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Abstract

Feature selection plays a critical role in many applications that are relevant to machine learning, image processing and gene
expression analysis. Traditional feature selection methods intend to maximize feature dependency while minimizing feature
redundancy. In previous information-theoretical-based feature selection methods, feature redundancy term is measured
by the mutual information between a candidate feature and each already-selected feature or the interaction information
among a candidate feature, each already-selected feature and the class. However, the larger values of the traditional feature
redundancy term do not indicate the worse a candidate feature because a candidate feature can obtain large redundant
information, meanwhile offering large new classification information. To address this issue, we design a new feature
redundancy term that considers the relevancy between a candidate feature and the class given each already-selected feature,
and a novel feature selection method named min-redundancy and max-dependency (MRMD) is proposed. To verify the
effectiveness of our method, MRMD is compared to eight competitive methods on an artificial example and fifteen real-
world data sets respectively. The experimental results show that our method achieves the best classification performance

with respect to multiple evaluation criteria.

Keywords Machine learning - Feature selection - Information theory - Feature redundancy

1 Introduction

Feature selection is widely used in data preprocessing [13,
20] and intends to select the most informative feature
subset from an original feature set [10, 19, 30]. Feature
selection methods can reduce the computational cost of
data analysis and improve the classification performance
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[11, 26]. Therefore, feature selection methods have received
increasing attention.

According to different selection strategies, feature
selection methods can be divided into three models [5,
8, 27]: filter models, wrapper models, and embedded
models. Filter models are independent of any classifier
and they evaluate a feature based on a specific criterion.
Wrapper models are dependent on classifiers and embedded
models select the feature subset during the learning stage.
Compared to wrapper models and embedded models, filter
models have lower computational cost [12, 24]. In this
study, we focus on filter models.

There are many techniques that are applied during
the feature selection process, such as similarity learning,
sparse learning, statistics and information theory [15].
Information-theoretical-based feature selection methods are
the focus in the area of data preprocessing [4, 28].

To capture a compact feature subset from an original
feature set, traditional feature selection methods focus on
minimizing the feature redundancy while maximizing the
feature dependency. However, a critical issue is that the
larger values of the traditional feature redundancy term
do not indicate the worse a candidate feature because a
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candidate feature can obtain large redundant information,
meanwhile offering large new classification information.

As described in Fig. 1, Xz and Xj» are two candidate
features, X ; is an already-selected feature and Y is the class.
One of the traditional feature redundancy term is the mutual
information between the candidate feature and the already-
selected feature, and the feature redundancy term can be
represented as the union areas of 1 and 3 and the union areas
of 5 and 6 in the Fig. 1. Another one of the traditional feature
redundancy term is the interaction information among the
candidate feature, the already-selected feature and the class,
and the feature redundancy term can be represented as the
area 3 and the area 6. Obviously, the area 3 is larger than
the area 6 and the union areas of 1 and 3 are larger than the
union areas of 5 and 6. That is, the redundancy of feature
X1 is larger than the feature X;,. However, we can discover
that the area 2 is larger than the area 7, that is, X offers
more new classification information than that of X, with
respect to the class Y. In fact, the candidate feature X is
more important than the feature Xy;.

To address this issue, we propose a novel feature
redundancy term and we select the most informative
features by minimizing the new feature redundancy term
while maximizing the feature dependency term.

The main contributions in this paper are as follows:

(1) In this paper, we design a new feature redundancy
term that considers the relevancy between a candidate
feature and the class given each already-selected
feature.

(2) We discuss the case that the candidate feature is
independent of the already-selected feature, in other
words, the candidate feature does not contain any
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Fig. 1 Venn diagram illustrates the relation between the feature and
the class

redundant information when the candidate feature is
independent of each already-selected feature.

(3) We propose a new feature selection method that
maximizes feature dependency while minimizing the
new feature redundancy term named min-redundancy
and max-dependency (MRMD).

(4) We execute MRMD method and eight compared
methods on an artificial example to show the
feature selection process of different feature selection
methods.

(5) Finally, MRMD method is compared to eight feature
selection methods on fifteen real-world benchmark
data sets that are from different research areas to verify
the effectiveness of our method.

We organize this paper as follows: Section 2 states
theoretical background for this work. In Section 3, we
review previous related work. Section 4 proposes a novel
feature selection method. In Section 5, we describe and
discuss the experimental results on an artificial example and
fifteen real-world data sets respectively. Finally, Section 6
concludes this work and gives a plan for future research.

2 Information theory

In this section, we introduce some basic concepts of
information theory. There are many metrics in information
theory, such as mutual information, conditional mutual
information and joint mutual information. Let X, Y and Z
be three random variables. Mutual information is defined as
follows [7]:

I(X;Y)=HY)—-H({|X) ey

where H(Y) is entropy, entropy is used to measure the
uncertainty of a random variable, and H (Y |X) represents
the conditional entropy that describes the amount of
uncertainty left in ¥ when another random variable X
is given. Therefore, mutual information measures the
uncertainty reduced when another variable is given.
Conditional mutual information measures the mutual
information between two random variables when another
variable is introduced, and it is described by Formula (2):

I(X;Y|Z)=H(X|2)+ HY|Z) - H(X,Y|Z) @)

where H(X,Y|Z) is also a conditional entropy, which
measures the amount of uncertainty left in (X, ¥) when the
variable Z is given.

Another important concept is joint mutual information
which is defined as follows:

I(X,Y;Z2) =1(X; 2) + 1(Y; Z| X) 3

Joint mutual information measures the mutual information
between (Y, Z) and X.

@ Springer
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Interaction information measures the mutual information
among three random variables, and it is defined as follows:

1(X;Y;2) =1(X;Y)—-I1(X;Y|Z)
=IX;2)+1Y;2)-1(X,Y; Z) 4)

3 Related work

In this section, we review the information-theoretical-
based feature selection methods. Feature selection intends
to select a feature subset from an original feature set,
and maximizes the mutual information between feature
subset and the class 7(S;Y), where S represents the
feature subset. However, due to the amount of calculations
and the limited number of observations available for the
calculation of the high-dimensional probability density
function, the accurate calculation of 7(S; Y) is impractical
[2]. Cumulative summation of already-selected features is
used in many feature selection methods [8, 18, 23].

Mutual Information Maximization (MIM) [14] method
evaluates the significance of each candidate feature
according to the value of mutual information between the
candidate feature and the class. The MIM method does not
consider the redundancy among features.

Considering feature dependency and feature redundancy,
Mutual Information Feature Selection (MIFS) [1] maxi-
mizes the feature dependency while minimizing the feature
redundancy:

J(X) =1(Xi; Y) =B Y 1(Xj; Xx) ©)
X;eS

where X indicates a candidate feature, X; represents
an already-selected feature, and § is the already-selected
feature subset. J(Xj) represents a “scoring” criterion that
measures how potentially useful a candidate feature X; may
be. The mutual information / (X ;; X) evaluates the feature
redundancy. The parameter 3 varies between zero and one,
and P is set to be one according to the suggestion of the
authors in our experiment.

With the increase of the number of already-selected
feature, it becomes more difficult to remove the redundant
features than before [2]. Therefore, the parameter [ is set to
be the inverse of the number of already-selected feature in
minimal-redundancy-maximal-relevance criterion (mMRMR)
[23], the criterion of mRMR is expressed as follows:

1
J(Xp) = 1Xe:Y) = o > IXj: Xp) 6)
XjGS

@ Springer

Conditional Infomax Feature Extraction (CIFE) [18] is
proposed to obtain the most informative features. The
evaluation criterion is defined as follows:

JX)=1(Xi:Y) = Y IXp: X+ > (X XelY) (D)
X_,'ES X_,‘ES

According to the Formula (4), Formula (7) can be rewritten
as follows:

J(X) = T(X ¥) = Y {I(Xj5 Xp) = 1(X 3 Xi|Y)}
XjES

= I(Xi;Y)— Y I(Xj; X5 Y) ®)
X.,'ES

Different from MIFS method and mRMR method, the
interaction information I (X ;; Xy; Y) is considered as the
feature redundancy term in the CIFE method.

The criterion of Joint Mutual Information (JMI) [31]
employs cumulative summation of joint mutual information
to evaluate the significance of the candidate feature. The
criterion of JMI is expressed as Formula (9):

J(X) =Y I(Xe. Xj3 Y) ©)
XjES

X; is an already-selected feature. As a result,
> Xjes I(X;; Y) can be viewed as a constant in the feature
selection process. According to the Formula (4), Formula
(9) can be rewritten as follows:

J(Xp) = Y X V) +1(X;:Y) = I(Xj: Xi: V)

XjGS
o IS (Xp; ¥) = D I1(Xj; Xi; ¥)
XjES
1
o I(Xii¥) = o Y I(Xj5 X Y) (10)
X_,'ES

Similar to CIFE method, the JMI method also considers
the interaction information as the measurement of the
feature redundancy term. The difference is that the JMI
method employs the inverse of the number of already-
selected feature ﬁ to balance feature relevance term and
feature redundancy term.

Gao et al. propose a feature selection method named
Dynamic Change of Selected Feature with the class (DCSF)
[8] that designs a new term that calculates dynamic change
of selected features with the class. The criterion of DCSF is
presented as follows:

J(Xp) = Z (X YIXj) + I(Xj; YIXp) — (X5 Xp)} (11)
X;eS

additionally, Gao et al. propose a new feature selection
named Composition of Feature Relevancy (CFR) that
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analyses the composition of feature relevancy [9]. The
criterion of CFR is defined by:

J(X) =Y (X Y1X)) = I(Xj: X: V) (12)
ijS
Wang et al. [29] propose a new feature selection method

named Max-Relevance and Max-Independence (MRI). MRI
is defined as follows:

JX) =I1Xi: V) + Y X YIX)) + (X Y|X)) (13)
X_,‘ES

MRI is rewritten as follows:

J(Xp) = I(Xi; V) + Y (I(Xi; YIX)) + 1(X 55 YIXp))

X;eS

I(Xi:Y)+ Y AKX Y) + 1(Xj: Y) = 21(Xj; Xp: V)
X;eS

(SI+DIXi: ¥) =2 Y I(Xj: Xi3 ¥)
X;eS

R

R

[(Xi; Y) D I(Xj X Y) (14)

IS1+1 Xjes

additionally, Interaction Weight based Feature Selection

(IWES) takes feature interdependency into accounts. First,

IWES [32] defines interaction weight factor as follows:

I(Xj, Xp; V) - 1(Xi; Y) = 1(X;;Y)
H(Xy) + H(X;)

IW(Xp, X)) =1+ 15)

then, the criterion of IWFS is proposed as follows:

J(Xp) = 1_[ IW (X, Xj)* (14 SU(Xg, X)) (16)
X;es

where SU(Xi, X)) = gixgemiess

measure of mutual information.

We summarize these feature selection methods men-
tioned above in Table 1. MIM does not consider the redun-
dancy among features. MIFS, mRMR and DCSF employ
the mutual information /(X ;; X;) to measure the feature
redundancy. CIFE, JMI, CFR and MRI use the interaction

it is a normalized

Table 1 The summaries of feature selection methods

Methods Feature redundancy term
MIM None

MIFS BYxjes 1(Xj: X0)
mRMR ﬁle_esl(xj;xk)
DCSF ijesl(XﬁXk)

CIFE 2xes 1(Xji Xis Y)

IMI l—g‘le_esuxj;xk;y)
CFR ZXJ,GSI(Xj;Xk;Y)
MRI m%ZX_ies I(Xj; X3 Y)
IWFS Inexplicit

information /(X;; Xx;Y) to measure the feature redun-
dancy. Since IWFS is a nonlinear method, it does not define
explicitly the feature redundancy term. As shown in Table 1,
a critical issue is that these methods do not consider the
relevancy between a candidate feature and the class given
each already-selected feature when the feature redundancy
term is calculated. In addition, Appice et al. design an effec-
tive method for eliminating redundant Boolean features for
multi-class classification tasks, in which a feature is viewed
as a redundant feature when it separates the classes worse
than another feature or feature set. The critical idea of
the method is that: a set of examples with the same class
where the number of different features between examples is
small. In this paper, we propose a new feature redundancy
term where the feature relevancy is considered. Finally, a
novel feature selection method named min-redundancy and
max-dependency (MRMD) is proposed.

4 The proposed method for feature selection

As we know, feature selection aims to select a compact
feature subset that has the maximal dependency with respect
to the class [3, 25]. Many feature selection methods use
information theory to measure the dependency between a
candidate feature and the class, they intend to retain the
dependent features and eliminate the redundant features.

The feature redundancy term in traditional feature
selection methods is measured by the mutual information
between a candidate feature and each already-selected
feature or the interaction information among a candidate
feture, each already-selected feature and the class. However,
the larger values of the traditional feature redundancy term
do not indicate the worse a candidate feature because a
candidate feature can obtain large redundant information,
meanwhile offering large new classification information as
analysed in Fig. 1. The new classification information is the
relevancy between a candidate feature and the class given
the already-selected feature subset S. To address this issue,
we design a new feature redundancy term that considers the
relevancy between a candidate feature and the class under
the condition of the already-selected feature subset S. It is
defined as follows:

1(S; Xp) = I (Xp: Y1S) a7

where I (S; Xi) is traditional feature redundancy term and
1(Xy; Y|S) is the new classification information. Suppose
that the value of traditional feature redundancy term is large,
meanwhile the value of new classification information is
large, in such case, I1(S; Xy) is overestimated due to the
large new classification information. Employing Formula
(17) can reduce the negative impact of redundant infor-
mation 7(S; Xx). Because of the impractical calculations
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for already-selected feature subset, we replace the already-
selected feature subset with each already-selected feature
[2]. The specific definition is as follows:

1

S DX X — T(Xi; YIX))) (18)

XjES

ﬁ is the inverse of the number of already-selected features
|S], which is used to balance the feature dependency
term and the feature redundancy term. The criterion
combining the new feature redundancy term with the
feature dependency term is named min-redundancy and
max-dependency (MRMD):
1
X=Xk V=1 D U X X —1(Xi: YIX )}
X;eS
19)

According to the Formula (19), I(X;Y) is the fea-
ture dependency term, and ﬁ > Xje (X Xp) —
I(Xy; Y|X;)} is the feature redundancy term, additionally,
we consider the case that the candidate feature is inde-
pendent of the already-selected feature. According to the
information theory [7], it means that /(X ;; Xz) = 0 and
I(X; Y|X;) = 1(Xg;Y), and the Formula (19) can be
reduced to the following Formula:

1

JX) = 1 (X5 V) = Y (X X0 =1 (X YIX)))
| |X_,'€S
= 21(Xg; Y)
o I(Xg; Y) (20)

In this case, MRMD is equal to the method MIM [14].
The steps of MRMD are described as follows:

1) (Initialization) Set F' < “Original feature set”, S <
“empty set”.

2) (Calculate the mutual information between the class
and each candidate feature) For each feature X; € F,
calculate I (Xy; Y).

3) (Select the first feature) Find the feature X that with
the maximal 7 (Xg; Y), F < F\ {Xi}; S < {Xi}.

4) (Greedy selection) Repeat until | S| = K

(a) (Calculate the new feature redundancy term) For
all pairs of features X and X; that X; € F and
X € S, calculate 1 (X;; X) and I (Xy; Y[X ).

(b) (Select the next feature) Choose the feature Xj
that maximizes Formula (19). F < F \ {Xt};
S <« {X}.

5) Output the feature set S including the already-selected
features.

First, MRMD chooses the maximum of the mutual
information between each candidate feature and the class.

@ Springer

Then, the new feature redundancy term is calculated to
select the feature that maximizes the Formula (19). The
procedure is ended until |S| = K.

Complexity analysis: suppose that K is the number of
features to be selected, M is the number of instances in
the data set, and N is the total number of features. The
time complexity of mutual information and conditional
mutual information is O (M) because all instances need to
be examined for probability estimation. In MRMD method,
each iteration involves the calculation of the information
terms on all features, that is, the time complexity is
O(MN), and the total iteration is K times, therefore the
time complexity of MRMD is O(K M N). The calculation
process of other feature selection methods (CIFE, MIFS,
mRMR, IWFS, MRI, DCSF and CFR) are similar to
that of MRMD, the time complexity of these methods is
O(KMN). The MIM method does not involve the selected
features. It only needs to calculate the mutual information
between all features and the class one time in the process of
feature selection, and then the K top-ranked features on the
values of mutual information are the feature subset, that is,
the time complexity of MIM is O(M N).

When the candidate features are independent of the
already-selected features, that is, 7(fx; f;) = 0. MRMD
is equal to the MIM, that is, both the two methods select
the same features. The difference is that the MIM does not
take into account the selected features, while the MRMD
includes the process of calculating the mutual information.
The time complexity of MIM is O(MN) and the time
complexity of MRMD is O(KMN). Therefore, MRMD
is more time consuming than MIM. However, when the
candidate features are correlation with the already-selected
features with respect to the class, MRMD is more effective
than MIM.

5 Experimental results and analysis

In this section, we evaluate the effectiveness of MRMD
on an artificial example and fifteen real-world data sets
respectively. All the experiments are executed on an Intel
Core i7 with a 3.40 GHZ processing speed and 16 GB
main memory. The programming language is Python, and
compared methods CIFE, MIFS, MIM and mRMR come
from the scikit-feature feature selection repository [16].
IWFS, MRI, DCSF and CFR methods are achieved by
ourselves. Additionally, all the classification algorithms are
from scikit-learn repository [22].

5.1 Experiments on an artificial data set

To verify the effectiveness of our method, an artificial
example D = (O, F,Y) is presented in Table 2. O
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Table 2 An artificial example
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represents the instance set, F' is the feature set and Y

represents the class, where O =

{o1,02,...,010}, F =

{X1, X2, ..., Xg}. CIFE, MIFS, MIM, mRMR, IWFS, MRI,
DCSF, CFR and MRMD are executed on this artificial
example. We detail the feature selection process of MRMD.
Jr(.) represents the value of current feature redundancy
term, i.e., Formula (18), and J(.) is the final result of
Formula (19). By MRMD, we have

1.

The mutual information between X; and Y is calculated.
I(X1;Y) = 0.0058,1(X2;Y) = 0.02,1(X3;Y) =
0.04641(X4;7Y) = 0.0913, I(Xs5;Y) =
0.02, I (Xg; Y) = 0.04641(X7;Y) =
0.2564, I (Xg;Y) = 0.02; J(X1) = 0.0058, J(X,) =
0.02, J(X3) = 0.0464J(X4) = 0.0913,J(X5) =
0.02, J(Xg) = 0.0464J (X7) = 0.2564, J(Xg) = 0.02.

Table 3 Date sets description

The maximum value J(X;) of every X; is compared,
and X7 is selected. Then, the candidate feature set is
{X1, X2, X3, X4, X5, X6, Xg}.

When the number of already-selected features is
equal to one, Jr(X;) = -—0.1087,Jr(X2) =
—0.17, Jr(X3) = —0.1171Jr(X4) =

0.5078, Jr(Xs) = —0.17, Jr(Xe) -
—0.3926Jr(Xs) = 0.1784;
J(X1) = 0.1145, J(X2) 0.19, J(X3) =

0.1635J(X4) = —0.4165, J(X5) =
0.439J (Xg) = —0.1584.

The maximum value J (X;) of every X; is compared,
and Xg is selected. Then, the candidate feature set is
{X1, X2, X3, X4, X5, Xs}.

When the number of already-selected features is equal
to two, Jr(X1) = 0.0618, Jr(X3) = 0.125, Jr(X3) =

0.19, J(X6)

Data sets Instances Features Classes Types Research areas
Musk1 476 166 continuous Physical
Breast 569 30 continuous life
Pixraw 10P 100 10000 10 continuous image
WarpAR10P 130 2400 10 continuous image
Leukemia 72 7070 2 discrete Biological
ALLAML 72 7129 2 continuous Biological
Prostate_GE 102 5966 2 continuous Biological
GLI85 85 22283 2 continuous Biological
Arcene 200 10000 2 continuous life

ORL 400 1024 40 continuous image
Waveform 5000 21 3 continuous Physical
PCMAC 1943 3289 2 discrete text
Lung_cancer 32 56 3 discrete Biological
Colon 62 2000 2 discrete Biological
Lymphoma 96 4026 9 discrete Biological

@ Springer
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Fig.2 Experimental framework
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—0.1108Jr(X4) =
0.125, Jr(Xg) = —0.1008;

J(X1) = —-0.056,J(X) = —0.105, J(X3)
0.1573J(X4) = —0.003, J(X5) = —0.105, J(Xg) =
0.1208 The maximum value J(X;) of every X; is
compared, and X3 is selected. Then, the candidate
feature set is {X 1, X7, X4, X5, X3}.

0.0945, Jr(Xs)

For the artificial example, MRMD selects the feature
subset {X7, X¢, X3}, which is the optimal feature subset.
The optimal subset can classify all the instances correctly.
However, CIFE, IWFS, MRI, DCSF and CFR select
{X7, X6, X3}, mRMR and MIFS select {X7, X1, X3}, MIM
selects select { X7, X4, X3}. These feature selection methods
do not choose the optimal feature subset.

Observing the artificial example above, we discover that
the nine feature selection methods choose the same feature
X7 at first. Second, CIFE, MRI, DCSF, CFR and our method
choose the feature X¢ and the other two methods, mRMR
and MIFS, choose the feature X due to the different feature
redundancy terms. Next, MRMD chooses the feature X3
as the third feature, as a result, MRMD finds the optimal
feature subset by only three features. However, CIFE,
mRMR, MIM, MIFS, MRI, DCSF and CFR do not choose
the optimal feature subset. IWFS does not obtain optimal
feature subset when it selects only three features.

5.2 Experimental results on the real-world data sets

In this section, our method is compared to CIFE [18], MIFS
[1], MIM [14], mRMR [23], IWFS [32], MRI [29], DCSF
[8] and CFR [9] on fifteen real-world data sets that are
from different area. Ten-fold cross-validation is used in this
experiment. The fifteen data sets come from UCI database

@ Springer
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A

data

[17] and the literature [15] , and the specific descriptions of
the data sets are shown in Table 3. These fifteen data sets
include binary and multiclass problems, continuous features
and discrete features. For the sake of fairness, continuous
features are discretized into five bins using equal-width
discretization. Additionally, we select these fifteen data sets
that come from different research areas, such as physical
data, image data and biological data, etc. As a result,
the experimental results are convincing. The experimental
framework is illustrated in Fig. 2.

We employ five different classifiers, the Naive-Bayes
(NB) classifier, the Support Vector Machine (SVM) clas-
sifier, the LogisticRegression classifier (LR), the Random
Forest classifier (RF) and the Multi-Layer Perception classi-
fier (MLP), to evaluate the average classification accuracy.
The average classification accuracy is obtained across 30
groups of feature subsets on each classifier. The results of
the classification performance are recorded in Tables 4, 5, 6,
7 and 8. MRMD implements a paired two-tailed ¢-test with

EEERTIRT)

other compared methods. “+”, “-” and “=" indicate that our
method performs “better than”, “worse than” and “equal to”
the corresponding method at a statistical significance level
of 5%. The bold fonts indicate the maximal value of the cor-
responding row. “W/T/L” indicates the number of the data
set that our method has higher/equal/lower accuracy than
the compared methods.

In Table 4, MRMD method obtains the highest values of
the average accuracy on 11 data sets, the average accuracies
of MRMD are 66.24%, 92.8%, 91.23%, 57.43%, 95.01%,
93.08%, 90.86%, 85.71%, 70.21%, 55.79%, 76.85%,
73.47%, 52.64%, 83.51% and 64.5% respectively. DCSF
achieves the best classification performance on the data set
Breast, mRMR obtains the highest values of the average
accuracy on the data set ALLAML, MRI outperforms the
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Table 8 Average accuracy (mean =+ std.) with statistical significance on MLP

MIFS MIM mRMR IWES MRI DCSF CFR MRMD

CIFE

Data sets

69.01+2.21
93.76+1.13
87.2+7.62
57.3+7.76

67.3742.14(+)  66.7743.05(+)

66.06+3.18(+)

65.15+2.98(+)
92.4241.29(+)

)
)
)

69.1841.82(
93.7741.28(
87.57-8.38(

67.7443.46(+)
93.6740.99(

)

69.4342(

65.7142.64(+)
91.9141.22(+)
75.5748.08(+)
48-+4.9(+)

Muskl1

92.844+1.27(+)  92.37+1.04(+)

92.7641.12(+)
88.2348.01(

)

91.4841.19(+)

Breast

80.7£7.19(+)

74.63£7.17(+)

)

78.27+7.44(+)

72.0746.57(+)
51.546.6(+)

84.4747.26(+)
57.85+7.71(

Pixraw 10P

51.55+6.44(+)
95.68+£1.79(+)

53.03£6.29(+) 46.88+7.06(+)
94+£1.52(+)

48.954+5.89(+)

61.05+£9.09(-)

)

WarpAR10P
Leukemia

96.32+1.01
93.61+3.07
88.96+4.18
81.15+2.54
73.13+£5.58
41.43+7.55
78.11+6.91
84.09+3.71

56+6.37

91.054£2.24(+)  95.56+£1.22(+)  9546+£1.47(+)  94.95+1.47(+)  95.34-1.46(+)
94.0442.25( 8542.78(+)

91.2641.5(+)

93.21£1.58(+)

89.1243.64(+)
87.4942.25(+)

87.4843.96(+)

88.231+2.93(

89.7143.3(+)

)

92.3242.3(+)

82.7442.56(+)

ALLAML

)

86.9743.09(+)

)

87.6243.09(

87.1344.44(+)
79.7143.02(+)
69.8+4.77(+)
41.8447.74(

87.1942.65(+)  78.4543.76(+)  87.2242.84(+)

73.8643.38(+)

Prostate_GE
GLI_85

78.4943.35(+) 76.7643.42(+)  T9.174236(+)  T4444358(+)  T7.74+4.19(+)
74.3545.1(-) 75.54-+4.51(-)

71.3+4.8(+)

78.5742.12(+)

75.324+4.33(-)

67.1£4.62(+)

74.86+4.66(-) 57.242.57(+)

Arcene

ORL

36.7247.08(+)

37.6947.64(+)

37.9146.98(+)
78.146.94(

30.845.45(+)
77.1846.6(+)

)

39.95+6.96(+) 39.95+6.72(+)

73.5247.16(+)

29.96+5.23(+)

77.8447.01(+)

76.9146.57(+)

)

77.947.09(+)
84.68-4.05(

75.9348.25(+)

75.9946.22(+)

‘Waveform?2
PCMAC

82.32+3.26(+)
55.56£8.39(

)
)

84.361+4.74(
54.1148.08(

82.53+3.11(+)
54.64+9.3(

80.471+2.26(+)
53.39+7.87(

)

78.45+1.78(+)  83.03+3.51(+)
53.4248.15(

76.6441.99(+)
54.83+7.21(

)

)

)

49.31+7.34(+)

74.86£3.49(
73.79£8.89(

6/8/1

)

46.811+8.69(+)
76.95+2.86(-)

)

Lung_cancer

74.8+3.95

65.94+4.56(+)
71.55+8.77(

70.034+4.89(+)
71.64+8.55(

11/4/0

72.94+4.78(+)
71.96+£9.15(

10/4/1

70.56£3.99(+)

)
)

73.36+4.86(+)

66.29+5.58(+)

Colon

72.28+10.55

)

)

)

62.574+5.42(+)

12/2/1

63.43+7.14(+)
13/2/0

63.84+5.08(+)

12/2/1

50.47+3.1(+)

Lymphoma

WI/T/L

12/2/1

13/1/1

other feature selection methods on the data set PCMAC and
CIFE obtains the highest values of the average accuracy
on the data set Lung_cancer. Similarlyy, MRMD method
obtains the highest values of the average accuracy on 10 data
sets, 10 data sets, 11 data sets, 12 data sets in Tables 5-8
respectively. Additionally, the average accuracy of MRMD
method is equivalent to the MIM method in some data sets
on different classifiers. For example, the average accuracy
of MRMD method is equivalent to the MIM method on five
data sets using NB classifier and four data sets using SVM
classifier, respectively. In the whole, we can conclude that
MRMD outperforms the other compared methods in terms
of average classification accuracy.

We show the statistical results of “W/T/L” in the Tables 4-
8 using Figs. 3, 4, 5, 6 and 7. The X-axis represents
the ratio of “W/T/L” that obtained using the classifiers
and the Y-axis represents the data sets. As shown in
Figs. 3-7, MRMD achieves better or equal performance than
compared methods on most data sets.

Furthermore, we show the highest value of the average
accuracies attained by five classifiers on each data set using
the features selected by each feature selection method in
Table 9. Table 9 indicates that MRMD obtains the highest
value of the highest accuracies on 8 data sets. CFR obtains
the highest accuracy on the data sets Leukemia, mRMR
achieves the highest accuracies on four data sets, MIM
obtains the highest accuracy on data set Colon, and MRI
achieves the highest accuracy on the data set Lung_cancer.
As a result, MRMD method achieves the best classification
performance in terms of the highest accuracies among the 9
feature selection methods.

To show the classification performance clearly, Fig. 8
illustrates the classification accuracies against the number
of features on the data sets Muskl and ORL; The number
K on horizontal axis indicates the first K features with
an already-selected order. The vertical axis is the average
accuracies of the five classifiers at the first K features.
Classification accuracy does not increase with the number
of selected features, and we set the number of selected
feature K from 1 to 30, it is also used in other literature
[32]. Different colors and shapes represent different feature
selection methods. As shown in Fig. 8, MRMD method
outperforms the other compared methods significantly.

Furthermore, the Areas Under ROC Curves (AUCs) and
F1 score of the five classifiers for the nine methods are
shown by the boxes in Fig. 9, 10, 11, 12 and 13. The AUC
represents the area under the ROC curve and is an effective
metric to evaluate classification performance. F1 score is
another metric of a test’s accuracy, where the F1 score
reaches its best value at 1 and worst at 0.

As shown in Figs. 9-13, MRMD outperforms the other
eight methods in terms of AUCs and F1 score. The
classification performance of feature selection methods are
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Fig.3 MRMD performs
“better/equally-well/worse” than
the compared methods on NB
classifier
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Fig.4 MRMD performs
“better/equally-well/worse” than ———
the compared methods on SVM ympCOkm
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Fig.5 MRMD performs
“better/equally-well/worse” than Tvmmicos
the compared methods on LR ympColon

classifier Lung_cancer
PCMAC
Waveform2
ORL

Arcene

GLI 85
Prostate_GE
ALLAML
Leukemia
WarpAR 10P
Pixraw 10P
Breast
Musk1

=
=

09

3

o 10% 20% 30% 40% 50% 60% 70% 80% 90%
EWETHEL

._
$
-

@ Springer



Feature redundancy term variation for mutual information-based feature selection 1283

Fig.6 MRMD performs
“better/equally-well/worse” than
the compared methods on RF
classifier
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Fig.7 MRMD performs MLP
“better/equally-well/worse” than
the compared methods on MLP
classifier
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Table 9 The highest value of average classification accuracies (%) of the five classifiers on fifteen data sets by each feature selection method

Data sets CIFE MIFS MIM mRMR IWFS MRI DCSF CFR MRMD
Musk1 72.00 72.00 72.00 72.00 66.86 72.00 72.00 72.00 73.29
Breast 94.74 94.60 95.16 95.41 94.88 94.91 95.09 95.05 95.16
Pixraw10P 92.40 92.00 78.00 96.20 90.40 94.40 89.20 90.80 95.40
WarpAR10P 57.90 71.60 65.70 74.80 62.40 66.50 66.10 64.00 72.70
Leukemia 93.57 91.92 97.92 97.92 95.92 96.83 97.46 98.17 97.67
ALLAML 84.49 90.14 95.21 95.89 87.12 92.93 90.06 92.96 96.46
Prostate_GE 90.84 84.62 92.31 92.67 91.67 91.42 90.95 90.25 93.22
GLI_85 76.96 78.94 85.33 84.65 80.86 85.35 81.92 82.45 86.21
Arcene 71.72 62.24 74.26 75.71 75.28 77.60 73.28 77.64 77.88
ORL 55.65 70.30 66.15 70.35 55.40 70.20 72.25 69.55 72.40
Waveform2 82.07 82.16 82.31 82.35 82.02 82.32 82.26 82.29 82.44
PCMAC 78.26 76.74 83.84 84.87 79.62 83.44 84.60 83.48 84.34
Lung_cancer 64.67 57.50 65.17 57.83 65.83 66.50 65.33 65.17 61.17
Colon 80.24 81.33 84.00 83.00 83.33 80.24 80.24 80.24 81.67
Lymphoma 57.01 69.04 75.31 80.57 68.04 78.99 77.44 78.59 80.80
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Fig. 10 The AUCs and F1 score across all of the benchmark data sets on SVM classifier
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Table 10 The running time (in seconds)

Data sets CIFE MIFS MIM mRMR IWFES MRI DCSF CFR MRMD
Musk1 6.745 6.706 0.083 6.580 12.976 8.489 10.959 4.262 6.720
Breast 0.781 0.832 0.014 0.778 1.589 1.027 1.329 0.537 0.858
Pixraw 10P 119.262 115.900 1.476 111.584 230.729 143.752 184.875 73.988 104.980
WarpAR10P 35.880 34.294 0.407 35.157 70.122 45.825 57.696 24.240 33.295
Leukemia 52.716 52.465 0.652 52.971 106.130 66.580 85.502 34.002 52.544
ALLAML 61.169 56.231 0.688 58.529 116.803 77.039 98.985 39.475 60.661
Prostate_GE 67.534 63.334 0.811 65.981 129.598 85.301 110.960 43.129 67.111
GLI_85 217.106 201.207 2.530 212.282 421.744 277.876 355917 141.086 216.949
Arcene 215.096 179.615 2.294 182.052 365.862 239.130 310.852 119.877 187.384
ORL 43.939 42.681 0.541 42.398 82.630 53.675 66.930 27.786 40.304
Waveform?2 3.696 3.497 0.117 3.464 6.894 4.765 5.603 2.276 3.710
PCMAC 530.484 550.341 6.933 546.157 1101.298 696.580 891.207 350.113 549.376
Lung_cancer 0.232 0.219 0.004 0.223 0.430 0.275 0.346 0.155 0.219
Colon 14.116 14.226 0.181 14.115 28.328 17.922 23.010 9.059 14.421
Lymphoma 45.609 44981 0.526 44.228 90.907 55.659 70.553 28.111 42.810

dependent on the characteristics of classifiers. The same
opinion is illustrated in the literature [6, 21]. Additionally,
it is worthy to notice that, for some data sets that include
missing values, we replace all missing values with the
means of the values of features [32].

Finally, we show the running time of MRMD and other
eight compared methods (CIFE, MIFS, MIM, mRMR,
IWFES, MRI, DCSF and CFR) on fifteen data sets in
Table 10. Compared to the methods IWFS, MRI and DCSF,
our method is more computationally efficient. The running
time of CIFE, MIFS and mRMR is close to our method
MRMD. Although MIM has the less running time than
other compared methods, the classification performance
of MIM is not as good as its running time, which has
been demonstrated in Section 5.1. As a result, the time
complexity and the running time of MRMD is acceptable.

6 Conclusion and future work

In this work, we propose a new feature redundancy
term that not only involves the redundancy between a
candidate feature and each already-selected feature, but also
considers the relevancy between a candidate feature and
the class given each already-selected feature. The proposed
method maximizes feature dependency while minimizing
the new feature redundancy. To evaluate the effectiveness
of our method, the proposed method is compared to
eight competitive methods on an artificial example and
fifteen real-world data sets respectively. Multiple evaluation
criteria including average classification accuracy, the
highest accuracy, AUCs and F1 score demonstrate that our

@ Springer

method achieves the best classification performance among
the nine feature selection methods.

In the future, we plan to explore the correlations between
feature dependency and feature redundancy and test the
effectiveness of methods on more real-world data sets.
Additionally, we will furthermore explore the classification
performance of over-dimensioned data sets that are from
different areas for feature selection.
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