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Abstract
Inconsistent edges of mechanical workpieces in the same batch are one of the main reasons that lead to different
machining performance. A full recognition of the inconsistent features has significant impact on enhancement of their
intelligent machining ability. An intelligent hybrid strategy is proposed for edge inconsistent feature detection by machine
vision, in which deep learning is combined with variable geometric model together to conduct the function. A deep
convolutional neural network based feature classification model is established with K-Means clustering tactic. Supported on
the classification model, a variable geometric model for specific edge inconsistency is given with an inconsistency evaluation
function to investigate the match degree between the geometric model and the actual detected edge, and then particle swarm
optimization algorithm is applied to find the solution of this geometric model. Detection experiments are carried out on
a domestic servo-driven vision measuring platform to verify the performance of the proposed approach. The results show
that the combined scheme can classify the different type of geometric contour of edge features with 100% correctness, and
better evaluation performance by dice similarity index and Hausdorff distance in comparisons with other recent candidate
methodologies. It is also indicated that the presented method provides a good recognition of the geometrical shape with less
than 0.06mm maximum error for workpiece with 142 × 119mm size in the visual field.

Keywords Inconsistent features · Deep learning · Contour edge · Variable parametric geometric model

1 Introduction

Due to constraints of industrial production conditions [1],
edges of mechanical parts in bulk processing often appear
inconsistent in dimension. A full recognition of the
inconsistent features of the edges plays an important roles
in enhancement of the intelligent machining level for batch-
processed workpieces [2]. The edge inconsistent features
are with characteristic of various geometric contour and
randomly-located positions. Although conventional contour
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measuring methods with detection by machine vision or
measuring on CMM, can acquire the dimensions of the edge
profile, it is difficult for them to recognize the edge features
and obtain their basic dimension [3]. Hence, the research
on how to improve the detection precision of the edge
inconsistent features has gained more and more attention
[4].

Detection by machine vision is with advantages for
its low equipment cost, fast detection speed, and high
recognition precision has been employed in more and more
fields [5]. To realize intelligent detection of features by
machine vision, two technical problems are in solution.
One problem is how to intelligently recognize the edge
inconsistent features, and the other is how to accurately
measure the size of edge inconsistent features [6]. Fan
et al. [7] present a two-phase fuzzy clustering algorithm
to segment the remote sensing image from polarimetric
synthetic aperture radar. Kusakunniran et al. [8]identify the
hard exudates from retinal image with MLP supervised
learning based iterative graph cut. Tsai et al. [9] apply
maximum expectation algorithm (EM) to give weight to
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each edge points, which immensely reduces computation
time of image matching. Han et al. [10] construct weighted
least square model with Gaussian mixture algorithm to
model the background of object to obtain the defects.
Michal et al. [11] realize the inspection for micro-milling
tool by wavelet-based method with reconstruction of depth
image. Guo et al. [12] establish a shape model for
reconstruction of parts by visual localization with high
precision. Shanhabi et al. [13] obtain surface roughness
and dimensional deviation data on a machined workpieces
by establishment of 2-D images of cutting tools to
improve the detection speed. Cano et al. [14] present a
precise measurement method for prediction of the elastic
deformations of machine parts based on efficient mass-
spring-damper model. The above-mentioned researches
on edge contour detection and recognition are almost
conducted by designing feature-processing algorithms on
low-level image semantic features from manual supply.
Moreover, in the actual edge features recognition, it
is difficult to establish comprehensive image semantic
expressions, and there are many factors that influence the
measurement precision of the edge inconsistent features.
Meanwhile, it is also difficult to process illumination
disturbance in real time [15]. Consequently, there exist some
space to improve the level of intelligent detection of edge
inconsistent features on these contributions.

In intelligent feature recognition [16], deep learning has
been widely applied in many fields, e.g. medical diagnosis
[17], mechanical fault diagnosis [18], etc. for its ability of
automatic extraction of high-level semantic features with
strong robustness and without manual-construction target
features [19]. Because of this merit, the technology is
commonly utilized to obtain high-level semantic features of
images by mixing other intelligent optimization algorithms
[20, 21].Quite a few contributions have been done on
edge inconsistent features detection with this strategy [22].
Diao et al. [23] establish a deep belief network (DBN) on
the sample features to realize edge inconsistent features
detection of the sample. Chowdhury et al. [24] apply deep
learning for automatic recognition of materials with different
compositions and orientation of microstructural features.
Liu et al. [25] point out that deep learning with multistage
convolutional networks has the best overall performance
in local binary features description. Sarkar et al. [26]
propose an automatic method combined with Holistically
Nested edge detection algorithm (HED) to recognize the
closed contour of image with 17% reduction in mismatching
rate. Zhang et al. [27] present a deep-space-varying
convolutional neural network model for detection of image
boundary features and inconsistencies with lower memory
usage and computational complexity. Hoang et al. [28] raise
an intelligent method on improved convolutional neural
network for road surface crack identification. Zhu et al. [29]

design 2D/3D sketch-based 3D retrieval methods with the
Convolutional Neural Network to represent 3D objects with
good performance.

Inconsistency detection of edge features for mechan-
ical workpiece is investigated with deep learning based
intelligent hybrid scheme in this work. Firstly, a deep con-
volutional neural network-based model is established for
inconsistent feature classification with K-Means clustering
tactic. And then on support of the classification model, a
variable geometry model for specific edge inconsistency
detection is given with an inconsistency evaluation func-
tion to evaluate the match degree between the geometric
model and actual edge, in which an optimization algorithm
is applied to acquire the solution of match process. As a con-
tribution, a novel machine vision-based intelligent method
is proposed in detection of the edge inconsistent features of
mechanical parts to improve the automatic detection level in
intelligent machining for large-batch workpieces.

The remainder of this paper is organized as follows.
Section 2 presents the edge inconsistent feature classifi-
cation model on the basis of deep convolutional neural
network model. In Section 3, a variable geometry model
for specific edge inconsistency detection is established.
Section 4 describes the parameter solution of the geometric
model for inconsistent features. In Section 5, experimen-
tal verification is introduced with the scheme of image data
set establishment and experiment strategy. Section 6 deals
with the experimental data analysis, discussion of the per-
formance of the proposed approach. Finally, the conclusions
are summarized in Section 7.

2 Deep learning based architecture
for inconsistent feature classification

2.1 Construction of classificationmodel

In accordance with whether labels for image data set
are available, deep learning models can be classified
into unsupervised deep belief networks (DBN) [30] and
supervised deep convolutional neural networks (CNN)
[31]. In consideration that the convolution layer in
CNN processes stronger ability to mine local spatial
correlation of image than DBN in image recognition,
the supervised network is applied in detection of the
edge inconsistency. The classification model for edge
inconsistent feature detection is constructed on deep
learning network, which is basically a multi-layer model
including input layer, convolutional layer, pooling layer,
hidden layer, K-Means layer and output layer [32]. Its
major differences to conventional neural network lie in
local perceptual component, sharing weights and pooling
operation [33].
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Fig. 1 Model architecture with deep learning network for edge inconsistent feature classification

An inconsistent feature classification model, illustrated
in Fig. 1, is constructed on deep convolutional neural
network with K-Means clustering tactic, in which there
are five order feature extractions applied for convolutional
pooling calculations from the input edge image. With
expansion of the last extraction results, hidden layer and
K-means clustering layer are introduced to realize the
classification function.

It is indicated in Fig. 1 along with Table 1 listing the
parameters used in the CNN structure that multiple layer
extractions are adopted to perform superposition operation
with the results, transforming of the 200 × 200 pixel edge
inconsistent feature image into 96 pieces of 3 × 3 feature
matrices. These tiny matrices are expanded into the form
with one column vector containing 864 elements. By means
of Gaussian operation through hidden layer neurons, the
vector is transformed into a floating regression value. In
the end, the classification result is obtained by K-means
clustering algorithm for the inconsistent feature input [34].

There are two principles for determining the size of input
image, in which one is that the image size contains at least
a single part edge inconsistent feature, and the other is that

Table 1 Parameters used in CNN structure

Parameter Item Value

Size for the input image 200 × 200 pixels

Convolutinal layer number 5

5 × 5 layers C1, C2, C5

3 × 3 layers C3, C6

2 × 2 layers C4, C7

Learning rate 0.2

Number of epochs for learning 500

Neurons number of hidden layer 5

the image size containing necessary information should be
small enough to avoid a sharp increase in computation.
In addition, the appropriate input image size range is
considered between 32 × 32 and 300 × 300 pixels [35].the
size of 200 × 200 pixels image is selected as the input data.
Considering the size of image and the number of feature
extraction, seven convolutional layers C1-C7 are applied to
extract image features and reproduce the image in the form
of feature matrix as input of the activation function of layers.
For the seven-layer network structure, the convolutional
kernels are arranged as follows, C1, C2 and C5 layers with
size of 5 × 5 convolutional kernel, C3, C6 layers with size
of 3 × 3 convolutional kernel, and C4, C7 with size of
2 × 2 convolutional kernel. Different component weights
and biases of each convolutional kernel of the layer generate
various characteristic matrices for the next layer. There are
five down sampling layers S1-S5 with 2×2 size designed to
cooperate with the convolution sections for data dimension
reduction and over fitting avoidance by data redundancy.
Embedded hidden layer neurons are served to increase the
fitness of the model and -1 node is utilized to limit too big
input value for activation function.

2.2 Classification principle by deep learning

In training, the classification model, stochastic gradient
descent algorithm is utilized to update connection weighted
values and convolution kernels of the model by back
propagation with minimal loss function. The whole
process of intelligent classification involves two processes,
training process and classification process, in which the
classification procedure is illustrated in Fig. 2. At the
beginning of the process, the sample collections are from
comparisons between the measured workpiece and the
standard one by machine vision detection in gray image.
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Fig. 2 Process of edge inconsistent feature classification by deep
learning

With the compared inconsistent edge image as input for the
network, forward propagation calculation by convolution
deep learning mechanism is for classification process and
backward propagation calculation by weight updating in
gradient for training process.

In convolutional layer, suppose ωn
ij denote the weights of

a 2-D convolutional kernel associated with n-th layer edge
inconsistent feature map, where i is component index of j -
th kernel in matric. Convolution sum calculation is the sum
of products of the weights of kernel and elements of the map
that are spatially coincident with the kernel. The n-th layer
feature map can be expressed by the equation as,

xn
j = f (

∑

i∈Mj

xn−1
i ∗ ωn

ij + bj ), (1)

where xn
j is the j -th feature component of n-th layer andMj

is the j -th input feature map. The convolution sum between
feature map xn−1

i and kernel matrixωn
ij is

∑
i∈Mj

xn−1
i ∗ωn

ij .
bj is a scalar for input adjustment of f (.) function. In the

equation, f (.) is activation function for the network, which
is also used to transform input of the neurons in the model,
with the expression as,

f (x) = sigmoid(x) = 1

1 + e−x
, (2)

where x is input variable of the sigmoid function.
Pooling layers are used to form a unique down-sampling

feature map on the output, xn−1
j , of the convolutional layers.

The node output expression of the layer is defined as
follows:

xn
j = f (βn

j down(xn−1j) + bj ), (3)

where βn
j represents multiplicative bias of the output

feature map for n-th layer, bj denotes additive bias of the
corresponding output of feature map.

Function down(.) is selected to decline the dimensions
of edge inconsistent feature images for salient features and
avoidance of overlearning, in which interval point extraction
is conducted in every rows and columns from the feature
map for transformation of feature size from original size to
its half.

With convolutional and down sampling calculation, the
input inconsistent image has been transformed to be a vector
with extraction features. Forward propagation of the vector
is also activated by neurons with sigmoid function,

xn = f (un), un = ωnxn−1 + bj , (4)

where n is component number of the input vector, xn output
after calculation of the n-th neurons, un total input of the
nth layer neurons and ωn connection weight of the neuron.
The connection weight updating is conducted in the gradient
direction,

�ωn = −η
∂E

∂ωn
, (5)

where η is learning rate, E is loss function value, which
is also used to describe the deviation degree between the
output of networks and of the learning patterns as equation,

E =
√∑n

i=1(xi − yi)2

n
, (6)

where n is number of images in one batch, xi is output value
during the forward propagation for i-th image and yi is label
value for i-th image.

The updating of convolution kernel in learning process
is derived from back propagation of loss function value in
gradient by equation,

∂E

∂kn
ij

= δn
j �pn−i

i , (7)

where kn
ij is j -th kernel matrix for the i-th feature map of

the n-th layer, pn−1
i patch of i-th feature map of (n − 1)-th

layer. � is convolution operation for elements of the arrays.
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δn
j is deviation sensitivity of n-th convolution layer of j -th
feature map, which can be expressed by equation,

δn
j = βn+1

j (f ′(un
j )�up(δn+1

j )), (8)

where up(.) function denotes the up-sampling operation to
matrix for expansion.

The gradient of the convolutional layer training error to
additive bias bj is obtained from the sum of elements on the
deviation sensitivity of the j -th feature map, which can be
defined with equation,

∂E

∂bj

=
∑

u,v

(δn
j )uv, (9)

The gradient of the convolutional layer training error
to multiplicative bias βj is obtained from down-sampling
of the feature map by back propagation with convolution
operation to the deviation sensitivity of the current layer,
which is described by equations,

dn
j = down(xn−1

j ),
∂E

∂βj

=
∑

u,v

(δn
j �dn

j )uv . (10)

3 Variable Geometry model for inconsistent
features

On support of the classification model, a variable parametric
geometry model for specific edge inconsistency feature
detection is established to describe different geometric
contours with a parametric vector variable. Indicated in
Fig. 3, a general geometric model is established on this
parametric variable for detection of the edge inconsistency.
Parameter vector P is introduced to express the variables,

P = (x, y, lx, ls, H, θ, bz, by, βz, βy, l̄x, l̄s ), (11)

θ

Gc(x,y)

P1/PR1

(xc,yc)

R

P2/PR2

Fundamental base of 

the inconsistent  edge

Fig. 3 General parametric geometry model for edge inconsistent
feature

where lx denote arc length of the model base and ls top of
the edge inconsistent feature contour. H stands for height of
the contour. θ is azimuth of the geometric model, bz width
of the left side and by right side of the contour. βz, represent
include angle between the left side and the bottom side,
βy include angle between the right side and of the contour
respectively, l̄x , l̄s is base curvature and top curvature of the
contour respectively.

The purpose of designing left and right parameters
respectively with 12 parameters in P is to better fit edge
with inconsistent features in arbitrary geometric contour,
and precisely recognize the geometric features of actual
contour. The dashed segmental line marked in Fig. 3 is
specified as the fundamental base of the inconsistent edges,
also called leading edge, which is located on the mechanical
workpiece and its geometric parameters can be obtained
from the counterpart contour.

In accordance of the provided geometric parameters,
there are 8 kinds of sub-models that can be transformed
from the general geometric model with different distribution
in profile, which are illustrated in Fig. 4. In the model,
Azimuth θ and geometric center Gc(x, y) are introduced to
assist positioning the feature.

4 Inconsistent feature parameter
acquisitions

4.1 Acquisition of azimuth

Azimuth θ is a variable that describes the rotational
degree of geometric contour with respect to horizontal
position of the image. It is applied to reduce the variation
range of parameters in P with faster fitting speed.
The angle is obtained by the principle of leading edge
estimation provided by [36], which basically begins from
determination of the geometric center of the feature.
The geometric center Gc(x, y) of the model can be
acquired by collecting the coordinates of all contour pixel
points, An(xn, yn), by averaging calculation, which can be
expressed with following equations,

x = x1 + x2 + ... + xn

n
, y = y1 + y2 + ... + yn

n
. (12)

Suppose the double terminal points of the leading edge
profile P1(xi, yi) and P2(xj , yj ),the slope rate of straight
line P1P2 can be define as,

Kz = xi − xj

yi − yj

. (13)

Then, azimuth θ can be expressed as,

θ = arctan(Kz) = arctan
xi − xj

yi − yj

. (14)

2109Intelligent detection of edge inconsistency for mechanical workpiece by machine vision with deep learning...
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Fig. 4 Transformation of general model to different profile sub-models

4.2 Objective function construction

On the support of azimuth angle, the target feature detection
can be derived from identification of the parameters of the
geometric model. For this identification, Intersection-over-
Union concept [37] is introduced to measure the fitting rate
between candidate profile and edge profile from the vision.
The fitting rate function is expressed as equation,

max[Ff itting(P, S) = Nc

Nm

+ Nc

Ns

− No

Ns

], (15)

where P is 12-parameter vector of the geometric model
and S binary contour points set of actual inconsistent edge.
Nc is number of pixels of the geometric model in image
format, in agreement with the actual edge from the vision in
coordinate distribution. Nm is number of pixels of the whole
image-format contour points in the model. Ns stands for the
number of pixels of actual edge contour andNo relates to the
number of pixels which position falls outside the positions
of the target points of the model.

4.3 Function solving with particle swarm
optimzation

With the fitting function, the relationship among fitting
degree of target and related parameters is established. It
is indicated that the fitting degree varies with variation
of parameters, and that the solution for P with maximum
function value is regarded as an optimal solution. It is also
shown that when geometric model is fully fitted with actual
edge contour, the foregoing double item Nc

Nm
+ Nc

Ns
of the

objective function can reach a maximum value, and that the
third item,No

Ns
, of the function, as penalty, is for enhancement

of the fitting efficiency.

From (15), it is shown that the solution of the
optimization problem is in a high complicated dimension
space. It is known that particle warm optimization
algorithm(PSO) [38] is with good performance in solving
the optimization with complicated solution combination.
Thus it is introduced to solve this optimal fitting function.
The particle positions are used to denote the parameters
of P vectors and the velocities derived from the respective
changing amplititudes of the vetors during the neighbouring
iterations in the evolution. The fittness function dervies
from the rightside item of the Equation consisting of
the three fractions. The engine of position and velocity
updating of the particles by PSO is followed in solving this
optimization.

4.4 Positioning of edge inconsistent features

As indicated in the geometric model, there are respectively
four types of geometric contours with straight line and arc
leading edges. The characteristic of these edge contours is
with single-pixel width, which can be described by 2-D
point set. According to the point set, geometric parameters
of the contour can be used to calculate the dimensions and
the position of different edge inconsistencies.

The relationship of pixel coordinate transformation
between measuring system and edge feature positioning can
be illustrated in Fig. 5. Suppose the current vision size is
Xa × Ya pixels, and point On(xn, yn) is center point of the
measuring system for the detection vision. The x direction
and y direction of work-pieces coordinate system(WCS) are
aligned to horizontal and vertical reference direction of the
vision respectively. Suppose the coordinate of the center
point of a cut-out image is expressed as Mi(xi, yi), then the
Mi point coordinates in WCS can be obtained as ((xn +

2110 X. Lin et al.



Fig. 5 Transformation of the
coordinates for inconsistent
edge features
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xi − Xa/2), (yn + yi − Ya/2)). The distance between the
center point of geometric profile Gc(x, y) and Mi point can
be utilized to determine the specific coordinate of Gc(x, y)

in global image coordinate system when the position of Mi

point is available. An inconsistent edge feature with straight
line as leading edge and a feature with arc line as leading
edge are illustrated as model A and model B respectively in
the figure for description of the position process.

In positioning the feature of Model A, the linear
rectangular type sub-model, shown in Fig. 4 sub-model
a, is introduced to fit it. When profile length ls and
lx are available, the coordinates of point P1-P4 can be
obtained. In positioning the feature of model B, fitting of
the pixel points of the leading arc line is the first step with
length lx acquisition and center position Rc(xc, yc) of circle
determination. The sector type sub-model, shown in Fig. 4
sub-model h, is introduced to fit it. The maximal distance
from pixel points of the outer arc to center point Rc is
defined as the radius of outer arc dmax .

5 Detection experiment

5.1 Experimental platform

A domestic inspection experimental platform, illustrated in
Fig. 6, is set up to verify the effectiveness of the intelligent
recognition method for edge inconsistent features. The
platform is constructed with XY motion mechanisms driven
by Panasonic MSMJ022G1U servo amplifier and GTS-
400-PG-PCI digital position control system, on which the
vision detection components, BFLY-PGE-50H5M FLIR
industrial camera and LM12HC lens, is installed with
1000mm/min maximal motion speed, 500mm stroke and
0.06mm positioning resolution. The environmental light
source is from VL280-W type strip LED light source
equipment, which can adjust the irradiation angle and
the installation position according to the different test
environment. The data transmission between camera and

host computer is based on Gigabit Ethernet interface with a
maximum transmission rate of 10Gbit/s.

The host hardware environment for the experiment is
including a data acquisition and processing computer with
CPU(Intel®Xeon®E5-2650 0 @ 2.00GHz 2.00GHz dual
processor), 32GB RAM, Windows 7. The programming
environment MATLAB R2015b is employed for deep
learning, and image initial processing programming is
conducted in Microsoft Visual Studio 2010 support by
OpenCV library.

5.2 Image data set establishment

In image data set acquisition process, camera lens is set up
with its measuring direction perpendicular to the XY plane
of platform and 200mm distance from lens to the target
workpiece. With these basic setups, the maximum image
resolution of the camera is up to 2448 × 2048pixels.

A cavity-type workpiece illustrated in Fig. 7 is adopted
for investigation. The camera motion scheme for image data
set acquisition is formulated to be along with the edge of
a standard workpiece. In image data sampling, the pixel

Z

X

Host 

computer

Panasonic

Servo-drivers

Googol

Digital control 

module

X-Y  feed drive 

mechanism

Light source

Camera and 

Lens

The target 
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Y

Fig. 6 Platform for machine vision under servo drive

2111Intelligent detection of edge inconsistency for mechanical workpiece by machine vision with deep learning...



O1

O0

O2 O3

Camera 

vision

Detection direction
Motion 

step

O0:Platform Zero Point
Oi: ith Detection Point

Detection direction

Fig. 7 Detection method for image data set establishment

accuracy reaches 0.06mm/pixel, corresponding to a single
image size 142 × 119mm.

It is illustrated in the figure that the tiny-line cross stars
are specified as the center position of the detection image,
the rectangle frame indicates the size of vision, and the
dashed cross in the vision is applied to align the contour
edge of the workpiece. In image acquisition, the camera
absolute motion begins from the absolute zero point of
workpiece O1 which is with absolute coordinate in the
platform coordinate system. One step motion distance for
detection is set to be an half of the size of the vision. Images
from different workpieces are collected in the sequence
according to the detection direction indicated by the dashed
arrow in the figure.

Due to the influence of illumination and electricity
characteristic of the equipment, the original image contains
much noise. In order to effectively low down the influence

Fig. 8 steps of image preprocessing for the two cases

of noise on measurement of edge inconsistent features of the
part, some preprocessing methods are employed to generate
the inconsistent edge image data. Median filtering method
[39] is applied to process the original images. Considering
the local Ref12ection of metal material under illumination,
Retinex method [40] is utilized to depress the effect of
surface Reflection, and adaptive threshold segmentation
method [41] is introduced to generate binary images. To cut
out the redundant part of images, differential algorithm [42]
is employed to extract the region with single inconsistent
features of the edge compared with the standard workpiece.
Then the contour of inconsistent feature is identified by
canny operator. The whole processing steps and their results
for two processing cases are illustrated in Fig. 8. In the
figure, steps a1-f1 are for processing of edge inconsistent
feature with linear leading edge, and steps a2-f2 for feature
with arc leading edge.

In the image data set establishment, inconsistent feature
contours are segmented into the size with 200 × 200pixels.
In equalization of the samples there are 50 images of linear
rectangular type, 50 images of linear trapezoidal type, 50
images of linear triangular type, 50 images of linear arc
type, 50 images of circular rectangular type, 50 images of
circular trapezoidal type, 50 images of circular triangular
type, 50 images of sector type selected for original data
source. Figure 9 shows 10 pieces of edge inconsistent
feature images of each kind for indication of the data
sample. Moreover, for the sake of enhancement of the
generality of proposed model, rotations of these images
with arbitrary angles and mirroring in horizontal or vertical
direction are conducted to generate a dataset with 16800
images.
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Fig. 9 illustration of part data set

5.3 Experiment strategy

For verification of the feasibility of the proposed detection
scheme, experiment strategy, illustrated in Fig. 10, is
employed with the cavity-type workpiece as detected
target on the experimental platform. The experiment
involves three steps, detection preparation step for image
preprocessing, classification step for feature type detection
and measurement step for feature geometric parameters
acquisition. 50 detection images in per type of sub-models,
400 images in all, are selected as test sample for the
verification. In the training process, 50 images as a learning
batch are treated as one-time iteration.

6 Results and analysis

With the data sets, 500 iteration calculations are conducted
for optimal loss function in machine learning. The
relationship between the objective function and iterations
is illustrated in Fig. 11. It is shown in the figure that the
fluctuation of the mean square error in the training roughly
experiences a growth-decline-stabilization process. In the
beginning iterations, the objective function value updates in
an opposite direction for the relatively single direction for
adjustment of weights with batches of image inputs. With
increase of the iteration number, regular transformation of

Fig. 10 Experiment strategy for
intelligent detection with three
steps Image capture

Image preprocessing

Data set 

establishment for test

Inconsistent edge feature 

classification

Optimal fitting geometry 

obtainment

Calculation of the geometric 

parameters

Preparation Classification

MeasurementForward propagation model 

establishment  

Acquistion of the feature type by 

sub-models

the weights is in effect. Before 150 times iteration the
error converges with high speed and then it falls slower.
It illustrated that when 500 times iterations are applied,
the value reach nearly to zero. This process also shows
that the built deep learning networks is with good training
performance, and better in training performance than the
CNNs with other try parameters combination as test. Some
training results are listed out in Table 2 as comparisons with
MSE loss at the 500th iteration.

The regression values derived from the better selected
CNN based deep learning classification model of the
different test datasets are illustrated in Table 3. Then the
values are inputted into the K-means clustering algorithm to
acquire the classification result about its geometric contour
type with the consequence demonstrated in the table. It
is shown that the maximum deviation of the output value
among these 8 group results is 9.9e-7. With the k-means
process, the classification accuracy can reach 100%.

To show advantages of the proposed combined classifi-
cation model, comparisons to conventional softmax model
[43] are conducted with the similar data set and test samples.
The comparison results, which are illustrated in Fig. 12,
shows that the average classification accuracy of the pro-
posed model, 100%, is higher than the conventional model,
98.17%. The 1.83% difference indicates the possibility with
incorrect classification by the conventional method.

Minimum profiles enclosing edge inconsistent features
of the cavity is gained by adjusting parameters in the
variable geometric model with particle swarm optimization
algorithm. Performance of the fitting degree between model
and actual profile is evaluated by dice similarity coefficient
(DM) [44] and Hausdorff distance (HD) [45] The dice
similarity coefficient provides a close relationship between
the actual profile and the model profile, and the DM value
normally locates in the range of 0-1. A higher DM value
indicates a better match condition between the two profile
boundaries. The distance indicates a symmetric distance
measure of the maximum discrepancy between the two
profile boundaries. A smaller HD value indicates higher
similarity of the shapes between the two profiles, which is
expressed as,

DM = 2|M ∩ A|
|M| + |A| , (16)
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Fig. 11 Change of the Mean
Square Error during training
period
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Table 2 Comparisons in
training performance for some
CNNs with different parameter
combination

Some CNNs for try and test MSE Loss at 500th iteration

The selected parameters with try-and-error combination 1.5e-13

Different learing rate(=0.1) 3.3e-2

Different size of convolution kernels(=19x19/5x5/3x3) 2.7e-2

Different number of convolution layers(=3) 2.5e-6

Different number of hiden neurons(=15) 3.0e-5

Table 3 Maximum deviation
for regression value in
classification model

Geometric type Sample size Image label value Maximum deviation value

Linear rectangular 50 1 2.2e-7

Linea trapezoidal 50 2 9.9e-7

Linear triangular 50 3 9.9e-7

Linear arc 50 4 9.6e-7

Arc rectangular 50 5 9.6e-7

Arc trapezoidal 50 6 9.5e-7

Arc triangular 50 7 9.8e-7

Sector 50 8 9.9e-7

Fig. 12 Classification
performance comparison of the
edge inconsistent feature deep
learning model and CNN
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Fig. 13 Similarity evaluation of the actual contour and the fitted contour

where M is on behalf of a set of boundary points that fit the
profile with a variable geometric model, A is the boundary
point set for the actual profile of the inconsistent features
of. |M| represents the area enclosed by the points set of the
fitted profile and |A| stands for the area enclosed by points
set of the actual profile.

For quantitative evaluation of the performance of the
combined method, 10 arbitrary sample are selected from 8
type of features to generated the double index, which are
demonstrated in Fig. 13 with addition of their mean value
It is shown in the figure that the average dice similarity
coefficient between the model and actual profiles of edge
inconsistent features of the target workpiece is up to 0.84,
indicated by the horizontal solid line in Fig. 13a, and their
average Hausdorff distance 0.21, indicated by the horizontal
solid line in Fig. 13b. It is also found that the profiles of line-
based model are more similar to their actual contours than
profiles of arc-based model.

The detection performance for actual edge inconsistent
feature of the workpeice is indicated by the double combined

evaluation index from the test sample set. The combined
index is derived from the equation,

COMI = DM

HD
. (17)

The evaluation comparisons of all the test samples
are illustrated in Fig. 14. It is shown in the figure that
the minimal COMI of straight line-lead insistent contour
features is at No.27 sample, which is indicated by Point PL
with 1.62 COMI value. In similar way, Point PA indicates
the minimal COMI of arc-lead insistent contour features at
No.387 sample with 1.07 COMI value.

The detail fitting performance in detection of geometric
inconsistent features of the two samples is illustrated in
Table 4. It is shown in the table that the straight line-
lead and the arc-lead edge inconsistent geometric features
with maximum recognition error in width is 0.06mm and
0.04mm respectively, and in height 0.02mm and 0.04mm.

Some recent intelligent methods based on machine
vision processing for feature detection of other objects

Fig. 14 Combination Evaluation
Index Comparison of test
samples
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Table 4 Geometrical
parameter of Inconsistent
Feature by the approach(mm)

Sample Width Height

Meas. Actual Error Meas. Actual Error DM HD COMI

PL 4.14 4.20 0.06 3.30 3.28 0.02 0.86 0.53 1.62

PA 3.78 3.74 0.04 1.80 1.84 0.04 0.81 0.76 1.07

Table 5 Comparisons of
recognition performance in
profile fitting among candiated
methods

No. Method Average dice similarity Average hausdorff

coefficient distance

1 The Proposed Method 0.84 ± 0.08 0.21 ± 0.09

2 Two-phase Segmentation [7] 0.81 ± 0.09 0.22 ± 0.12

3 Graph Cut method [8] 0.80 ± 0.16 0.50 ± 0.47

4 Sliding Comparison Window [46] 0.81 ± 0.03 0.34 ± 0.05

5 Adaptive Background template [47] 0.79 ± 0.12 0.28 ± 0.07

6 Single Rectangular Box [48] 0.78 ± 0.17 0.26 ± 0.04

7 Golden Image Subtraction [49] 0.80 ± 0.11 0.43 ± 0.21

8 Active Contour method [50] 0.81 ± 0.05 0.22 ± 0.08

Fig. 15 Performance
comparison of the approach and
active contour

MF MF MF MF MF MF MF MF

AF AF AF AF AF AF AF AF

MFMFMFMF MF MF MF MF
AF AF

AF
AF AF AF

AF
AF
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are introduced into this research as candidate method with
contour fitting. The comparisons of the performance among
these methods are conducted with recognition performance
evaluated by the double indexes. The comparison results,
illustrated in Table 5, indicate the highest average DM
and the lowest HD index of the proposed method. It also
means the proposed method is with good performance in
low mismatching and high efficiency in feature extraction.

Since the performance of active contour method is on the
second level in these comparisons, the method is introduced
to be further compared with the proposed method in fitting
the actual profiles for some specific samples. Figure 15
indicates the fitting results of 8 type features in subfigure
(a) by the proposed method, and subfigure (b) from active
contour method. In the figure, MF is the fitting profile from
methods and AF is actual pro-file of the target features.
Although the fitting profile generated by active contour
method is not with low similarity to the actual profile, it
generates multiple boundaries in some areas, which results
in no clear boundary for fitting profile. In addition, the
comparison between the corresponding sub-figures in (a)
and (b), illustrates that the proposed method is with better
fitting performance.

As a result, the combined model can classify the differ-
ent type of geometric contour of edge features with 100%
correctness, with 0.84 average dice similarity index metric
compared between the results of model and the actual edges,
3.70% higher than the result of active contour method.
Meanwhile, the average Hausdorff Distance between the
double compared object falls at 0.21 with 4.55% lower than
that of active contour method. It is also shown that the
presented method can provide a good recognition of the
geometrical shape with less than 0.06mm maximum error
for workpiece with 142 × 119mm size in the visual field.
Based on the above analysis, it can be concluded that it is
feasible to apply deep learning and variable parametric geo-
metric model to intelligent detection of edge inconsistencies
with high accuracy of mechanical parts. As a result, the
proposed method presents a contribution to improve the
intelligent detection level in machining of batch workpieces.

7 Conclusion

A novel method applying deep learning model and variable
geometric model is presented to improve the correctness
and precision of intelligent detection of edge inconsistent
features. In accordance with geometric characteristics of
inconsistent edge features of the parts, a single pixel-
based edge data set is established by image preprocessing.
A hidden layer with -1 neuron is introduced to scale
down the error between regression output of the network
and the label value. The K-means clustering algorithm is

utilized to make the classification model with accuracy
up to 100%. The variable parametric geometric model is
designed to fit edge inconsistent feature contour of the
classified results. The geometric parameters of the model
are obtained by calculating the correlation parameters based
on particle swarm optimization. Supported on the domestic
experimental system, test experiments to a cavity-type
mechanical workpiece are carried out. The results show
that the combined model can classify the different type of
geometric contour of edge features with 100% correctness,
with 0.84 average dice similarity index metric compared
between the results of model and the actual edges, 3.70%
higher than the result of active contour method. It is
also shown that the presented method can provide a good
recognition of the geometrical shape with less than 0.06mm

maximum error for workpiece with 142 × 119mm size
in the visual field. In the future work, automatic division
of the whole detection vision with gray contrast in the
contour for positioning inconsistency into small recognition
patterns is still an important task to put the methodology
into application.
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