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Abstract
The hierarchical classification with an imbalance class problem is a challenge for in machine learning, and is caused by data
with an uneven distribution. Learning from an imbalanced dataset can lead to performance degradation of the classifier. Cost-
sensitive learning is a useful solution for handling the gap probability of majority and minority classes. This paper proposes
a cost-sensitive hierarchical classification for imbalance classes (CSHCIC), constructing a cost-sensitive factor to balance
the relationship between majority and minority classes. First, we divide a large hierarchical classification task into several
small subclassification tasks by class hierarchy. Second, we establish a cost-sensitive factor by more precisely using the
number of different samples of subclassifications. Then, we calculate the probability of every node using logistic regression.
Lastly, we update the cost-sensitive factor using the flexibility factor and the number of samples. The experimental results
show that the cost-sensitive hierarchical classification method achieves excellent performance on handling imbalance class
datasets. The running time cost of the proposed method is smaller than most state-of-the-art methods.
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1 Introduction

The imbalance class problem [22, 27] is a significant
issue in data mining because this problem exists in
several domains, such as medical diagnosis [11], text
classification, and fraud detection [8]. The problem is
that the class boundary learned by traditional machine
learning algorithms skews toward the majority classes.
The recognized solution to the imbalance class problem
is a priori understanding of class imbalanced data [13]
or algorithmic level [1, 17, 36]. In terms of data, re-
sampling [10, 20, 30] training data is a general way to solve
the imbalance class problem because re-sampling training
data can balance the class distribution of a dataset. In
terms of an algorithm, cost-sensitive learning is a useful
method to re-weight training data for the imbalance class
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problem. Cost-sensitive learning assigns larger weights [38]
to the minority classes and punishes the majority classes
to fix the imbalance class problem. Compared with re-
sampling, the cost-sensitive learning [3, 4] method usually
yields better performance [39]. Many studies about cost-
sensitive strategies [2] have shown improved performance
of support vector machine [28] and other machine learning
algorithms [12, 15] in imbalance class learning.

Cost-sensitive learning is an effective tool for solving
imbalance class problems. Cost-sensitive learning intro-
duces different penalties for different types of misclassifica-
tion, and studies under different mechanisms to ensure that
the resulting classification allows the overall misclassifica-
tion minimum cost. Different misclassifications often lead
to different misclassification costs [19], and cost-sensitive
learning works from different perspectives. For example, in
cancer detection [37], a cancer patient misdiagnosed as a
healthy person delays treatment or even leads to the death
of the patient while the misdiagnosis of a healthy person as
a cancer patient will lead to fear and economic loss. In this
example, the cost of misclassification is different because
of the different results. Cost-sensitive learning can better
address the problem of imbalance class in several different
types of samples in the training dataset.

In recent years, several studies concerning cost-sensitive
learning [24, 31] for imbalance class problems have been
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presented. Zhou et al. [40] designed a block-structured
sparse constraint and deep super-class learning model
to address the problem of long-tail distributed image
classification. Min et al. [21] proposed an active learning
classification algorithm by integrating cost-sensitive and
three-way theories. Fan et al. [7] proposed a cost-
sensitive learning algorithm to train more discriminative
tree classifiers for effectively distinguishing new object
classes from large numbers of known object classes. Sun
et al. [32] investigated cost-sensitive boosting algorithms
for advancing the classification of imbalanced data. These
methods have demonstrated the usefulness of cost-sensitive
learning for the imbalance class problem. In the era of
big data, most real-world datasets have hundreds of classes
organized in hierarchical structures such as ImageNet,
Wikipedia [42], and biological data [41]. The gradually
increasing number of class labels with hierarchy may
lead to challenges in addressing the imbalance class
problem.

In this paper, we integrate hierarchical classification [18,
33] and cost-sensitive learning into the imbalance class
problem. This algorithm considers the hierarchical informa-
tion of class structure and sets a threshold to penalize the
node when the probability of this node is smaller than the
threshold. First, we split the large imbalance class task into
some small sub-classification tasks by class hierarchy. We
reduce the computation time, through this process. Second,
we use the number of different samples, the probability of
inter-level nodes calculated by logistic regression and the
flexibility factor to build a cost-sensitive factor. Lastly, we
set a threshold for each class node at every level to stop the
node down to the next level if the probability is not great
enough, it reduces inter-level error propagation. These three
steps increase the ratio of the number of correctly predicted
samples to the number of whole test samples and reduce
the computation time we need to train the data. We use a
cost-sensitive method to reduce the gap between the num-
ber of samples of majority and minority classes. Reducing
the gap between the number of samples of majority and
minority classes prevents the classifier from biasing major-
ity classes. Our method combines cost-sensitive learning
and the hierarchical classification method to train datasets
with excellent efficiency and effectiveness. Our algorithm
spends less running time than most hierarchical classifi-
cation algorithms on two protein datasets, and our algo-
rithm achieves the best accuracy on two protein datasets.
In addition, our algorithm takes the least time to achieve
good results on the scene understanding classification
dataset.

The remainder of this paper is organized as follows.
Section 2 presents the proposed method. In Section 3, we
introduce the experimental settings and results. Lastly, the
conclusions and future work are given in Section 4.

2 The proposedmethod

The hierarchical classification framework based on the cost-
sensitive consists of two parts: first, the samples are grouped
through a bottom-up process based on the hierarchical
relationship of the classification tasks; then, cost-sensitive
is separately used for each sub-category task. In the process,
cost-sensitive optimization is taken into the relationship in
the category hierarchy by considering each sub-category
task.

2.1 Hierarchical tree structure

In this section, we concentrate on a tree-based hierarchical
class structure. Large-scale data include a large amount of
information and produce complicated class structures such
as hierarchies. In all cases, the hierarchy employs a parent-
child relationship among all classes, meaning that a sample
belonging to a class also belongs to all its ancestor classes.

A hierarchical tree is defined as a pair (K, ≺), where
K = {1, 2, · · · } is the set of all classes and “≺”
stands for the “is-a” relationship, which is the subclass-of
relationship with the following properties:

(1) Asymmetry: if m ≺ j , then j ⊀ m for every m, j ∈ K .
(2) Anti-reflexivity: m ⊀ m for every m ∈ K .
(3) Transitivity: if m ≺ j and j ≺ n, then m ≺ n for every

m, j , n ∈ K .

Hierarchical classification employs a divide-and-conquer
strategy. In a large number of multi-label learning tasks, the
labels can be assembled into a hierarchical tree structure
from coarse to fine. Hierarchical classification is a top-
down process from root node to leaf nodes. A sample to be
classified is assigned to one or several subclassification tree
nodes, and the process is repeated until the classification
cannot be continued or the leaf nodes are reached. In a
tree structure, a node with the same parent node is called a
sibling node. In addition to the root node, inter-level nodes
are assembled in a tree structure of class hierarchy that has
its own child nodes and sibling nodes. In a hierarchical tree
structure, parameterCm is the set of child categories of class
m, and |Cm| is the number of samples of child categories
of class m. Parameter pm is the parent category of class m.
Parameter Sm is the set of sibling categories of class m, and
h is the height of the tree structure.

An example of a tree-based hierarchical class structure is
shown in Fig. 1. From this figure, we have the following:

(1) The parent category of class 2 is p2 = 0;
(2) The set of child categories of class 3 is C3 = {7, 8};
(3) The set of sibling categories of class 1 is S1 = {2};
(4) We set |C7| = 60 and |C8| = 100; then, we get

|C3| = |C7| + |C8| = 160 and |C4| = |C9| = 150.

Cost-sensitive hierarchical classification for imbalance classes 2329



Fig. 1 Tree structure (h = 4)

Lastly, we get |C1| = |C3| + |C4| = 310. We sum
up the number of sub-tasks from the following level.
Thus, this method is a bottom-up process.

2.2 Hierarchical classification

Given data matrix X ∈ Rl×n, l is the number of samples,
and n is the number of features. xi = {x1, x2, · · · , xl}, xi is
the i-th sample of X. ym = { y1, y2, · · · , yk}, ym is the m-th
label. pm

i is the probability that xi belongs to class m.
The classification process is one of the most significant

issues in data mining and machine learning. The logistic
regression method is used to train the training set, and
logistic regression is a linear classification model based on
probability theory. This method has many advantages, e.g.,
it directly models the classification possibilities without first
assuming data distribution, avoiding the problems caused
by the inaccurate distribution of assumptions. Rather than
predicting only the categories, it is possible to obtain
approximate probability predictions, which is useful for
many tasks that need to use probabilistic decision making.
In addition, the logistic regression function is a convex
function that can be derived by any factorial, and has
good mathematical properties. Many existing numerical
optimization algorithms can be directly used to obtain the
optimal solution. We obtain parameters wm and bm of each
subclassification after training on the training set. In the
context of hierarchies, the probability that xi belongs to
class m is calculated as:

pm
i = 1

1 + e−wT
mxi−bm

, m ∈ {1, 2, ..., k}. (1)

We use logistic regression to calculate the probability
of nodes from the root node to leaf nodes as a top-
down process. Then, the node is assigned to the second
level for several subclassification tasks. We select the node
with the maximum probability on the second level after
comparing the probability of each node. The node with the
maximum probability is the best choice after comparing
it with sibling nodes. We choose its child node with the

maximum probability on the next level until the leaf nodes
are reached.We then obtain the predicted labels selecting by
logistic regression, after selecting from the second level to
the last level. Lastly, we compare the predicted labels with
the correct labels to obtain the accuracy of the classifier.
It is easy to understand the process of the hierarchical
classification framework work according to Fig. 2.

An example of the hierarchical classification process is
shown in Fig. 2. Nodes 1 and 2 on the second level are
assigned to the model we obtain after training on the training
set by logistic regression. If the probability of node 2 is
greater than that of node 1, the classifier selects node 2 as
the best choice on this level. Nodes 3 and 4 are the child
nodes of node 2. We also select node 3 as the prediction
node because the probability of node 3 is greater than that
of node 4.

2.3 Cost-sensitive hierarchical classification

In this section, we describe a cost-sensitive hierarchical
classification method. Cost-sensitive learning is a method
of providing different weights for different categories of
samples to allow machine learning models to learn. In
a typical learning task, the weights of all samples are
generally equal. However, in some specific tasks, different
weights can be set for the samples. We consider that each
subclassification task is dependent on each other, meaning
that the relationship between a node and its sibling nodes
is important. We consider the relationship between a node
and its sibling nodes into our method, and we make the
number of samples of child categories a cost-sensitive
factor.

We update the pm
i using pcostmi when pm

imax ≤ η as
follows:

pcostmi = Um

1 + e−wT
mxi−bm

, (2)

Fig. 2 Hierarchical classification process
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where pm
imax is the maximum probability that xi belongs to

class m on this level, and Um is the cost-sensitive factor of
class xi and is calculated as:

Um = 1

(
√|Cm| + α)

, (3)

where Cm represents the set of child samples of class m,
parameter |Cm| represents the number of samples of child
categories of class m, and α > 0 is the penalty parameter.

If the error is propagated from a high level to a low level,
the node with the maximum probability is not the correct
choice according to the hierarchical classification method.
This condition results in inconsistencies between the correct
label and the predicted label, and this is an important factor
that causes the low accuracy of the classifier. We set the
variable parameter as a threshold that is a condition to
avoid inter-level error propagation. The classifier is not
certain about the choice of this node when the maximum
probability in the child node does not reach the threshold we
set. In this case, it is likely to cause error propagation. Other
nodes also have the possibility of becoming the correct node
when the classifier is not certain about this node. We set the
threshold as a tool to immediately stop this subclassification
task. A cost-sensitive algorithm is added to the hierarchical
classification process after the threshold parameter, and we
consider the number of each node’s child nodes into the
cost-sensitive factor. It is easy to understand the process of
cost-sensitive hierarchical classification with the threshold
framework work, as shown in Figs. 3 and 4.

An example of a cost-sensitive hierarchical classification
with the threshold process is shown in Fig. 3. During the
hierarchical classification process, the classifier selects the
node with the maximum probability as the best node on each
level. Hierarchical classification with threshold process
considers the threshold as an additional condition into the
hierarchical classification process. pm

imax is the maximum
probability that xi belongs to class m on this level. We
update the pm

i using pcostmi and select the node with the
maximum probability as pcostmimax if pm

imax is smaller than
or equal to the threshold value η. We also select pm

i as pm
imax

if pm
imax is greater than the threshold value η. According to

the algorithm, the classifier outputs class m until the leaf
node.

An example of comparison of hierarchical classification
and cost-sensitive hierarchical classification with threshold
is shown in Fig. 4. The results show that the hierarchical
classification process selects node 3 as pm

imax because
p3

i = 0.5. However, if pm
imax = p3

i , parameter pm
imax is

smaller than the threshold value η (η = 0.6). Cost-sensitive
hierarchical classification provides different weights for
different categories of samples. In this example, our
algorithm provides different weights for these three nodes
according to number of samples that belongs to each node.

We update the pm
i using pcostmi when pm

imax ≤ η, and
we select node 1 as pm

imax because pcost1i is the greatest
number after a cost-sensitive hierarchical classification
process on this level.

Parameter Dtree is a tree-based hierarchical structure
of the classes. Cost-sensitive hierarchical classification for
imbalance classes (CSHCIC) is illustrated in Algorithm
1. The threshold strategy based cost-sensitive hierarchical
classification of CSHCIC is provided in line 4 in Algorithm
1, and the cost-sensitive factor of CSHCIC is illustrated
in line 7 in Algorithm 1. The computational time cost of
CSHCIC algorithm is O(cmn).

3 Experiments

In this section, we introduce our experiments on three
imbalance class distribution datasets.1 Two protein datasets
(DD [5] and F194 [34]) and a scene understanding clas-
sification dataset (SUN [35]) are described in Section 3.1.

1Datasets and Matlab code in this research have been uploaded to
GitHub. They are accessible by the following link: https://github.com/
fhqxa//APIN-D-19-01226.
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Fig. 3 Cost-senesitive hierarchical classification with threshold
process

We compare the CSHCICmethod with some state-of-the-art
methods in Section 3.2. We introduce the evaluation met-
rics of these experiments in Section 3.3. The experimental
results and discussion are shown in Section 3.4.

3.1 Datasets

The experiments use two protein datasets and one image
dataset to show the performance of our algorithm. All
three datasets have the information of class hierarchy and
imbalance class distribution. A description of the datasets is
given in Table 1.

DD dataset: This dataset has a protein sequence from
the bioinformatic filed, and there is a three-level height tree
structure in the DD dataset. In this tree structure, the second
level contains 4 categories, and the third level contains 27
leaf nodes. DD dataset includes 473 features. There are 27
real classes and 4 important structural classes: α, β, α+β,
and α/β [5]. The class with the most samples contains
361 samples, and the class with the least samples contains
17 samples. The sample distribution of the DD dataset in
numerical descending order is shown in Fig. 5a.

F194 dataset: The structure of the F194 dataset is similar
to the DD dataset that is processed from the latest version of
Structural Classification of Proteins [23]. This dataset has a
three-level tree structure. In this tree structure, the second
level contains 7 categories and the third level contains
194 leaf nodes. These 194 leaf nodes have 8,525 protein
sequences which represent 8,525 samples in this dataset.
There are also 473 features in the F194 dataset [16].
The class with the most samples includes 361 samples,
and the class with the least samples includes 10 samples.
The sample distribution of the F194 dataset in numerical
descending order is shown in Fig. 5b.

SUN dataset: The SUN dataset has a four-level tree
structure with 343 categories and 22,556 samples. There are
324 leaf nodes and 4,096 features in this dataset. The class
with the most samples contains 1,075 samples, and the class
with the least samples includes 36 samples. The sample
distribution of the SUN dataset in numerical descending
order is shown in Fig. 6.

3.2 Compared methods

In this subsection, we introduce different hierarchical
classification methods in detail. We compare our CSHCIC
method with other hierarchical classification methods to
evaluate its performance.

(1) HiFISHER: Fisher Score [6] is a common feature
correlation criterion with simple calculation and good
discriminant effect. Fisher score selects features by
fully labeled training data with the best discriminating
ability. We use the support vector machine approach
after Fisher Score feature selection. HiFISHER is a
hierarchical classification method modified by Fisher
Score. The computational time cost is O(T(cns+s log
m)+V 2+nV 2+nmV ), where T represents the number
of iterations needed to converge, c represents the
number of classes, n represents the number of samples,
s represents the average number of nonzero features
among all the training samples, m represents the
number of features, and V represents the number of
support vectors.

Fig. 4 Comparison of hierarchical classification and cost-sensitive hierarchical classification with threshold
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Table 1 Data description

No. Dataset Sample Feature Node Leaf Height

1 DD 3,625 473 32 27 3

2 F194 8,525 473 202 194 3

3 SUN 22,556 4,096 343 324 4

(2) HiFSNM: Feature selection via joint l2,1-norms min-
imization (FSNM) [25] that embeds joint l2,1-norms
minimization on regularization and loss function. The
l2,1-norms based regression loss function is robust in
data points that are outliers. It is also efficient to select
features across all data points with joint sparsity. We
add the support vector machine method after feature
selection via joint l2,1-norms minimization. HiFSNM
is a hierarchical classification method transformed by
FSNM. The computational time cost of HiFSNM is
O(Tcmn+V 2+nV 2+nmV ).

(3) HimRMR: Minimal-redundancy-maximal-relevance
criterion (mRMR) [26] is a useful method that equals
the maximal dependency condition for first-order fea-
ture selection. The mRMR method avoids the difficult
multivariate density estimation in maximizing depen-
dency. HimRMR [9] is a hierarchical classification
method based onmRMR feature selection. HimRMR’s
computational time cost is O(mn+V 2+nV 2+nmV ).

(4) HiRelief: Relief [14] algorithm is a feature subset
selection for weight search. The Relief algorithm
avoids the use of global search and heuristic search
methods, assigning different weights to features based
only on the correlation of individual features and
categories. The support vector machine is joined after
the Relief feature selection algorithm. HiRelief is a
hierarchical classification method transformed from
Relief. The computational time cost of HiRelief is
O(Tcn+V 2+nV 2+nmV ).

(5) HiLBRM [36]: This method uses the structure
for effective hierarchical classification that predicts
a sample from the root node to the leaf node.

The method builds a local bayes risk minimization
framework strategy that divides the prediction process
into considering to stop or to go down at every
node by balancing these two risks. The strategy stops
the wrong prediction at an internal node to avoid
misclassification. HiLBRM’s computational time cost
is O(nmlogn).

(6) HiNBP [29]: A quick inter-class similarity computa-
tional approach and spectral clustering are made for
a hierarchical visual tree. This method makes a hier-
archical visual tree that is built for N-best path class
predictions. The method uses the best path algorithm
implemented by a joint probability maximization prob-
lem to avoid error propagation. The hierarchical class
prediction problem is made into the path search
problem. The computational time cost of HiNBP is
O(cmn).

These six algorithms chosen for comparison include
the classic and latest hierarchical classification algorithms.
HiFISHER, HiFSNM, HimRMR, and HiRelief are the
classic algorithms in the machine learning field. HiLBRM
and HiNBP are two recent studies that make good
contribution in hierarchical classification.

3.3 Evaluation metrics

Classification accuracy (ACC) Classification accuracy is a
simple evaluation metric for classification and is easily
calculated. We obtain the number of predicted labels after
hierarchical classification. Classification accuracy equals
the ratio of the number of predicted labels to the number of
whole test samples.

Fig. 5 Sample distribution of
datasets in numerical
descending order: a DD; b F194
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Fig. 6 Sample distribution of the SUN dataset in numerical
descending order

Hierarchical F1 measure (FH ) Hierarchical F1 measure (FH )
is an important evaluation criterion for the hierarchical
classification. All the prediction classes and real classes
are considered as important indicators. All the ancestors
and descendants of the class are considered. The measure
includes hierarchical precision (PH ), hierarchical recall
(RH ), and hierarchical F1 measure (FH ). PH , RH , and FH

are defined as:

PH = |D̂aug ∩ Daug|
|D̂aug|

, (4)

RH = |D̂aug ∩ Daug|
|Daug| , (5)

FH = 2 · PH · RH

PH + RH

, (6)

where Daug = D ∪ anc(D), D̂aug = D̂ ∪ anc(D̂),
| · | represents the number of elements. D represents the
correct class label, D̂ represents the predicted class label,
and anc(D) represents the parent node set of the correct
class label.

3.4 Experimental results and discussion

All experiments are executed on Windows 10 operating
system with MATLAB 2016a. The computer has an Intel
Core i7-3770 CPU with default frequency of 3.40 GHz and

a memory of 12.0 GB. We use 10-fold cross validation for
three datasets. We set different parameters for comparison in
the experiment to show good performance of our proposed
method.

The CSHCIC algorithm has different parameters η and
α settings, but the experimental times are similar. We
set parameters η = 0.6 and α = 1 to compare with
other algorithms. The results demonstrate that the CSHCIC
algorithm has good performance on these three datasets in
Table 2. The feature selection process leads to the reduction
of the time complexity of training when handling the DD
dataset. HiFISHER spends less than one second time on
this dataset. HiLBRM and HiNBP show good performance
with 16.5 and 11.9 seconds, but their running times are
still longer than CSHCIC. HiFSNM is nearly 21.6 seconds
more than CSHCIC. On the F194 dataset, HiFISHER
still shows the best performance, and HimRMR is nearly
20 seconds less than CSHCIC in running time. HiNBP’s
running time is 6 seconds more than CSHCIC. CSHCIC
algorithm also has a shorter running time than HiFSNM,
HiRelief, and HiLBRM algorithm on the F194 dataset.
CSHCIC outperforms the other six algorithms on the SUN
dataset with 1,098 seconds. HiNBP spends 1,102 seconds
handling the SUN dataset, and this result is 3 seconds longer
than CSHCIC. The SUN dataset costs HiLBRM 1,322
seconds, which is much less than the other four hierarchical
algorithms. Thus, the other algorithms use much more
time than CSHCIC to calculate data. HiFISHER, HiFSNM,
HimRMR, and HiRelief algorithms are too slow to handle
the SUN dataset. On the aspect of efficiency, the time
consumed by CSHCIC is much less than that of HiFISHER,
HiFSNM, HimRMR, HiRelief, HiLBRM, and HiNBP on
this large-scale dataset.

Different experimental results under different parameters
on the DD dataset are shown in Fig. 7a and b. Figure 7a
shows that we get the best ACC result with 77.05% when
α = 3 and η = 0.55. The results on the FH evaluation
metric are shown in Fig. 7b under different parameters η

and α. We can also obtain the best result with 89.45% on
the FH evaluation metric when α = 3 and η = 0.55. The
results show that sometimes the performance of parameter
η = 0.55 is better than that of η = 0.6. We choose α = 3 and
η = 0.55 to achieve the best effectiveness on two evaluation
metrics.

Table 2 Running time comparison of seven algorithms on three different datasets (s)

Dataset HiFISHER HiFSNM HimRMR HiRelief HiLBRM HiNBP CSHCIC

DD 0.39 132 32.7 92.1 16.5 11.9 11.1

F194 2.24 804.7 55.7 293.2 164.5 83.7 77.7

SUN 5,439 11,788 19,822 27,574 1,322 1,102 1,098

The best result is marked in bold
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Fig. 7 Performance under
different parameters on the DD,
F194 and SUN dataset: a ACC;
b FH
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Figure 7c and d present the ACC and FH results under
different parameters on the F194 dataset. Figure 7c shows
we obtain the best ACC result with 52.64% when α = 3. In
addition, we can also obtain the best FH result with 78.81%
when α = 3 in Fig. 7d. We have the following observations
from the two figures. First, parameter α is more sensitive
than η of the proposed algorithm on this dataset. Two
lines almost coincide in two figures, and we can know that
η = 0.6 is close to η = 0.55 on two evaluation metrics.
Second, the parameter η of the proposed method does not
greatly affect for the accuracy. Therefore, parameter η does

not necessarily lead to high accuracy that provides a good
choice of α with a better performance.

The results show that different performance under
different parameters on the SUN dataset are shown in
Fig. 7e and f. The figures show that the lines of η = 0.55 are
higher than those of η = 0.6 in Fig. 7e and f. In addition, the
results of η = 0.55 are slightly better than η = 0.6 on the
evaluation metric of ACC. Figure 7e shows the best ACC
result with 67.08% when α = 2 and η = 0.55. In addition,
the best FH result is obtained with 86.12% when α = 1 or
2 and η = 0.55, as shown in Fig. 7f.
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Fig. 8 ACC and FH results of seven hierarchical algorithms on the DD dataset: a ACC; b FH
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Fig. 9 ACC and FH results of seven hierarchical algorithms on the F194 dataset: a ACC; b FH

Figure 8a and c show that the ACC and FH results of
seven hierarchical algorithms on the DD dataset. Figure 8a
shows that the CSHCIC achieves higher ACC than other
algorithms with 76.83%. HiNBP ranks in second place,
which is 0.95% less than CSHCIC on the ACC evaluation
metric. HiRelief is the last place, as its ACC result is only
52.08%. HiRelief is 24.75% less than CSHCIC. The other
four hierarchical classification methods have ACC results
below 70%. Figure 8b introduces CSHCIC is 0.44% more
than the second place HiNBP on FH . HiLBRM follows
HiNBP with 88.65% in third place. Figure 8a and b show
that CSHCIC ranks in first place on ACC and FH .

Figure 9a and b present the ACC and FH results of
seven hierarchical algorithms on the F194 dataset. Figure 9a
shows that the CSHCIC achieves higher ACC than the other
six algorithms with 52.57%. HiNBP still ranks in second
place with 46.27%. Compared with HiNBP, the result of
ACC is increased by 13.6%. HiRelief and HiLBRM do
not have good results with 26.06% and 17.92% on the
ACC evaluation metric. HiLBRM obtains the lowest ACC
result on handing this dataset. Compared with HiLBRM,
the results of ACC are increased by 193.4%. CSHCIC is
2.43%more than the second place HiNBP on FH in Fig. 9b,
and HiLBRM follows HiNBP in third place with 75.52%.
CSHCIC’s FH is 3.1% to 14.4% more than the other six

algorithms. Thus, the CSHCIC algorithm shows its great
performance in handling the F194 dataset.

The ACC and FH results of seven hierarchical algorithms
on the SUN dataset are shown in Fig. 10a and b. Figure 10a
shows that CSHCIC ranks in second place with 67.01% on
the ACC evaluation metric. CSHCIC is 5.23% more than
HimRMR which is in third place. CSHCIC is 1.62% less
than HiNBP which obtains the best ACC result. HiNBP
employs the best path search method into the calculation
process, and the best path search method travels around
the whole visual tree to find the most possible path.
HiNBP needs to calculate the edge score of all nodes at
the same level, and it trades more complex calculations
for better results. Based on effectiveness, the classification
accuracy of CSHCIC is much more than that of HimRMR,
HiFISHER, HiFSNM, HiRelief, and HiLBRM. CSHCIC
outperforms these four hierarchical algorithms on FH with
86.07%, and CSHCIC is 1.01% more than the third place
HiLBRM in Fig. 10b. At the same time, the process of
complex calculations have increased their running times
of these six hierarchical classification algorithms. The
CSHCIC algorithm handles data with the least running time,
because of a number of samples and features in this dataset.
CSHCIC has shown its good result both on efficiency and
effectiveness on the SUN dataset.
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Fig. 10 ACC and FH results of seven hierarchical algorithms on the SUN dataset: a ACC; b FH

W. Zheng and H. Zhao2336



4 Conclusions and future work

In this paper, we have proposed a hierarchical classification
method based on cost-sensitive learning. The method uses a
cost-sensitive factor to assign larger weights to the minority
classes and punish the majority classes. The method sets a
flexible threshold to decrease inter-level error propagation.
We used logistic regression to calculate the probability of
the node. The predicted node is selected through the cost-
sensitive factor and flexible threshold by class hierarchy
until the leaf node level. We use 10-fold cross validation
for all datasets. The cost-sensitive method balances majority
and minority classes, and keeps the classifier from skewing
toward majority classes. Our method has combined the
cost-sensitive method and threshold strategy to increase the
accuracy of minority classes. We have also compared our
CSHCIC method with different hierarchical classification
methods on three datasets. The CSHCIC method uses the
smallest computational time cost to train the model of
seven hierarchical classification methods, and the CSHCIC
method obtains the best accuracy on two datasets. The
experimental results prove the efficiency and effectiveness
of the proposed algorithm. For other datasets, we need
to manually adjust the parameters. In the future, we will
continue to work on finding good parameters that are
suitable for more datasets.
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