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Abstract
Aiming at the complexity, nonlinearity and difficulty in modeling of nonlinear system. In this paper, an improved back-
propagation(BP) neural network based on restricted boltzmann machine(RBM-IBPNN) is proposed for nonlinear systems
modeling. First, the structure of BP neural network(BPNN) is optimized by using sensitivity analysis(SA) and mutual
information(MI) of the hidden neurons. Namely when the SA value and the MI value of the hidden neurons satisfy the set
standard, the corresponding neurons will be pruned, split or merged. second, the restricted boltzmann machine(RBM) is
employed to perform parameters initialization of training on the IBPNN. Finally, the proposed RBM-IBPNN is evaluated
on nonlinear system identification, lorenz chaotic time series prediction and the total phosphorus prediction problems.
The experimental results demonstrate that the proposed RBM-IBPNN not only has faster convergence speed and higher
prediction accuracy, but also realizes a more compact network structure.

Keywords BP neural network · Sensitivity analysis · Mutual information · Restricted boltzmann machine · Nonlinear

system modeling

1 Introduction

In real industrial applications, the system model is the
key to the effective analysis and control. An ideal model
should be able to describe the behavior of the system very
adequately. When the system has only some knowledge,
or no knowledge to use, it can use the results of system
modeling to obtain the trajectory information of process
variables from the input-output data collected from the
actual measurement. Since most industrial process systems
are nonlinear in nature, nonlinear system modeling has
drawn considerable attention in process analysis [1], soft
sensor [2, 3], controller design [4, 5] and other fields.
The accuracy of the model has a critical influence on
describing the dynamic behavior of nonlinear system. Thus,

� Junfei Qiao
junfeiq@bjut.edu.cn

Longyang Wang
1974517898@qq.com

1 The Faculty of Information Technology Beijing University
of Technology, Beijing, 100124, China

it is extremely urgent to establish an accurate model for the
complex nonlinear industrial process system. However, due
to the existence of structural and parameter uncertainties in
nonlinear systems, it is overwhelmingly difficult to establish
the model [6].

In recent decades, the traditional mathematical methods
[7, 8] have been widely applied to design nonlinear
systems modeling. However, when the nonlinear systems
show strong nonlinearity, multivariable coupling, complex
biochemical reactions and other characteristics, the above
methods cannot get the considerable performance. With
the continuous development of artificial intelligence,
neural network(NN) algorithm has been widely used in
nonlinear system modeling. Theoretically, feedforward
neural network can approximate any continuous function
defined on a compact set to a given accuracy. This
universal approximation property makes NN very suitable
for nonlinear system modeling, especially in the nonlinear
systems difficult to be described mathematically [9–11].
Hence, the feedforward neural networks are used to
establish the nonlinear systems model. For example, a
nonlinear system based on the denoising autoencoders
and neural network was proposed in [12]. The results
demonstrated that this model can achieve good predictive
performance. In [13], an empirical mode decomposition

Published online: 4 March 2020

Applied Intelligence (2021) 51:37–50

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-019-01614-1&domain=pdf
http://orcid.org/0000-0002-1707-6074
mailto: junfeiq@bjut.edu.cn
mailto: 1974517898@qq.com


was applied to optimize the BPNN to model the complex
nonlinear system. Attributed to this modeling, the good
prediction effectiveness was been achieved. Xiao et al. [14]
developed a nonlinear system modeling method based on
the elastic BP neural network and grey Wolf optimizer.
Then, based on this modeling, the control effectiveness can
be ensured. However, the structure of the nonlinear system
model need to be fixed in advance.

Since the structure of NN has a very important
influence on the network performance of nonlinear system
modeling, Therefore, many scholars focus on changing
the topological structure of nonlinear system model. Some
growing algorithms for the number of neurons have
been proposed in [15, 17]. In [15], A fully connected
cascade feedforward neural network algorithm based on
fast cascade(FCNN) algorithm was proposed. Then, the
hidden nodes of neural networks were grown by cascade
algorithm. A nonlinear system modeling method of growing
resource allocation RBF network was devised in [16]. Based
on the novelty of input information, the hidden layer was
constructed. Moreover, paper [17] developed a nonlinear
system modeling method based on incremental modular
deep neural network. Then, the weights of the training
can be copied into other similar models to improve the
recognition performance. However, the number of neurons
increases without decreasing, which leads to redundancy
of network structure. Hence, how to obtain a concise and
efficient structure for nonlinear system modeling has also
attracted widespread attention. In [18], a pruning method
was used to model nonlinear systems. In this method,
the hidden neurons were deleted in the convolutional NN.
The results demonstrated that this method can be uesed to
decrease both the computational of NN and the frequent
access of memory. A nonlinear system modeling method
based on pruning algorithm was designed in [19]. By
pruning the weights of weak connections in the deep neural
network, an efficient and sparse connection architecture
can be obtained. Meanwhile, A nonlinear system modeling
method based on the group sparse regularization algorithm
was proposed to optimize the weight of deep belief network
[20]. However, the above algorithm still has the following
problems. Because most of the training time is spent on
networks that are larger than the actual requirements, it
needs to spend more computing costs. Therefore, paper [21]
first applied the minimum resource neural network(MRNN)
to the nonlinear system modeling. This method can not
only add hidden layer neurons in the learning process,
but also adjust the neural network topology by introducing
the clustering strategy, Then, the MRNN can obtain an
appropriate structure. However, the MRNN neglects the
adjustment of parameters after structural adjustment, which
leads to slow convergence speed of neural network learning

algorithm. The literature [22] used peak intensity and root
mean square error to improve the deep belief network and
finally obtained a better nonlinear system model. Although
the method has achieved good modeling results, there are
a lot of model parameters that need to be adjusted and
consume a lot of time.

Therefore, inspired by the foregoing, in this paper, an
RBM-IBPNN is proposed for nonlinear systems modeling.
First, Based on sensitivity analysis(SA) [23, 24] and mutual
information(MI) theory, the topological structure of BPNN
is adjusted. When the contribution rate of the hidden layer
neurons is too small, the hidden layer neurons are deleted.
When the contribution rate of the hidden layer neurons is too
large, then the hidden layer neurons are split. At the same
time, the MI is used to measure the correlation between
neurons, when the MI of two hidden layer neurons meets
the set standard, it indicates that these two neurons have
similar functions and can be merged into one neuron. In
the process of dynamic adjustment of neuron, the weights
between layers are automatically adjusted to realize the
dynamic adjustment of the structure of the neural network,
Considering that the improved neural network in the process
of structural adjustment, the training of the neural network
adopts the gradient descent method, and its initial weights
and threshold are given randomly, which easy to cause
the convergence speed of the improved network to slow
down and fall into the local minimum. The research shows
that the appropriate initial weights and thresholds can
effectively reduce the training time and avoid falling into
local minimum [25, 26]. then based on the deep learning
theory, the initial weights and thresholds of the IBPNN
are trained by using the RBM [27–29]. and the weights
and thresholds after training are used as initial weights
and thresholds for the improved neural network. Thus, the
prediction accuracy and convergence speed of the network
are further improved. Finally, the proposed RBM-IBPNN
is tested on nonlinear system identification, Lorenz chaotic
time series prediction and the total phosphorus prediction
problems.

The structure of this paper is as follows: Section II
elaborates the method of neuron splitting and deleting
based on SA and the method of neuron merging based
on MI. Section III elaborates on the improved neural
network weights and threshold initialization methods based
on the RBM. Section IV is the experimental part, which
elaborates the application of the proposed algorithm in
the prediction of nonlinear system identification, Lorenz
chaotic time series prediction and the total phosphorus
prediction. Section V is the discussion part, which analyzes
the advantages and disadvantages of the experimental
design and algorithm. The final section is the conclusion and
future work.
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2 Design of improved BP neural network

In the training process of NN, the number of neurons of
input layer and output layer can be determined in advance
according to the task requirements. The setting of the
neurons in the hidden layer is more complicated. If the
structure is too large, it would be easy to cause over-
learning. If the structure is too small, it would be unable
to achieve considerable learning ability. Therefore, how to
design an appropriate network structure is still an open
problem. Therefore, to solve these issues, this section adopts
the method of adding and pruning hidden layer neurons
based on SA and MI [30–32], so as to achieve the purpose
of automatic structural adjustment.

2.1 Neuron growing and pruning based on SA

2.1.1 Sensitivity analysis

SA is applied to measure the contribution of hidden layer
output variables to network output, It is defined as the
proportion of output components produced by specific input
variables to total output. The sensitivity calculation formula
is

Sk
ε =

V ar
wεky

(1)
ε

[Y k|wεkyε = �ε]
V ar(Y k)

, (1)

where

Y k = f (w1ky1, w2ky2 · · · wn1kyn1), (2)

where Sk
ε denotes the contribution rate of the εth input

variable to the output of the kth model, Y k represents the
response of the kth model, wεkyε represents the εth input
variable for the kth model. ε = 1, 2, ..., n1, k = 1, 2, ...n2,
[Y k|wεkyε = �ε] represents the part of the output value
of the kth model generated by the εth hidden layer
neuron, V ar(Y k) represents the variance of the kth network
output variable, w1ky1, w2ky2 · · · wn1kyn1 represents the
input variable value, reflecting the relationship between
each hidden layer neuron and the kth output neuron. n1 is
the number of neurons in the hidden layer, n2 is the number
of models, yn1 denotes the output of the n1th hidden layer
neuron. wn1k denotes the weight between the n1th hidden
layer neuron and the kth output neuron. According to the
formula (1)–(2), the influence of input factors on output can
be calculated. The higher the activity of input variables is,
the greater the contribution rate will be.

2.1.2 Growing of hidden layer neurons

When the contribution rate of hidden layer neurons is large,
it will cause violent fluctuations of network output. In
order to avoid the existence of this situation, the neuron

needs to be split into two moderately contributing neurons.
Assuming that the contribution rate of neurons in the εth

hidden layer is Sε. The criteria to be satisfied when it is split
is

Sε > ξ2, (3)

where ξ2 is the threshold for by neuron split. When the εth

neuron is split into new hidden layer neurons ∂ and δ, the
weight adjustment rules of the newly added neurons are
⎧
⎪⎪⎨

⎪⎪⎩

w�� = w�ε

w�ϑ = w�ε

w�k = (1 − μ)wεk,

wϑk = μwεk

(4)

where w�� denotes the connection weight between the
input layer neuron � and the hidden layer neuron �, w�ε

denotes the connection weight between the input layer
neuron � and the εth neuron in the hidden layer, w�ϑ

denotes the connection weight between the input layer
neuron � and the hidden layer neuron ϑ , w�k denotes the
connection weight between the hidden layer neuron � and
the output neuron k. wϑk denotes the connection weight
between the hidden layer neuron ϑ and the output neuron k.

2.1.3 Pruning of hidden layer neurons

When the contribution rate of a hidden layer neuron is
small, this neuron will be considered to be invalid, it can be
deleted. Assuming that the contribution rate of neurons in
the εth hidden layer is Sε, the criteria to be met when it is
deleted is

Sε < ξ3, (5)

where ξ3 is the threshold value set for neuron deletion.
After the εth neuron is pruned, the corresponding weight
mutation is set to 0. In order to keep the output unchanged,
it is necessary to compensate the neurons l with the most
correlation of the pruned neurons.
{

wd
�κ(t) = w�κ(t)

wd
κk(t) = wκk(t) + yε

yκ
wεk(t),

(6)

where wd
�κ denotes the connection weight of the �th

neuron and the neuron κ of the input layer after the neuron
is pruned. w�κ denotes the connection weight of the �th

neuron and neuron κ in the input layer before neuron
pruning, wd

κk is the connection weight between the hidden
layer neuron κ and the output neuron k after the neuron is
pruned, wκk is the connection weight between the hidden
layer neuron κ and the output neuron k before neuron
pruning. And yε represents the output of the εth hidden
layer neuron being pruned, yκ represents the output of
neuron κ .
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2.2 Neuronmerging based onMI

2.2.1 Mutual information estimation

Assuming that any two hidden layer neurons output
variables X and Y , the range of variable X is evenly divided
into equal length KX segments by histogram method. The
formula for KX is

KX = round

{



6
+ 2

3

+ 1

3

}

, (7)


 = 3
√

8 + 324� + 12
√
36� + 729�2, (8)

where 
 is a constant that can be determined based on the
number of samples, round represents the integer closest to
the real variable, � denotes the number of samples. The
entropy expression of variable X is

H(X) = −
KX∑

k=1

pk(x) logpk(x), (9)

where

pk(x) = nk

�
, (10)

It can be obtained from (9) and (10)

H(X) = −
KX∑

k=1

nk

�
log

nk

�
(11)

where pk(x) denotes the probability that the sample falls
into the kth segment, nk denotes the number of samples
falling into the kth segment. Similarly, the joint entropy
expression of variables Y , X and Y are

H(Y) = −
KY∑

k=1

nk

�
log

nk

�
, (12)

H(X, Y ) = −
KX∑

k�=1

KY∑

kε=1

,
nk�kε

�
log

nk� nkε

�
(13)

Then the expression of MI between variables X and Y is

I (X; Y ) = M −
KX∑

k�=1

nk�

�
log

nk�

�
−

KY∑

kε=1

log
nkε

�
log,

nkε

�

(14)

M =
KX∑

k�=1

KY∑

kε=1

nk�kε

�
log

nk�kε

�
, (15)

where nk� and nkε denote the number of samples falling
into the k� and kε segments, respectively, nk�kε denotes the
number of samples falling into the unit (k� ,kε).

2.2.2 Merging of hidden layer neurons

In order to make each neuron have its own unique function,
a method based on mutual information is proposed to
evaluate the similarity between hidden layer neurons, and
the neurons with higher similarity degree are merged into
one neuron. The criterion of neuronal merger is shown in
(16):

I�,φ > ζ1, (16)

where I�,φ represents the mutual information between any
two hidden layer neurons � . φ, ζ1 is the threshold set for
neuron merging.

⎧
⎨

⎩

w�L = αw�� + βw�φ

wLk = w�k + wφk,

τL = ατ� + βτφ

(17)

where w�� represents the weight between the �th

input layer neuron and the hidden layer neuron � , w�φ

represents the weight between the �th input layer neuron
and the hidden layer neuron φ, w�L represents the
weight between the �th input layer neuron and the newly
generated neuron L of the hidden layer, wLk represents the
weight between the newly generated neuron L of the hidden
layer and the kth neuron of the output layer, w�k represents
the weight between the hidden layer neuron � and the kth

the output layer neuron, wφk represents the weight between
the hidden layer neuron φ and the kth output layer neuron,
τL represents the bias of the new hidden layer neuron L, τ�

represents the bias of hidden layer neuron � , τφ represents
the bias of hidden layer neuron φ, α and β are constant and
the sum of them is 1.

3 Training of improved BP neural network
based on restricted Boltzmannmachine

3.1 Restricted Boltzmannmachine

RBM is a kind of random NN model without self-feedback
and symmetrical connection. There is no connection within
the layer, and all connections between the layers. RBM has
a two-layer structure, shown in Fig. 1.

Where v denotes the visible layer, h denotes the hidden
layer. Taking a layer RBM as an example, the training
process is introduced. The visible layer of RBM contains
r visible neurons, and the hidden layer contains s hidden
neurons. The vectors v and h can denote the states of
the visible and hidden neurons, respectively. Where vq

represents the state of the qth visible neuron,hp represents
the state of the pth hidden neuron. For any q, p, vq , hp,
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Fig. 1 RBM structure schematic diagram

all satisfy the binary distribution. The energy of RBM is
defined as

E(v, h|θ) =
r∑

q=1

aqvq −
s∑

p=1

bphp −
r∑

q=1

s∑

p=1

vqwqphp,

(18)

where θ = {
wqp, aq, bp

}
represents the real parameter of

RBM, wqp denotes the weight between the visible neuron
q and the hidden neuron p, aq represents the bias of visible
neuron q, bp represents the bias of hidden neuron p. The
joint probability distribution of (v, h|θ) is

P(v, h|θ) = e−E(v,h|θ)

Z(θ)
, Z(θ) =

∑

v,h

e−E(v,h|θ), (19)

where Z(θ) denotes partition function. According to the
special structure of RBM, given the state of the visible
neuron the state of the hidden neuron is conditionally
independent of each other. Therefore, the probability of the
pth hidden neuron is:

p(hp = 1|v, θ) = σ

(

bp +
∑

q

vqWqp

)

(20)

where σ(x) denotes the sigmoid function. Given the state
of the hidden neuron, the state of each visible unit is
still conditionally independent of each other, that is, the
activation probability of the qth visible neuron is

P(vq = 1|h, θ) = σ

(

aq +
∑

p

Wqphp

)

, (21)

Assuming that the training set contains T samples, the
parameter θ is obtained by maximizing the logarithmic
likelihood function of RBM on the training set. The key

step is to calculate the partial derivative of logP(v|θ) with
respect to θ , that is

∂ logP(v|θ)

∂θ
=

T∑

t=1

<
∂(−E(v(t), h|θ))

∂θ
>P(h|v(t),θ) −

T∑

t=1

<
∂(−E(v, h|θ))

∂θ
>P(v,h|θ) (22)

where < ·>P denotes the mathematical expectation of
the distribution P , logP(h|v(t), θ) denotes the probability
distribution of the hidden layer when the visible neuron is
the known training sample v(t), P(v, h|θ) denotes the joint
distribution of visible and hidden neurons.

Assuming that there is only one training sample, prob-
ability distribution logP(h|v(t), θ) and joint distribution
P(v, h|θ) are represented by “data” and “model”, respec-
tively. Then the log-likelihood function connects the weight
Wqp, and the partial derivatives of the visible layer neuron
bias aq and the hidden layer neuron bias bp are

∂ logP(v|θ)

∂Wqp

=< vqhp>data− < vqhp>model, (23)

∂ logP(v|h)

∂bp

=< hp>data− < hp>model, (24)

where < ·>data is the expectation of observation data in the
training set, < ·>model is the expectation on the distribution
determined by the model.

RBM can optimize the whole model by contrasive
divergence (CD) algorithm to achieve the local optimal
state. This method is a layer by layer greedy training
algorithm. It not only solves the problem of slow training
speed, but also can find better initial values of model
parameters.

3.2 Improved BP neural network weight and
threshold initialization based on restricted
Boltzmannmachine

The basic implementation steps of the proposed algorithm
are as follows

1) The SA value of each neuron in the hidden layer are
calculated. Considering that the neurons in the hidden
layer whose SA value is less than the threshold ξ3, Then
this neuron will be regarded as invalid and redundant
neurons, and it will be deleted.

2) Then the MI value between any two hidden layer
neurons is calculated, The hidden layer neurons with
too large MI value are determined. Two neurons whose
MI value are greater than ζ1 are regarded as neurons
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with too much correlation, and they are merged into one
neuron.

3) Then the neurons with excessive sensitivity are
identified, and when the neuron SA value is greater than
the set threshold ξ2, the neurons would be split.

4) Finally, the weight and threshold parameters of IBPNN
are initialized by RBM.

3.3 Structure design of IBPNN based on restricted
Boltzmannmachine

The structure design of IBPNN based on RBM is shown in
Fig. 2
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Fig. 2 Structural block diagram of EBPNN based on restricted
boltzmann machine

4 Experimental analysis

4.1 Nonlinear system identification

In this experiment, a benchmark problem is applied to test
the prediction performance of the neural network, and its
expression is described as follows

y(t + 1) = g(y(t), y(t − 1)) + u(t)

= y(t)y(t − 1)[y(t) + 2.5]
1 + y2(t) + y2(t − 1)

+ u(t), (25)

where 1 ≤ t ≤ 1000, y(0) = 0, y(1) = 0, u(t) =
sin(2πt/25).

According to formula (25), 1000 time-discrete data
samples are generated, of which the first 800 are applied to
train the neural network proposed in this paper, the last 200
are employed to test the prediction effect of the network.
The initial weight and threshold of each hidden layer node
are generated by the restricted boltzmann machine training,
The model can be described by

∧
y(t + 1) = ∧

f (y(t), y(t − 1), u(t)), (26)

In the proposed RBM-IBPNN, there are a total of three
inputs and one output, where y(t), y(t − 1), u(t) represents

the input of the neural network,
∧
y(t + 1) represents the

output of the neural network, the data is normalized before
network training, and the expected error is 0.001. The
maximum number of iterations is 10000. The threshold
values of mutual information merging neurons, sensitivity
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Fig. 3 The training effect diagram of RBM-IBPNN
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Fig. 4 The test effect diagram of RBM-IBPNN

division and pruning neurons are set to 3.25, 0.15 and 0.03
respectively. The number of iterations of RBM is 100, the
learning rate is 1, The number of neurons in the initial
hidden layer is 20 and 2.

Figure 3 shows the training effect of 800 samples trained
by RBM-IBPNN in the training process. Based on the
analysis of Fig. 3, we can conclude that the actual training
output curve and the target curve have the same trend of
change, thus realizing the good tracking of the target curve
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Fig. 5 Dynamic adjustment diagram of structure with initial hidden
layer neuron of 20
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Fig. 6 Dynamic adjustment diagram of structure with initial hidden
layer neuron of 2

by the actual training output, which has a very good fitting
effect. Figure 4 is the test effect diagram of RBM-IBPNN
for testing 200 samples in the test process. It can be seen
that the actual output curve fluctuates up and down with the
predicted target curve, which achieves a good tracking of the
predicted target curve and has a good fitting effect. Figure 5
shows the dynamic adjustment diagram of the hidden layer
neurons with the initial hidden layer neuron of 20 in the
training process of the RBM-IBPNN. When the number of
hidden layer neurons reaches 8, the network structure will

Table 1 Performance comparison of different algorithms

Algorithm NIHN NFHN RMSE Running time

SOA-SOFNN [33] * 6 0.0101 11.61

DFNN [34] 2 6 0.0283 17.23

SOFNNGA [35] 2 4 0.0146 63.31

SOFNNGA [35] 12 5 0.0138 91.01

RBF-AFS 2 35 0.1384 *

OLS 2 7 0.0095 *

BPNN 2 2 0.0142 202.78

BPNN 40 40 0.0036 259.39

IBPNN 20 6 0.0027 97.47

IBPNN 2 8 0.0032 114.26

RBM-IBPNN 2 10 0.0019 60.20

RBM-IBPNN 20 8 0.0022 61.13

Where ∗ reprents the unknown data, NIHN reprents the initial number
of hidden layer neurons. NFHN reprents the final number of hidden
layer neurons
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Fig. 7 IBPNN hidden layer neuron variation diagram when sensitivity
splitting threshold is 0.45

never change. Figure 6 is the dynamic adjustment chart of
RBM-IBPNN in the training process. The initial number
of hidden layer neurons is 2, During the training process,
the number of neurons is constantly changing. When the
number of neurons is 10, the structure no longer changes.

To test the performance of the proposed RBM-IBPNN,
the predicting values are compared with those of SOA-
SOFNN [33], DFNN [24], SOFNNGA [35], RBF-AFS,
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Fig. 8 IBPNN hidden layer neuron change diagram when the
threshold of mutual information merge is 2
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Fig. 9 IBPNN hidden layer neuron variation diagram when the
sensitivity deletion threshold is 0.1

OLS. The performance comparison between RBM-IBPNN
and other algorithms is shown in Table 1. Accroding to
the Table 1, The results can indicate that although the
running time of the proposed algorithm is slightly behind
that of DFNN and SOA-SOFNN, the prediction accuracy
of the proposed RBM-IBPNN is much higher than that
of the two algorithms, Therefore, The proposed RBM-
IBPNN has excellent prediction performance. Meanwhile,
compared with the original BPNN, the proposed algorithm
improves the prediction accuracy and convergence speed
significantly, which proves that the proposed algorithm is
scientific and effective.

In order to illustrate the impact of threshold changes on
the model performance, random changes are performed for
the thresholds of mutual information, sensitivity splitting
and sensitivity deleting. The impact on the change of hidden
layer neurons is shown in Figs. 7, 8 and 9, The impact on
the prediction performance is shown in the Table 2.

Table 2 Comparison of prediction performance at different thresholds

Serial number ζ1 ξ2 ξ3 RMSE

1 2 0.15 0.03 0.0193

2 8 0.15 0.03 0.0042

3 3.25 0.45 0.03 0.0052

4 3.25 0.8 0.03 0.0258

5 3.25 0.15 0.1 0.032

6 3.25 0.15 0.15 0.0066
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4.2 Lorenz chaotic time series prediction

Chaotic time series prediction is one of the benchmark
problems for testing the effectiveness of neural network
structures and methods, Lorenz effect is also called butterfly
effect because its phase diagram resembles a butterfly. It
means that weather is sensitive and dependent on initial
conditions, so its long-term prediction is almost impossible.
It’s equation is shown as

⎧
⎨

⎩

dx
dt

= σ(yt − xt )
dy
dt

= −xtzt + γ (xt − yt ),
dz
dt

= xtyt − βzt

(27)

where x denotes the convection intensity, y denotes the
horizontal temperature difference between the rising and
sinking airflows, z is the vertical temperature difference. t

denotes time. σ = 10, γ = 28, β = 8/3. In the experiment,
a time series in the x dimension is generated, the training
sample is 1500 sets of data, and the test sample is 1000 sets
of data. In the network, the number of the initial hidden
layer neurons is 30 and 6, and the expected error is 0.0001.
the mutual information and sensitivity threshold settings are
3, 0.45 and 3, respectively, and the number of iterations of
RBM is 100, the learning rate is set to 1.

Figure 10 shows the effect of RBM-IBPNN on 1500
samples during training. Accroding to the Fig. 10, we can
see that the actual training output curve tracks the target
curve very well and has a very good fitting effect. Figure 11
shows the RBM-IBPNN effect on the test set. It can be

Fig. 10 The training effect diagram of RBM-IBPNN
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Fig. 11 The test effect diagram of RBM-IBPNN

seen from Fig. 11 that the actual output curve achieves good
tracking of the predicted target curve and has a good fitting
effect. Figure 12 is a dynamic adjustment diagram of RBM-
IBPNN with 6 initial hidden layer neurons in the training
process, Fig. 13 is a dynamic adjustment diagram of RBM-
IBPNN with 30 initial hidden layer neurons in the training
process. As can be seen from Figs. 12 and 13, under the
conditions of different initial structures, stability are finally
achieved after a series of adjustments.
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Fig. 12 Dynamic adjustment diagram of structure with initial hidden
layer neuron of 6
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Fig. 13 Dynamic adjustment diagram of structure with initial hidden
layer neuron of 30

To test the performance of the proposed algorithm,
the predicting values of the proposed RBM-IBPNN are
compared with those of ESN [36], R-RTRL [36], RBFNN
[37], DFNN [34], PSO-DBN [33], S-DBN [38], DRDNN
[39]. The performance comparisons between the proposed
algorithm and other algorithms are shown in Table 3. It
can be seen that the proposed algorithm owns a higher
prediction accuracy and convergence speed than the other
algorithms. The results demonstrate that RBM-IBPNN is
scientific and valid.

Table 3 Performance comparison of different algorithms

Algorithm NIHN NFHN RMSE Running time

ESN [36] 6 6 0.0476 *

R-RTRL [36] 6 6 0.0625 *

RBFNN [37] 10 * 0.0985 26.33

DFNN [34] 11 11 0.151 286.41

PSO-DBN [33] 80 80 0.0102 157.24

S-DBN [38] * * 0.0178 50.17

DRDNN [39] * * 0.0232 157.49

BPNN 6 6 0.0324 210.98

BPNN 30 30 0.0325 871.52

IBPNN 6 2 0.0057 167.48

IBPNN 30 2 0.0046 174.54

RBM-IBPNN 6 3 0.0027 146.63

RBM-IBPNN 30 3 0.0020 146.44

4.3 The total phosphorus prediction

Many studies have shown that total phosphorus is the
main cause of eutrophication in water bodies. Therefore,
it is very important to strengthen the detection of total
phosphorus concentration in wastewater effluent. However,
the prediction of total phosphorus in wastewater treatment
process has the characteristics of strong non-linearity and
large time-varying, It is difficult to measure the total
phosphorus concentration of the key variables. This study
uses RBM-IBPNN to predict total phosphorus with the
help of other key variables that can be easily measured.
A total of 350 sets of wastewater water quality data from
June to August 2018 are obtained from a small wastewater
treatment plant in Beijing, 300 sets of data are randomly
selected as training set, and the remaining 50 sets are
selected as test set. The key measurable variables NH4-
N , DO1, COD, SS, T N and ORP are used as inputs
to the prediction model. The key measurable variables and
their meanings are shown in Table 3. In the experiment,
the number of the initial hidden layer neurons is 20 and 5,
and the expected error is 0.0001. the mutual information
and sensitivity threshold settings are 3, 0.45 and 3.25,
respectively, and the number of iterations of RBM is 100,
the learning rate is 2 (Table 4).

Figure 14 shows the effect of RBM-IBPNN on 350
samples during training, accroding to the Fig. 14, we can
conclude that the actual training output curve tracks the
target curve very well and has a very good fitting effect.
Figure 15 shows the RBM-IBPNN effect on the test set.
It can be seen from Fig. 15 that the actual output curve
can achieve good tracking of the predicted target curve
and has a good fitting effect. Figure 16 is a dynamic
adjustment diagram of RBM-IBPNN with 20 initial hidden
layer neurons in the training process. Figure 17 is a dynamic
adjustment diagram of RBM-IBPNN with 5 initial hidden
layer neurons in the training process. As can be seen from
Figs. 16 and 17, the number of neurons in the hidden layer

Table 4 Measurable variables and meaning

Parameter Meaning Unit

NH4-N Ammonium nitrogen concentration mg/L

DO1 Dissolved oxygen concentration mg/L

COD Chemical oxygen demand mg/L

TN Total nitrogen concentration mg/L

SS Solid suspension concentration mg/L

ORP Redox Potential of Anaerobic Pool mV

46 J. Qiao and L. Wang



0 100 200 300 400
Training sample

0.15

0.2

0.25

0.3

ou
tp

ut
Actual output
Training target

Fig. 14 The training effect diagram of RBM-IBPNN

is adjusted rapidly at the beginning and stabilized at the end,
which shows the effectiveness of the structural adjustment
algorithm.

To test the performance of the proposed algorithm,
the predicting values of the proposed RBM-IBPNN are
compared with those of DBN [40], ALRDBN [40], CDBN
[41], SSDBN [17], S-DBN [38], RFNN [42], SCNN [43],
EBP-SVDFNN [44], EBP-FNN [44]. The performance
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Fig. 15 The test effect diagram of RBM-IBPNN
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Fig. 16 Dynamic adjustment diagram of structure with initial hidden
layer neuron of 20

comparisons between the proposed algorithm and the
existing algorithms are shown in Table 5. Accroding to
the table, it can be seen that the proposed algorithm owns
a higher accuracy and convergence speed than the other
algorithms. The results demonstrate that RBM-IBPNN is
scientific and effective.
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Fig. 17 Dynamic adjustment diagram of structure with initial hidden
layer neuron of 5
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Table 5 Performance comparison of different algorithms

Algorithm NIHN NFHN RMSE Running time

DBN [40] 20 20 0.0159 60.52

ALRDBN [40] 20 20 0.0131 33.64

CDBN [41] 20 20 0.0148 58.26

SSDBN [22] 16 * 0.0138 63.71

S-DBN [38] 19 * 0.0510 *

RFNN [42] 8 * 0.3142 *

SCNN [43] 20 20 0.0121 33.19

EBP-SVDFNN [44] * 14 0.1766 85.76

EBP-FNN [44] * 10 0.1944 114.37

BPNN 5 5 0.0230 41.89

BPNN 20 20 0.0229 133.74

IBPNN 5 2 0.0009 48.38

IBPNN 20 2 0.0229 50.75

RBM-IBPNN 5 4 0.0005 49.18

RBM-IBPNN 20 2 0.0010 48.72

5 Discussion

The purpose of this study is to propose a fast and accurate
improved neural network model for nonlinear systems.
According to the evaluation results in three experiments, the
following conclusions can be drawn.

5.1 New structure adjusting citerion

The structure adjustment of the IBPNN depends on the SA
and MI of hidden neurons in the NN. Then, the RBM is
employed to perform parameters initialization of training on
the IBPNN. When the contribution rate of the hidden layer
neurons is too small, the hidden layer neurons are deleted.
When the contribution rate of the hidden layer neurons is too
large, then the hidden layer neurons are split. At the same
time, the MI is used to measure the correlation between
neurons, when the MI of two hidden layer neurons meets the
set standard, it indicates that these two neurons have similar
functions. Therefore, the hidden neurons can be merged into
one neuron. The dynamic adjustment of network structure
can be achieved.

5.2 Higher prediction accuracy and faster
convergence speed

The key problems faced by training algorithms are
prediction accuracy and convergence speed. There are many
reasons that affect prediction accuracy and convergence
speed, such as algorithm architecture, structure learning
method and parameter adjustment. Here we will discuss
the effect of the structure learning method. It can be seen
from Tables 1, 3 and 5. The proposed RBM-IBPNN has

higher prediction accuracy and convergence speed. In the
past, the network structure was preset, and the structure
did not change from beginning to end. The structure was
inevitably redundant. At the same time, the initial weights
and thresholds of the network were given randomly and
the training of the neural network was carried out by using
the stochastic descent algorithm. The above reasons easily
led to the redundancy of the neural network structure, slow
convergence speed of training, low prediction accuracy and
easy to fall into local optimum problems. Therefore, the NN
structure adjustment method based on the SA value and the
MI value automatically increases and deletes the neurons,
reduces the redundancy of the structure. Then, the RBM is
employed to perform parameters initialization of training on
the IBPNN. As can be seen from Tables 1, 3 and 5, it’s easy
to figure out that the convergence speed of the RBM-IBPNN
is slower than those of SOFNNGA, DFNN and RBFNN.
The reason is that the algorithm of parameter adjustment is
based on supervised gradient descent algorithm. To ensure
the convergence of the algorithm, the gradient method
reduces the learning rate and the learning step, which results
in the slow convergence speed.

5.3 Compact structure

Another important issue is the size of the final neural
network. A smaller neural network can make the network
structure more compact. The final structure depends on the
adjustment of hidden layer neurons based on SA value and
MI value, and the training of initial weight and threshold
by the RBM. The proposed RBM-IBPNN algorithm obtains
a more compact structure according to the new dynamic
adjustment criterion. In addition, it can be known from the
changes of initial hidden layer neurons to final neurons in
Tables 1, 3 and 5 that the proposed algorithm achieves a
relatively satisfactory compact neural network structure.

6 Conclusion and future work

This study proposes an RBM-IBPNN, which can automati-
cally adjust its structure. Then, the proposed RBM-IBPNN
is evaluated on nonlinear system identification, Lorenz
chaotic time series prediction and the total phosphorus pre-
diction problems. The expermental results demonstrate that
the proposed RBM-IBPNN is better than other compared
algorithms. The advantages of the algorithm are as follows.

1) The algorithm relies on the SA and MI of the neurons
of the hidden neurons, as well as the RBM to meet the
key design objectives. Its basic design idea is to adjust
the structure based on SA and MI values between the
hidden neurons, and RBM is used to train the initial
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weights and thresholds of the IBPNN. This design
strategy can well adapt to the different situations that
may occur at different times in the design process of
BPNN.

2) The algorithm automatically adjusts the structure of the
NN by SA value and MI value between the hidden
neurons. When the contribution rate of the hidden layer
neurons is too small, the hidden layer neurons are
deleted. When the contribution rate of the hidden layer
neurons is too large, then the hidden layer neurons are
split. At the same time, the MI is used to measure
the correlation between neurons, when the MI of
two hidden layer neurons meets the set standard, it
indicates that these two neurons have similar functions.
Therefore, the hidden neurons can be merged into
one neuron. According to the above design criteria, a
compact neural network can be obtained. This design
solves the problem of over-fitting and improves the
prediction performance of the network. and then the
initial weights and thresholds of the network are trained
by using the RBM, thus solving the problem of slow
convergence speed and easy to fall into local optimum.

Regardless of the structure of the original NN, the
proposed algorithm can maintain good performance, and
it can be applied to many practical applications, three of
which have been described in this paper. In this paper, a
large number of experiments are carried out to compare
RBM-IBPNN with other algorithms. In the future, our main
focus is to improve the RBM-IBPNN algorithm and greatly
improve the convergence speed and to some extent improve
the prediction accuracy of the network.
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