
Reinforcement learning with convolutional reservoir computing

Hanten Chang1
& Katsuya Futagami1

Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Recently, reinforcement learning models have achieved great success, mastering complex tasks such as Go and other games with
higher scores than human players. Many of these models store considerable data on the tasks and achieve high performance by
extracting visual and time-series features using convolutional neural networks (CNNs) and recurrent neural networks respec-
tively. However, these networks have very high computational costs because they need to be trained by repeatedly using the
stored data. In this study, we propose a novel practical approach called reinforcement learning with a convolutional reservoir
computing (RCRC) model. The RCRC model uses a fixed random-weight CNN and a reservoir computing model to extract
visual and time-series features. Using these extracted features, it decides actions with an evolution strategy method. Thereby, the
RCRCmodel has several desirable features: (1) there is no need to train the feature extractor, (2) there is no need to store training
data, (3) it can take a wide range of actions, and (4) there is only a single task-dependent weight matrix to be trained. Furthermore,
we show the RCRC model can solve multiple reinforcement learning tasks with a completely identical feature extractor.

Keywords Reinforcement learning . Reservoir computing . Evolution strategy . Untrained convolutional neural network

1 Introduction

Recently, reinforcement learning (RL) models have achieved
great success, mastering complex tasks such as Go [1] and other
games [2–4] with higher scores than human players. Many of
these models use convolutional neural networks (CNNs) to
extract visual features directly from the environment state im-
ages [5]. Some models use recurrent neural networks (RNNs)
to extract time-series features and achieved higher scores [6].

However, these deep neural networks (DNNs) based
models are often very computationally expensive in that they
train networks weights by repeatedly using a large volume of
past playing data and task-rewards. Certain techniques can
alleviate these costs, such as the distributed approach [3, 7]

which efficiently uses multiple agents, and the prioritized ex-
perienced replay [8] which selects samples that facilitate train-
ing. However, the cost of a series of computations, from data
collection to action determination, remains high.

The world model [9] can also reduce computational costs by
completely separating the training processes between the fea-
ture extraction model and the action decision model. The world
model trains the feature extraction model in a rewards-
independent manner by using variational auto-encoder (VAE)
[10, 11] and mixture density network combined with an RNN
(MDN-RNN) [12]. After extracting the environment state fea-
tures, it uses an evolution strategy method called the covariance
matrix adaptation evolution strategy (CMA-ES) [13, 14] to
train the action decision model. The world model can achieve
outstanding scores in famous RL tasks. The separation of these
two models results in the stabilization of feature extraction and
reduction of parameters to be trained based on task-rewards.

From the success of the world model, it is implied that in
the RL feature extraction process, it is important to extract the
features that express the environment state sufficiently rather
than features trained to get higher rewards. Adopting this idea,
we propose a newmethod called “reinforcement learning with
convolutional reservoir computing (RCRC)”. The RCRC
model is inspired by the reservoir computing.

Reservoir computing [15] is a kind of RNNs, and the mod-
el weights are set to random. One of the reservoir computing
models, the echo state network (ESN) [16, 17] is used to solve

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10489-020-01679-3) contains supplementary
material, which is available to authorized users.

* Hanten Chang
s1820554@s.tsukuba.ac.jp

Katsuya Futagami
s1820559@s.tsukuba.ac.jp

1 Division of Policy and Planning Sciences, Faculty of Engineering,
Information and Systems, University of Tsukuba, 1-1-1 Tennoudai,
Tsukuba, Ibaraki, Japan

https://doi.org/10.1007/s10489-020-01679-3

Published online: 7 March 2020

Applied Intelligence (2020) 50:2400–2410

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01679-3&domain=pdf
https://doi.org/10.1007/s10489-020-01679-3
mailto:s1820554@s.tsukuba.ac.jp

time-series tasks such as future value prediction. For this, the
ESN extracts features for the input signal based on the dot
product of the input signal and fixed random-weight matrices
generated without training. Surprisingly, features obtained in
this manner are expressive enough to understand the input,
and complex tasks such as short-term chaotic time-series pre-
diction can be solved by using them as the input for a linear
model. In addition, the ESN has solved various tasks in mul-
tiple fields such as time-series classification [18, 19] and Q-
learning-based RL [20–22]. Similarly, in image classification,
the model that uses features extracted by the CNN with fixed
random-weights as the ESN input achieves high accuracy
classification with a smaller number of parameters [23].

Based on the success of the fixed random-weight models,
the RCRC model extracts the visual features of the environ-
ment state using fixed random-weight CNN, and, using these
features as the ESN input, extracts time-series features of the
environment state transitions. After extracting the environ-
ment state features, we use CMA-ES [13, 14] to train a linear
transformation from the extracted features to the actions, as in
the world model. This model architecture results in the omis-
sion of the training process of feature extractor and reduced
computational costs; there is also no need to store past playing
data. Furthermore, we show that the RCRC model can solved
multiple RL tasks with the completely identical structure and
weights feature extractor.

Our contributions in this study are as follows:

– We developed a novel and widely applicable approach to
extract visual and time-series features of an RL environ-
ment state using fixed random-weights networks feature
extractor with no training.

– We developed the RCRCmodel that doesn’t need to store
data and to train feature extractor.

– We showed that the RCRC model can solve different tasks
with training only a single task-dependentweightmatrix and
using the completely identical feature extractor.

2 Related work

2.1 Reservoir computing

Reservoir computing is one of the RNNs and it extracts features
of the input without training for the feature extraction process.
In this study, we focus on a reservoir computing model, ESN
[16, 17]. The ESN was initially proposed to solve time-series
tasks [16] and is regarded as an RNN model [15, 24].

Let the N-length, Du-dimensional input signal be u ¼ fu
1ð Þ; u 2ð Þ; :::; u tð Þ; :::; u Nð Þg∈ℝN�Du and the signal that added
one bias term to input signal be U ¼ u; 1½ � ¼ fU 1ð Þ;

U 2ð Þ; :::;U Tð Þ; :::;U Nð Þg∈ℝN� Duþ1ð Þ. Let [;] be a vector
concatenation. The ESN gets features called the reservoir state

X ¼ fX 1ð Þ; :::;X tð Þ; :::;X Nð Þg∈ℝN�Dx as follows:

Xe t þ 1ð Þ ¼ f W inU tð Þ þWX tð Þ� �Þ
X t þ 1ð Þ ¼ 1−αð ÞX tð Þ þ αXe t þ 1ð Þ

where the matrices W in∈ℝ Duþ1ð Þ�Dx and W∈ℝDx�Dx are sam-
pled from a probability distribution such as a Gaussian distri-
bution, and f is the activation function which is applied ele-
ment-wise. As the activation function, linear and tanh func-
tions are generally used; it is also known that changing the
activation function according to the task improves accuracy
[25, 26]. The leakage rate α ∈ [0,1] is a hyperparameter that
tunes the weight between the current and the previous values,
andW has twomajor hyperparameters called sparsity and spec-
tral radius. The sparsity is the ratio of 0 elements in matrix W
and the spectral radius is a memory capacity parameter which is
calculated by the maximal absolute eigenvalue of W.

Finally, the ESN estimates the target signal y ¼ fy 1ð Þ; y 2ð Þ
; :::; y tð Þ; :::; y Nð Þg∈ℝN�Dy as

y tð Þ ¼ Wout X tð Þ;U tð Þ; 1½ �:

The weight matrix Wout∈ℝDy� DxþDuþ1ð Þ is estimated by a lin-
ear model such as ridge regression. An overview of reservoir
computing is shown in Fig. 1.

The unique feature of the ESN is that the twomatricesWin and
W are randomly generated from a probability distribution and
fixed. Therefore, the training process in the ESN consists only
of a linear model to estimate Wout, hence the ESN has very low
computational cost. In addition, the reservoir state reflects com-
plex dynamics despite being obtained by random matrix trans-
formation, and it is possible to use it to predict complex time-
series by a simple linear transformation [16, 27, 28]. Because of
the low computational cost and high expressiveness of the ex-
tracted features, the ESN is also used to solve other tasks such as
time-series classification [18, 19], and image classification [23].

There are also previous works that use the reservoir comput-
ing to extract features for Q-learning [20–22]. However, to the
best of our knowledge, no research has been extended to use
reservoir computing to extract visual features in reinforcement
learning tasks, and no research has been combined reservoir
computing with evolution strategy. In our proposed method, it
is unique that both visual and time-series features can be ac-
quired with no training. Furthermore, by combining evolution
strategy, a wide range of actions can be taken naturally, and it
gives several desirable features such as no need for storing data.

2.2 World models

The world model [9] is one of the RLmodels that separates the
training of the feature extraction model and the action decision

Reinforcement learning with convolutional reservoir computing 2401

model to train the model more efficiently. It uses VAE [10, 11]
and MDN-RNN [12] as feature extractors. They are trained in
a reward-independent manner with randomly played 10000
episodes data. As a result, in the feature extraction process,
the reward-based parameters are omitted, and there remains a
single weight matrix to be trained that decides the action. The
weight is trained by CMA-ES [13, 14]. Although the feature
extraction model is trained in a reward-dependent manner, the
world model achieves outstanding scores in an RL task
CarRacing-v0 [29]. Furthermore, the world model can
be trained to predict the next environment state, thus it can
generate the environment by itself. By training the action de-
cision model in this self-play environment, the world model
solved an RL task DoomTakeCover-v0 [30, 31].

CMA-ES is one of the evolution strategy methods used to
optimize some parameters using a multi-candidate search gen-
erated from a multivariate normal distribution. As CMA-ES
updates parameters using only the evaluation scores calculat-
ed by actual playing, it can be used regardless of whether the
actions of the environment are continuous or discrete values
[13, 14]. Furthermore, the training can be faster because it can
be parallelized by the number of parameter candidates.

The world model reduces the computational cost and ac-
celerates the training process by separating training processes
of models and applying CMA-ES. However, in the world
model, it is necessary to independently optimize VAE,
MDN-RNN, and CMA-ES each other. Furthermore, in opti-
mizing the feature extractor models, they need to save consid-
erable data and be trained by repeatedly using those data.

3 Proposal model

3.1 Basic concept

The results of world model [9] implies that in RL tasks, it
requires features that sufficiently express the environment
state, rather than features trained to get higher rewards. We
thus focus on extracting features that sufficiently express en-
vironment states by fixed random-weights networks. Using

fixed random-weights networks as feature extractor has some
advantages, such as no need for both training feature extractor
and storing data, while being able to sufficiently extract fea-
tures. For example, a simple CNN with fixed random-weights
can extract visual features and achieve high accuracy in image
classification [23]. Although the MDN-RNN weights are
fixed in the world model, it can achieve high performance
[32]. In the ESN, the model can predict complex time-series
using features extracted by random matrices transformations
[16, 27, 28]. Therefore, it can be considered that CNNs can
extract visual features and ESN can extract time-series fea-
tures, even if their weights are random and fixed. From this
hypothesis, we propose the RCRC model, which includes
both fixed random-weight CNN and ESN.

3.2 Proposal model overview

The RCRC model is composed of three layers: the untrained
CNN layer, the reservoir computing layer and the controller lay-
er. In the first layer, it extracts visual features by using a fixed
random-weight CNN. In the second layer, it uses transitions of
the visual features extracted in the first layer as input to the ESN
to extract the time-series features. In the two layers above that
collectively called the convolutional reservoir computing layer,
visual and time-series features are extracted with no training. In
the final layer, a single weight matrix of a linear transformation
from the outputs of the convolutional reservoir computing layer
to the actions is trained. A model overview is shown in Fig. 2.

In the previous study, there is a similar world model-based
approach [33] that uses fixed random-weights in VAE and a
LSTM [34]. However, this approach is ineffective in solving
CarRacing-v0 [29]. In the training process, the best aver-
age score over 20 randomly created tracks of each generation
was less than 200. However, as mentioned further on, we
achieved an average score above 900 over 100 randomly cre-
ated tracks in CarRacing-v0 by taking the reservoir com-
puting knowledge in the RCRC model. We also solved
DoomTakeCover-v0 [30, 31] by using the convolutional
reservoir computing layer whose structure and weights are
completely identical in CarRacing-v0.

Fig. 1 Reservoir Computing
overview for the time-series pre-
diction task

H. Chang and K. Futagami2402

The characteristics of the RCRC model are as follows:

– The computational cost of the RCRC model is very low
because visual and time-series features of environment
states are extracted using a convolutional reservoir com-
puting layer whose weights are fixed and random.

– In the RCRC model, only a single weight matrix in the
controller layer needs to be trained because the feature
extraction model (the convolutional reservoir computing
layer) and the action training model (the controller layer)
are separated.

– The RCRC model can take a wide range of actions regard-
less of continuous or discrete, because the model training
process is based on the scores measured by actual playing.

– Past data storage is not required, as neither the convolutional
reservoir computing layer nor the controller layer needs to
be trained by the past data as in back-propagation.

– The convolutional reservoir computing layer can be ap-
plied to other tasks without further training for feature
extractor because the layer’s weights are fixed with
task-independent random weights.

3.3 Convolutional reservoir computing layer

In the convolutional reservoir computing layer, the visual and
time-series features of the environment state images are extracted
by a fixed random-weight CNN and an ESN-based method

which has fixed random-weights, respectively. A study using
each image’s features that are extracted by the fixed random-
weight CNN as input to the ESN has been previously conducted,
and has shown its ability to classify MNIST dataset [35] with
high accuracy [23]. Based on this, we developed a novel and
practical approach to solve various RL tasks. By taking advan-
tage of the RL characteristic that the current environment state
and the action determine the next environment state, the RCRC
model updates the reservoir state with current and previous en-
vironment state features. This updating process enables the res-
ervoir state to have time-series features.

More precisely, consider the Dconv-dimensional visual fea-
tures extracted by the fixed random-weight CNN for t-th en-

vironment state image X conv tð Þ∈ℝDconv and the Desn-dimen-

sional reservoir state X esn tð Þ∈ℝDesn . The reservoir state Xesn

is time-series features and updated as follows:

Xeesn t þ 1ð Þ ¼ f W inX conv tð Þ þWX esn tð Þ� �Þ
X esn t þ 1ð Þ ¼ 1−αð ÞX esn tð Þ þ αXeesn t þ 1ð Þ:
This updating process has no training necessity, and is very
fast, becauseWin andWare randommatrices sampled from the
probability distribution and fixed.

3.4 Controller layer

The controller layer decides actions by using the output of the
convolutional reservoir computing layer, Xconv and Xesn. Let t-th

Fig. 2 RCRC overview to decide the action for CarRacing-v0: the
feature extraction layer are called the convolutional reservoir computing
layer, and the weights are sampled from Gaussian distributions and then
fixed. For DoomTakeCover-v0 we use the completely identical

convolutional reservoir computing layer in CarRacing-v0. In both
tasks, we train only a single weight in the controller layer to take task-
dependent actions

Reinforcement learning with convolutional reservoir computing 2403

environment state input vector which added one bias term be

S tð Þ ¼ X conv tð Þ;X esn tð Þ; 1½ �∈ℝDconvþDesnþ1. We suppose that
the feature S(t) has sufficient expressive information about the
environment states and it can take action by a linear combination

of S(t). Therefore, we obtain action A tð Þ∈ℝN act as follows:

Ae tð Þ ¼ WoutS tð Þ
A tð Þ ¼ gðAe tð ÞÞ
whereWout∈ℝ DconvþDesnþ1ð Þ�N act is the weight matrix and the sca-
lar Nact is the number of actions in the task; g is the function

which adjusts Ae tð Þ into feasible action space range.
Because the weights of the convolutional reservoir com-

puting layer are fixed, only the weight matrix Wout requires
training. We optimizeWout by using CMA-ES, as in the world
model. Therefore, it is possible to parallelize the training pro-
cess and handle both discrete and continuous values as actions
[13, 14]. The process of optimizing Wout by CMA-ES are
followings:

1. Generate each solution candidate Wout
i i ¼ 1; :::; nð Þ from

a multivariate normal distribution N m;σ2Cð Þ.
2. Create n environments and workers. Each worker workeri

(i = 1,...,n) implements the RCRCmodel andWout
i is set to

the controller layer.
3. In each environment, each workeri plays m episodes and

in each episode, workeri receives a score Gi,j (j = 1,...,m).
4. Update evolution paths with the score of eachWout

i which
is calculated by Gi ¼ 1=m∑m

j¼1Gi; j.

5. Update m, σ, C by using evolution paths.
6. Repeat 1 to 5 until the convergence condition is satisfied

or the specified number of repetitions are completed.

In this process, n means the number of solution candidatesWout

generated at each step. Each worker extracts features, takes the
action in each independent environment, and obtains scores.

4 Experiments

4.1 Experiments environments

We evaluate the RCRC model in two famous RL tasks:
CarRacing-v0 [29] in OpenAI Gym [36] and
DoomTakeCover-v0 [30, 31] in ViZDoom [37].
CarRacing-v0 is a continuous action task and
DoomTakeCover-v0 is a discrete action task. These two
tasks are known to improve accuracy by extracting time series
features[9]. In both environments, we use the identical struc-
ture and weights convolutional reservoir computing layer as a
feature extractor to evaluate the generalization ability and train
only a single weight in the controller layer.

4.2 CarRacing-v0

CarRacing-v0 [29] is a car racing game environment that
is known as a difficult continuous action task [9]. The goal of
this game is to go around the course without getting out by
operating a car with three continuous actions: steering wheel,
accelerator, and brake. The course is filled with tiles as shown
in Fig. 3a. Each time the car passes a tile on the course, 1000/N
is added to the score. The scalar N is the total number of tiles
on the course. The course is randomly generated every time,
and the total number of tiles in the course varies around 300. If
all the tiles are passed, the total reward will be 1000, but it is
subtracted by 0.1 for each frame. The episode ends when all
the tiles are passed or when 1000 frames are played. If the
player can pass all the tiles without getting out of the course,
the reward will be above 900. The definition of “solve” in this
game is to get an average of 900 over 100 consecutive trials.

4.3 DoomTakeCover-v0

DoomTakeCover-v0 [30, 31] is a first-person perspective
and 3D vision game. The goal of this game is to survive a long
time with avoiding fireballs by operating a player with two dis-
crete actions: move left and move right as shown in Fig. 3b. The
fireballs are launched towards the player from the monsters and
the survival time steps × 1 will be the score. Player has hit points
and canwithstand 1 or 2 times of fireballs hit, but if hit points has
gone, it will be game over. The screen moves along with its own
action, and the fireballs are launched from the backward of the
screen toward the player, so it is necessary to recognize the depth
of the screen to avoid the fireball. The episode ends when 2100
frames are passed. The definition of “solve” in this game is to get
an average of 750 over 100 consecutive trials.

4.4 Procedure

As previously stated, taking advantage of the RCRC model
characteristic that feature extractor’s weights are task-indepen-
dent, we use an identical convolutional reservoir computing
layer as a feature extractor in both tasks.

We determine hyperparameters based on natural settings
without tuning to measure model structure performance. We
first resize the environment state image into 64 × 64 with 3
channels pixels and divided by 255 to restrict the each pixel
value into [0,1] as input to the convolutional reservoir com-
puting layer. In the convolutional reservoir computing layer,
we set 3 convolution layers and 1 dense layer. The filter sizes
in the convolutional layers are 31, 14, and 6, and we set the
number of the filters to 32, 64, and 128. All strides are set to 2.
We set Dconv and Desn to 512. The weights in convolution

layers are sampled from Gaussian distributions N 0; 0:062
� �

;
the both weights in the reservoir computing layer Win and W

H. Chang and K. Futagami2404

are sampled from Gaussian distributions N 0; 0:12
� �

.
Regarding the parameters of reservoir computing layer, it is
known that sparsity does not significantly affect accuracy, so
we set it to 0.8, and we set spectral radius to 0.95 considering
that it is often set to be less than 1 [38]. Leakage ratio is set to
0.8 considering it does not have a large effect on accuracy in
previous work [23]. All activation functions are set to tanh
which is often used in the ESN manner. The task-dependent
parameters are onlyWout in the controller layer. Therefore size
of Wout which is the parameter be trained in a task-dependent
manner is 3075 in CarRacing-v0 and 1025 in
DoomTakeCover-v0. The examples of the visual features
extracted in each convolution layer are shown in Fig. 4.

To get action Acar(t) of CarRacing-v0, as in the world

model [9], we adjust Aecar tð Þwhich is calculated by dot product
of the extracted features and the weight in the controller layer,
by the function gcar as follows:

Acar tð Þ ¼ gcarðAecar tð ÞÞ ¼
tanhðAeð1Þcar tð ÞÞ

½tanh Aeð2Þcar tð ÞÞ þ 1:0
� i

=2:0

clip tanh Aeð3Þcar tð ÞÞ; 0; 1
� ih

8>>>>><
>>>>>:

where Ae ið Þ
car is i-th value in Ae and clip x;λmin;λmax½ � is the func-

tion that limits the value of x in range from λmin to λmax by

clipping. Let A ið Þ
car be i-th value in A, the values A 1ð Þ

car∈ −1; 1½ �;
A 2ð Þ
car∈ 0; 1½ � and A 3ð Þ

car∈ 0; 1½ � are correspond to steering wheel,
brake and accelerator, respectively.

To get action Adoom(t) of DoomTakeCover-v0, we ad-
just Aedoom tð Þ which is calculated by dot product of the extract-
ed features and weight in the controller layer, by the function
gdoom as follows:

Adoom tð Þ ¼ gdoomðAedoom tð ÞÞ ¼
left ðAeð1Þdoom tð Þ≤0Þ
right Aeð1Þdoom tð Þ > 0Þ

� :
8<
:

In the experiments, we use CMA-ES to optimize W out until
500-th generations, and set 16 workers (n = 16) which imple-
ments the RCRC model for CarRacing-v0 and 32 (n = 32)

forDoomTakeCover-v0. Eachworker is set to simulate over 8
randomly generated trials (m = 8), and updates Wout with an av-
erage of these scores. In optimizingWout in DoomTakeCover-
v0, we didn’t set the max simulation step to evaluate the actual
playing ability. As in the world model [9], we evaluate the gen-
eralization ability of the models by the average score over 100
randomly created trials. In generalization ability evaluation, we
set the weight of the best worker which reached the best average
score over 8 trials to the controller layer’s weight.

To investigate the ability of network structures, we evaluate
three models: the full RCRC model, the RCRC model that
removes the reservoir computing layer (visual model), and the
RCRC model that has only one dense layer as feature extractor
(dense model). The dense model uses flatten vector of 64 × 64
with 3 channels pixels as input and extracts visual features with
no convolution. We set the weights of all models to random and
fixed. The inputs to the controller layer of the visual model and
the dense model are the Dconv-dimensional outputs from the
dense layer shown in Fig. 2.

5 Results

5.1 Random seed dependency

Since the weight of features extractors in our proposed method
are highly depend on random distribution. We first examine
how random seed choice affect accuracy in both environments.
We use canonical correlation analysis (CCA) [39] to detect
linear relationship between two features extracted by different
weights decided by different random seeds. In CCA, we calcu-
late maximum canonical correlation, difined by

ρ i; jð Þ ¼ max
wi;w j

Cov wT
i S

i;wT
j S

j
� �

ffi
Var wT

i S
i

� �
Var wT

j S
j

� �r :

where Cov(x) is covariance operator and Var(x) is variance
operator of x. Let the convolutional reservoir computing layer
whose weights are generated by random seed i be CRCi. Thus,

Fig. 3 Example environment
state images and actions in each
environment

Reinforcement learning with convolutional reservoir computing 2405

t-th features are S(t) = CRCi(X(t)), and wi is the weight which
transform multidimensional features that are decided by ran-
dom seed i. Si is a series of features extracted by CRCi, we use
the same environment state images and extract other features
by feature extractors with different seed. If ρ(i,j) ∈ [− 1,1] is
high, there is a strong linear relation between the features
extracted by seed i and seed j.

We collect the features 20 trials with random actions for
CarRacing-v0 and 100 trials with random actions for

DoomTakeCover-v0. Finally, in CarRacing-v0 Si∈
ℝ 20000;1024ð Þ and in DoomTakeCover-v0 Si∈ℝ 21823;1024ð Þ

for different 20 random seeds. Both features are not including
bias term. We calculate every pair (i.e. 190 pairs) of random
seeds to calculate maximum canonical correlation.

As a result, the average maximum canonical correlation is
0.99947 ± 0.0003 in CarRacing-v0 and that is 0.99959 ±
0.0004 in DoomTakeCover-v0. Therefore there is a strong
linear relationship among the features extracted by other
weights defined by different random seeds, and it can be con-
cluded that the proposed method is robust against random
seed choice in out settings.

5.2 CarRacing-v0

The best scores among 16 workers are shown in Fig. 5a. Each
worker’s score is evaluated as an average score over 8

randomly generated tracks. The dense model reached an av-
erage score above 880 over 8 randomly generated tracks, and
the visual model reached above 890. The dense model’s score
transition has higher variance than the visual model’s score
transition. Furthermore, the visual model’s score is less stable
than the full RCRC model’s score. These results shows that
only one dense layer can extract visual features despite the fact
that the weights are random and fixed, and the features ex-
tracted by the convolutional layers and the ESN improved
scores.

The generalization ability of the visual model and the full
RCRC model which evaluated as an average score over 100
random trials are shown in Table 1. The scores of comparison
models are also shown in Table 1. The visual model which
uses 512-dimensional visual features achieved 864 ± 79which
is better than the V model that uses 32-dimensional features
extracted by VAE as input to controller layer in the world
model. In addition, the full RCRC model reached 902 ± 21
which is comparable to state of the art approaches such as the
world model approach [9] and genetic algorithm (GA) ap-
proach [33]. Therefore the full RCRC model can be regarded
as having ability to solve CarRacing-v0. These results
show the time-series features extracted by the ESN improves
driving skill. Furthermore, mention about the difference be-
tween the visual model and the V model, the dimension of the
extracted feature is different, and for this reason, it seems that

Fig. 4 Examples of the visual
features in each convolution layer.
The features in the same column
are extracted by the same network

H. Chang and K. Futagami2406

the difference of the score caused. In other words, it seems that
enough visual features improves the score even it is extracted
by random and untrained weight.

Compare to World model with random MDN-RNN [32]
and GA approach [33], the RCRC model achieved a higher
score. These approaches are similar to our approach. They use
a fixed random-weight network to extract visual or time-series
features, but we use the fixed random-weight network to ex-
tract both of them and achieved a higher score than those. This
result shows that the visual and time-series features extracted
by the RCRC model have enough information to solve the
task.

Compare to the score of DQN approach [40] and DDQN
with dropout approach [41], the RCRC model reached a
higher score and solved the task. To mention about DQN, it
estimates future rewards in each frame, but it tends to overes-
timate the rewards. If this happens in CarRacing-v0, it is
likely that the car becomes fast to try to get a high score but
becomes too fast to corner well. It seems the DQN approach
couldn’t assume a risk. On the other hand, Double DQN

(DDQN) is the model that can estimates future rewards more
severely than DQN. The scores of DDQN with dropout
approach[41] is much better than that of DQN approach.
This means that the overestimates of future rewards are fatal
in solving CarRacing-v0 and if the model could estimate
future rewards properly, the model will perform well.
Compare to these models, the RCRC model doesn’t estimate
future rewards. It only extracts visual and time-series features
and use these features to optimize actions to maximize total
rewards, so there is no risk of overestimates in the RCRC
model.

Asynchronous Advantage Actor-Critic (A3C) is a model
that train their model asynchronously in parallel environ-
ments. A3C uses Advantage method. The Advantage method
uses the relative value of each action. It is evaluated by
subtracting the value of the state from the value of each action.
This makes model can estimates pure value of each action.
Moreover, A3C also uses actor-critic method. The actor-critic
method separates the training process of action decision-
maker and value estimators. This method makes the training
process more stable. A3C is similar to the RCRCmodel in that
it uses less memory because it doesn’t need to collect training
data. Even our model has the advantages of A3C and the
computation cost is low because of no need of gradient calcu-
lation, it reached a much higher score than that of A3C ap-
proaches [42, 43] and solve the task. Compare to those ap-
proaches, the RCRC model doesn’t train feature extractor and
doesn’t train model in each parallel environments. From this
result, it can be said that the RCRC model is not only having
desirable characteristics but also a good performer.

The full RCRCmodel also achieved a higher score than the
scores of Weight Agnostic Neural Networks (WANN) [44].
The WANN is a model that optimizes network architectures
by no weight training. The WANN learn the network archi-
tectures with constraints that make it a simple architecture. To
measure the generalization ability of the WANN, the follow-
ing 4 weights are used in the evaluation: Random weights,
Random shared weight, Tuned shared weight, and Tuned
weights [44]. The Random weight means individual weights
in the network which architecture is optimized, are drawn
from uniform distribution U(− 2,2); The Random shared

Fig. 5 a The best average score
over 8 randomly created trials
among 16 workers in
CarRacing-v0. b The best
average score over 8 randomly
created trials among 32 workers
in DoomTakeCover-v0. For
simplicity, we plotted moving
average of 10 scores

Table 1 CarRacing-v0 scores of various methods

Method AVG. Score

DQN [40] 343 ± 18

DDQN with dropout [41] 892 ± 41

A3C (continuous) [42] 591 ± 45

A3C (discrete) [43] 652 ± 10

World model with random MDN-RNN [32] 870 ± 120

World model [9]

V model 632 ± 251

World model 906 ± 21

GA [33] 903 ± 73

Weight Agnostic Neural Networks [44]

Random weights -69 ± 31

Random shared weight 375 ± 177

Tuned shared weight 608 ± 161

Tuned weights 893 ± 74

RCRC model (Visual model) 864 ± 79

RCRC model 902 ± 21

Reinforcement learning with convolutional reservoir computing 2407

weight means all weights are same value which is drawn from
U(− 2,2); The Tuned shared weight means using the highest
performing shared weight value in range (− 2,2); The Tuned
weights means individual weights are trained to solve task
[44]. The concept of the WANN is a little similar to the
RCRC in don’t train weights, but different in what they focus
on. The RCRC focuses on the random weights feature extrac-
tors ability and the WANN focuses on the simple network
architectures that can solve tasks. Therefore, the WANN
seems to have difficulty to achieve a high score with noweight
training. These results show that to solve CarRacing-v0, it
is important to extract meaningful or enough visual and time-
series features.

5.3 DoomTakeCover-v0

The best scores among 32 workers are shown in Fig. 5b. Each
worker’s score is evaluated as an average score over 8 ran-
domly generated trials. While the dense model only improved
score little by little, the visual model and the full RCRCmodel
improved scores fast and reached above 750 in early steps.
Therefore, it seems that it is difficult to express complex visual
features such as the depth of screens with the dense layer
alone, and the convolutional layer is effective.

The generalization ability of the visual model and the full
RCRCmodel which is evaluated as an average score over 100
random trials are shown in Table 2. For comparison, the scores
of Random Policy Baseline that takes actions randomly, the
OpenAI Gym leaderboard [31], and the self-playing world
model with different temperature parameter τ are listed. The
temperature τ controls the variance of the next environment
state prediction. A large τ means that the model predicts next
environment state with high variance. On the other hand, if τ
sets to 0, the model predicts the next environment state
deterministically.

The full RCRC model reached 922 ± 450 and the visual
model achieved 832 ± 483. They couldn’t reach the best score
of the self-playing world model 1092 ± 556, but they greatly

exceed above 750 which means “solved” the task. Although
the visual model and the full RCRC model have similar score
transition in the parameter optimization process, at average
score over 100 random trials, the visual model’s score is lower
than the full RCRC model’s one. It can be considered to be
due to the fact that it might fall into a local optima easy, since
the scores are high variance and each parameter is evaluated
by only 8 trials during parameter optimization. Because the
full RCRC model score has a higher score and lower variance
than the visual model, it can be regarded as using time-series
features extracted by the RCRC model are effective to solve
tasks and can improve the generalization ability. This is as-
sumed to caused by that the risk of falling into a local optima
decrease because the model does not only depend on visual
features by using time-series features.

While the full RCRC model reached a comparable score to
the best score of the world model inCarRacing-v0, the full
RCRCmodel couldn’t reach the best score of the world model
in DoomTakeCover-v0. The world model uses VAE and
MDN-RNN, and can extract probabilistic features based on
the assumption of multiple future environment states, but the
RCRCmodel can only extract deterministic features by actual
image input. In DoomTakeCover-v0, the environment
state images are first-person view, and not all states can be
observed. Therefore, it seems that the world model can get a
higher score.

Furthermore, the RCRC model’s feature extractor which is
completely identical between tasks has generalization ability
to solve both tasks by training only a linear transformation
from the extracted features to the actions, despite the fact that
the network’s weights are set to random and fixed.

6 Conclusions and discussions

In this study, we focused on extracting features that sufficient-
ly express the environment state, rather than those that are
trained to get higher rewards. To this end, we developed a
novel approach called RCRC model which using fixed
random-weight CNN and a novel ESN-based method, respec-
tively, extracts visual features from environment state images
and time-series features from transitions of visual features.
This model architecture results in highly practical features that
omit the training process of the feature extractor and reduce
computational costs, and there is no need to store large vol-
umes of data. Surprisingly, extracted features are expressive
enough to solve multiple RL tasks with training only a linear
transformation of those features, despite the fact that it used
the completely identical feature extractor. These results bring
us to the conclusion that network structures themselves, such
as CNN and ESN, have the capacity to extract features, and
the RCRC model has generalization ability to express various
environments and solve RL tasks.

Table 2 DoomTakeCover-v0 scores of various methods

Method AVG. Score

Random Policy Baseline 210 ± 108

Gym Leader [31] 820 ± 58

World model [9]

τ = 0.10 193 ± 58

τ = 0.50 196 ± 50

τ = 1.00 868 ± 511

τ = 1.15 1092 ± 556

τ = 1.30 753 ± 139

RCRC model (Visual model) 832 ± 483

RCRC model 922 ± 450

H. Chang and K. Futagami2408

There are two main novelties in this paper. First, the RCRC
is the first work as we knowwhich combines the CNN and the
reservoir computing method for task to extract features from
transitions of images. Second, we showed the RCRC with an
identical random-weight feature extractor can be used to
multi-task and it can achieve comparable scores to state of
the art approaches.

Although the RCRC model is not suitable for the tasks that
are hard to simulate because it optimizes parameters by the
simulated score with current parameters, it has the potential to
make RL widely available. Recently, many RL models have
achieved high performance in various tasks, but most of them
have high computational costs and often require significant
time for training. This makes the introduction of RL inacces-
sible to many people. However, by using the RCRC model
anyone can build high-performance models fast with much
lower computational costs. In addition, the RCRC model
can handle a wide range of actions, and even when the envi-
ronment changes, training can be performed without any pre-
training. Therefore, the RCRC model can be used easily by
anyone to apply to various environments.

The RCRC model can handle high-dimensional features
such as video and image transitions without training feature
extractors when rewards can be defined. Therefore, in real-
world applications, the RCRC model has several strong
points. It can be applied to tasks that have tremendous data
and tasks which cannot apply batch predictions because the
data distributions change dynamically. For example, we con-
sider that it can be applied to the tasks that require dynamical
high dimensional time-series features such as in-video adver-
tisement optimization, automated driving system, and robot
control. Note that how complex tasks the RCRC model can
handle must be considered in future work.

As a further improvement, there is a possibility that the
score can be improved by ensembling multiple features that
are extracted by multiple convolutional reservoir computing
layers as in the ESN [45]. In addition, generally reservoir
computing is limited to tasks that do not require long-term
memory because it is known that it has less memory capacity
than LSTM, but the stacking ESN approach such as DeepESN
[46] has possibility to improve memory capacity.

In future work, we consider making predictions from pre-
vious extracted features and actions to the next ones to be an
important and promising task. Because the ESN was initially
proposed to predict complex time-series, it can be assumed to
have capacity to predict next features. If this task is achieved,
it can self-simulate RL tasks by making iterative predictions
from an initial state. This will help to broaden the scope of RL
applications.

Acknowledgements The authors are grateful to Takuya Yaguchi for the
discussions on reinforcement learning. We also thank Hiroyasu Ando for
helping us to improve the manuscript.

Author Contributions Both authors contributed to the study conception,
design, coding, analysis and trial experiments. The submitted experimen-
tal results were performed by Hanten Chang. The first draft of the man-
uscript was written by both authors and both authors read and approved
the final manuscript.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of
interest.

References

1. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den
Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V,
Lanctot M, et al. (2016) Mastering the game of go with deep neural
networks and tree search. Nature 529(7587):484

2. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I,
Wierstra D, Riedmiller MA (2013) Playing atari with deep rein-
forcement learning. arXiv:1312.5602

3. Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, van
Hasselt H, Silver D (2018) Distributed prioritized experience re-
play. arXiv:1803.00933

4. Kapturowski S, Ostrovski G, Dabney W, Quan J, Munos R (2019)
Recurrent experience replay in distributed reinforcement learning.
In: International conference on learning representations

5. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017)
Deep reinforcement learning: A brief survey. IEEE Signal
Processing Magazine 34(6):26–38

6. Hausknecht M, Stone P (2015) Deep recurrent q-learning for par-
tially observable mdps. In: 2015 AAAI Fall symposium series

7. Mnih V, Badia AP,MirzaM, Graves A, Lillicrap T, Harley T, Silver
D, Kavukcuoglu K (2016) Asynchronous methods for deep rein-
forcement learning. In: International conference on machine learn-
ing, pp 1928–1937

8. Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized expe-
rience replay. arXiv:1511.05952

9. Ha D, Schmidhuber J (2018) Recurrent world models facilitate
policy evolution. In: Advances in neural information processing
systems. Curran Associates Inc., pp 2450–2462

10. Kingma DP, Welling M (2013) Auto-encoding variational bayes.
arXiv:1312.6114

11. Rezende DJ, Mohamed S, Wierstra D (2014) Stochastic
backpropagation and approximate inference in deep generative
models. arXiv:1401.4082

12. Graves A (2013) Generating sequences with recurrent neural net-
works. arXiv:1308.0850

13. Hansen N, Ostermeier A (2001) Completely derandomized self-
adaptation in evolution strategies. Evol Comput 9(2):159–195

14. Hansen N (2016) The CMA evolution strategy: A tutorial. arXiv:
1604.00772

15. Lukoševičius M, Jaeger H (2009) Reservoir computing approaches
to recurrent neural network training. Comput Sci Rev 3(3):127–149

16. Jaeger H (2001) The “echo state” approach to analysing and train-
ing recurrent neural networks-with an erratum note. Bonn,
Germany: German National Research Center for Information
Technology GMD Technical Report 148 (34):13

17. Jaeger H, Haas H (2004) Harnessing nonlinearity: Predicting cha-
otic systems and saving energy in wireless communication. Science
304(5667):78–80

18. Tanisaro P, Heidemann G (2016) Time series classification using
time warping invariant echo state networks. In: 2016 15th IEEE

Reinforcement learning with convolutional reservoir computing 2409

http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1803.00933
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1401.4082
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1604.00772

international conference on machine learning and applications
(ICMLA). IEEE, pp 831–836

19. Ma Q, Shen L, Chen W, Wang J, Wei J, Yu Z (2016) Functional
echo state network for time series classification. Inf Sci 373:1–20

20. Szita I, Gyenes V, Lőrincz A (2006) Reinforcement learning with
echo state networks. In: International conference on artificial neural
networks. Springer, pp 830–839

21. Bush K, Anderson C (July 2005) Modeling reward functions for
incomplete state representations via echo state networks. In:
Proceedings. 2005 IEEE international joint conference on neural
networks, 2005, vol 5, pp 2995–3000

22. Chang H-H, Song H, Yi Y, Zhang J, He H, Liu L (2018)
Distributive dynamic spectrum access through deep reinforcement
learning: A reservoir computing-based approach. IEEE Internet of
Things Journal 6 (2):1938–1948

23. Tong Z, Tanaka G (2018) Reservoir computing with untrained
convolutional neural networks for image recognition. In: 2018
24Th international conference on pattern recognition (ICPR).
IEEE, pp 1289–1294

24. Lukoševičius M (2012) A practical guide to applying echo state
networks. In: Neural networks: Tricks of the trade. Springer, pp
659–686

25. Inubushi M, Yoshimura K (2017) Reservoir computing beyond
memory-nonlinearity trade-off. Sci Rep 7 (1):10199

26. Chang H, Nakaoka S, Ando H (2019) Effect of shapes of activation
functions on predictability in the echo state network. arXiv:1905.
09419

27. Verstraeten D, Schrauwen B, d’Haene M, Stroobandt D (2007) An
experimental unification of reservoir computing methods. Neural
Networks 20(3):391–403

28. Goudarzi A, Banda P, Lakin MR, Teuscher C, Stefanovic D (2014)
A comparative study of reservoir computing for temporal signal
processing. arXiv:1401.2224

29. Klimov O (2016) Carracing-v0 https://gym.openai.com/envs/
CarRacing-v0/

30. Kempka M, Wydmuch M, Runc G, Toczek J, Jaśkowski W (2016)
ViZDoom: A Doom-based AI research platform for visual rein-
forcement learning. In: IEEE conference on computational intelli-
gence and games. The best paper award. IEEE, Santorini, pp 341–
348

31. Paquette P (2016) Doomtakecover-v0 https://gym.openai.com/
envs/DoomTakeCover-v0/

32. Tallec C, Blier L, Kalainathan D (2018) Reproducing ”world
models”. is training the recurrent network really needed ? https://
ctallec.github.io/world-models/

33. Risi S, Stanley KO (2019) Deep neuroevolution of recurrent and
discrete world models. In: Proceedings of the genetic and evolu-
tionary computation conference, GECCO ’19. ACM,NewYork, pp
456–462

34. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Computation 9(8):1735–1780

35. LeCun Y (1998) The mnist database of handwritten digits. http://
yann.lecun.com/exdb/mnist/

36. Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J,
Tang J, Zaremba W (2016) Openai gym. arXiv:1606.01540

37. Wydmuch M, Kempka M, Jaśkowski W (2018) Vizdoom compe-
titions: Playing doom from pixels. IEEE Transactions on Games

38. Lukosevicius M (2012) A practical guide to applying echo state
networks. In: Neural networks: Tricks of the trade

39. Hardoon DR, Szedmak S, Shawe-Taylor J (2004) Canonical corre-
lation analysis: An overview with application to learning methods.
Neural Computation 16(12):2639–2664

40. Prieur L (2017) Deep-q learning for box2d racecar rl problem
41. Gerber P, Guan J, Nunez E, Phamdo K, Monsoor T, Malaya N

(2018) Solving openai’s car racing environment with deep rein-
forcement learning and dropout https://github.com/AMD-RIPS/
RL-2018/blob/master/documents/nips/nips_2018.pdf

42. Se WJ, Min J, Lee C (2017) Reinforcement car racing with a3c.
https://www.scribd.com/document/358019044/

43. Khan M, Elibol OH (2018) Car racing using reinforcement learn-
ing. https://web.stanford.edu/class/cs221/2017/restricted/p-final/
elibol/final.pdf

44. Gaier A, Ha D (2019)Weight agnostic neural networks. In:Wallach
H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R
(eds) Advances in Neural Information Processing Systems, vol 32.
Curran Associates, Inc., pp 5365–5379

45. Massar M, Massar S (2013) Mean-field theory of echo state net-
works. Physical Review E 87(4):042809

46. Gallicchio C, Micheli A, Pedrelli L (2017) Deep reservoir comput-
ing: a critical experimental analysis. Neurocomputing 268:87–99

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

H. Chang and K. Futagami2410

http://arxiv.org/abs/1905.09419
http://arxiv.org/abs/1905.09419
http://arxiv.org/abs/1401.2224
https://gym.openai.com/envs/CarRacing-v0/
https://gym.openai.com/envs/CarRacing-v0/
https://gym.openai.com/envs/DoomTakeCover-v0/
https://gym.openai.com/envs/DoomTakeCover-v0/
https://ctallec.github.io/world-models/
https://ctallec.github.io/world-models/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1606.01540
https://github.com/AMD-RIPS/RL-2018/blob/master/documents/nips/nips_2018.pdf
https://github.com/AMD-RIPS/RL-2018/blob/master/documents/nips/nips_2018.pdf
https://www.scribd.com/document/358019044/
https://web.stanford.edu/class/cs221/2017/restricted/p-final/elibol/final.pdf
https://web.stanford.edu/class/cs221/2017/restricted/p-final/elibol/final.pdf

	Reinforcement learning with convolutional reservoir computing
	Abstract
	Introduction
	Related work
	Reservoir computing
	World models

	Proposal model
	Basic concept
	Proposal model overview
	Convolutional reservoir computing layer
	Controller layer

	Experiments
	Experiments environments
	CarRacing-v0
	DoomTakeCover-v0
	Procedure

	Results
	Random seed dependency
	CarRacing-v0
	DoomTakeCover-v0

	Conclusions and discussions
	References

