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Abstract
Interesting pattern discovery is an important topic in data mining research. Many different definitions have been proposed to
describe whether a pattern is interesting. Among these many definitions, unexpectedness has shown to be a highly promising
measure. Mining unexpected patterns allows one to identify a failing in prior knowledge and may suggest an aspect of
the data that deserves further investigation. Unexpected patterns are typically mined using belief-driven methods, but these
require an established belief system. Prior studies have manually built their own partial belief systems to apply their method,
but these remain laborious to create. In this study, we propose a novel approach that is able to automatically detect beliefs
from data, which can in turn be used to reveal unexpected patterns. Central to this approach is a clustering-based method in
which clusters represent beliefs and outliers are potential unexpected patterns. We also propose a pattern representation that
captures the semantic relation between patterns rather than the lexical difference. An experimental evaluation on different
datasets and a comparison to some other methods demonstrate the effectiveness of the proposed method, as well as the
relevance of the discovered patterns.

Keywords Unexpected pattern mining · Pattern clustering · Belief system · Association rule mining

1 Introduction

Association rule mining is a popular approach in data
mining that can discover interesting patterns hidden in a
database. It is widely used in many application domains,
such as market basket analysis, web usage mining, intrusion
detection, and bioinformatics [27]. Compared to other
approaches, the patterns or rules produced from association
rule mining are easy to interpret because they are defined as
a relationship X → Y , where X, Y are each an item or a set
of items occurring in the data. However, one of the major
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drawbacks of association rule mining is that it produces a
large number of patterns that include both trivial and non-
trivial relationships. Downstream analysis still too often
consists of manual trudging through long lists of patterns
numbering in the thousands. Therefore, prioritizing those
patterns that are most likely to be interesting is a central
problem in data mining research.

Unexpectedness is one of the nine criteria put forward
to describe the relevance of a pattern for a given research
question [16]. Unexpectedness is an important criterion as
it suggests the patterns that contradict users’ expectations
or existing knowledge. These patterns allow us to identify
failings in previous knowledge and may reveal an aspect of
the data that needs further investigation. As a result, there
are several studies tackle with mining unexpectedness from
different kinds of data such as transaction data [24, 28, 30],
sequential data [23], and recently are attributed graphs [4,
5, 21]. The unexpected patterns investigated in these studies
are diverse as well: they could be unexpected transactions
[29], unexpected associate rules [24, 28, 30], unexpected
sequences [23] or unexpected sub-graphs [4, 5, 21].

In this study, we focus on detecting unexpected associ-
ation rules from transaction datasets. We present a novel
method to discover unexpected patterns based on beliefs
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that are automatically derived from the data. Our method
utilizes a clustering-based framework where rule clusters
play the role of a belief system in the mining process. To
this end, we integrate DBSCAN, a density-based cluster-
ing algorithm, into the framework. Clustering of associa-
tion rules has been previously explored [17, 20, 22] but
unique to our proposed clustering procedure is that patterns
are represented as feature vectors. The feature vectors are
designed so that they can capture both semantic and lexi-
cal relationships between patterns. Therefore, these feature
vectors not only facilitate processing but account for logi-
cal relationships such as contradiction or similarity in the
distance between the rules. This focuses the way the rela-
tionship between rules are defined, which in turn improves
rule clusters which can be considered as major beliefs
within the dataset. Identified outliers from the clustering
process can then be prioritized as candidate unexpected
patterns. The implementation of our model can be found at
https://github.com/banhdzui/UnexpectedPatternMining.

2 Related works

Unexpected pattern mining methods can be divided into
objective measures and subjective measures. Objective
measures are only based on pattern structure and underlying
data while subjective measures include users’ knowledge in
term of belief system and an interestingness measure that
estimates the unexpectedness of patterns to the beliefs.

In subjective measure based studies [24, 28, 30] the
belief systems were constructed manually using domain
knowledge. They are represented as first-order logic
formulations which allow the system to easily verify the
unexpectedness of patterns against the beliefs. The exact
manner in which unexpectedness is defined differs among
these studies: Silberschatz et al. [30] considered the relative
difference in belief degree of the system with and without
the pattern; Padmanabhan et al. [28] proposed a matching
function in terms of logical contradiction while Liu et al.
[24] employed lexical comparison of the pattern content. In
2005, Jaroszewicz et al. [19] proposed to represent domain
knowledge as a Bayesian network instead of first-order
logic and estimate unexpectedness as an absolute difference
between the pattern’s probability inferred from the network
and from the observation. Recently, De Bie T. [10] proposed
a Maximum Entropy model to formalize prior knowledge.
The strategy was based on considering prior knowledge
as constraints on a probabilistic model that represents the
uncertainty in the data.

The largest drawback of the subjective measures is the
difficulty in building a “good” belief system. Interviewing
domain experts is a commonly proposed approach but is

extremely hard in practice because of two reasons. First,
experts may have trouble enumerating their beliefs; they
often make vague and contradictory statements, which are
hard to translate into logic. Second, there may be too many
beliefs and it is not trivial to know which of these beliefs are
really important and worth including in the belief system.

Compared to the subjective measures, objective measures
can avoid the need to construct a belief system. Dong and
Li [12] argued that unexpectedness could be interpreted
in the statistical sense. They considered a significant
variation in confidence between a rule and its neighbors
as unexpectedness. However, their neighbor distance was
defined in term of the lexical difference, which does not
reflect true logical relationships between rules. We believe
that the logical relationships also play an important role in
estimating rule distance, thus we include this information
into rule feature vectors which in turn effects the distance
measure. In 2016, Chang et al. [6], proposed a hybrid way
for mining unexpected patterns, which is specific for a case
study of endometriosis data.

In addition, there are some shared concepts between our
study with exception rule mining and exceptional model
mining. Exception rules [7, 8] can be considered as negative
forms of strong association rules. For example, X →∼
Y, ∼ X → Y and ∼ X →∼ Y are negative forms of
the rule X → Y . In other studies [18, 31], the authors
defined exception rules as those that represent a change of
conclusion caused by adding an extra condition to common
sense rules. The rule pairs in form {A → X, AB → X′}
are here evaluated with different metrics to judge whether
AB → X′ is exceptional. In 2005, Suzuki et al. [32]
argued that there are 11 categories of exception rule based
on rule triplets {y → x, z → x, yz → x}. They
proposed an algorithm that performs a depth-first search
for triplets of literals a, b, c and leave an algorithm for a
transaction dataset for future work. Meanwhile, exceptional
model mining (EMM) is a supervised local pattern mining
framework, where several target attributes are pre-selected
and a model over these attributes is chosen to be the target
concept. EMM aims to find interesting subgroups where the
target model behaves differently from the complement of
these subgroups or whole dataset [14]. These target models
can be correlation, association, classifier, regression or
Bayesian network. Their research focus on describing how
much the relationship between the target attributes changes
when they are placed in the context of those subgroups.
[25] is an extension of [14] where they discover exceptional
relationship in term of association rules instead of item-sets.
In this study, we focus on unexpectedness as when patterns’
conclusions change depending on the specific context. Thus
when one outcome from a rule is expected given the bulk of
the dataset, but another outcome is returned.
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Fig. 1 Unexpected pattern discovery workflow with example

3Methods

Figure 1 illustrates our method for detecting unexpected
rules from data. It starts with mining association rules
from the transaction database, followed by pruning the
redundant rules. Non-redundant rules are then converted
into numerical feature vectors before clustering. The non-
redundant rules are next categorized into two groups: beliefs
and potential candidates for unexpected rules. In the end, a
contradiction check is applied to reveal the true unexpected
rules from the candidates.

3.1 Pruning redundant rules

Redundant rules can present a major challenge in associ-
ation rule mining. Several previous studies have defined
prior assumptions that form the basis of custom pruning
frameworks [3].

For this study, the redundancy pruning was inspired by
the following case. Given a rule X, α → Y in which α

is a ubiquitous item in the database or α always occurs
wherever X occurs in a database, means P(α|X) = 1, due
to an underlying relationship. Rules with such items do not
provide any new knowledge about the data compared to
X → Y . Furthermore such rules are longer and hence harder
to interpret. These types of redundant rules can be filtered
based on their conditional probability P(α|S), S ⊆ X \ {α}.
We thus apply Procedure 1 during association rule mining
to prune redundant rules.

3.2 Rule representation

We represent rules as numerical feature vectors. This
representation is the basis for calculating distance between
the rules, and enables subsequent rule clustering.

An association rule is defined by two itemsets: one
in the left hand side named antecedent or LHS, and one
in the right hand side, named consequent or RHS. The
feature vector is constructed by concatenating features for
the LHS and the RHS of the rule. Each feature corresponds
to a unique item which potentially occurs at corresponding
sides. Let x

(l)
i , x

(r)
j be the ith feature of LHS and the j th

feature of RHS; kl, kr are feature vector length for LHS
and RHS respectively. Figure 2 illustrates the structure of
the complete feature vector. In the case of unsupervised
pattern mining, kl = kr = |I |, as any item can occur on
either side of the rule. However, in the case of classification
rule mining, only decision items occur in the RHS thus
kl + kr = |I |.

A straight-forward representation of the feature vector
of a rule would be a binary encoding that represents
the absence or presence of items in the rule. However,
the difference between two binary features vectors only
addresses the difference in the lexical aspect. Consider the
following examples from a hypothetical medical dataset that
contains “sick′′ and “healthy′′ patients:

Example 1 X → “sick′′ and X → “healthy′′. The pair of
rules differ only in two items: “sick′′ and “healthy′′, but
these items are contrary each other. Thus, the distance of
these rules should be greater than rules that differ in two
arbitrary non-exclusive items.

Example 2 X, α → “sick′′ and X, β → “sick′′, where α

and β are positively correlated with each other. This means
that α is likely to occur wherever β occurs and vice versa.
Thus, these rules can be considered as highly similar and
should have a small distance.

Fig. 2 An illustration of the feature vector structure. It consists of two
parts: antecedent (or LHS) features and consequent (or RHS) features
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As these examples show, a binary representation of
item presence is not sufficient to distinguish rules in an
interestingness context. Therefore we propose a new feature
value domain in the range of [−1, 1], that represents how
much a given feature is related to the LHS or RHS of
the rule. A negative value implies a contradiction while
a positive value implies similarity. More specifically, we
define each feature value as a relationship score between the
feature and the most correlated item in the rule.

This relationship score between a feature and an item is
defined as the Spearman rank-order correlation coefficient
of their relative occurrences in transaction data. These
coefficients can then be interpreted as a similarity or a con-
tradiction, depending on their sign. This interpretation is
based on the assumption that items occurring together might
be similar while items that appear in different transactions
might be contradictory. To remove trivial relationships, we
only keep the coefficients with a p value ≤ 0.05, and the
other coefficients are set to 0. Small correlation coefficients
indicate little if any correlation. We can set a magnitude
threshold, which is dataset-dependent, as more transac-
tions allow minor relationships to be significant. Here the
empirical correlation coefficient threshold was set to 0.1.

The steps of extracting feature values for a rule are
described in Procedure 2, with M as the correlation matrix
between items in the data after removing insignificant
correlation coefficients. For each LHS feature, its value is
the correlation coefficients of the feature and the LHS item
that shows the highest (negative or positive) correlation to
that feature. The same procedure is followed for the RHS
features using the RHS items. Figure 3 illustrates the feature
vector for the rule “age = 40..49, tumor size = 10..14 →
recurrence = no” from the Breast Cancer dataset [13]. By
comparing these feature vectors, we can judge how the rules
are related to each other. This is useful for subsequently
grouping the rules into clusters and discovering unexpected
rules.

Fig. 3 Feature vector of the rule “age = 40..49, tumor size =
10..14 → recurrence = no” from the Breast Cancer dataset. The first
row is the list of features while the second row contains corresponding
feature values. Here the LHS contains an item which is highly similar
to “age = 40..49” but contradictory to “age = 30..39”. Meanwhile its
RHS is “recurrence = yes”, then the value of feature “rec = yes” is
1.0 while “rec = no” feature is −1.0 (contradiction)

3.3 Rule clustering and Contradiction check Function

To detect unexpectedness, we cluster the association rules
and subsequently check for belief contradictions. Prior
to clustering, a Principal Component Analysis (PCA), is
applied on the feature vectors representing the association
rules. This allows us to reduce the clustering computational
complexity on large scale rule sets. The clustering is done
by the DBSCAN algorithm [15] using the Euclidean dis-
tance on the proposed numerical feature vectors. DBSCAN
classifies rules as either core points, reachable points or
outliers. The rules that are core or reachable points are con-
sidered as beliefs because they are supported by several
similar neighbors. The outliers are candidate unexpected
rules. To determine if they are unexpected or not, these
outliers are finally compared to the beliefs by a contradic-
tion check function.

Definition 1 A rule X → Y is unexpected with respect to a
belief X′ → Y ′ on the dataset D if the following conditions
hold:

– Y and Y ′ logically contradict each other.
– X and X′ co-occur in a substantial subset of transactions

in D. A subset is substantial if it satisfies a user-defined
support threshold.

– X and X′ are similar to each other (defined by the
Cosine similarity).

By combining the above conditions, we obtain the
following knowledge base: {X →∼ Y ′, X′ → Y ′, X, X′}.
The knowledge base is un-satisfiable which can be proven
by resolution. Because X′ → Y ′ is a belief, the existence of
X → Y becomes unexpected.

To estimate the contradiction or similarity between two
itemsets, we proposed to compute the Cosine similarity of
their feature vectors. If the Cosine value exceeds a given
threshold, we can conclude that these itemsets are contrary
or similar each other. We denote a similarity threshold for
LHS as δ1 and a contradiction threshold for RHS as δ2,
where δ1 needs to be positive while δ2 needs to be negative
for an unexpected rule to occur.

The DBSCAN algorithm used to identify the candidate
unexpected rules requires two parameters, minP ts and eps.
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minP ts is the minimum number of data points required to
form a dense region and eps is the maximum distance a data
point and the nearest data point can have to be considered
as part of the same cluster. The choice of these parameter
values directly impacts the belief system and the identified
outliers. However a belief system should not contain any
contradictory rules. This can be used to reject specific belief
system solutions that are invalid. This observation can thus
be used as a ’no-contradiction constraint’ on the eps param-
eter for the DBSCAN clustering. This constraint specifies
that there should be no contradiction allowed between clus-
ters, or as a parameter that can be tuned, no contradiction
between clusters that consist of a large number of rules. The
maximum size of a contradicting cluster is Lε = ε|R| rules,
where R is the set of all rules and ε is a small fraction. We
then reduce the eps value steadily until DBSCAN finds a set
of clusters that do not break the no-contradiction constraint.

The complete framework for detecting unexpected rules
is described in Procedure 3. This procedure requires the
following parameters: DBSCAN parameter minP ts; an

initial value for eps maxEps; a reducing step for eps

epsStep; a small proportion ε for the non-contradiction
constraint and two thresholds δ1, δ2 for the contradiction
check function. After unexpected rules are discovered from
the database, we can rank them according to the similarity
in LHS between unexpected rules and their contrary beliefs.

4 Experiments and discussion

In this section, we present experiments on six different
datasets to test our method in pruning redundancy, con-
structing the belief systems and discovering the unexpected
rules. These datasets are classification data which allows us
to evaluate performance of the unexpected rules. At first,
we generate rules from data and show the result on redun-
dancy pruning. Next is the evaluation of the unexpected
rules generated by our method and the comparison with two
other methods by of Hussain et al. [18] and by Suzuki et al.
[31]. Finally, we show some examples of unexpected rules
obtained from the data and their interpretation.

Most of our datasets are obtained from UCI repository
[13], including: Adult, Breast cancer, Credit approval, Smtp
(KDDCup99) and Pima. Also included is a T-cell receptor
(TCR) dataset, an example of a higher dimensional dataset
derived from Dash et al. [9]. The Smtp(KDDCup99) is a
subset of KDD CUP 1999 network intrusion data, which
consists of transactions that have service = smtp. Similar
to [33], we do not use all features from the Smtp data. We
restricted the number of features to 9 (count, dst bytes, flag,
src bytes, logged in, diff srv rate, dst host srv serror rate,
same srv rate, dst host serror rate), based on the cross-
validated information gain in the training dataset. Most of
these datasets are imbalanced, i.e. class distributions are not
uniform among the classes. In the Adult dataset, for exam-
ple, the label “≤ 50K” occurs in 75.92% of the transactions
while “> 50K” only in 24.08%. Such datasets potentially
contain abnormal patterns hidden in minority classes that
are not easy to discover. The properties of the datasets and
the used parameters for association rule mining are summa-
rized in Table 1. Except Adult and Smtp(KDDCup99) where
training and test data are available, we randomly split every
dataset into 8 : 2 for training and testing, respectively.

Prior to association rule mining, we convert continuous
attributes into categorical attributes and then consider each
pair of attribute–value as a transaction item. We used the
Apriori algorithm [2] with low minimum support and high
minimum confidence to generate pre-mined rules. Apriori is
one of the most well-known algorithms in association min-
ing. In this step, we can replace Apriori by other association
mining algorithms such as FP-Growth [34], ECLAT [35]
and LCM [36] which have been proposed to improve the
mining process in terms of running time [37]. As this step
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Table 1 A summary of
experimental datasets and the
used parameters for association
rule mining

Dataset Train Test #attributes #class Minority class

Adult (UCI) 32561 16281 14 2 0.241

BreastCancer (UCI) 240 46 9 2 0.296

CreditApproval(UCI) 598 92 15 2 0.446

Pima (UCI) 630 138 6 2 0.346

Smtp (KDDCup99) 96554 8268 9 2 0.0122

TCR (Dash et al.) 333 79 822 3 0.156

is not the main objective of this study, we leave the explo-
ration of these algorithms onto mining unexpectedness for
our near future work. High minimum confidence is to guar-
antee the quality of the beliefs while low minimum support
is to reveal unexpected rules. Spearman rank-order correla-
tion coefficients between items are computed by spearmanr
function of SciPy library.

All experiments run on an Intel Core i7 machine with
16GB of RAM running at 2.8GHz. The experimental results
are described in the following sub-sections.

4.1 Redundant rule pruning

To evaluate the performance of pruning redundant rules, we
used the redundancy ratio ∂ [1] as defined by equation 1.
The higher redundant ratio ∂ is, the more redundancy exists
in the generated rules.

∂ = Total rules generated (T )

Non-redundant rules (E)
(1)

Table 2 shows the redundancy ratio which was obtained
by our method on a set of rules generated by the Apriori
algorithm for each dataset.

4.2 Unexpected rules evaluation

To evaluate the quality of unexpected rules, denoted as
UnexpRules, that are automatically generated in our frame-
work, we examine their contribution to the performance

of classifiers on the minority class. The basic idea behind
this evaluation is that classifiers are learning and capturing
knowledge hidden in data. Therefore these classifiers can be
considered as black-box belief systems. If rules improve the
performance of classifiers, that means these rules are mean-
ingful but unexpected to the classifier based belief system.
In other words, they are actually true unexpected patterns.

The evaluation procedure is as follows. A classifier
and UnexpRules are generated from the same training
data. An independent testing dataset is then used to
validate performance of the classifier with and without
using UnexpRules. In the case of using UnexpRules, the
samples satisfying the LHS of UnexpRules must follow
the prediction of UnexpRules instead of the classifier’s.
In this study, we used the F1 measure to validate
the classifiers’ performance. The two classifier models
deployed in our experiments are Support Vector Machines
(SVM, polynomial kernel with degree = 3) and Random
Forest (RF, numberof trees = 20), from the python scikit-
learn package. These models are not chosen to represent the
state-of-the-art in the field of unbalanced data classification,
but are only used as a stand-in for those beliefs that can be
easily learned from the data.

The UnexpRules set was obtained using minP ts = 3,
maxEps = 2.0, epsStep = 0.1 and δ1 = 0.0. The values
of other parameters, ε and δ2, depended on the dataset.
In most cases, δ2 = −1. If more than two prediction
classes were present the correlation coefficients among
these classes cannot reach −1.0, thus δ2 = −0.5 was used.

Table 2 Redundancy ratio ∂

detected by our method on the
set of rules generated by the
Apriori algorithm

Dataset Minsup Minconf #rules #nonredundant Ratio ∂

Adult 2E-3 0.80 536723 278864 1.925

BreastCancer 1E-2 0.80 4586 1687 2.718

Credit 6E-2 0.90 438714 14076 31.168

Pima 4E-3 0.80 550 387 1.421

Smtp 5E-5 0.90 113077 15044 7.516

TCR 1E-2 0.80 11388 327 34.825

The results on TCR and Credit approval data show high redundancy. This can be explained by strong
correlation between items (attribute-value pairs) in the data. This creates many item combinations with high
support without any information gain. The other datasets have much lower redundancy ratios (i.e. below
10.0) but the number of removed rules is still remarkable, such as Adult, Smtp
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Table 3 ε and the outcomes from the cluster-based framework for each
dataset

Dataset ε eps #outliers #UnexpRules

Adult 2E-4 1.4 308 33

BreastCancer 0.0 0.8 1315 39

Credit 5E-3 1.2 4000 13

Pima 0.0 1.0 247 43

Smtp 5E-3 0.8 3427 80

TCR 0.0 1.8 33 3

We used ε > 0 for the datasets with large rule set, such as Adult, Credit
and Smtp. In these cases, the rules easily collect enough minP ts

neighbors to form clusters even with a very small eps. Thus, instead
of using a strict non-contradictory constraint, we limit the clusters
containing some contradictory factors to be small in size

Table 3 reports ε and the summary of the cluster based
framework outcomes while Fig. 4 shows the contribution of
generated UnexpRules to SVM and Random Forest over six
datasets.

In regards to running time, the DBSCAN algorithm
takes only a few seconds for small rule sets but it can
take up to several hours for larger scale sets. e.g. Adult
data which consists of more than 27 × 104 rules. The
computational complexity for detecting UnexpRules from
clusters is O(n2) for a rule set with size n, as the procedure
3 requires comparisons between all outliers and belief rules.

We also examine the influence of the threshold δ1 on
our framework. The threshold δ1 is used as the criterion
for the similarity between the LHS of an unexpected rule
and a belief. In addition, it impacts the search for the
optimal eps for the DBSCAN algorithm and thus effects the
quality of both the belief system and UnexpRules. Figure 5
illustrates the effect of δ1 on the clustering result. The figure
shows that when the δ1 increases, the clusters grow and the
number of outliers decreases. The fact is that δ1 influences
the eps through relaxing or restricting the no-contradiction
constraint among clusters. The eps in its turn will guide the
clustering process. Figure 6 reports the F1 score variation
over four datasets when δ1 increases from 0.0 to 1.0. For
each dataset, the maximum improvement is reported at δ1 =
0.0 and decreases as δ1 reaches 1.0.

Given the conceptual similarities between the unexpected
patterns described here and the prior known exception rules,
the two were compared for the different datasets. Table 4
reports the performance of exception rules based on the
approach from Hussain et al. [18] and Suzuki et al. [31]
and the unexpected rules found by our method. Hussain et
al. [18] generated exception rules by pairing common sense
rules and ranks the rules with a relative interesting measure.
Only exception rules with high relative score were kept to
determine performance. As this method was designed to
work on binary datasets, only those with two classes were
used in this comparison. Suzuki et al. [31] introduced 5
constraints that an exception rule pair {A → X, AB → X′}

Fig. 4 F1 score on minority class for the SVM and RF, with and
without using UnexpRules on testing data. Overall the obtained Unex-
pRules improve the performance of classifiers on the minority class.
This indicates that these rules are unexpected and actionable. The
largest improvement can be found in the case of Smtp dataset where
the F1-score on the minority class increases from 0.021 to 0.621. This

dataset in comparison to the others is extremely imbalanced, only
1.22% in training data correspond to the “attack” class compared to
98.78% of “non-attack” class. This could prevent the classifier to learn
knowledge related to “attack” class and the UnexpRules are helpful in
this case

Clustering association rules to build beliefs and discover unexpected patterns 1949



Fig. 5 The effect of δ1 onto the clustering result of Breast cancer dataset. The red points are outliers while the others are beliefs. Data points in
the same cluster are in the same color. The axes are three first principal components of the rules

Fig. 6 F1 score on minority class of SVM with and without UnexpRules on four datasets with δ1 varying from 0.0 to 1.0. This value signifies the
minimal similarity between the LHS between an unexpected rule and a belief. None of the datasets have any UnexpRules at δ1 = 1.0

D. Bui-Thi et al.1950



Table 4 F1 score on minority
and majority classes when
doing prediction on testing data
with SVM and SVM plus
unexpected rules generated
from Hussain et al. [18], Suzuki
et al. [31] and our method

Method Adult BreastCancer Credit Pima Smtp

Minority class

SVM 0.251 0.0 0.905 0.533 0.021

SVM+Hussain et al. 0.266 0.133 0.864 0.533 0.626

SVM+Suzuki et al. 0.297 0.235 0.902 0.552 0.684
SVM+UnexpRules 0.323 0.72 0.916 0.575 0.622

Majority class

SVM 0.88 0.82 0.92 0.825 0.561

SVM+Hussain et al. 0.859 0.831 0.875 0.825 0.699

SVM+Suzuki et al. 0.883 0.827 0.921 0.83 0.719
SVM+UnexpRules 0.884 0.895 0.931 0.826 0.693

Bold entries emphasize the improvement of using unexpected rules, compared to not using them

has to satisfy so that the rule AB → X′ is considered
as an exception. These constraints require following user-
defined thresholds: θS

1 , θF
1 , θS

2 , θF
2 , θI

2 which define the
bounds for five derived scores related to Pr(A), P r(X|A),
Pr(AB), P r(X′|AB) and Pr(X′|B) respectively and δ for
significant level of rules. Based on the discussion in their
study and our experimental examination, we choose θF

1 =
0.5, θF

2 = 0.75, θI
2 = 0.5 and δ = 0.9. The other thresholds

depend on experimental datasets. In general, rules from
three mentioned methods improved the F1 score on minority
classes. However, the Hussain et al. approach lowers the F1
score for the majority classes of two datasets, Adult and
Credit, while the others did not. The Suzuki et al. approach
gave the significant improvement on Smtp data while
UnexpRules did on Breast Cancer. Overall, our method gave
the best score on most of the experimental datasets. This
difference in performance was caused by the different types
of patterns these methods mined. The Hussain et al. and
the Suzuki et al. approaches suggest the rules AB → X′
as exceptional when A → X is high in both support and
confidence and B → X′ is low in confidence. Meanwhile,
we focused on B → X′ that is high in confidence and used
AB as a reference for unexpectedness. The rules from our
method are therefore more concise and more reliable.

4.3 Unexpected rules and their interpretation

To evaluate the validity and interpretability of both the beliefs
and the unexpected rules, we take a closer look at some exam-
ples from the TCR, Credit approval and Breast cancer datasets.

TCR dataset: the rules represent relationships between
the T-cell receptor beta-chain CDR3 amino acid sequence
and the antigen that is targeted by the T-cell. The CDR3
beta-chains consist of 12 to 17 amino acids. The dataset
contains human T-cell receptor data for three antigens,
namely BMLF, M1 and pp65. The classification goal is to
predict for the CDR3 amino acid sequence which antigen
it is associated with, which has been recently tackled with
a RF [11] as per the black-box belief system presented
here. Here each CDR3 amino acid sequence was encoded
as a set of 3-grams: one 3-gram is a sequence of three
adjacent amino acids. Table 5 lists the unexpected rules
generated from this dataset. From the table, we can
see that contradiction surrounds two 3-grams EQY and
GGE. The proposed method found the belief that EQY

is associated with the M1 antigen. This belief matches
observation made about this study in the past, the EQY

3-gram is derived from the TRBJ2-7*01 gene, which

Table 5 Unexpected rule
examples of the TCR dataset.
Ref erence is the LHS
co-occurrence of belief and
unexpected rule in data

Rules conf(%) supp(%) Rank

Belief EQY → antigen = M1 0.894 0.354

UnexpRule EQY , GGE → antigen = BMLF 1.0 0.012 0.812

Reference EQY , GGE 0.012

Belief ASS ,EQY → antigen = M1 0.911 0.339

UnexpRule ASS, GGE → antigen = BMLF 1.0 0.012 0.735

Reference ASS ,EQY , GGE 0.012

Belief EQY → antigen = M1 0.894 0.354

UnexpRule GGE → antigen = BMLF 0.8 0.012 0.0264

Reference EQY , GGE 0.012

Bold entries highlight the difference between belief and unexpected rules
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Table 6 Unexpected rule
examples from the Credit
approval dataset. Ref erence is
the LHS co-occurrence of
belief and unexpected rule in
data

Rules conf sup Rank

Belief a8 < 7, a9 = t, a10 = t, a12 = f, a13 = g → approval = yes 0.901 0.137

UnexpRule a6 = ff, a8 < 7, a13 = g → approval = no 0.905 0.064 0.485

Reference a6 = ff , a8 < 7, a9 = t , a10 = t , a12 = f, a13 = g 0.0067

Belief a8 < 7, a9 = t, a10 = t , a12 = f, a15 < 25k → approval = yes 0.9 0.135

UnexpRule a6 = ff, a8 < 7, a15 < 25k → approval = no 0.905 0.064 0.425

Reference a6 = ff , a8 < 7, a9 = t , a10 = t , a12 = f, a15 < 25k 0.0067

Bold entries highlight the difference between belief and unexpected rules

can in turn for this dataset be associated with the M1
antigen [26]. Thus our approach captured a belief that
had been formulated by experts working with this data.
However, the appearance of GGE breaks the rule and it
turns the conclusion to the BMLF antigen. This is highly
unexpected as the 3-gram GGE can also be derived from
the same TRBJ2-7*01 gene. However in this instance, the
physicochemical properties of the T-cell receptor allow
it to be associated with the BMLF antigen. This is a
departure from what has been previously observed, and
is a good lead for further investigation.

Credit approval dataset: the rules represent associations
between customer information and credit approval
decision. Table 6 shows 2 of 6 unexpected rules
discovered by our method. One belief says that if
customers have the following properties: a8 < 7, a9 = t ,
a10 = t, a12 = f , a13 = g, they will be approved
for credit with high confidence. However, there are
some transactions in database, about 0.67%, showing
customers that, even though they satisfy these properties,

if their profile also includes the property a6 = ff , will
not be approved for credit with a higher confidence.

Breast cancer dataset: the mined rules correspond to the
relationship between 9 attributes that describe women
that have successfully undergone breast cancer treatment
and if their cancer recurred at a later date. Table 7
shows two of the unexpected rules found from this
dataset. In the first example, the belief says that “if
menopause=ge40, node-caps = no and irradiat=no
then recurrence=no”. However, when inv-nodes=3..5
is added into the condition, cancer recurrence happens
with a confidence of 100%. This contradiction can be
interpreted as follows: normally we do not expect a
recurrence in a woman who is menopausal after 40
years of age, who did not originally receive radiation
treatment and had no so-called node caps, except if she
had 3 to 5 auxiliary lymph nodes that contain metastatic
breast cancer visible with histological examination. This
follows the belief that if the cancer was not severe enough
to warrant radiation treatment, it will likely have been

Table 7 Unexpected rule
examples related to the class
attribute on the Breast cancer
data. Ref erence is the LHS
co-occurrence of belief and
unexpected rule in data

Rules conf sup Rank

Belief menopause = ge40, node − caps = no, 0.233

irradiat = no → recurrence = no 0.823

UnexpRule menopause = ge40, inv − nodes = 3..5, 1.0 0.0167 0.878

node − caps = no, irradiat = no →
recurrence = yes

Reference menopause = ge40, inv − nodes = 0.0167

3 − 5, node − caps = no, irradiat = no

Belief menopause = ge40, node − caps = no, 0.833 0.146

breast=left → recurrence = no

UnexpRule menopause = ge40, inv − nodes = 3..5, 1.0 0.0167 0.768

node − caps = no,

breast − quad = left − low →
recurrence = yes

Reference menopause = ge40, inv − nodes = 3..5, 0.0125

node − caps = no, breast = lef t ,

breast − quad = lef t − low

Bold entries highlight the difference between belief and unexpected rules
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Table 8 Unexpected rule
examples related to the other
attributes on the Breast cancer
data. Ref erence is the LHS
co-occurrence of belief and
unexpected rule in data

Rules conf sup Rank

Belief menopause = ge40, 0.812 0.146

breast − quad = lef t − low →
irradiat = no

UnexpRule menopause = ge40, 1.0 0.0125 0.854

node − cap = unknown,

breast − quad = lef t − low →
irradiat = yes

Reference menopause = ge40, 0.0125

node − cap = unknown,

breast − quad = lef t − low

Belief age = 60 − 69, irradiat = no → 0.857 0.120

inv − node = 0 − 2

UnexpRule age = 60 − 69, irradiat = no, 1.0 0.0125 0.808

inv-nodes=6-8 → node − cap = yes

Reference age = 60 − 69, irradiat = no, 0.0125

inv-nodes=6-8

Bold entries highlight the difference between belief and unexpected rules

entirely eliminated from the first treatment. However the
contradiction is that some of these women already had
auxiliary lymph node metastasis, which makes the cancer
much harder to remove entirely.

Thus far only the class attribute has been considered as
the unexpected outcome of the rule, however the approach
is equally valid for other attributes. Table 8 shows two
examples of such patterns. A belief describes that “if
patients go through menopause since 40 year old, and their
tumors occur at the left low quad of breast then radiation
treatment is no”. Unexpectedly, if those patients have node-
cap unknown then they do receive radiation treatment. In
the second example, we find a belief that claims “if patients
whose age is from 60 to 69 and they do not get any radiation
treatment then the number of auxiliary lymph nodes is less
than 2”. Unexpectedly, several cases in the data set with the
same initial conditions, have auxiliary lymph nodes from 6
to 8. In addition, it adds the outcome node-cap is yes which
does not occur in the case of inv − node = 0 − 2. In this
manner, the approach is able to find novel outcomes that do
not match the beliefs and warrant further study.

5 Conclusion

Unexpectedness is considered as one of the nine relevant cri-
teria to evaluate pattern interestingness. It identifies a failing
in previous knowledge or may reveal an aspect of data that
needs further study. In this work, we developed a clustering-
based method to identify unexpected rules from different

datasets. An advantage of our method is that it can discover
unexpected rules without the need to build a belief system
manually. We evaluated the quality of unexpected rules
based on the performance of classifiers. The experimental
results show that the discovered unexpected rules are
actionable and have great potential for imbalanced datasets
which appear in many real world applications such as fault
detection, fraud detection, and medical diagnosis.

To facilitate rules clustering, we proposed to represent
association rules as numerical feature vectors. We have
extended this representation to also summarize and visualize
the association rules and their relationships. This could
be useful for the development of a system in which
users are able to examine and select interesting rules
interactively. However, such representation requires high
memory capacity when the number of unique items in the
data set is large. Moreover, the clustering process scales
poorly on large rule collections. Various options exist that
are likely to speed up this aspect of the algorithm, such as
using an approximate nearest neighbor search, but these are
beyond the scope of this study. We also proposed a way
for pruning redundant rules based on association between
items. This approach holds great promise for integration
with other interestingness discovery approaches to form a
complete pattern prioritizing work-flow.
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