0.3409 0.3509

BP-MLL 0.0684 0.5589 0.0943 0.5682 0.1618 0.1115 0.2743 0.1586

CNN-RNN 0.0629 0.4732 0.3929 0.4096 0.4011 0.2257 0.3321 0.2688

HLSE 0.0782 0.5349 0.3658 0.4627 0.4086 0.3472 0.3274 0.3370

SERL 0.0879 0.4974 0.3817 0.5232 0.4414 0.3715 0.3603 0.3658

DSRM-DNN-1 0.0634 0.4926 0.3974 0.5762 0.4704 0.3841 0.3596 0.3714

DSRM-DNN-2 0.0572 0.4828 0.4123 0.5691 0.4782 0.4018 0.3702 0.3854

DSRM-DNN-1/2 are the proposed methods (without the dynamic representation/with the dynamic representation). To observe the experimental results
more conveniently, we bold the optimal results, underline the sub-optimal ones, and mark the third optimal results in italics
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speech cannot quantize the text alone (quantifying the
word using only part-of-speech results in very poor per-
formance), we analyze its effect indirectly through its
weighted combination with word frequency. The exper-
imental results show that (1, 0.8, 0.6) is the optimal
weight combination of parts-of-speech. Besides, the re-
sults in Fig. 7b show that the weighted combination is
more effective than single word attribute.

4.4.3 Dynamic representation

To verify the effectiveness of the dynamic representation
method, we test MiF and Macro-averaged F1-Score (MaF)
of different classification methods on four datasets.

As shown in Fig. 8, the dynamic representation method
improves the performance of the classifier on most datasets.
The performance of the optimization on RCV1-v2 is poor, the
reason is that existing DSRM-DNN contains most of the rep-
resentative words, and the new words added by the dynamic
representation is less. The high average number of labels per
text on EUR-Lex results in the selected semantic words being
very important and increases the impact of dynamic represen-
tation, so the proposed method can achieve better
performance.

4.4.4 Comparison of different methods

We test different classification methods on the datasets men-
tioned in Section 4.1 and use the various evaluations to anal-
ysis their performance. As the performance of different
methods using Hamming Loss to evaluate on the above
datasets is not obvious, we replace Hamming Loss with
Rank Loss on EUR-Lex and Bookmarks. In the experiments,
we set the parameters of DSRM-DNN as e = 100, c = 7, n =
10%.

Both BR and CC in Table 3 are based on Euclidean-SVMs,
and achieve significantly higher recall and precision thanML-
DT and ML-KNN. It shows that the problem transformation
methods are more effective than the algorithm adaptation
methods for these datasets. Among themethods based on deep
learning, DSRM-DNN has better classification effects on
RCV1-v2, which shows that the proposed method is more
suitable for multi-label text classification. In addition, we ob-
serve that many classification methods perform well on
Reuter-21578. The reason is that the weak correlation of labels
leads to the great difference between the texts from different
categories. The label space of EUR-Lex and Bookmarks in
Table 2 is complex and difficult to be classified. The results
show that the proposed method also outperforms the existing
methods.

The experimental results also show that the performance of
the classifiers based on deep learning is obviously better than
that of the classifiers traditional machine learning algorithms.

DSRM-DNN is optimal or sub-optimal on most datasets, and
its classification results are better than the compared classifi-
cation methods. Besides, our method can effectively reduce
the negative impact of lowly-frequent words and new words,
so it is more suitable for datasets with strong label correlation
and wide semantic word distribution.

5 Conclusion

In this paper, we propose a DSRM-DNN method to extract
semantic words and construct text features, and integrate mul-
tiple restricted Boltzmann machines to construct deep belief
networks to initialize the classifier and accelerate its conver-
gence. Comparison with the state-of-the-art methods on four
datasets demonstrates the proposed method achieves better
results on both text quantization and multi-label classification.
To further improve the speed and accuracy of text classifica-
tion, we will focus on the optimization of semantic extraction
and the neural network construction in the future research.
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