
Applied Intelligence
https://doi.org/10.1007/s10489-019-01602-5

Collision avoiding decentralized sorting of robotic swarm

Utkarsh Kumar1 · Adrish Banerjee1 · Rahul Kala1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Sorting the swarm of robots is required when the robots are carrying different loads and they can not simply swap the loads.
In 2016, Zhou et al. presented an interesting algorithm to sort a swarm of robots, wherein the authors made a main tree and
a feedback tree to assign a topology to the robots, based on which the robots moved while arranging themselves in a sorted
order. While the approach was very interesting and the results were critically analyzed by the authors, we see a critical
problem that the approach did not account for collisions because of which the results can be very different. In this paper, we
extend the work of Zhou et al. by enabling the robots to avoid collision by using a geometric approach called as “follow the
gap” method. Together both the algorithms allow robot swarm to sort themselves in a straight line while avoiding collision
simultaneously.

Keywords Swarm robotics · Obstacle avoidance · Sorting

1 Introduction

Swarm robotics is the study of coordination among a large
group of simple and low cost robots [1]. The coordination is
achieved by using some local behavior of individual robots.
Swarms robotics is highly influenced by nature. In nature
we see several insects form a swarm and they collectively
perform more complicated tasks which they are not capable
of performing individually, like ant or bee colonies, fish
schools etc [2]. Swarm robotics is also influenced by the
same idea. Instead of using expensive robots we will use
several low cost robots which will come together to carry
out a specific task. Swarm behavior is highly influenced
with swarm intelligence and centralized or decentralized
control over them for their coordination.

Research supported by the Science and Engineering Research
Board, Department of Science and Technology, Government of
India through Research Grant ECR/2015/000406.

� Utkarsh Kumar
utkarsh.dpsvns@gmail.com

Adrish Banerjee
adrish.banerjee24@gmail.com

Rahul Kala
rkala001@gmail.com

1 Indian Institute of Information Technology, Allahabad, India

Following are few characteristics of swarm robotics [3]:

1. Robots in the swarm are autonomous.
2. Robots can act to change the environment.
3. Robots cooperate to perform a task.
4. Robots do not have global knowledge.
5. Generally the robots are homogeneous.
6. The system is scalable. [1]

Due to low cost and high effectiveness, swarm robots have
various applications in defense, olfaction detection, smart
cropping, mapping of environment, space exploration etc.

Since there are various applications of swarm of robots,
they need to cooperate to perform the task. To cooperate
they must form some kind of ordered or unordered pattern.
Since the robots are very simple they are equipped with
very simple resources that is they have low memory, they
have short lifespan (battery). To utilize robots in the most
efficient manner, sometimes we need to sort the robots
based on some specific attribute(s). The attribute(s) may be
the amount of battery left in robots, number of wheels of
robots working correctly, etc.

Many robotic tasks require robots to be present in a
desired order. For instance, a group of robots boarding a
vehicle may need to do so in a particular order so as to
utilize the space in the vehicle more efficiently. Similarly,
there can be a certain preference when deploying or ejecting
robots from that vehicle. A priority queue of agents may be
required when the agents need to line up for refuelling or
service.

(2020) 50:1316–1326

Published online: 1 2020January3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-019-01602-5&domain=pdf
mailto: utkarsh.dpsvns@gmail.com
mailto: adrish.banerjee24@gmail.com
mailto: rkala001@gmail.com


There are numerous applications wherein sorting and
orderings are important. Consider the problem of prediction
of protein complex as done by Lei et al. [4] in protein–
protein interaction. The authors first make a protein–protein
interaction network as a dynamic graph to capture the
temporal information. The core of such graphs act as a
virtual heat centre to attract the artificial moths, which
approach the heat source in a spiral motion. This makes the
protein complex. The salps are another swarm agents that
show interesting swarm behaviors. Imitating their motion
behavior, Faris et al. [5] designed an algorithm for feature
selection for machine learning algorithms.

Our objective is to organize the swarm robots in sorted
and equally spaced sequence (from lowest to highest
labels). While doing so we want to maintain the connected
communication network among the robots.

Sorting is important because of the following reasons:

1. In case of homogeneous robots we can obtain sorting
behavior by simply swapping the tasks, however
swapping tasks requires agreement (consensus) among
the robots and transferring data is expensive.

2. Sometimes robots might be carrying different loads and
because of the structural difference loads can not be
swapped.

3. When robots differ in intrinsic quantities (e.g. battery
level) sorting is required as these quantities can not be
swapped.

Zhou et al. [6] solved the problem of sorting of robots
in a swarm in a decentralized manner. They proposed a
graph based algorithm with topological and geometrical
operations to sort the swarm of robots. The algorithm takes
O(n2) time and O(n2) distance to sort the robots. Yet
the algorithm is scalable and only requires knowledge of
the relative direction of neighbours with respect to their
local coordinates. However the authors do not account
for collisions between the robots. This creates a severe
problem in the analysis and results presented by the authors.
Collision accounts for a major share of computational time
and travel time in any multi-robot system. A deliberative
motion planning algorithm spends most of the time in
collision checking of the prospective states, which are used
to create a solution. In reactive navigation of robots, mutual
collision between robots restricts robots from moving at
their top speeds, forces a robot to take a sub-optimal path so
as to avoid collision with some other robot, makes a robot
wait for other robot to create way, introduces the dilemma
of cooperation and competition between the robots. Unlike
humans, robots have difficulty handling dynamic obstacles.
A human may use common sense to perceive and overcome
a deadlock, however very few robots can easily cause
deadlocks to each other. The underlying algorithm only

sorts the robot in a straight line, but introduction of collision
avoidance makes it more realistic.

The paper is organized as follows: Section 2 discusses
the related work done so far, Section 3 describes the
sorting algorithm of Zhou et al. [6], Section 4 describes
collision avoidance technique Follow the Gap Method [7],
Section 5 discusses the experiment performed and results,
Section 6 compares the presented technique along with key
discussions about the presented algorithm, then we finally
conclude paper in Section 7.

2 Related work

There is very limited work available on sorting a swarm
of robots. Litus and Vaughan [8] worked on using Double
Bracket Flow to build a dynamical system to model
the robots’ positions. Though this yielded compact and
analytical solutions, there were certain constraints that made
this approach infeasible in most situations. Firstly, the
robots need to be placed on a straight line parallel to some
axis initially and the sensors should be able to sense over
arbitrarily large distances, which is not practical is many
situations.

Krupke et al. [9] used echo (wave) algorithm [10]
to develop Parallel Distributed Sorting Algorithm. The
algorithm was able to sort the robots in O(n) time
complexity where n is the number of robots. But the
algorithm was not scalable.

In a recent work Kala [11] showcased navigation of
a very large number of robots using collision avoidance.
The robots used a geometric method to compute the best
heading direction, while also used a deadlock detection and
avoidance algorithm.

Golas et al. [12] also proposed a solution for collision
avoidance between a large number of agents. The authors
also considered for long-range collision avoidance. The
collision avoidance in all these algorithms is applied to
heterogeneous multi-robot motion planning problem rather
than robotic swarms.

Shang et al. [13] proposed a method to sort swarm of
robots based on their hardware variation by categorizing
their behavior. They have modeled robots with IR sensor,
PI controller and differential drivetrain. 210 robots were
trained and tested in two different arenas (differ by the
reflective pattern). The authors intend to use their technique
in automatic assignment of tasks to the robots based on their
behavior.

Kumar et al. [14] proposed decentralized self sorting
technique for heterogeneous robots, which uses differential
artificial potential field. Their approach is able to segregate
robots of type A from the robots of type B.

Collision avoiding decentralized sorting of robotic swarm 1317



Fig. 1 Main Path Construction

Saad et al. [15] proposed an algorithm for distributed
network topology design. The algorithm is inspired by
the bee colony and was formulated as multi-objective
optimization problem.

Nitschke et al. [16] presented that Collective Neuro-
Evolution (CONE) helps better in evolving controller in
simulated robots in a better way as compared to other
methods. They tried to study the evolution in structure
building task in which robots have to co-operate and put
block in a sequential manner to build a structure.

Ding et al. [17] proposed a gossip based sorting
technique based on cluster size estimation. The approach
sorts different set of robots (type A from type B) from
mixed group. In this approach robots exchange information
with their neighbour to find a majority, when majority
exceeds a threshold limit, majoritarianism is said to form
a barrier and minorities are asked to leave to another free
space. Authors have used ARGoS simulator to validate their
approach and experimented with two groups of robots.

Kalles et al. [18] proposed Emerge Sort which follows
ant based algorithms. The overall sorting is achieved by
using the local operators. They have used triplets of robots
with direction bias as pheromones to achieve the overall
sorted behavior. One advantage is that there is no need to tell
in advance which way to sort, direction bias takes care of
it.

3 Sorting algorithm

Zhou et al. [6] proposed distributed sorting algorithm. In
the algorithm, the authors have defined two operations:
topological and geometric. Topological operations are
responsible for maintaining the communication among the
robots while the geometric operation is responsible for the
actual movement of the robots. Model assumption and the

operations of the algorithm as defined by the authors in [6]
are described in the following subsections.

3.1 Model assumptions

We have n number of robots. Initially all the robots form
an undirected communication graph G(V, E). The robots
form the vertices (V ) of the graph. There exists an edge
between the two robots a and b if the robots are close
enough so that they can communicate with each other
without the help of any other robot c. We assume that
the communication range is a disk of radius r and there
exist bidirectional communication between the two robots.
A robot is in the neighbourhood of the other robot if both
of them can communicate directly. Each robot has a unique
serial number. Robots have some attribute value v. If there
is a tie between the attribute values of the two robots the tie
is broken with the help of serial number sn, i.e. comparison
is based upon ordered pair < vi, sni >.

The robot with minimum value is known as the global
minimum and one with the maximum value is known as the
global maximum.

All the robots are equipped with a timer and all of them
share the same fixed time interval. After each interval all the
robots exchange their information with their neighbors.

The assumptions made can be summarized as follows:

1. Initially the communication network is connected and
remains connected till the execution of the algorithm. If
this rule is violated we can not recover from the failure.

2. A robot neither collides nor it fails. If it fails it is
completely removed from the system.

3. All the robots travel at the same speed.

Since the algorithm presented here is a distributed
algorithm, no such type of algorithm works with a
disconnected network and hence network connectivity has
to be maintained while the robots move. The assumption
that robots do not fail means that any robot which fails,
is removed from the system and hence no failed robots
participate in the sorting. The third assumption that all
the robots travel at the same speed is just to keep the
model simple and an easy implementation in the simulated
environment. Similar assumptions are made in [19] and
[20].

3.2 Algorithm

The algorithm presented in [6] is the modified version
of Breadth First Search (BFS) and is divided into two
types of operations: topological operations and geometric
operations. The algorithm proceeds by making a data
structure called the main path. Topological operations are

U. Kumar et al.1318



Fig. 2 Insertion operation if p
<s <u, here p = 1, s = 3 and u =
5

used for the formation of the main path, deleting and adding
the edges as required. Geometric operations deal with the
actual motion of the robots.

3.2.1 Constructing the main path

Main path consists of the edges which connects the global
minimum, the global maximum and is initially the shortest
path between the two. The main path is constructed using
BFS algorithm with the help of two spanning trees primary
tree and the feedback tree.

Primary tree construction starts from the global minimum
and requires parent selection by each robot from one of
its neighbouring robots. The selected parent is called the
primary parent. Global minimum has no primary parent.
The robots represent the vertices and parent selection
(directed edges) represents the edge. The robot chooses one
of its neighbor as parent and stores its serial number. These
parents may change as the algorithm proceeds. We use BFS
spanning tree to construct the primary tree.

Feedback tree construction uses the same approach as
described above except that it starts from global maximum
and parent selected is known as feedback parent. Global
maximum has no feedback parent. Node a selects node
b as a parent if node b is either parent of node a in
primary tree or node b is child of node a in primary
tree.

Based on the above two spanning trees we construct the
main path as follows:

a. A robot is said to be on the main path if both of its
parents (primary and feedback) are different.

b. A robot is said to be in branch if both of its parents
(primary and feedback) are same.

Figure 1 shows a connected graph of eight robots,
annotated with the values according to which they are
to be sorted. Robot with value 1 is global minimum
and robot with value 8 is global maximum. Blue arrows
represent the primary tree rooted at the global minimum
and the red arrows represent the feedback tree rooted at

global maximum. Arrow direction tells about the parent
information, for example, 1 is parent of 2 in primary tree.

3.2.2 Geometric operations

Geometric operations are responsible for the motion of
robots. Following are the two types of motion defined for
the robots in the main path and in the branches:

a. A robot in the main path moves towards the mid point
of its primary and feedback parent.

b. A robot in the branch moves towards its parent.

Global minimum and global maximum do not move.

3.2.3 Main Path Topological Operation

There are two main operations defined on main path:
Insertion and Deletion.

Insertion operation adds a branch robot to the main path.
The operation is defined such that a robot is inserted to the
main path in the correct local order. If u is a main path robot
and it has two neighbors p and s, if:

a. p is parent of both u and s i.e. u and s are siblings
b. s is in branch
c. p is in main path
d. p<s<u

then, u chooses s as its parent and s is inserted into the main
path.

Figure 2 depicts the insertion operation. Black arrows
represent the main path and red arrows represent that the
robot is in the branch. Robot 1 (p) is parent of both robots 3
(s) and 5 (u). Robot 3 is inserted into the main path accord-
ing to the condition mentioned.

Deletion operation deletes a locally unordered robot from
the main path. If u is a robot on the main path, p and g are
neighbours of u and are on the main path, if:

a. p is parent of u

b. g is parent of p i.e. g is grandparent of u

c. g>p or p>u

1319Collision avoiding decentralized sorting of robotic swarm



Fig. 3 Deletion operation if g
>p or p >u in (a) p = 8, g = 3
and u = 5 in (b) p = 1, g = 3 and
u = 5

then, u selects g as its parent instead of p and p is deleted
from the main path.

Figure 3 depicts the deletion operation from the main
path. (a) part of the Figure shows the case when p>u where
robot 8 is p, robot 3 is g and robot 5 is u. (b) part of the
Figure shows the case when g>p where robot 3 is g, robot
1 is p and robot 5 is u. Black arrows represent the main path
and red arrows represent branches.

3.2.4 Branch topological operation

Algorithm completes when all the robots are inserted into
the main path and are arranged in order. To insert the
branch robots into the main path, two branch topological
operations: Navigation to Minimum and Navigation to
Maximum are defined.

Navigation to Minimum operation is responsible for the
movement of a branch robot towards the global minimum.
In the local sense it makes a robot move closer to its
grandparent. If u is in a branch and it has neighbouring
robots p and g, if:

a. p is on main path and p is parent of u

b. g is parent of p i.e. g is grandparent of u and g is on
main path

c. u<p

then, u selects g as its parent.

Figure 4 shows navigation to minimum operation. Here
robot 5 is p, robot 3 is g and robot 4 is u. Black arrows
represent the main path and red arrows represent the branch.

Navigation toMaximum operation is similar to the Naviga-
tion to Minimum operation except it allows a robot to move
towards the global maximum. If u is a branch robot, p and
s are neighbors and are on the main path, if:

a. p is parent of u

b. p is parent of s i.e. s and u are siblings
c. u>p and u>s

then, u selects s as its parent.
Figure 5 shows navigation to maximum operation. Here

robot 3 is p, robot 8 is u and robot 5 is s. Black arrows
represent the main path and red arrows represent the branch.

4 Collision avoidance

The greatest limitation of the work of Zhou et al. [6] is
that the authors do not incorporate any collision avoidance
algorithm that makes the results unrealistic. The purpose of
this section is to propose integration of collision avoidance
in the same approach.

The foremost decision is the selection of the collision
avoidance algorithm. The artificial potential field [21] and
fuzzy based algorithms are not good candidates since the

Fig. 4 Navigation to minimum
operation, here p = 5, g = 3 and
u = 4

1320 U. Kumar et al.



robots should finally make a straight line even at high
densities, while the potential based algorithms can make
it very difficult for a robot to squeeze itself in-between
two robots already in a sorted line. Similarly, the velocity
obstacle approach [22] is not a good candidate because the
simple robots may not be in a position to estimate the other
robot’s speed.

Especially considering that the robots need to ultimately
make a line, the geometry based algorithms are a good
choice. Since the robots are cheap and proximity sensing of
a limited resolution, approaches (e.g. [23]) assuming precise
locations of the other robots are undesirable. The most
relevant work is hence by Sezer et al. [7] which attempts
to maintain a very high clearance from other robots and
can thus work with very limited sensing and very large
errors.

Sezer et al. in [7] proposed an obstacle avoidance method
named as Follow the Gap Method. The method works by
first constructing a gap array in the proximity of the agent
which can be sensed using the appropriate sensors, and
then it calculates heading angle to avoid the obstacles while
considering the goal position at the same time. Authors have
assumed robots and obstacles to be spherical in shape with
radius r and R respectively. To calculate the head angle,
authors have first assumed the agent as a point robot and
inflated the obstacles by a radius r , hence the obstacles are
now of radius r +R. A reference line is chosen along which
all the angular measurements are to be done. From the point
robot, left (θl) and right (θr ) border angles are measured for
all the obstacles. Figure 6 shows angular measurement for
an obstacle where ∠bcx = θr and ∠acx = θl .

All the angular ranges excluding the border angle range
are included in the gap array. Then from the gap array the
direction with maximum gap is chosen. If there are two
obstacles A and B, then heading angle (θh) is calculated
using the approximation in (1).

θh = θA
r + θB

l

2
(1)

Figure 7 shows an illustration of heading angle calcula-
tion where ∠bcx = θB

l and ∠acx = θA
r . The algorithm can

be summarized as follows:

a. First make the robot a point robot and inflate all the
obstacles.

b. Maintain an array of all the obstacle angles.
c. Using the array of obstacle angles, find the largest gap.

d. Using the obstacles which inscribe the largest gap,
calculate the heading angle.

Algorithm 1 shows the pseudocode for sorting algorithm
and algorithm 2 shows the pseudocode for calculating
the new position (towards the mid point of primary and
feedback parents). To check if a position x is collision
prone or not, we can assume that the center of a robot
is occupying position x. Then we can compute Euclidean
Distance (dist (x, y)) from the center point y of all the other
robots. Here, r is radius of the robot. From (2) if dist (x, y)

is less than or equal to 2 ∗ r then there is collision between
the two robots centered at position x and y respectively.
Suitable changes can be made in Algorithm 2 to make it
moveTowardsParent.

dist (x, y) ≤ 2 ∗ r (2)

1321Collision avoiding decentralized sorting of robotic swarm



Fig. 5 Navigation to maximum
operation, here p = 3, s = 5 and
u = 8

5 Experiment and result

To perform the experiment we have developed simulation
codes. The appropriate parameters, for example, commu-
nication range and radius of robots can be varied as per
requirement. We have also assumed a grid of 100 × 100 as
workspace for robots. We have implemented the algorithm
in [6] and have tested it with 15, 30, 45 and 60 robots.

The number of iterations an algorithm takes to terminate
both in the case of collision detection and no collision
detection are compared. Figure 8 represents the initial
configuration of fifteen robots in their workspace. Attribute
value of robots (according to which sorting is to be done)

Fig. 6 Angle Measurement

is annotated. Blue and black lines represent primary and
feedback trees respectively. Figure 9 shows algorithm in
action after few iterations. Figure 10 shows the algorithm’s
output a few iterations before its termination. Table 1 shows
the comparison between the algorithms with and without
collision detection.

From Fig. 11, we observe that as the number of robots
increase there is approximately linear increment in the
number of iterations of the algorithm. While from Fig. 12,
we observe that the number of iterations is increasing
exponentially with an increase in the number of robots.
As the number of robots increases so does the number of
collision which resembles the real world for example; if
there are more people in the same workspace, chances of
a collision increases. Hence to avoid collision, robots may
divert and may take longer route to reach their goal position
leading to the more number of iterations.

6 Discussion

The algorithm presented in this paper is highly adaptive
as compared to algorithm in [9]. If a new minimum
or maximum value robot is added to the system, Wave
algorithm [9] has to exchange O(n2) messages in order
to find out the new minimum and maximum robot, while

Fig. 7 Heading Direction

1322 U. Kumar et al.



Fig. 8 Initial Configuration

in our case topological operations will take care of it. For
topological operations in the presented algorithm there are n
robots with n-1 parent child connections and since the graph
is bidirectional there can not be a cycle. Out of insertion,
deletion and navigation, no topological operations produces
a cycle as none of them are allowed to select a descendant as
a parent, similarly there are only two geometric operations:
move towards parent, and move towards the mid point of
primary and feedback parent. Move towards the mid points
is a main path operation and in doing so the distance
between parent and child does not increase [24], hence the
main path does not break. Move towards the parent is a
branch operation and hence the distance between the parent
and child will always be decreasing. In conclusion both the
operations are safe. The feedback tree is generated after
the primary tree and the tree is made in such a way (by
restricting the selection of parents or expansion, explained

Fig. 9 Sorting algorithm in action

Fig. 10 Sorted robots almost in a straight line

in Section 3.2.1), such that the main path is present in the
feedback tree as well. The purpose of the feedback tree is to
allow the robots to know if they are in the main path. Hence
the cycles will never be formed.

A robot in the correct order and close enough to main
path is accepted by it. Once in main path robot tries to reach
to the mid point of its parents (primary and feedback) which
places it in visual main path (straight line joining global
minimum and maximum) and therefore for large number of
robots main path will have all the robots connected in order
of their priority. However robots may not be able to fit in
physically and hence they may form a zig-zag path. The
situation is shown in Fig. 13.

When two branch robots are on different sides of the
path, both the robots will keep moving towards their parent,
but only one of them can be inserted at the same position in
one round. Multiple insertions can occur at the same time
but with different parent child pair. If both of them try to
get inserted at the same position then one request has to be
dropped. This is implemented using a handshaking between
every pair of robots that form a parent child relationship.
Assume the robots i and j simultaneously request the robot
k to act as the parent. k will only accept the request that
comes first and will perform the handshaking (say i). Since

Table 1 Comparison of Algorithms without collision and with
collision detection

Number of robots Number of itera-
tions (No Colli-
sion Avoidance)

Number of iter-
ations (Collision
Avoided)

15 132 138

30 155 230

45 174 1252

60 196 2960

1323Collision avoiding decentralized sorting of robotic swarm



Fig. 11 Number of iterations of algorithm without collision detection

j does not get a positive response, it knows that it could not
get inserted in the path and looks for an alternative attempt
as per the functioning of the algorithm. It must be stressed
that the term lying on the main path means symbolically in
the path represented by the trees and not geometrically to
line in the straight line joining the parents. The symbolic
joining is hence an atomic operation.

As long as the communication graph does not break,
follow the gap method for collision avoidance can take
care of obstacles other than robots itself. It must be noted
that a reactive planning technique is used for the physical
navigation of the robot, which cannot counter complex
obstacles and especially the concave ones. These limitations
apply to the proposed approach as well. As a simple
example, consider the problem shown in Fig. 14. The robot
will select a gap as shown in Fig. 14. The robot at every
step selects this gap, which makes it away from the obstacle

Fig. 12 Number of iterations of algorithm with collision detection

Fig. 13 A case when the distance between minima and maxima is not
large enough to accommodate all robots

(other than the robot shown in black). After some time, the
robot will be sufficiently away from the obstacle, wherein
its direction of motion to goal is clear and the robot can
safely move towards the goal.

What is wrong with just doing collision avoidance
reactively when the robots try to go to their pre-allocated
places? This can be one of the possible argument against
the work presented in this paper, but, in the presented
work, robot's positions are not pre-allocated. The positions
are initialized randomly, their position in the final sorted
sequence is the result of the algorithm. The algorithm can
be terminated when the distance between the mid-point
of parents and robot's position is below a threshold. The
sorting implemented is purely decentralized. In a centralized
scheme it is possible to get all IDs, to sort them and
to interpolate a line to get their final positions; making
it a multi-robot motion planning problem. However, in
this approach there is no centralized robot that has the
capacity to do a central sorting. The sorting happens in a
purely decentralized manner as the robots move, based on
their neighbors. The collision avoidance is done reactively.
The algorithm without collision checking has a O(n2)

complexity in the worst case, while the average case
complexity is near-linear, also clear from the graphs. In case
of collision checking, with every move associated with a
robot, a robot may have to wait for all the other robots to
clear one after the other. So, the complexity becomes O(n3)

in the worst case, while it is near-quadratic in the average
case. This is the complexity shown.

The controller presented in [14] is able to sort the
heterogeneous robotic swarm but it uses artificial potential
field methods which are easy to implement but we can
not guarantee that it will always work, these methods can
converge to a local minima instead of a desired goal. Graph
based algorithm is robust, ensures a sorted sequence in
ascending order as proved in [6].

Gossip based sorting technique [17] segregates robots of
type A from robots of type B but the algorithms don’t have
any on the fly collision avoidance mechanism rather robots
stop and wait for others to clear the arena in order to move.
While collision avoidance method in this paper calculates
the heading direction dynamically based on current position
of the robots.

1324 U. Kumar et al.



Fig. 14 Collision avoidance in
case of obstacles other than
robots itself

7 Conclusions

There is no collision avoidance in the baseline algorithm of
this experiment, the introduction of collision avoidance is
the contribution of this paper. The original paper modelled
swarms where the individual robots were assumed to be
point sized and hence there was no need of a collision
avoidance scheme. Practically the robots have a size, which
is added in the proposed method.

We have successfully implemented the algorithm pre-
sented in [6] and integrated it with the collision avoidance
technique, Follow the Gap Method [7]. The paper aimed at
making the approach of Zhou et al. [6] realistic in nature
by the introduction of collision avoidance. The results show
that there can be a significant difference in results with the
introduction of collision avoidance, with the number of iter-
ations increasing exponentially with the number of robots.
Overall, the proposed work successfully carries the decen-
tralized sorting of robots while also avoiding collisions. This
paper only discusses about sorting the robots in a straight
line. We would like to extend our work so that robots can
sort themselves in some simple 2-D shapes, for example,
square, circle, etc.

Acknowledgements Authors would like to acknowledge Akanshi
Mittal for her valuable contribution in producing a flawless document.

References

1. Tan Y, Zheng Zy (2013) Research Advance in Swarm Robotics.
Defence Technol 9(1):18–39

2. Navarro I, Matia F (2013) An Introduction to Swarm Robotics.
ISRN Robot 2013:1–10

3. Brambilla M, Ferrante E, Birattari M, Dorigo M (2013) Swarm
robotics: A review from the swarm engineering perspective.
Swarm Intell 7(1):1–41

4. Lei X, Fang M, Fujita H (2019) Moth-flame optimization-based
algorithm with synthetic dynamic ppi networks for discovering
protein complexes. Knowl-Based Syst 172:76–85

5. Al-zoubi AM, Mirjalili S, Fujita H, Lei X, Fang M, Fujita H
(2018) An efficient binary salp swarm algorithm with crossover
scheme for feature selection problems. Knowl-Based Syst 154:43–
67

6. Zhou Y, Goldman R, Mclurkin J (2016) An Asymmetric
Distributed Method for Sorting a Robot Swarm. IEEE Robot
Autom Lett 2(1):261–268

7. Sezer V, Gokasan M (2012) A novel obstacle avoidance algo-
rithm: “Follow the gap method”. Robot Auton Syst 60(9):1123–
1134

8. Litus Y, Vaughan RT (2010) Fall in! Sorting a group of robots with
a continuous controller. CRV 2010 - 7th Canadian Conference on
Computer and Robot Vision, pp 269–276

9. Krupke D, Hemmer M, McLurkin J, Zhou Y, Fekete SP (2015) A
parallel distributed strategy for arraying a scattered robot swarm.
IEEE International Conference on Intelligent Robots and Systems
2015-December, pp 2795–2802

10. Chang EJ (1982) Echo algorithms: Depth parallel operations on
general graphs. IEEE Trans Softw Eng SE-8(4):391–401

11. Kala R (2018) Routing-based navigation of dense mobile robots.
Intel Serv Robot 11(1):25–39

12. Golas A, Narain R, Curtis S, Lin MC (2013) Hybrid Long-
Range Collision Avoidance for Crowd Simulation. IEEE Trans Vis
Comput Graph 20(7):1022–1034

13. Shang B, Crowder R, Zauner KP (2014) Swarm Behavioral
Sorting based on Robotic Hardware Variation. 4th Interna-
tional Conference On Simulation And Modeling Methodolo-
gies, Technologies And Applications (SIMULTECH), pp 631–
636

14. Kumar M, Garg DP, Kumar V (2008) Self-sorting in a swarm
of heterogeneous agents. Proceedings of the American Control
Conference, pp 117–122

15. Saad A, Khan SA, Mahmood A (2018) A multi-objective
evolutionary artificial bee colony algorithm for optimizing
network topology design. Swarm and Evolutionary Computation

16. Nitschke GS, Schut MC, Eiben AE (2012) Evolving behavioral
specialization in robot teams to solve a collective construction
task. Swarm and Evolutionary Computation

17. Ding H, Hamann H (2014) sorting in swarm robots using
Communication-Based cluster size estimation. In: Dorigo M
et al (eds) Swarm intelligence. ANTS 2014. Lecture notes in
computer science, vol 8667. Springer, Cham, pp 262–269

18. Kalles D, Mperoukli V, Papandreadis A (2012) Emerge-Sort :
Swarm intelligence sorting. In: Maglogiannis I, Plagianakos V,
Vlahavas I (eds) Artificial intelligence: Theories and applications.
SETN 2012. Lecture notes in computer science, vol 7297.
Springer, Berlin, pp 98–105

1325Collision avoiding decentralized sorting of robotic swarm



19. Ding H, Hamann H (2014) Sorting in swarm robots using
communication-based cluster size estimation. Swarm Intelligence,
Springer International Publishing, pp 262–269

20. Degener B, Kempkes B, Kling P, Meyer auf der Heide, F (2010) A
continuous, local strategy for constructing a short chain of mobile
robots. Structural Information and Communication Complexity.
Springer, Berlin, pp 168–182

21. Khatib O (1986) Real-time obstacle avoidance for manipulators
and mobile robots. Autonomous Robot Vehicles, pp 396–404

22. Fiorini P, Shiller Z (1998) Motion planning in dynamic
environments using velocity obstacles. Int J Robot Res 17(7):760–
772

23. Ye C, Webb P (2009) A sub goal seeking approach for reactive
navigation in complex unknown environments. Robot Auton Syst
57(9):877–888

24. Degener B, Kempkes B, Kling P, Meyer auf der Heide, F (2010) A
continuous, local strategy for constructing a short chain of mobile
robots. In: Patt-Shamir B, Ekim T (eds) Structural information
and communication complexity. Springer, Berlin, pp 168–
182

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1326 U. Kumar et al.


	Collision avoiding decentralized sorting of robotic swarm
	Abstract
	Introduction
	Related work
	Sorting algorithm
	Model assumptions
	Algorithm
	Constructing the main path
	Primary tree
	Feedback tree

	Geometric operations
	Main Path Topological Operation
	Insertion

	Branch topological operation
	Navigation to Maximum



	Collision avoidance
	Experiment and result
	Discussion 
	Conclusions 
	References




