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Abstract
In this paper, some significant efforts on fuzzy oblique decision tree (FODT) have been done to improve classification accuracy
and decrease tree size. Firstly, to eliminate data redundancy and improve classification efficiency, a forward greedy fast feature
selection algorithm based on neighborhood rough set (NRS_FS_FAST) is introduced. Then, a new fuzzy rule generation
algorithm (FRGA) is proposed to generate fuzzy rules. These fuzzy rules are used to construct leaf nodes for each class in each
layer of the FODT. Different from the traditional axis-parallel decision trees and oblique decision trees, the FODT takes dynamic
mining fuzzy rules as decision functions.Moreover, the parameter δ, which can control the size of the tree, is optimized by genetic
algorithm. Finally, a series of comparative experiments are carried out with five traditional decision trees (C4.5, Best First Tree
(BFT), amulti-class alternating decision tree (LAD), Simple Cart (SC), Naive Bayes Tree (NBT)), and recently proposed decision
trees (FRDT, HHCART, and FMMDT-HB) on UCI machine learning datasets. The experimental results demonstrate that the
FODT exhibits better performance on classification accuracy and tree size than the chosen benchmarks.

Keywords Fuzzy oblique decision tree . Feature selection . Fuzzy numbers . Fuzzy rule extraction

1 Introduction

Classification and feature selection are important research fields
in pattern recognition and machine learning. Classification is a
technique modeled by the labeled data and then the label of
unlabeled data is identified by this model [1, 2]. Feature selec-
tion, as the pre-processing part of the classification technique,
can remove redundant features and simplify the construction
process of the classifier [3, 4]. Many attribute reduction

methods often set the same neighborhood size for all attributes.
However, this setting will bring large error due to the fact that
there are large differences in the distribution of each attribute
data. To handle above issue, a forward greedy fast feature se-
lection algorithm based on neighborhood rough set
(NRS_FS_FAST) was proposed [5].

Classification technology based on IF-THEN rules, due to its
broad applications, has received increasing interests during the
past decades [6, 7]. There are many kinds of classification
methods, and decision trees become one of the most well-
known classification methods on account of their good learning
capability and understanding capability [8–10]. In general, they
grow in a top-down way and terminate when all data associated
with a node belong to the same class. The existing decision trees
can be divided into three types: “standard” decision trees
[11–14], fuzzy decision trees [15–18], and oblique decision trees
[19–24]. “Standard” decision trees can be used to deal with clas-
sification problems. However, they are often not capable of han-
dling uncertainties consistent with human cognitive, such as
vagueness and ambiguity. To overcome these deficiencies, fuzzy
decision trees have been developed by incorporating the fuzzy
uncertainty measure in decision tree construction [16, 25–28].
For example, Liu et al. introduced the coherence membership
functions of fuzzy concepts and studied the AFS fuzzy rule-
based decision tree classifier [16]. An inductive learning method
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“HAC4.5 fuzzy decision tree” was proposed to obtain a fuzzy
decision tree with high predictability by using fuzziness intervals
matchingwith hedge algebra [26]. And a new fuzzy decision tree
approach based onHesitant Fuzzy Sets (HFSs) was introduced to
classify highly imbalanced datasets [27]. “Standard” decision
trees and fuzzy decision trees are called single variable decision
trees (or axis-parallel decision trees) as a result of considering
only one attribute at each node to partition the training samples.
These decision trees cannot effectively handle these classification
problems— the classification boundary is not parallel to axis.

To solve the above-mentioned problem, oblique decision
trees were proposed by using the linear combination of all
feature components as decision functions [20, 22, 23, 29,
30]. Specifically, a novel bottom-up oblique decision tree in-
duction framework (BUTIF), which did not rely on an
impurity-measure for dividing nodes, was proposed in [20].
A new decision tree algorithm, called HHCART, was present-
ed in [22]. It utilized a series of Householder matrices to re-
flect the training data at each node during the tree construc-
tion. The authors in [23] described the application of a differ-
ential evolution based approach for inducing oblique decision
trees in a recursive partitioning strategy. And the work in [29,
30] adopted geometric structure in the data to assess the hyper
planes. However, oblique decision trees were lack of explana-
tion and their computational complexities were high [31].

In order to address the above issues, Wang [17] presented a
new architecture of a fuzzy decision tree based on fuzzy rules
— fuzzy rule based decision tree (FRDT), which involved

multiple features at each node endowed with semantic inter-
pretation. However, some unnecessary fuzzy numbers were
considered in fuzzy rules extraction; the same fuzzy numbers
were used in all layers of the FRDT, while the data samples on
each additional node have changed; and the threshold δ is
determined by two-step cross-validation method, of which
the search purpose is not clear. Motivated by the above dis-
cussions, this paper puts forward a new fuzzy oblique decision
tree (FODT), and its growth structure is depicted in Fig. 1.

It stores all training samples at root node. In the first layer of
the FODT, the fuzzy rules generated by the FRGA are used to
construct leaf nodes as pure as possible. The samples that are not
processed by these fuzzy rules are then put into an additional
node, which is the only non-leaf node in this layer. If the addi-
tional node is not empty and the class number of this node
samples is more than two, the FODT continues to grow. In the
second layer of the FODT, the fuzzy numbers on additional node
are recalculated, and the fuzzy rules generated by the FRGA are
used again to construct leaf nodes as pure as possible. Similarly,
the samples that cannot be handled by the fuzzy rules in the
second layer are then put into a new additional node.
Repeating the procedure until the termination condition (the
additional node is null, or the samples in the additional node
have the same label) is met.

The main contributions of this paper are as follows:

– The NRS_FS_FAST algorithm is introduced to eliminate
data redundancy and improve classification efficiency.

Fig. 1 The growth structure of
fuzzy oblique decision tree
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– The fuzzy numbers on additional node in each layer are
recalculated to obtain fuzzy partition more precisely.

– A new fuzzy rule generation algorithm (FRGA) is put
forward to simplify the rules.

– To effectively keep balance between the classification
accuracy and tree size, the threshold δ is optimized by
the genetic algorithm.

The rest of this paper is organized as follows: the
NRS_FS_FAST algorithm and FRGA algorithm are intro-
duced in Section 2. The construction process of the FODT is
described in Section 3. In Section 4, several comparative ex-
periments are carried out to verify the effectiveness of the
FODT. Section 5 concludes this paper.

2 The extraction of fuzzy rules

Before extracting the fuzzy rules, we first preprocess the raw
data, as follows.

2.1 The NRS_FS_FAST algorithm

In recent years, with the development of computer and net-
work technology, a variety of information technologies are

widely used in commercial transactions. However, amounts
of redundant data might exist in practical applications.
Therefore, eliminating these ineffective data and gaining valu-
able knowledge have become a hot spot.

As we know, attribute reduction is one of the methods for
dealing with the problem of data redundancy. Skowron, a fa-
mous mathematician in Poland, proposed the method of using
discernibility matrix to represent knowledge and then using it to
reduce attributes [32], which is simple and easy, but time-con-
suming. Zhang proposed an efficient heuristic attribute reduc-
tion algorithm based on information entropy [33], and Yang
proposed an improved heuristic attribute reduction algorithm
based on information entropy in rough set [34], which could
not only improve the efficiency of attribute reduction, but de-
crease the number of attribute reduction. To solve inefficiencies,
a kind of rough set attribute reduction algorithm was put for-
ward [35] by combining the attribute compatibility model and
the attribute importance model. Most of these algorithms set the
same neighborhood size for all attributes, which can bring large
error if there are large differences in the distribution of each
attribute data. In order to reduce these errors, the
NRS_FS_FAST algorithm [5] was proposed, which could not
only select attributes effectively, but also obtain higher classifi-
cation accuracy. This paper uses NRS_FS_FAST algorithm to
reduce properties, as described in Algorithm 1.
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2.2 Formation of the fuzzy numbers

The training samples are denoted byX = [xij]n ×m, where n is the
number of samples, and m is the number of attributes. xi = [xi1,
xi2,…, xim](i = 1, 2,…, n) represents the i-th sample, fj(j = 1, 2,
…,m) denotes the j-th attribute of X, xi, j is the j-th attribute
value of the i-th sample xi, C = {1, 2,…, c} is a set of class
labels, where c is the number of classes. X contains c equiva-
lence classes Xl(l = 1, 2,…, c).

This paper adopts the combination of triangular functions
and trapezoidal functions, and stipulates that the number of
fuzzy membership functions defined on each attribute is equal
to c. For each attribute, the first and the last function are trap-
ezoidal functions, and the rest are triangular functions. Let fj, k
denote the k-th(k = 1, 2,…, c) fuzzy number of the j-th attri-
bute fj. If the class number c = 4, the fuzzy membership func-
tions can be depicted as Fig. 2, which shows that the core of
fuzzy membership functions lies in the values of parameters
{msj, k}(k = 1, 2,…, c). These values are taken as the mean
values of all patterns falling in the k-th equivalence class Xk

in this paper. The values of ms
0
j;k

n o
k ¼ 1; 2;…; cð Þ can be

obtained by Eq. (1), and the values of {msj, k}(k = 1, 2,…, c)

are the same values after sorting ms
0
j;k

n o
k ¼ 1; 2;…; cð Þ in an

ascending order.

ms
0
j;k ¼

∑xi∈X k
xij

jX k j ; ð1Þ

Example 2 Considering a set of weather data (see Table 1).
X = [xi, j] = {x1,…, x10} is a set of 10 samples, xi ∈ R3 denotes
weather condition of the i-th day, fj(j = 1, 2, 3) means the tj-th
attribute. According to Eq. (1), we can get ms1, 1 = (45 + 48 +
26 + 99 + 69 + 74)/6 = 60.1667, ms1, 2 = (42 + 90 + 92 + 73)/
4 = 74.25, ms2, 1 = 0.275, ms2, 2 = 0.4167, ms3, 1 = 2.75, and
ms3, 2 = 3.667. Because c = 2, so K = 2, namely, it only

generates two fuzzy numbers on each attribute. The semantics
of all fuzzy numbers are f1, 1: “ Low temperature ”, f1, 2: “High
temperature ”, f2, 1: “ Low humidity ”, f2, 2: “High humidity ”,
f3, 1: “ Small wind ”, and f3, 2: “ High wind ” respectively. The
membership functions of fuzzy numbers are shown in Fig. 3.

2.3 Formation of fuzzy rules

Fuzzy IF-THEN rules can be described as follows [36]:

R: IF the value of xi1 is small and the value of xi2 is big,
THEN xi belongs to class 1.

Taking the fuzzy numbers defined in Section 2.2 into ac-
count, the fuzzy IF-THEN rule can be rewritten as follows:

R: IF xi is f1, 1 and f2, 2, THEN xi belongs to class 1.

For each fuzzy set A ⊆ F,∏f ∈A represents the conjunction of
fuzzy numbers in A. For instance, A = {f1, 1, f2, 2} ⊆F,∏f ∈Af =
f1, 1f2, 2. Therefore, the fuzzy rule can be further rewritten as:

R: IF xi is f1, 1f2, 2, THEN xi belongs to class 1.

2.4 The fuzzy rule generation algorithm (FRGA)

Fuzzy IF-THEN rules play a vital role in constructing the
FODT. A classical association between properties A and B
can be described as A⇒ B, which indicates that an element
satisfying property A is also able to satisfy property titB. Two
indices (Support and Confidence [37]) are often used to mea-
sure the validity of such association rule. The support degree is
defined as Supp(A⇒B)=∣A∩B ∣ / ∣X∣, and the confidence
degree is defined as Conf(A⇒B)=∣A∩B ∣ / ∣A∣. When ap-
plying fuzzy rules to study the classification problem, we can
generalize two measures: fuzzy support degree (FSupp) and
fuzzy confidence degree (FConf) [38]. Specific formulas are
as follows:Fig. 2 The triangular and trapezoidal functions on attribute fj

Table 1 A synthetic weather data

Sample Temperature Humidity Wind Label

x1 45 0.7 3 2
x2 48 0.2 4 2
x3 42 0.1 1 1
x4 26 0.1 2 2
x5 90 0.5 3 1
x6 99 0.3 3 2
x7 92 0.2 4 1
x8 69 0.4 8 2
x9 72 0.3 3 1
x10 74 0.8 2 2
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FSupp A⇒lð Þ ¼ ∑x∈X l
A xð Þ

jX j ; ð2Þ

FConf A⇒lð Þ ¼ ∑x∈X l
A xð Þ

∑x∈XA xð Þ ; ð3Þ

A xð Þ ¼ ∑ f ∈A f xð Þ
jAj ; ð4Þ

where A indicates ∏f ∈ Af, A(x) is the average membership
degree that x belongs to the fuzzy set ∏f ∈ Af. ∣ · ∣ represents
the number of elements over a set. When confirming the fuzzy
number with the maximum fuzzy confidence degree, we de-
termine the corresponding attribute of this fuzzy number and
then remove the remaining fuzzy numbers concerning this
attribute to reduce unnecessary fuzzy numbers. The specific
steps of the FRGA are shown in Algorithm 2.

3 The construction of the FODT

3.1 The theory and algorithm of the FODT

The architecture of the FODT is developed by using fuzzy “if-
then” rules, shown in Fig. 4.

Firstly, putting all training data X into the root node
of the tree. The fuzzy rules extracted by the FRGA are
denoted as R1, l(l = 1,…, c1), where c1 represents the
class number of X. Only one rule is extracted for each
class, so c1 = c. The subscript “1” of the rule R1, l indi-
cates the first layer of the tree, the subscript “l” indi-
cates the l-th class. Each class is assigned a leaf node,
which contains as many samples that belongs to this
class as possible. The samples that can not be contained
in these leaf nodes are put into an additional node X1, δ,
which is the only non-leaf node in first layer.
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Fig. 4 The overall structure of the
FODT

Fig. 3 The membership functions
of fuzzy numbers
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Secondly, the FODT continues to grow on additional
node X1, δ. The fuzzy numbers of X1, δ are recalculated,
and the FRGA based on these new fuzzy numbers is
adopted again to extract fuzzy rules for each class
contained in X1, δ, denoted by R2, l(l = 1,…, c2) respec-
tively, where c2 represents the class number of X1, δ.
And then we put the samples that cannot be determined
by the second layer rules R2, l(l = 1,…, c2) into an ad-
ditional node X2, δ, which is also an only non-leaf node
in second layer.

⋱
Finally, the FODT continues to grow on additional

node Xh, δ until one of the termination conditions is
satisfied:

(i) Xh, δ =∅, which means that all samples have been deter-
mined by the rules Rh, l(l = 1,…, ch).

(ii) Xh, δ = Xh − 1, δ, which means that the rules in the h-th
layer lose its effect.

(iii) ch = 1, which means that the samples in the h-th layer
have the same class label.

Definition 1Assuming the antecedent part of the rule Rh, l is
Ah, l, where Ah, l(x) denotes the average membership degree
of the sample x belonging to the fuzzy concepts contained

in Ah, l. The non-leaf node in the h-th layer is defined as

X h;δ ¼ X h−1;δ Rh;1;Rh;2;…;Rh;ch ; δ
� �

, which satisfies:

(i) Xh, δ ⊆ Xh − 1, δ.
(ii) ∀x ∈ Xh, δ, ∀l ∈ 1, 2, …, ch, Ah, l(x) < δ.

The FODT algorithm is shown in Algorithm 3. After con-
structing the FODT, each leaf node corresponds to a fuzzy IF-
THEN rule.

3.2 Determination of the optimal threshold δ

The growth process and tree structure of the FODT can be
controlled by the threshold δ. If the given threshold δ is small,
we will get a larger decision tree, and if δ is large, the decision
tree will be small. Obviously, the classification results of the
fuzzy decision tree greatly depends on δ. However, it is diffi-
cult to directly obtain the optimal threshold δ from the training
data. In this paper, we construct an objective function and use
genetic algorithm to optimize δ, as follows:

F δð Þ ¼ jX j*Ca−δ*N ; ð5Þ

where ∣X∣ is the number of training samples, Ca is the clas-
sification accuracy of the training samples, and N is the num-
ber of leaf nodes.
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3.3 Rules of the FODT

Let x be a test sample, h represent the h-th layer of the FODT, l
indicate the l-th class. Ah, l denotes the antecedent part of the
fuzzy ruleRh, l and ch represents the number of class in the h-th
layer. The specific rules of the FODT are as follows:

3.4 Analysis of the time complexity

In this section, we study the time complexity of the FODT.
Assuming that the FODT is built on one dataset with n
training instances, m attributes, and c class label. The
FODT is composed of two main phases: NRS_FS_FAST
and FRGA. However, the major computation cost is used
over the second phase. For the FRGA phase, the maximum
length of fuzzy rules is H, thus the time complexity of
FRGA is O(H ∗ c ∗ n). The number of layers of FODT, in
the worst situation, is the number of samples, i.e., only one
sample of training data is determined on each layer of the
tree. Therefore, the time complexity of FODT is O(H ∗ c ∗
n ∗ n) in the worst situation. Moreover, the depth of the tree
is on the order of O(logn). Thus, the total time complexity
of the FODT is O(H ∗ c ∗ n ∗ logn).

4 Experimental results and analysis

In this section, we evaluate the performance of the FODT in
several experiments. To verify the effectiveness of the FODT,
we compare our method with some well-known decision tree
algorithms, such as “traditional” decision tree algorithms

(C4.5 [11], BFT [39], LAD [40], SC [41], and NBT [42])
and recently proposed decision tree algorithms (FRDT [17],
HHCART [22], and FMMDT-HB [43]). In addition, we con-
duct experiments with ten-times ten-folds cross validation on
twenty datasets acquired from the UCI Machine Learning re-
pository [44] and one biomedical dataset [45]. The features of
these datasets are given in Table 2. In the experiment, the
parameter L in the NRS_FS_FAST is set to 2, and the adjust-
ment parameters H and β in the FRGA are set to 5 and 0.02
respectively. Moreover, for all the traditional algorithms, we
use their Weka implementation [46], and the values of the
parameters for all the traditional algorithms are set to their
default values.

4.1 The experiment on iris data

We illustrate the performance of the FODT on Iris data. The
iris data can be described by X = [xi, j]150 × 4 with three species:
iris-setosa (class 1), iris-versicolor (class 2) and iris-virginica
(class 3), and the data contains four attributes: sepal length
(f1), sepal width (f2), petal length (f3), and petal width (f4). x-
i = [xi, 1, xi, 2, xi, 3, xi, 4] (1 ≤ i ≤ 150) represents the i-th sample.

The NRS_FS_FAST algorithm in Table 1 is firstly used to
reduce attributes. Iris data is not reduced by the
NRS_FS_FASTalgorithm, i.e., we get all attributes of iris data
after NRS_FS_FAST algorithm.

Table 2 Description of the experimental datasets

No Dataset Sample Attribute Class

1 Iris 150 4 3

2 Wine 178 13 3

3 Wdbc 569 30 2

4 Credit 690 14 2

5 Heart 270 13 2

6 Haberman 306 3 2

7 Newthyroid 215 5 3

8 Wobc 699 9 2

9 Column_3C 310 6 3

10 Breast Cancer 638 9 2

11 Ionosphere 351 34 2

12 LiverDisorder 345 6 2

13 Sonar 208 60 2

14 Vehicle 846 18 4

15 Boston Housing 506 13 2

16 BUPA 345 6 2

17 Pima Indian 768 8 2

18 Survival 306 3 2

19 Waveform1 5000 21 3

20 Waveform2 5000 40 3

21 ALLAML 72 7129 2
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Next, the fuzzy numbers F = {fj, k| 1 ≤ j ≤ 4, 1 ≤ k ≤ 3} are
obtained by the definition of fuzzy numbers in Section 2.2.
And the semantics of the fuzzy numbers are as follows: f1, 1: “
The length of sepal is short ”, f1, 2: “ The length of sepal is
medium ”, f1, 3: “ The length of sepal is long ”; f2, 1: “ The
width of sepal is short ”, f2, 2: “ The width of sepal is medium
”, f2, 3: “ The width of sepal is long ”; f3, 1: “ The length of petal
is short ”, f3, 2: “ The length of petal is medium ”, f3, 3: “ The
length of petal is long ”; f4, 1: “ The width of petal is short ”, f4,
2: “ The width of petal is medium ”, and f4, 3: “ The width of
petal is long ”. The fuzzy membership functions of these fuzzy
numbers are shown in Fig. 5. Given parameter δ =0.5, the

FODT is shown in Fig. 6. And the corresponding rules are
as follows:

IF x is f1, 1f2, 1, THEN class 1
ELSE IF x is f1, 2f2, 2, THEN class 2
ELSE IF x is f1, 3f2, 3, THEN class 3
ELSE x belong to class 3.

The semantics of the fuzzy rules are “the samples which the
petal length is short and the petal width is short belong to class
1; the samples which the petal length is medium and the petal

Fig. 5 Membership functions of
fuzzy numbers on iris data

Fig. 6 The structure of the FODT
on Iris data with δ = 0.5, H = 5
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width is medium belong to class 2; and the samples which the
petal length is long and the petal width is long belong to class
3”. It can be seen that the rules obtained by the FRGA are easy
to understand. Figure 7 shows the C4.5 decision tree. From
Figs. 6 and 7, we can see that the tree structure obtained by the
FODT is more concise, that is, the rules of the FODT are
obviously less than that of the C4.5 tree.

Moreover, the three-dimensional classification result of Iris
training data by fuzzy rules R1, 1, R1, 2, and R1, 3 is shown in
Fig. 8. The red circles indicate the samples determined by the
rule R1, 1, the green squares representthe samples determined
by the rule R1, 2, and the blue diamonds stand for the samples
determined by the rule R1, 3. Besides, arrow 1 indicates that
the rule R1, 2 divides the samples that belong to the third class
into the second class, andarrow 2 represents that the rule R1, 3
divides the samples that belong to the second class into the
third class. The membership degrees of Iris training data

belonging to fuzzy rules R1, 1, R1, 2 and R1, 3 are depicted in
Fig. 9. It shows that the samples in the first class originally
belong to the rule R1, 1 with the largest membership degrees,
the samples in the second class originally belong to the ruleR1,

2 with the largest membership degrees, and the samples in the
third class originally belong to the rule R1, 3 with the largest
membership degrees. That is, we can obtain satisfactory re-
sults by using the fuzzy rules R1, 1, R1, 2 and R1, 3 to clarify the
iris dataset.

4.2 Comparison of the FODT with FMMDT-HB

FMMDT-HB [43] was a decision tree learning algorithm pro-
posed byMirzamome andKangavar in 2017. In this subsection,

Table 3 The number of MI and TS along with the respective standard
deviations of FMMDT-HB and FODT, and the best scores are indicated in
boldface

Dataset NMI TS

FMMDT-
HB

FODT FMMDT-
HB

FODT

Breast Cancer 31.9 ± 5.8 35.1 ± 3.1 13.0 ± 1.5 5.3 ± 1.0

Column_3C 54.1 ± 4.0 43.7 ± 2.1 17.0 ± 0.0 7.3 ± 0.3

Haberman 76.9 ± 8.7 77.1 ± 2.8 20.6 ± 2.2 4.0 ± 0.7

Ionosphere 64.9 ± 2.4 37.4 ± 1.7 4.0 ± 0.0 7.7 ± 0.9

Iris 7.8 ± 2.0 5.8 ± 0.8 10.0 ± 1.1 4.1 ± 0.1

LiverDisorder 123.7 ± 8.8 111.4 ± 3.7 22.0 ± 0.1 12.5 ± 2.3

Newthyroid 11.1 ± 2.9 7.0 ± 0.7 11.1 ± 2.0 5.8 ± 0.4

Sonar 63.5 ± 8.1 48.0 ± 2.4 18.9 ± 1.7 6.5 ± 0.8

Vehicle 402.0 ± 16.5 351.3 ± 18.4 31.1 ± 0.3 23.7 ± 2.1

Average 92.88 ± 6.58 79.64 ± 3.97 16.41 ± 0.99 8.54 ± 0.96
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we compare the presented algorithm with FMMDT-HB regard-
ing both the classification accuracy and tree size. For better
comparison, we use the datasets in [43], and the parameter
settings of FMMDT-HB are consistent with [43].

Table 3 shows the number of misclassified instances (MI)
and tree sizes (TS) along with the respective standard devia-
tions of the FMMDT-HB and FODT. The results are the av-
erage results over ten runs of ten-folds cross validation. It can
be observed that for most of the datasets, the FODT presents
the less number of MI and TS. Specifically, the FODT, in the
number of MI, is less than FMMDT-HB tested for the all
datasets except Breast Cancer and Haberman. Besides, the
decision trees generated by FODTaremuch smaller than those
generated by FMMDT-HB, and FODToutperforms FMMDT-
HB with eight of the nine datasets. We can conclude that the
performance of the FODT has been verified. Moreover,
Fig. 10 depicts these results. Compared with these results,
we can see that the FODT achieves the better performance
than the rival algorithm.

4.3 Comparison of the FODT with HHCAT

HHCART [22] was a well-known oblique decision tree pro-
posed in 2016. In this subsection, we compare FODT with
HHCART in terms of classification accuracy, tree size, and
time complexity. Similarly, the datasets in [22] are applied to
carry out thecomparative experiments.

From the work in [22], the time complexities of
HHCART(A) and HHCART(D) are O(c ∗ n2 ∗m3) and O(c
∗ n2 ∗m2) respectively. The time complexity of FODT isO(H
∗ c ∗ n ∗ logn) obtained from Section 3.4. Obviously, the time
complexity of HHCART(A) is higher than that of
HHCART(D). Therefore, we only need to compare the time
complexity of HHCART(D) and FODT. In general, logn < n,
m2 >H = 5, thus, it can be concluded that the time complexity
of FODT is the lowest compared with the chosen benchmarks.

Table 4 shows the detailed comparison results in terms of the
number of MI and TS along with the respective standard devi-
ations of the HHCART and FODT. It is clear that the accuracy

Table 4 The number of MI and TS along with the respective standard deviations of HHCART(A), HHCART(D) and FODT, and the best scores are
indicated in boldface

Dataset NMI TS

HHCART(A) HHCART(D) FODT HHCART(A) HHCART(D) FODT

Boston Housing 84.5 ± 4.6 86.0 ± 3.5 68.9 ± 2.3 6.5 ± 2.1 9.9 ± 2.6 16.7 ± 1.3

Breast Cancer 19.1 ± 1.9 19.1 ± 1.9 35.1 ± 3.1 2.4 ± 0.6 2.6 ± 1.1 5.3 ± 1.0

BUPA 123.9 ± 9.0 129.7 ± 8.6 111.0 ± 6.5 6.5 ± 1.5 8.6 ± 3.1 12.8 ± 2.0

Heart 69.9 ± 7.8 65.3 ± 7.6 38.7 ± 2.1 4.5 ± 1.7 7.8 ± 2.6 5.6 ± 1.3

Pima Indian 213.5 ± 15.4 208.1 ± 10.0 187.0 ± 5.1 9.1 ± 5.1 10.8 ± 4.4 8.3 ± 2.5

Wine 15.5 ± 2.8 20.1 ± 5.5 7.7 ± 1.1 3.4 ± 0.3 4.5 ± 0.6 4.1 ± 0.1

Survival 81.1 ± 4.6 83.2 ± 3.1 78.3 ± 2.4 5.3 ± 2.7 5.0 ± 2.4 4.1 ± 0.4

Average 86.79 ± 6.59 87.36 ± 5.74 75.24 ± 3.23 5.39 ± 2.00 7.03 ± 2.40 8.13 ± 1.23

Fig. 10 The number of MI and
TS along with the respective
standard deviations of FMMDT-
HB and FODT
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of our method is significantly higher than those of the
HHCART(A) and HHCART(D) for all datasets except Breast
Cancer. Besides, for each dataset, FODT produces fewer leaf
nodes than HHCART(D), especially in datasets “Heart”, “Pima
Indian”, “Wine” and “Survival”. It also denotes that the average
tree size of the FODT is only 1.1 more than that of HHCAT(D).
It is worth mentioning that, although the average number of TS
in this paper is more than HHCART(A) and HHCART(D), the
performances of classification accuracy and time complexity
are better than those of the comparison algorithms. Moreover,
the results in Table 4 are also depicted vividly in Fig. 11. These
results advocate the superiority of FODT in producing more
accurate decision trees.

4.4 Comparison of the FODT with five conventional
decision trees and FRDT

4.4.1 Comparison on number of MI and TS

In order to better demonstrate the superiority of the FODT, this
paper compares our method with its state-of-the-art competi-
tors: C4.5 [11], BFT [39], LAD [40], SC [41], NBT [42] and
FRDT [17].

Table 5 summarizes the results on the number of MI of the
FODT and the chosen benchmarks. The average number of
MI by ten-times ten-folds cross classifications are listed in
Table 5. The notation “∗” here indicates that the NBT algo-
rithm is ineffective for ALLAML dataset. Compared with six
state-of-the-art methods, our method obtains the highest accu-
racy in all datasets than decision trees: SC, BFT, LAD, and
SC. It is not as good as the C4.5 onlyin one dataset (Wobc) and
FRDT only in two datasets (Wobc and Waveform1). These
results indicate that the FODT provides higher classification
accuracy compared with the rival algorithms.

The number of TS and standard deviation for the FODT
and the chosen benchmarks is showed in Table 6. The notation
“∗” here share the same meaning as Table 5. It is clear that the
scale of the FODT isnot as good as the traditional decision
trees (LAD, BFT, C4.5 and NBT) only in one dataset and SC
only in two datasets. Tables 5 and 6 also show that the average
number of MI and TS of the FODT is significantly less than
the chosen benchmarks. Therefore, we can conclude that the
FODT can generate more accurate and simpler decision trees.
To better demonstrate the superiority of our approach, we
draw a bar graph in Figs. 12 and 13. Obviously, our method
has the better performance on both the classification accuracy
and the size of tree.

Table 5 The number of MI and standard deviation for the FODT and the chosen benchmarks, and the best scores are indicated in boldface

Dataset BFT C4.5 LAD SC NBT FRDT FODT

Iris 8.4 ± 1.3 7.9 ± 1.2 8.3 ± 1.3 8.7 ± 1.5 9.8 ± 1.9 6.2 ± 0.6 5.8 ± 0.8
Wine 18.6 ± 2.2 12.1 ± 2.4 23.0 ± 3.2 18.7 ± 3.0 7.0 ± 2.4 10.8 ± 1.5 7.7 ± 1.1
Wdbc 39.6 ± 3.7 35.5 ± 2.8 53.2 ± 6.9 38.9 ± 3.5 34.4 ± 4.6 28.2 ± 1.7 18.0 ± 2.5
Credit 106.2 ± 3.6 111.0 ± 4.9 141.6 ± 12.8 105.7 ± 4.5 109.2 ± 4.1 102.3 ± 4.8 81.9 ± 3.1
Heart 61.5 ± 4.6 59.0 ± 6.1 74.6 ± 5.2 59.2 ± 4.4 51.5 ± 3.3 44.6 ± 3.0 38.7 ± 2.1
Haberman 84.4 ± 4.5 85.2 ± 3.4 90.2 ± 7.4 81.9 ± 3.7 87.0 ± 4.0 81.2 ± 2.3 77.1 ± 2.8
Newthyroid 15.2 ± 1.7 15.9 ± 2.1 23.9 ± 2.2 17.5 ± 2.0 16.4 ± 3.0 14.4 ± 3.1 7.0 ± 0.7
Wobc 38.8 ± 3.8 34.9 ± 3.1 42.7 ± 5.3 36.8 ± 2.6 25.4 ± 3.0 33.0 ± 2.6 35.8 ± 2.0
Column_3C 61.8 ± 4.7 57.2 ± 3.7 70.3 ± 5.3 59.3 ± 4.0 59.8 ± 4.7 57.1 ± 2.4 43.7 ± 2.1
Waveform1 1157 ± 11.9 1169 ± 25.2 1056 ± 24.9 1126 ± 12.8 928 ± 27.4 1048 ± 15.7 1054 ± 11.5
Waveform2 1186 ± 24.7 1237 ± 23.1 1060 ± 32.3 1167 ± 15.2 1008 ± 36.3 1069 ± 20.0 1060 ± 13.2
ALLAML 11.4 ± 8.0 13.6 ± 8.3 6.2 ± 7.5 11.6 ± 7.8 ∗ 10.3 ± 2.1 3.4 ± 1.0
Average 44.59 ± 3.81 43.23 ± 3.8 53.4 ± 5.71 43.83 ± 3.7 44.5 ± 3.4 38.81 ± 2.41 31.91 ± 1.82

Fig. 11 The number of MI and
TS along with the respective
standard deviations of
HHCART(A), HHCART(D) and
FODT
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It is worth noting that the NRS FS FAST is used flexibly.
On the one hand, some datasets, due to their data distribution,
may be empty after the reduction of attributes. At this moment
we do not reduce the attributes. On the other hand, if the
datasets are too large (such as waveform1 and waveform2),
the efficiency of the NRS FS FAST itself will be low, it is not
necessary to reduce the attributes at this time.

4.4.2 Comparison on time complexity

This subsection compares the time complexities of the FODT
with its state-of-the-art competitors: C4.5 [11], BFT [39],
LAD [40], SC [41], NBT [42] and FRDT [17]. The time
complexities of the chosen benchmarks are shown in Table 7.

In order to compare the time complexity of our method
with the state-of-the-art competitors more clearly, the datasets

in Table 2 are used for complexity ranking. Without loss of
generality, logn > c, therefore, the time complexities of BFT,
LAD and SC are the same. When MaxL =H, the time com-
plexities of FRDTand FODTare also the same. Thus, we only
need to compare our method with BFT, C4.5, and NBT. The
time complexity is ranked in ascending order, i.e. higher rank-
ing means lower time complexity. Table 8 shows the time
complexity ranking of BFT, C4.5, NBT and FODT. It can be
observed that the average ranking of the FODT is better than
BFT, C4.5 and NBT. Therefore, the proposed method has
obvious advantages in terms of time complexity.

4.4.3 Holm test

To arrive at strong evidence, the statistical test is used to ana-
lyze whether the FODT is significantly better than other

Fig. 12 The number of MI for the
FODT and the chosen
benchmarks

Table 6 The number of TS and standard deviation for the FODT and the chosen benchmarks, and the best scores are indicated in boldface

Dataset BFT C4.5 LAD SC NBT FRDT FODT

Iris 9.3 ± 2.1 4.6 ± 0.6 7.0 ± 0.3 7.4 ± 2 4.4 ± 2.9 4.0 ± 0.0 4.1 ± 0.1

Wine 10.6 ± 2.7 9.6 ± 1.2 13.0 ± 5.1 10.3 ± 3.2 3.9 ± 2.6 4.2 ± 0.3 4.1 ± 0.1

Wdbc 16.5 ± 4.6 22.4 ± 3.9 16.2 ± 2.6 12.6 ± 4.4 18.2 ± 3.6 7.8 ± 0.4 6.0 ± 0.7

Credit 30.3 ± 23.3 51.7 ± 12.1 8.8 ± 2.2 10.5 ± 10.6 14.2 ± 7.7 7.3 ± 1.4 9.4 ± 1.8

Heart 28.8 ± 11.9 34.6 ± 5.7 15.6 ± 1.2 15.4 ± 8.1 9.6 ± 3.7 6.9 ± 1.1 5.6 ± 1.3

Haberman 20.2 ± 22.5 21.8 ± 11.4 8.4 ± 1.9 3.8 ± 3.8 9.9 ± 6.8 4.5 ± 0.5 4.0 ± 0.7

Newthyroid 13.6 ± 2.8 14.9 ± 2.1 11.8 ± 1.9 11.8 ± 3.6 7.6 ± 3.2 9.8 ± 1.0 5.8 ± 0.4

Wobc 31.0 ± 12.4 23.5 ± 5.5 13.6 ± 3.2 15.9 ± 7.1 5.7 ± 5.6 10.0 ± 1.8 5.3 ± 0.8

Column_3C 27.3 ± 11.2 23.2 ± 5.7 9.8 ± 0.9 13.3 ± 8.3 16.0 ± 5.1 7.7 ± 0.8 7.3 ± 0.3

Waveform1 343.4 ± 89.2 541.5 ± 28.5 30.4 ± 1.8 125.7 ± 45.3 47.5 ± 36.9 23.0 ± 2.0 26.4 ± 3.0

Waveform2 283.9 ± 97.7 591.9 ± 24.3 29.8 ± 2.6 98.3 ± 34.0 94.5 ± 43.4 4.1 ± 0.4 4.0 ± 0.1

ALLAML 3.8 ± 1.0 4.3 ± 1.0 28.2 ± 1.8 3.2 ± 0.6 ∗ 8.7 ± 0.8 6.1 ± 0.2

Average 19.14 ± 9.45 21.06 ± 4.92 13.24 ± 2.11 10.42 ± 5.17 9.94 ± 4.58 7.09 ± 0.81 5.77 ± 0.64
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decision trees. Holm test [47] is applied in this paper, and the
test statistic for comparing the j-th classifier and the k-th clas-
sifier is expressed as:

Z ¼ Rank j−Rankk
SE

; ð6Þ

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l l þ 1ð Þ
6� N

r
; ð7Þ

Rank j ¼ 1

N
∑
N

i¼1
r ji ; ð8Þ

where l is the number of classifiers,N is the number of datasets,

r ji is the rank of the classifier j on the i-th dataset, and Rankj is
the average rank of the classifier j on the entire dataset.

Statistic Z follows the standard normal distribution, and the
z value is used to determine the corresponding probability p
from the table of normal distribution. We denote the ordered
p values by p1, p1, …, so that p1 ≤ p2 ≤… ≤ pl − 1 and then
compare pj with a/(1 − j) (a stands for confidence level, usu-
ally is set to 0.05). If p1 < a/(l − 1), the corresponding hypoth-
esis (two classifiers have the same performance) should be
rejected, and then we compare p2 with a/(l − 2). If the second

hypothesis is rejected, the test proceeds with the third one, etc.
As long as there is a hypothesis cannot be rejected, all the
remaining assumptions shall not be rejected.

According to Table 5 and Eq. (8), the average ranking of all
decision trees can be obtained, RankLAD = 5.75, RankBFT =
5.08, RankSC = 4.83, RankC4.5 = 4.67, RankNBT = 3.45,
RankFRDT = 2.33, and RankFODT = 1.58. With a = 0.05, l = 7
and N = 12, the standard deviation SE = 0.88. The results of
the Holm test are shown in Table 9, which indicate that the
Holm procedure rejects the first four hypotheses since the
corresponding p values are smaller than the adjusted a′s, and
only the last two hypotheses are accepted. This means that the
classification accuracy of the FODT is significantly better than
that of traditional decision trees NBT, SC, BFT, and LAD.

Fig. 13 The number of TS for the
FODT and the chosen
benchmarks

Table 8 The time complexity ranking of BFT, C4.5, NBTand FODTon
nine datasets

Dataset Algorithm

BFT C4.5 NBT FODT

Iris 1 4 3 2

Wine 1 4 3 2

Wdbc 2 4 3 1

Credit 2 4 3 1

Heart 2 4 3 1

Haberman 1 4 3 2

Newthyroid 1 4 3 2

Wobc 1 4 3 2

Column_3C 1 4 3 2

Waveform1 2 4 3 1

Waveform2 2 4 3 1

ALLAML 3 2 4 1

Average 1.58 3.83 3.08 1.50

Table 7 The time
complexity of the FODT
and its state-of-the-art
competitors

Algorithm Time complexity

BFT O(m ∗ n ∗ logn)
C4.5 O(n3)

LAD O(m ∗ n ∗ logn +m ∗ n ∗ c)
SC O(m ∗ n ∗ logn)
NBT O(m2 ∗ n ∗ c ∗ logn)
FRDT O(MaxL ∗ c ∗ n ∗ logn)
FODT O(H ∗ c ∗ n ∗ logn)
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Although the FODT is not significantly higher than the C4.5
and FRDT, the average classification accuracy of the FODT is
higher than that of the C4.5 and FRDT.

5 Conclusion

In this paper, we propose a novel fuzzy oblique decision tree,
called FODT, which can achieve high classification accuracy
and small tree size. Different from traditional axis-parallel de-
cision trees and oblique decision trees, the FODT takes dynam-
icmining fuzzy rules as decision functions. In order to eliminate
data redundancy and improve classification efficiency, the
NRS_FS_FAST algorithm is first introduced to reduce attri-
butes. Then, the FRGA is proposed to generate fuzzy rules,
and these rules are used to construct leaf nodes for each class
in each layer of the FODT. The growth of the FODT is devel-
oped by expanding an additional node, which is the only non-
leaf node of each layer of the tree, and the fuzzy numbers of
additional node in each layerare recalculated to get more accu-
rate fuzzy partition. Finally, the parameter δ that can control the
size of the tree is optimized by genetic algorithm. A series of
comparative experiments on twenty UCI machine learning
datasets and one biomedical dataset have verified the effective-
ness of the proposed method. Therefore, our method is feasible
and promising for dealing with the classification problem.
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