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Abstract
In this paper, the leader-following control of heterogeneous discrete-time multi-agent systems (HD MASs) in the presence
of system uncertainties under directed topology is addressed. It aims to achieve reference tracking, disturbance rejection and
robust control while the references and disturbances are generated by an autonomous exosystem. In practice, these agents
are often different types of devices, thus they have different internal dynamics. Moreover, it is difficult to measure all states
of each aircraft due to high cost or technical limitation. In this case, a novel leader-following output consensus problem is
formulated and solved in this paper. Firstly, an appropriate linear transformation is proposed to divide the state information
of each agent into measurable and unmeasurable parts. Then the reduced-order observer is designed only for unmeasurable
parts. Based on the designed observer, the distributed feedback controller is proposed such that the outputs of all followers
reach the same trajectory with the leader. In light of the internal model principle and discrete-time algebraic Riccati equation,
the robust leader-following consensus of HD MASs is achieved. Furthermore, this paper extends the results to continuous-
time multi-agent systems. Finally, several simulation experiments are presented to verify the effectiveness of the theoretical
results.

Keywords Robust leader-following consensus · Heterogeneous multi-agent systems · Linear transformation ·
Reduced-order observer

1 Introduction

In the last few years, the efficient hierarchical control
of industrial plants has achieved remarkable benefits in
reducing energy consumption, and improving operational
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efficiency. More concretely, the industrial plants are
generally considered as the large-scale systems with high
complexity, large delay, and strong uncertainty. Industrial
processes can be divided into several subsystems with
different properties, such as energy or information flows
[1, 2]. When the measured and controlled plant variables
increase, the cooperative control of industrial plants
becomes more and more challenging. In order to solve
this problem, many researchers regard industrial subsystems
as agents, thus the industrial systems can be considered
as multi-agent systems (MASs). It should be noted that
the cooperative control of MASs is essentially different
from the single-system control of existing control systems.
It mainly communicates with neighbors through network
topology and cooperates with each other to accomplish tasks
that individual cannot accomplish. The cooperative control
of MASs has attracted great attention and has been applied
in many fileds, such as smart grid, vehicle systems, sensor
networks, and mobile robots [3–5].

Generally speaking, the application object of multi-agent
distributed cooperative control is autonomous systems, such
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as quad-rotor UAV [6]. At present, a large number of
applications consider autonomous formation control for
quad-rotor UAV [7, 8]. The typical problem of these
applications is how to design a coordination controller.
Previous studies have rarely considered how these UAVs fly
in formation when their structures are different. Moreover,
in practice, it is difficult to measure all states of each
aircraft due to high cost or technical constraint. Take the
state variable x = (s, v) as an example, the state s can be
observed while the state v is unmeasurable. Furthermore,
due to the parameter mismatch or model imprecision, the
uncertainty is inevitable in aircraft model. Therefore, it is
an urgent problem to design the distributed communication
protocol and enable aircrafts to achieve consensus under
the above circumstances. Motivated by this, this paper
focuses on the distributed robust leader-following consensus
problem of heterogeneous MASs with system uncertainties
and unmeasurable states.

Many profound results about leader-following control
of MASs based on different dynamic systems have been
obtained [9–20]. For instance, the tracking problems
have been studied for first-order systems [12], second-
order systems [13], and the works in [14, 15] extended
the dynamics of systems to general linear systems. It
is noted that the aforementioned literatures assume that
the dynamics of all agents are homogeneous. However,
such assumption is too restrictive for many practical
applications. When homogeneous dynamics fail to describe
agent behaviors in many practical scenarios, consensus
for network of agents with heterogeneous dynamics
becomes more interesting. For example, the leader-
following consensus problem of heterogeneous MASs
was developed in [16] under static network topology.
The cooperative robust output regulation for second-order
discrete-time MASs was investigated in [17]. And the
work in [18] addressed the leader-following consensus of
heterogeneous MASs with different individual adaptation
structures and input constraints.

It is worth noting that there is a key assumption in
the aforementioned consensus techniques [13–18] that state
variables are available for measurement. However, in many
practical systems, many states are unmeasurable due to
technological limitations. In this case, it is important to
develop effective observers to measure the states accurately
[19–21]. For example, the leader-following consensus
problem of discrete-time MASs was investigated in [19]
by the distributed observer-based consensus protocols. The
authors of [20] discussed the state consensus problem of
linear MASs under time-invariant directed communication
topology via state observers. Moreover, Zhu et al. [21]
studied the cooperative tracking control problem for MASs
with unknown external disturbances by a novel observer-
based cooperative tracking protocol. In most existing

literatures on observer-based leader-following problem,
the observers are usually designed to be full-order.
In order to reduce the energy consumption, decrease
calculation dimension and improve operational efficiency, it
is necessary to design the reduced-order observers.

Motivated by the above-mentioned works, we make
further endeavors to consider the distributed leader-
following consensus problem of heterogeneous MASs
with system uncertainties. The main contributions of the
present work are three-fold. Firstly, this paper focuses
on more general systems—heterogeneous MASs in the
presence of unmeasurable states and uncertain dynamics.
It relaxes the assumptions that all agents dynamics are
homogenous [12–15] and all state variables are available
[13–18]. Secondly, compared with a class of distributed
tracking algorithms that are derived based on full-order
observers [19–21], this paper designs the reduced-order
observer to reduce the energy consumption and calculation
dimension. Finally, in light of the internal model principle
and discrete-time algebraic Riccati equation, the robust
leader-following consensus of HD MASs under directed
topology is achieved. Furthermore, the results can be
extended to continuous-time MASs.

This paper is organized as follows. Some basic notations
of graph theory, system model and problem formulation are
introduced in Section 2. Section 3 discusses the distributed
leader-following consensus of HD MASs. Section 4 extends
the results to continuous-time MASs. Several numerical
simulations are given to illustrate the effectiveness of
theoretical results in Section 5. Finally, this paper is
concluded in Section 6.

Notations Throughout this paper, let Rn, Rn×n and Cn×n

denote the set of n-dimension vector space, n × n real
matrix space and n × n complex matrix space, respectively.
C represents the complex field and λi(A) stands for the i-
th eigenvalue of the matrix A. Notation A∗ represents the
conjugate transpose of A, A ⊗ B denotes the Kronecker
product of A and B, 0m×n represents a zero matrix with m×
n dimension and 1n indicates (1, 1, . . . , 1)T with dimension
n. Moreover, N is the natural number set and N

+ is the set
of positive integers.

2 Preliminaries and problem formulation

2.1 Algebraic graph theory

Let digraph G = {V, E} denote the relationships of
information transmission among N agents and one leader.
V = {v0, v1, . . . , vN } represents the vertex set and E =
{eij = (vi, vj ) ∈ V × V} denotes the edge set. Let I =
{1, 2, . . . , N} be a node index set, v0 be the leader and
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vi(i = 1, 2, . . . , N) be the i-th agent, the neighborhood
of the agent vi is defined as Ni = {vj ∈ V : (vi, vj ) ∈
E}. A directed path from agent vi to agent vj (vi and vj

are two distinct agents) of the digraph G is a sequence of
ordered edges of the form (vi, vi1), (vi1 , vi2), . . . , (vim, vj ).
In addition, the digraph G contains a directed spanning tree
if there exists at least one agent called root node such that
the node has directed paths to all other nodes. The adjacency
matrix of the digraph G is denoted as A = [aij ]N×N

(aij ≥ 0, ∀i, j ∈ I). If edge eij = (vi, vj ) ∈ E , then
aij > 0, which means that the i-th agent can receive the
information from the j -th agent directly. And if (vi, vj ) /∈ E
for all i, j ∈ I, then aij = 0. The degree matrix is
defined asD = diag{d1, d2, . . . , dN }with di = degout (vi),
where degout (vi) is the out-degree of agent vi , defined as
degout (vi) = ∑N

j=1 aij . Correspondingly, the Laplacian
matrix is defined as L = D − A. Let H = A0 + L, where
A0 = diag{a10, a20, . . . , aN0}, ai0 > 0 if the i-th agent can
receive information from leader, else ai0 = 0.

Assumption 2.1 The digraph G contains a directed
spanning tree with one leader as its root node.

Lemma 2.1 [22] The Laplacian matrix L of G has an
eigenvalue zero with multiplicity 1 and corresponding
eigenvector 1N , and all other non-zero eigenvalues have
positive real parts, if and only if Assumption 2.1 is satisfied.

2.2 Systemmodel and problem formulation

In this paper, the i-th agent has following dynamic

xi(k + 1) = Āixi(k) + B̄iui(k) + Ēiω(k),

yi(k) = Cixi(k), i = 1, 2, . . . , N,
(1)

where xi(k) ∈ Rn, yi(k) ∈ Rp, ui(k) ∈ Rq are the
system state, measurable output and control input of the i-
th agent, separately. The matrices Āi = Ai + ΔAi, B̄i =
Bi + ΔBi, Ēi = Ei + ΔEi, where Ai, Bi, Ci and Ei

are the nominal matrices and ΔAi, ΔBi and ΔEi are the
uncertain matrices. These uncertain matrices are considered
as time-invariant, which are common and considered in [17,
23–25]. If these perturbed matrices are all zero matrices, the
system (1) is called a nominal system. Ēiω(k) is the external
disturbance of the i-th agent. In general, an exosystem can
be regarded as a leader system representing the reference
input or external disturbance with the following form,

ω(k + 1) = A0ω(k), yr(k) = F0ω(k), (2)

where ω(k) ∈ Rs is the state of the leader, and yr(k) ∈ Rp

is the reference output. The main purpose of this paper is

to design the control protocol ui(k) to make all followers
reach the leader asymptotically, i.e.

lim
k→∞ ei(k) = lim

k→∞ yi(k) − yr(k)

= lim
k→∞ Cixi(k) − F0ω(k) = 0, (3)

for any i = 1, 2, . . . , N . Here, ei(k) denotes the tracking
error between the measurement output and reference output
of the i-th agent.

Remark 2.1 The tracking error ei(k) is an index for
describing (or verifying) whether the agent i tracks the
leader, but not for controller feedback.

Definition 2.1 Given systems (1), (2), design an appropri-
ate distributed feedback control law ui(k) such that

1) the system matrices of the nominal closed-loop system

xi(k + 1) = Aixi(k) + Biui(k) + Eiω(k),

yi(k) = Cixi(k), i = 1, 2, . . . , N,
(4)

are Schur.
2) there exists an open neighborhood W of Δ = 0 such

that for any Δ ∈ W and for any initial states xi(0), ω(0),
the tracking errors converge to zero asymptotically, i.e.
lim

k→∞ ei(k) = 0, i = 1, . . . , N,

then the robust leader-following output consensus problem
is solved.

3 The leader-following consensus
of HD MASs

3.1 The leader-following consensus of nominal
system

Assumption 3.1 The matrix pairs (Ai, Bi, Ci) are control-
lable and observable for i = 1, 2, . . . , N , and the matrices
Ci have row full rank.

Assumption 3.2 The exosystem matrix A0 has no eigenval-
ues in the interior of the unit circle in the complex plane,
i.e., |Reλ(A0)| ≥ 1.

Assumption 3.3 All systems satisfy the transmission zeros

condition, i.e. ∀λ ∈ σ(G1), Rank

(
Ai − λIn Bi

Ci 0

)

= n +
p, here σ(G1) is the spectrum of G1.

3.1.1 The design of reduced-order observer

Assume that each agent cannot receive the state information
of itself or its neighbors directly, it is necessary to design
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the observer to estimate these unmeasurable states. A linear
transformation is given at first

xi(k) = Ti x̄i (k), i = 1, 2, . . . , N, (5)

where Ti = (C+
i , C⊥

i ) is a reversible matrix, C+
i ∈ Rn×p

is the Penrose-Moore inverse of Ci , i.e. CiC
+
i = Ip, and

C⊥
i ∈ Rn×(n−p) is an orthogonal basis of the kernel space

of Ci , i.e. CiC
⊥
i = 0. Submitting (5) into (4), one has

⎧
⎨

⎩

xmi(k + 1) = A11
i xmi(k) + A12

i xui(k) + B1
i ui(k) + E1

i ω(k),

xui(k + 1) = A21
i xmi(k) + A22

i xui(k) + B2
i ui(k) + E2

i ω(k),
yi(k) = xmi(k), i = 1, 2, . . . , N,

(6)

where xmi(k) ∈ Rp, xui(k) ∈ Rn−p are the measurable and
unmeasurable states, respectively.

Âi = T −1
i AiTi =

(
A11

i A12
i

A21
i A22

i

)

, B̂i = T −1
i Bi =

(
B1

i

B2
i

)

, Ĉi = CiTi = (
Ip 0

)
, and Êi = T −1

i Ei =
[E1

i , E2
i ]′. The reduced-order observer is designed as

x̃ui(k + 1) = A21
i xmi(k) + A22

i x̃ui(k) + B2
i ui(k)

+E2
i w(k) + LiA

12
i (xui(k) − x̃ui(k)), (7)

where x̃ui(k) ∈ Rn−p, and Li is a constant matrix to be
designed later.

Remark 3.1 In order to facilitate the design of distributed
feedback controllers, we assume that all dimensions of the
unmeasurable states of all agents are consistent. It is one of
our future research topics to study the unmeasurable states
with different dimensions.

The errors between the unmeasurable state xui(k) and
observer state x̃ui(k) are defined as x∗

ui(k+1) = xui(k+1)−
x̃ui(k+1) = (A22

i −LiA
12
i )x∗

ui(k). To make the errors x∗
ui(k)

asymptotically converge to 0, the matrix pairs (A22
i , A12

i )

need to be fully measurable, then the following lemma is
given.

Lemma 3.1 For system dynamics (4) and (6), if Assumption
3.1 is satisfied, the matrix pairs (Âi , B̂i) are stabilizable,
and (A22

i , A12
i ) are detectable.

Proof See Appendix A.

3.1.2 The design of distributed feedback controller

The output-coupled relationship between agent i and its
neighbors is given

δi(k) =
∑

j∈Ni

aij (yi(k) − yj (k))

+ai0(yi(k) − yr(k)), i = 1, 2, . . . , N, (8)

where aij and ai0 are defined in Section 2.1. The formula
(8) can be seen as the error feedback information between
agent i and its neighbors.

Based on the defined reduced-order observer (7), the
distributed feedback controller is given as
⎧
⎨

⎩

ξi(k) = ∑
j∈Ni

aij (x̃ui (k) − x̃uj (k)) + ai0x̃ui (k),

ηi(k + 1) = G1ηi(k) + G2θiδi (k),

ui(k) = K1i θiξi (k) + K2i θiδi (k) + K3iηi (k), i = 1, 2, . . . , N,

(9)

where ηi(k) ∈ Rsm . K1i ∈ Rq×(n−p), K2i ∈ Rq×p and
K3i ∈ Rq×sm are the gain matrices to be solved. θi > 0 is
a parameter to be designed later. The matrix pair (G1, G2)

is said to incorporate a p-copy internal model of the matrix
A0, selected as G1 = block diag(β1, β2, . . . , βp), G2 =
block diag(σ1, σ2, . . . , σp), where βi , σi , i = 1, 2, . . . , p
are constant square matrices and constant column vectors
such that the matrix pairs (βi, σi) are controllable and
the minimal polynomial of A0 divides the characteristic
polynomial of βi . Submitting (9) into (6) and (7), we can get
the compact form

xm(k + 1) = (A11 + B1K2(θH ⊗ Ip))xm(k) + A12xu(k)

+B1K1(θH ⊗ In−p)x̃u(k) + B1K3η(k)

+(E1 − B1K2(θA0 ⊗ F0))(1N ⊗ Is)ω(k),

xu(k + 1) = (A21 + B2K2(θH ⊗ Ip))xm(k) + A22xu(k)

+B2K1(θH ⊗ In−p)x̃u(k) + B2K3η(k)

+(E2 − B2K2(θA0 ⊗ F0))(1N ⊗ Is)ω(k),

x̃u(k + 1) = (A21 + B2K2(θH ⊗ Ip))xm(k)

+(A22 − LA12 + B2K1(θH ⊗ In−p))x̃u(k)

+LA12xu(k) + B2K3η(k) + (E2

−B2K2(θA0 ⊗ F0))(1N ⊗ Is)ω(k), η(k+1)

= (θH ⊗ G2)xm(k) + (IN ⊗ G1)η(k)

−(θA0 ⊗ G2F0)(1N ⊗ Is)ω(k), (10)

where A1i = block diag(A1i
1 , A1i

2 , . . . , A1i
N ), A2i =

block diag(A2i
1 , A2i

2 , . . . , A2i
N ), Kj = block diag(Kj1,

Kj2, . . . , KjN), ℵi = block diag(ℵi
1, ℵi

2, . . . , ℵi
N ), Υ =

block diag(Υ1, Υ2, . . . , ΥN), with i = 1, 2, j = 1, 2, 3,
ℵ = {B, E}, Υ = {L, θ}.
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Let ζ(k) = (xT
m(k), xT

u (k), ηT (k), x̃T
u (k))T , then the (10)

is rewritten as

ζ(k + 1) = Acζ(k) + Wcω(k), (11)

where Ac =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A11 + B1K2(θH ⊗ Ip) A12 B1K3 B1K1(θH ⊗ In−p)

A21 + B2K2(θH ⊗ Ip) A22 B2K3 B2K1(θH ⊗ In−p)

θH ⊗ G2 0 IN ⊗ G1 0

A21 + B2K2(θH ⊗ Ip) LA12 B2K3 Ξ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Ξ = A22 −

LA12 + B2K1(θH ⊗ In−p), Wc =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E1 − B1K2(θA0 ⊗ F0)

E2 − B2K2(θA0 ⊗ F0)

−(θA0 ⊗ G2F0)

E2 − B2K2(θA0 ⊗ F0)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1N ⊗ Is ).

3.1.3 Main results

To get the main conclusions, the following basic lemmas are
given.

Lemma 3.2 [26] If Assumptions 3.1 and 3.2 are satisfied,
and the matrix pair (G1, G2) incorporates a p-copy
internal model of the matrix A0, then the matrix pairs[(

Ai 0
G2Ci G1

) (
Bi

0

)]

, i = 1, 2, . . . , N are stabilizable.

Moreover, if the matrix equation XA0 = G1X + G2Ω has
a solution X, then Ω = 0.

For discrete-time system, if Assumption 3.1 is satisfied,
for anyQi = QT

i , the algebraic Riccati equationAT
i PiAi −

Pi − AT
i PiBi(B

T
i PiBi)

−1BT
i PiAi + Qi = 0 has an unique

solution Pi = P T
i , and the equation AiPiA

T
i − Pi −

AiPiC
T
i (CiPiC

T
i )−1CiPiA

T
i + Qi = 0 also has an unique

solution Pi = P T
i . Then the following lemma is obtained.

Lemma 3.3 If Assumption 3.1 is satisfied, the gain matri-
ces Ki and Li are defined as Ki = −(BT

i PiBi)
−1BT

i PiAi

and Li = AiPiC
T
i (CiPiC

T
i )−1 respectively,

and ci ∈ C is distributed in the stable region
Φci

= {ci ∈ C : |ci − 1|2 < δci
}, where δ−1

ci
=

maxk=1,2,...,nλk[Q−1
ci

AT
i PiBi(B

T
i PiBi)

−1BT
i PiAiQ

−1
ci

], Qci
=

Q−1
ci

Qi > 0, then the matrices Ai + ciBiKi are
Schur. If si ∈ C is distributed in the stable region
Φsi = {si ∈ C : |si − 1|2 < δsi }, where δ−1

si
=

maxk=1,2,...,nλk[Q−1
si

AiPiC
T
i (CiPiC

T
i )−1CiPiA

T
i Q−1

si
], Qsi =

Q−1
si

Qi > 0, then the matrices Ai − siLiCi are Schur.

Proof See Appendix B.

In order to get the main conclusion of this paper, it is
necessary to prove that the closed-loop system matrix Ac in
(11) is Schur at first.

Theorem 3.1 Suppose that the digraph G contains a
directed spanning tree, and the eigenvalues of the matrix θH
in ascending order are λ1 ≤ λ2 ≤ · · · ≤ λN . The closed-
loop system matrix Ac is Schur, if and only if the matrices(

Âi + λiB̂i(K2i , K1i ) λiB̂iK3i

(G2, 0) G1

)

, and A22
i − LiA

12
i , i =

1, 2, . . . , N are Schur.

Proof See Appendix C.

Theorem 3.2 If Assumptions 3.1-3.3 hold, λi ∈ C is dis-
tributed in the stable domainΦi = {λi ∈ C : |λi−1|2 < δi},
where λi, i = 1, 2, . . . , N are the eigenvalues of the
matrix θH with λ1 ≤ λ2 ≤ · · · ≤ λN , and δ−1

i =
maxj=1,2,...,nλj [Q−1

ci
AT

i PiBi (BT
i PiBi )

−1BT
i PiAiQ−1

ci
],Qci

=
Q−1

ci
Qi > 0, where Pi is the unique solution of the

following Riccati equation

AT
i PiAi−Pi−AT

i PiBi (BT
i PiBi )

−1BT
i PiAi+Qi = 0, i = 1, 2, . . . , N,

(12)

with Ai =
(

Âi 0
(G2, 0) G1

)

,Bi =
(

B̂i

0

)

, then the system

matrix Ac is Schur.

Proof See Appendix D.

3.2 The leader-following consensus of uncertain
system

The internal model method can be used to solve the robust
consensus problem. In this paper, the proposed distributed
feedback controller (9) is also suitable for solving the
robust leader-following consensus of HD MASs (1). By the
distributed feedback controller (9), the uncertain system (1)
can be written as

ζ(k + 1) = Ācζ(k) + W̄cω(k), (13)

where Āc =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ā11 + B̄1K2(θH ⊗ Ip) Ā12 B̄1K3 B̄1K1(θH ⊗ In−p)

Ā21 + B̄2K2(θH ⊗ Ip) Ā22 B̄2K3 B̄2K1(θH ⊗ In−p)

θH ⊗ G2 0 IN ⊗ G1 0

Ā21 + B̄2K2(θH ⊗ Ip) LĀ12 B̄2K3 Ξ̄

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Ξ̄ = Ā22 −

LĀ12+B̄2K1(θH⊗In−p), and W̄c =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ē1 − B̄1K2(θA0 ⊗ F0)

Ē2 − B̄2K2(θA0 ⊗ F0)

−(θA0 ⊗ G2F0)

Ē2 − B̄2K2(θA0 ⊗ F0)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1N ⊗Is ). Based on the

above analysis, we give the main conclusion of this section.

Theorem 3.3 If Assumptions 3.1-3.3 hold, the digraph G
contains a directed spanning tree with v0 as its root, and
λi ∈ C satisfies the condition in Theorem 3.2, then the
distributed feedback controller (9) solves the robust leader-
following consensus of HD MASs (1) and (2).
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Proof See Appendix E.

A multi-step design procedure is given to construct the
controller (9).

Algorithm 3.1 Suppose that Assumptions 3.1-3.3 hold, the
distributed feedback controller (9) can be constructed as
follows

1. Do linear transformation (5) on system dynamics (4).
2. For any Qi = QT

i > 0, solve the algebraic Riccati
equation (31) to get a positive matrix Pi , then the
constant matrix Li = A22

i Pi(A
12
i )T (A12

i Pi(A
12
i )T )−1

of the reduced-order observer (7) can be obtained.
3. Let θi = 1

ai0+di
, i = 1, 2, . . . , N , where ai0 and di are

the diagonal elements of A0 and D respectively.
4. For any Qi = QT

i > 0, solve the algebraic Riccati
equation (12) to get a positive matrix Pi , then the gain
matrix Ki = −(BT

i PiBi )
−1BT

i PiAi of the distributed
feedback controller (9) can be obtained.

Remark 3.2 Algorithm 3.1 is the basic operation to solve the
robust leader-follower consensus of HD MASs (1) and (2).
The parameter Li and the gain matrix Ki can be obtained
offline, thus, the time complexity of Algorithm 3.1 can
be denoted as O(1). Besides, the basic operation needs to
be executed n times, therefore, the time complexity of the
proposed method is O(n). Using the same analysis method,
we can get that the time complexities of [28, 29] are also
O(n), however, full-order observers were designed in [28,
29], which cannot reduce the system dimensions and save
resources consumption.

4 The leader-following consensus
of HC MASs

4.1 The leader-following consensus of nominal
system

The nominal system dynamics of continuous-time MASs
can be expressed as

ẋi (t) = Aixi(t) + Biui(t) + Eiω(t),

yi(t) = Cixi(t), i = 1, 2, . . . , N,
(14)

and

ω̇(t) = A0ω(t), yr(t) = F0ω(t), (15)

where all variables and matrices have the same meaning as
(4).

Before moving on, some assumptions and lemmas are
given.

Assumption 4.1 All eigenvalues of the exosystem matrix
A0 in (15) are distributed in the closed right-half complex
plane.

Lemma 4.1 [23] For the stabilizable matrix pair (Ai, Bi),
the algebraic Riccati equation AT

i Pi + PiAi + In −
PiBiB

T
i Pi = 0 has an unique solution Pi = P T

i > 0, and
the matrix Ai − (a + jb)BiB

T
i Pi is Hurwitz for a ≥ 1, b ∈

R.
Similar to (5), the linear transformation for continuous-

time MASs is designed as

xi(t) = Ti x̄i (t), i = 1, 2, . . . , N, (16)

then the system (14) are transformed into
⎧
⎨

⎩

ẋmi(t) = A11
i xmi(t) + A12

i xui(t) + B1
i ui(t) + E1

i ω(t),

ẋui(t) = A21
i xmi(t) + A22

i xui(t) + B2
i ui(t) + E2

i ω(t),

yi(t) = xmi(t), i = 1, 2, . . . , N .

(17)

The reduced-order observer is designed as

˙̃xui(t)=A21
i xmi(t)+A22

i x̃ui (t)+B2
i ui (t)+E2

i w(t)+LiA
12
i (xui (t)−x̃ui (t)),

(18)

then the distributed feedback controller is designed as
⎧
⎪⎨

⎪⎩

δi(t) = ∑
j∈Ni

aij (yi(t) − yj (t)) + ai0(yi(t) − yri(t)),

ξi (t) = ∑
j∈Ni

aij (x̃ui (t) − x̃uj (t)) + ai0x̃ui (t),

η̇i (t) = G1ηi(t) + G2δi(t),
ui(t) = K1i ξi (t) + K2i δi (t) + K3iηi(t), i = 1, 2, . . . , N .

(19)

Submitting (19) into (17) and (18), one has

ζ̇ (t) = Acζ(t) + Wcω(t), (20)

where Ac =

⎛

⎜
⎜
⎜
⎜
⎝

A11 + B1K2(H ⊗ Ip) A12 B1K3 B1K1(H ⊗ In−p)

A21 + B2K2(H ⊗ Ip) A22 B2K3 B2K1(H ⊗ In−p)

H ⊗ G2 0 IN ⊗ G1 0

A21 + B2K2(H ⊗ Ip) LA12 B2K3 A22 − LA12 + B2K1(H ⊗ In−p)

⎞

⎟
⎟
⎟
⎟
⎠
,

Wc =

⎛

⎜
⎜
⎜
⎜
⎝

E1 − B1K2(A0 ⊗ F0)

E2 − B2K2(A0 ⊗ F0)

−(A0 ⊗ G2F0)

E2 − B2K2(A0 ⊗ F0)

⎞

⎟
⎟
⎟
⎟
⎠

(1N ⊗ Is ).

Theorem 4.1 If Assumptions 3.1, 3.3, and 4.1 hold, then the
nominal system matrix Ac is Hurwitz.

Proof See Appendix F.

4.2 The leader-following consensus of uncertain
system

In this section, the i-th agent has the following dynamic

ẋi (t) = Āixi(t) + B̄iui(t) + Ēiω(t),

yi(t) = Cixi(t), i = 1, 2, . . . , N,
(21)

and the exosystem has the same dynamic as (15).
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Similar to Section 3.2, the proposed distributed controller
(19) is also suitable for solving the robust leader-following
consensus of HC MASs (21). Then by the controller (19),
the uncertain system (21) can be denoted as

˙̄ζ(t) = Ācζ̄ (t) + W̄cω(t), (22)

where Āc =

⎛

⎜
⎜
⎜
⎜
⎝

Ā11 + B̄1K2(H ⊗ Ip) Ā12 B̄1K3 B̄1K1(H ⊗ In−p)

Ā21 + B̄2K2(H ⊗ Ip) Ā22 B̄2K3 B̄2K1(H ⊗ In−p)

H ⊗ G2 0 IN ⊗ G1 0

Ā21 + B̄2K2(H ⊗ Ip) LĀ12 B̄2K3 Ā22 − LĀ12 + B̄2K1(H ⊗ In−p)

⎞

⎟
⎟
⎟
⎟
⎠

,

W̄c =

⎛

⎜
⎜
⎜
⎜
⎝

Ē1 − B̄1K2(A0 ⊗ F0)

Ē2 − B̄2K2(A0 ⊗ F0)

−(A0 ⊗ G2F0)

Ē2 − B̄2K2(A0 ⊗ F0)

⎞

⎟
⎟
⎟
⎟
⎠

(1N ⊗ Is ).

Based on the above analysis, we give the main conclusion
of this section.

Theorem 4.2 If Assumptions 3.1, 3.3, and 4.1 hold, and
the directed graph G contains a directed spanning tree with
v0 as its root, then the distributed feedback controller (19)
solves the robust leader-following problem of HC MASs
(21) and (15).

Proof The proof is similar to that of Theorem 3.3, so we
omit it.

A three-step design procedure is given to construct the
distributed feedback control law (19).

Algorithm 4.1 Suppose that Assumptions 3.1, 3.3, and
4.1 hold, the distributed feedback controller (19) can be
constructed as follows

1. Do linear transformation (16) on system dynamics (14).
2. For any Qi = QT

i > 0, and Ri = RT
i > 0, solve

the continuous-time algebraic Riccati equation (37) to
get a positive matrix Pi , then the constant matrix Li =
Pi(A

12
i )T R−1

i of the reduced-order observer (18) can be
obtained.

3. The gain matrixKi = −(min Re(λi))
−1(Bi )

T Pi of the
distributed controller (19) can be obtained by solving
the algebraic Riccati equation (36).

Remark 4.1 The parallel-observer based leader-following
problem was solved in [30], however, it assumed that the
leader and followers have the same dynamics, while the
dynamics of all agents are heterogeneous in this paper.
Moreover, assume Ei = 0, Ai = A0 = A, and Ci = F0 =
C, the leader-following problem in [30] can be solved by
the controller in this paper.

Remark 4.2 According to Remark 3.2, the time complexity
of Algorithm 4.1 can be obtained as O(1). Similarly, the
basic operation needs to be executed n times, therefore, the
time complexity of the proposed method is O(n). Through
the analysis of the methods in [30, 31], we can get that

the time complexities of [30, 31] are O(n2), and O(n)

respectively. Therefore, the time complexity of this paper
is lower than that of [30]. Although the time complexity
of this paper is the same as that of [31], the full-order
observer was designed in [31], which cannot reduce the
system dimensions and save resources consumption.

5 Numerical examples

To verify the effectiveness of above results, the MASs
consisting of four followers (nodes 1-4) and one leader
(node 0) are considered in this paper. The communication
topology G, shown in Fig. 1, is applied to both discrete-time
and continuous-time systems.

5.1 The robust leader-following consensus
of HD MASs

The system matrices of HD MASs are given as Ai =⎛

⎝
1 0 0
0 0.1i 1
1 0 0

⎞

⎠ , Bi =
⎛

⎝
0.5i
0
0

⎞

⎠ ,

Ci = (
0 1 0

)
, Ei =

⎛

⎝
0 0 1
0 −1 0
0 0 i

⎞

⎠ , ΔAi = ΔEi =
⎛

⎝
0.01i 0 1
0 0.01 0
0 0 0

⎞

⎠ , ΔBi =
⎛

⎝
0

0.1i
0

⎞

⎠ , A0 =
⎛

⎝
1 1 0
0 −1 1
0 0 2

⎞

⎠

and F0 = (1, 0, 0). Let Ti = (C+
i , C⊥

i ) =
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠,

the reduced-order observer for xui(k), i = 1, 2, 3, 4 is
designed. By the discrete-time algebraic Riccati equa-
tion (12), the control gain can be obtained K1 =

Fig. 1 The communication topology G
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Fig. 2 Discrete-time: the estimation errors of the unmeasurable states xui(k) for (a) the first variable, (b) the second variable

(−16.4809 − 5.6328 − 8.2545 − 32.3113 − 32.1842 −
97.6800),K2 = (−8.5938 −2.8898 −4.2785 −15.9721 −
15.9091 −48.2864),K3 = (−5.9872 −1.9759 −2.9627 −
10.5239 −10.4823−31.8156),K4 = (−4.7037−1.5194 −
2.3125 − 7.7996 − 7.7688 − 23.5793).

Hereto, the controller design has been completed. The
estimation errors x∗

ui(k) = xui(k) − x̃ui(k), i = 1, 2, 3, 4
are depicted in Fig. 2. It is obvious that the system
considered in this paper is three-order, but only two-order
observer is used to estimate the unmeasurable state xui(k).
Moreover, from Fig. 2, the estimation errors x∗

ui(k) converge
to zero when time goes to infinity, therefore, the reduced-
order observer (7) can estimate the unmeasurable states

reasonably. Besides, the tracking errors of four agents are
shown in Fig. 3a. It demonstrates that the tracking errors
converge to zero asymptotically, thus the robust leader-
following consensus of HD MASs of (1) and (2) is solved.

5.2 The robust leader-following consensus
of HC MASs

The system matrices Ai, Bi, Ci, Ei, ΔAi, ΔBi ,
ΔEi and F0 are consistent with Section 5.1. Let

A0 =
⎛

⎝
0 0 0
1 0 −1
0 1 0

⎞

⎠, G1 =
⎛

⎝
0 1 0

−1 0 1
0 0 0

⎞

⎠ , and

k
0 10 20 30 40 50 60

Th
e 

tr
ac

ki
ng

 e
rr

or
s 

of
 fo

ur
 a

ge
nt

s

-600

-400

-200

0

200

400

600

Agent1
Agent2
Agent3
Agent4

(a)

t
0 10 20 30 40 50 60 70 80 90 100

Th
e 

tr
ac

ki
ng

 e
rr

or
s 

of
 fo

ur
 a

ge
nt

s

-6

-5

-4

-3

-2

-1

0

1

2

3

Agent1
Agent2
Agent3
Agent4

(b)

Fig. 3 The tracking errors of four agents for (a) discrete-time, (b) continuous-time
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G2 =
⎛

⎝
0
0
1

⎞

⎠ , the control gain of the controller (19)

can be obtained K1 = (−7.9057 − 8.6573 − 9.8299
0.2039 1.3994 − 1.6181),K2 = (−7.7235 − 5.1429 −
7.5816 0.7980 1.1676 − 2.2122),K3 = (−7.8064 −
3.8889 − 6.7035 1.0214 0.9781 − 2.4356), and K4 =
(−8.0555 − 3.2442 − 6.2806 1.1292 0.8514 − 2.5434).

The trajectories of unmeasurable system states xui and
estimated states x̃ui , i = 1, 2, 3, 4 are given in Fig. 4a,
b, c and d respectively (where xuik and x̃uik represent
the k-th (k=1,2) variable of the unmeasurable system
states xui and estimated states x̃ui , respectively. xui(0)

and x̃ui(0) indicate the initial values, and xui(100) and
x̃ui(100) indicate the termination values). We can see that
the unmeasurable system states xui and estimated states
x̃ui have similar trajectories. Besides, the estimation errors
x∗
ui(t) = xui(t)− x̃ui(t) are depicted in Fig. 5. It can be seen

that the estimation errors x∗
ui(t) converge to zero when time

goes to infinity. Therefore, the reduced-order observer (18)
can estimate the unmeasurable system states reasonably.
Besides, the tracking errors of four agents are given in
Fig. 3b. It demonstrates that the tracking errors under
the distributed feedback controller (19) converge to zero
asymptotically, thus the robust leader-following consensus
of HC MASs of (21) and (15) is solved.

)b()a(

)d()c(

Fig. 4 a The trajectories of xu1 and x̃u1, b the trajectories of xu2 and x̃u2, c the trajectories of xu3 and x̃u3, and d the trajectories of xu4 and x̃u4
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Fig. 5 Continuous-time: the estimation errors of the unmeasurable states xui(t) for (a) the first variable, (b) the second variable

5.3 Practical application

5.3.1 Background of the simulation

MuPAL-α, owned and operated by the Japan Aerospace
Exploration Agency, is a multi-purpose research aircraft
used for testing advanced guidance and control technologies
and evaluating research on human factors. It is a Dornier
Do228-202 aircraft equipped with a research Fly-By-Wire
system. TheMuPAL-α platform supports both HIL tests and
actual flight tests for advanced Guidance, Navigation and
Control technologies [32].

In what follows, we take the aircraft model (MuPAL-α)
given in [24, 25, 33] as an application example to demon-
strate the control effect of the designed controller. The
control goal of each MuPAL-α is to track the given sideway
velocity and roll angle. Here, each aircraft can be regarded
as an agent of the MASs. The communication graph among
four aircrafts and the exosystem is demonstrated in Fig. 1.
As shown in Fig. 1, label 0 is the exosystem and labels
1-4 are four follower aircrafts. For aircrafts 1 and 2, they
can directly receive the exosystem’s information, i.e. a10 =
a20 = 1. Aircrafts 3 and 4 cannot receive the exosystem’s
information directly, i.e. a30 = a40 = 0. They track the
exosystem by transmitting information with their neighbors.

5.3.2 Aircraft model and simulation results

According to [24, 25, 33], the linearized lateral-directional
motions around the equilibrium point can be described as
(21), and its standard system dynamic is (14). The system
state of the i-th (i=1,2,3,4) aircraft is given by

xi = [vi(m/s), pi(rad/s), φi(rad), yri (rad/s), Tai (rad), Tri (rad)]T ,

(23)

which denote sideway velocity, roll rate, roll angle, yaw rate,
delay of the aileron deflection command, and delay of the
rudder deflection command, respectively. The system input
ui of the i-th aircraft is given by

ui = [δaci(rad), δrci(rad)]T , (24)

which denote aileron deflection command, and rudder
deflection command, respectively. And the system output of
the i-th aircraft is given by

yi = [vi(m/s), φi(rad)]T . (25)

The exosystem can be modeled as (15), and the
exosystem state is given by

w=[rv(m/s), rp(rad/s), rφ(rad), dp(rad/s), dφ(rad)]T ,

(26)

where rv, rp and rφ denote reference signal generator; dp

and dφ denote the sensor noise in the channel of roll angle.
To verify the effectiveness of the controller designed in this
paper, the system matrices in [24, 25] are applied in this
paper, as follows: Āi = A + �i Ā, B̄i = B + �i B̄, �i ∈
[−1, 1], with

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.1781 6.0791 9.7633 −65.6230 0 2.8900

−0.0575 −3.8100 0 1.3430 −10.7500 1.1870

0 1.0000 0 0.0944 0 0

0.0253 −0.0628 0 −0.4750 0.3450 −2.2200

0 0 0 0 −11.1111 0

0 0 0 0 0 −11.1111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Ā =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0185 0.2416 0.0021 1.0038 0 0

0.0037 0 0 0.0150 0 0.0010

0 0 0 0.0023 0 0

0.0062 0.0050 0 0 0.0030 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −2.8900

10.7500 −1.1870

0 0

−0.3450 2.2200

22.2222 0

0 22.2222

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −2.8900

0 −1.1880

0 0

0.0030 0

0 0

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, and the

uncertain parameters �1 = 0.5, �2 = −0.9, �3 =
−0.3 and �4 = 0.7, respectively. Moreover,
the other system matrices are given as Ci =

(
1 0 0 0 0 0
0 0 1 0 0 0

)

, Ēi = Ei =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.0873
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A0 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 − 2

9 0 0
0 1

2 0 0 0
0 0 0 0 1
0 0 0 −1 0

⎞

⎟
⎟
⎟
⎟
⎠

, and F0 =
( −1 0 0 0 0 0

0 0 −1 0 0 0

)

.

Remark 5.1 The systemmatrices Āi and B̄i in the linearized
lateral-directional motions dynamics (21) are uncertain. The
uncertainty of these matrices may be caused by inaccurate
modeling or measurement. Āi = A + �i Ā, B̄i = B +
�i B̄, where the matrices A and B are nominal matrices;
the matrices �i Ā = ΔAi and �i B̄ = ΔBi are uncertain
matrices. These uncertain matrices are considered as time-
invariant, which are common and considered in [17, 23–25].
Because the systemmatrices cannot be obtained completely,
the uncertain part should be considered. If the precision
model method is used to control the actual system, the
control effect may be not ideal. Therefore, we need to
consider the problem with uncertain parameters to improve
certain robustness.

Given the system matrices, we take the following three
steps to describe how our method is applied to the tracking
problem of four networked aircrafts.

Step 1: Due to high cost or technical constraint, it is
difficult to measure all states of each aircraft. Thus
the linear transformation (16) is constructed to
divide the system states into measurable part and
unmeasurable part. By the definition of Ti , we

can get Ti = (C+
i , C⊥

i ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The linear transformation (16) can transform the

standard system (14) into (17) with A11
i =

( −0.1781 9.7633
0 0

)

,

A12
i =

(
6.0791 −65.6230 0 2.8900
1.0000 0.0944 0 0

)

,

A21
i =

⎛

⎜
⎜
⎝

−0.0575 0
0.0253 0

0 0
0 0

⎞

⎟
⎟
⎠, A22

i =

⎛

⎜
⎜
⎝

−3.8100 1.3430 −10.7500 1.1870
−0.0628 −0.4750 0.3450 −2.2200

0 0 −11.1111 0
0 0 0 −11.1111

⎞

⎟
⎟
⎠,

B1
i =

(
0 −2.8900
0 0

)

, B2
i =

⎛

⎜
⎜
⎝

10.7500 −1.1870
−0.3450 2.2200
22.2222 0

0 22.2222

⎞

⎟
⎟
⎠, E1

i =

(
0 0 0 0 0
0 0 0 0 0.0873

)

, and E2
i = 04×5.

Step 2: From the Step 1, we get that the number of
system states (27) is six, and the number of
unmeasurable states is four. These unmeasurable
states are roll rate, yaw rate, delay of the aileron
deflection command, and delay of the rudder
deflection command, respectively. Therefore, the
reduced-order (four-order) observer (18) is used
to estimate these unmeasurable states. By the
continuous-time algebraic Riccati equation (34),

the constant matrix Li =

⎛

⎜
⎜
⎝

0.0728 0.2234
−0.9884 0.0211
−0.0444 −0.0320
0.1070 0.0029

⎞

⎟
⎟
⎠

can be obtained.
Step 3: By solving the algebraic Riccati equation (36), the

gain matrix of the controller (19) can be obtained:

Ki =
⎡

⎣
0.6839 7.8247 2.0287 −7.5422 −2.1099 1.1499 0.3646

−1.8577 −1.4553 −1.6187 25.3290 1.3755 −4.1057 −0.9312

1.3015 2.5768 1.9369 1.6903 0.9312 3.2317 9.0656 5.2924 8.4129

−3.3183 −6.6294 −4.9415 −4.3986 0.3646 1.2661 3.5696 2.0795 3.3251

⎤

⎦.

The internal model of A0 are selected as G1 =
diag block(β, β), and G2 = diag block(γ, γ ), with

β =

⎛

⎜
⎜
⎜
⎜
⎝

0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 1.0000 0
0 0 0 0 1.000
0 −0.1667 0 −1.1667 0

⎞

⎟
⎟
⎟
⎟
⎠

, and γ =

[0, 0, 0, 0, 1]′.
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Fig. 6 The estimation errors of (a) roll rate, (b) yaw rate, (c) delay of the aileron deflection command, and (d) delay of the rudder deflection
command

Assuming that there is sufficient safe distances among
aircrafts and applying the designed controller (19) to the
uncertain aircraft model (21), the simulation results are
obtained, shown in Figs. 6 and 7. Let x∗

ui(t) = xui(t) −
x̃ui(t) = (x∗

ui1, x
∗
ui2, x

∗
ui3, x

∗
ui4)

T , where x∗
ui1, x

∗
ui2, x

∗
ui3,

and x∗
ui4 represent the estimation errors of roll rate, yaw rate,

delay of the aileron deflection command, and delay of the
rudder deflection command, separately. Figure 6 presents
the above results (the estimation errors of the reduced-
order observer), and it exhibits that all the estimation errors
converge to zero rapidly. The time responses describing
the measurement outputs yi(t) = (vi, φi)

T are shown
in Fig. 7a. Moreover, let ei(t) = (ei1, ei2)

T , where ei1

and ei2 represent the tracking errors of sideway velocity

and roll angle, respectively. The tracking errors of four
research aircrafts are given in Fig. 7b. It demonstrates that
the tracking errors under the distributed feedback controller
(19) converge to zero asymptotically, thus the controller
proposed in this paper can be used for the tracking problem
of networked aircrafts.

Remark 5.2 It is worth mentioning that the results in this
paper refer to information synchronization rather than posi-
tion synchronization. When the control objects are particle
variables such as temperature, water level of four water tanks,
multi-turbine speed regulation, etc., the control objective of
these variables is to track the same signal. For application
example, the output variables are sideway velocity, and roll

Reduced-order observer-based robust leader-following control of heterogeneous discrete-time multi-agent... 1805



)b()a(
Fig. 7 a The measurement outputs, b the tracking errors of four research aircrafts

angle. The control goal of each aircraft is to track the given
sideway velocity and roll angle. After achieving the tracking
target, their position coordinates can be different. In fact,
the application example is based on the assumption that
there is enough safe distance among aircrafts, i.e. there
is no collision among the moving aircrafts. Under this
assumption, the volumes of aircrafts can be neglected, thus
these aircrafts can be regarded as particles. In this paper,
the problem of multi-aircraft tracking is solved from the
perspective of coordinated control. If we want to avoid
collision, the safe distance needs to be considered, and its
control objective becomes lim

k→∞ yi(t) − hi(t) − yr(t) = 0,

rather than lim
k→∞ yi(t) − yr(t) = 0. If hi(t) ≡ 0, the

time-varying formation tracking problem is reducible to the
consensus tracking problem. If hi(t) is a nonzero constant
vector, it becomes the time-invariant formation tracking
problem. How to solve the multi-aircraft safety problem
needs to study formation control method [34, 35]. This issue
is meaningful and is the direction of our future research.

5.4 Comparison experiment

In order to verify the merits of the proposed con-
troller, the comparison method in [36] is used in this
section. Moreover, the directed graph in [36] is used for
comparison. The system matrices are given as follows

A1 =
(
0 1
0 0

)

, B1 =
(
0
1

)

, E1 =
(
0 0
1 −0.5

)

, A2 =
(

0 1
−1 0

)

, B2 =
(
1
1

)

, E2 =
( −1 0.5

−1 0.5

)

, A3 =
(
0 −1
1 0

)

, B3 =
(
0
1

)

, E3 =
(

0 2
−1 0

)

, A4 =

(
0 −1
0 0

)

, B4 =
(
0
1

)

, E4 =
(

0 2
−1 1

)

, Ci =
(
1 0

)
, i = 1, 2, . . . , 9, A5 = A6 = A7 = A8 = A9 =

A4, B5 = B6 = B7 = B8 = B9 = B4, E5 = E6 =
E7 = E8 = E9 = E4.

The exosystem matrices A0 and F0 are given as A0 =(
0 1

−1 0

)

, F0 = (
1 0

)
.

The comparative experiment is conducted with the same
initial states x1(0) = [2, −1]T , x2(0) = [−2, 1]T , x3(0) =
[0, −2]T , x4(0) = [0.5, −2]T , x5(0) = [3, 1]T ,
x6(0) = [−1, −1]T , x7(0) = [3, 1]T , x8(0) =
[2, −1]T , x9(0) = [0.5, 1.5]T , ω(0) = [0, 0]T , and all
the other initial states are chosen to be zero. After simple
calculation, the solutions of the linear matrix equations

(5) in [36] have obtained Xi =
(
1 0
0 1

)

, i = 1, . . . , 9,

U1 = [−2, 0.5], U2 = [1, −0.5], U3 = [−1, 0], U4 =
[0, −1], and U5 = U6 = U7 = U8 = U9 = U4.
The distributed dynamic state feedback control law
(7) in [36] is designed with gain matrices K11 =
[−8, −4], K21 = [−5.5, 1.5], K31 = [7, −4], K41 =
[8, −4], K51 = K61 = K71 = K81 = K91 = K41,
K12 = [6, 4.5], K22 = [6.5, −2], K32 = [−8, 4], K42 =
[−8, 3], K52 = K62 = K72 = K82 = K92 = K42, and
K̂ = [0.2821, 0.0198]T . Moreover, the internal model ofA0

in this paper is selected as G1 =
(

0 1
−1 0

)

, G2 =
(
0
1

)

.

And the distributed tracking protocol (19) is designed
with control gains K1 = (K21, K11, K31) =
(−2.6415 − 2.5066 1.2273 − 0.7027),K2 =
(K22, K12, K32) = (−1.9864 − 0.7180 0.2683 −
1.3885),K3 = (K23, K13, K33) = (1.8343 −
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2.1607 − 1.1023 0.8860),K4 = (K24, K14, K34) =
(2.6415 − 2.5066 − 1.2273 0.7027),K5 = K6 = K7 =
K8 = K9 = K4.

From Fig. 8, we can get that the overshoot of tracking
errors in this paper is [–2 6] while the overshoot in [36]
is [–2 3]. Therefore, the overshoot in this paper is about
1.6 times of that in [36]. From the convergence speed, we
can see that the convergence speed of this paper is about
twice as fast as that of [36]. However, the improvement of
convergence speed in this paper is at the cost of expanding
overshoot, but the overshoot is within the acceptable. In the
future, we will study how to design the controller to improve
the convergence speed and reduce the overshoot. Moreover,
the states of all agents are assumed to be measurable in
[36]. However, in practice, it is difficult to measure all states
due to high cost or technical constraint. For the case of
unmeasurable states, the controller proposed in [36] is not
applicable, while the controller proposed in this paper can
solve this problem.

5.5 Result analysis

Section 5.1 considers the third-order system model,
however, after linear transformation (5), the dimension of
unmeasurable system states is 2. Therefore, only reduced-
order observer is needed to observe these unmeasurable
states. The reduced-order observer is designed by solving
discrete-time algebraic Riccati equation (31). Figure 2
shows the estimation errors of the unmeasurable states.
It can be seen that the estimation errors x∗

ui(k) converge
to zero within 10s, therefore, the designed reduced-order
observer (7) can estimate the unmeasurable states very well.

Then, the distributed feedback controller (9) is designed by
solving the discrete-time algebraic Riccati equation (12).
The tracking errors are depicted in Fig. 3a. We can see
that the tracking errors converge to zero quickly, i.e.
all followers can track the leader through the designed
controller, which verifies the effectiveness of the proposed
method. Therefore, the proposed controller (9) can solve the
robust leader-following consensus problem of HD MASs of
(1) and (2).

Similarly, from the results in Figs. 4, 5, and 3b of
Section 5.2, we can get that the estimation errors of the
unmeasurable states and the tracking errors converge to zero
asymptotically. Therefore, the proposed algorithm can be
extended to the continuous-time systems. Moreover, from
the actual operating motivation of the MuPAL-α model, we
apply the proposed algorithm to this model. From Figs. 6
and 7 of Section 5.3, it can be obtained that the tracking
errors of four research aircrafts converge to zero in a
very short time, thus the designed algorithm can solve the
tracking problem of networked aircrafts, which verifies the
application value of the proposed method.

To further investigate the effectiveness of the proposed
controller, the comparison method in [36] is used in
Section 5.4. The comparison results are shown in Fig. 8.
The results show that proposed method obtains the better
performance. The reasons are as follows. Firstly, the
proposed method adopts the reduced-order observer to
reduce the dimension of the system, and it plays a
significant role in improving the efficiency. Secondly,
the proposed method considers internal model principle
and output coupling relation among agents, which can
capture more communication information than the chosen
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Fig. 8 The tracking errors of all agents of (a) [36], and (b) the proposed method

Reduced-order observer-based robust leader-following control of heterogeneous discrete-time multi-agent... 1807



benchmark. Therefore, the proposed method can obtain
superior performance than [36] in terms of convergence
speed. As summarized from the experimental results, the
proposed method is feasible and promising for dealing with
the robust leader-following consensus problem.

6 Conclusion

In this paper, the leader-following consensus of HD MASs
with system uncertainties has been investigated. The state
information of each agent is not detected by itself and its
neighbors, therefore, an linear transformation is designed
to divide the states into measurable and unmeasurable
parts. Then the reduced-order observer is designed only
for the unmeasurable states. And the distributed feedback
controller is proposed such that all outputs of the followers
reach the leader’s output. In light of the internal model
principle and discrete-time algebraic Riccati equation, the
leader-following problem is achieved. Moreover, this paper
extends the results to continuous-time MASs. Finally,
several numerical examples are provided to verify the
effectiveness of the proposed method. Future research along
this direction will address the leader-following consensus
of MASs with time delay under switching topology based
on event-triggered mechanism. Moreover, the issue of
formation control with obstacle avoidance is the direction of
our future research.
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Appendix A: Proof of Lemma 3.1

Since the matrix pairs (Ai, Bi) are stabilizable, (Ai, Ci) are
detectable, for any λi ∈ C, the matrix pairs (Ai − λiIn, B)

with n × (n + q) dimensions are full row rank, and

the matrix pairs

(
Ai − λiIn

Ci

)

with (n + p) × n

dimensions are full column rank. For any invertible
matrix Ti , one has Rank T −1

i (Ai − λiIn, Bi)Ti =
Rank (Âi − λiIn, B̂iTi ) = n, i.e., there exist matrices Ki

such that Âi + B̂iTiKi are Schur. Then, there exist matri-
ces K̄i = TiKi such that Âi + B̂iK̄i are Schur. For any

invertible matrix Ti , one also has Rank

(
Ai − λiIn

Ci

)

=

Rank

(
T −1

i 0
0 Ip

) (
Ai − λiIn

Ci

)

Ti . Since CiTi =

(Ip, 0), we have

(
T −1

i 0
0 Ip

)(
Ai − λiIn

Ci

)

Ti =
⎛

⎝
A11

i − λiIp A12
i

A21
i A22

i − λiIn−p

Ip 0

⎞

⎠. Therefore, the matrices

(
A12

i

A22
i − λiIn−p

)

are full column rank, i.e., the matrix

pairs (A22
i , A12

i ) are detectable, for any λi ∈ C. The proof
has been completed.

Appendix B: Proof of Lemma 3.3

Since the gain matrix Li is defined as Li =
AiPiC

T
i (CiPiC

T
i )−1, we have

(Ai − siLiCi)Pi(Ai − siLiCi)
∗ − Pi

= AiPiA
T
i − s∗

i AiPiC
T
i LT

i − siLiCiPiA
T
i + sis

∗
i LiCiPiC

T
i LT

i − Pi

= AiPiA
T
i − s∗

i AiPiC
T
i (CiPiC

T
i )−1CiPiA

T
i − siAiPiC

T
i (CiPiC

T
i )−1CiPiA

T
i

+sis
∗
i AiPiC

T
i (CiPiC

T
i )−1CiPiA

T
i − Pi

= AiPiA
T
i − Pi − AiPiC

T
i (CiPiC

T
i )−1CiPiA

T
i + (1 + sis

∗
i − s∗

i − si)AiPiC
T
i (CiPiC

T
i )−1CiPiA

T
i .

= −Qi + (1 + sis
∗
i − s∗

i − si)AiPiC
T
i (CiPiC

T
i )−1CiPiA

T
i . (27)

According to Lyapunov stability theory, ∀Pi = P T
i > 0,

the matrices Ai − siLiCi are stabilizable for si ∈ C, if and
only if (Ai − siLiCi)Pi(Ai − siLiCi)

∗ − Pi < 0, i.e.
−Qi + (1 + sis

∗
i − s∗

i − si )AiPiC
T
i (CiPiC

T
i )−1CiPiA

T
i < 0. (28)

Since Qi = QT
i , there exist matrices Qsi = QT

si
>

0 such that Qsi = Q−1
si

Qi . Post-multiplying and pre-
multiplying (28) by Q−1

si
, respectively, one has

−In + |si − 1|2Q−1
si

AiPiC
T
i (CiPiC

T
i )−1CiPiA

T
i Q−1

si
< 0, (29)

where 1 + sis
∗
i − s∗

i − si = (1 − si)(1 − si)
∗ = |si − 1|2.

By the (29), we get

−1 + |si − 1|2λk[Q−1
si

AiPiC
T
i (CiPiC

T
i )−1CiPiA

T
i Q−1

si
] < 0, (30)

if the eigenvalues λk[Q−1
si

AiPiC
T
i (CiPiC

T
i )−1CiPiA

T
i Q−1

si
] >

0 and satisfy |si − 1|2 <
1

maxk=1,2,...,nλk[Q−1
si

AiPiC
T
i (CiPiC

T
i )−1CiPiA

T
i Q−1

si
] ,

the (30) holds. Moreover, if
λk[Q−1

si
AiPiC

T
i (CiPiC

T
i )−1CiPiA

T
i Q−1

si
] = 0, k =
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1, 2, . . . , n, the (30) also holds for any si ∈ C. Sim-
ilarly, if ci ∈ C is distributed in the stable domain
Φci

= {ci ∈ C : |ci − 1|2 < δci
}, where δ−1

ci
=

maxk=1,2,...,nλk[Q−1
ci

AT
i PiBi(B

T
i PiBi)

−1BT
i PiAiQ

−1
ci

], Qci
=

Q−1
ci

Qi > 0, the matrices Ai + ciBiKi are Schur. This
completes the proof.

Appendix C: Proof of Theorem 3.1

If the digraph G contains a directed spanning tree,
according to Lemma 2.1, all eigenvalues of the matrix
θH have positive real parts. By the Jordan canoni-
cal form theorem, there is a nonsingular matrix Ts ∈
RN×N satisfying θH = TsJT −1

s , where J =
block diag(JN1(λ

′
1), . . . , JNm(λ′

m)), N1 + . . . + Nm =
N, λ′

1 < . . . < λ′
m, λ1 = · · · = λN1 = λ′

1, λN1+1 =
λN1+2 = · · · = λN1+N2 = λ′

2, . . . λN1+N2+···+Nm−1+1 =
λN1+N2+···+Nm−1+2 = · · · = λN1+N2+···+Nm−1+Nm =

λ′
m, JNl

(λ′
l ) =

⎛

⎜
⎜
⎜
⎜
⎝

λ′
l 1

λ′
l

. . .

. . . 1
λ′

l

⎞

⎟
⎟
⎟
⎟
⎠

, l = 1, . . . , m, Let T1 =

⎛

⎜
⎜
⎝

INp 0 0 0
0 IN(n−p) 0 0
0 0 θH ⊗ Ism 0
0 IN(n−p) 0 IN(n−p)

⎞

⎟
⎟
⎠ ,

T2 =

⎛

⎜
⎜
⎝

Ts ⊗ Ip 0 0 0
0 Ts ⊗ In−p 0 0
0 0 Ts ⊗ Ism 0
0 0 0 Ts ⊗ In−p

⎞

⎟
⎟
⎠ , Āc =

T −1
2 T −1

1 AcT1T2 =
(

Ā11
c Ā12

c

0 A22 − LA12

)

, where

Ā11
c =

⎛

⎜
⎝

A11 + B1K2(J ⊗ Ip) A12 + B1K1(J ⊗ In−p) B1K3(J ⊗ Ism )

A21 + B2K2(J ⊗ Ip) A22 + B2K1(J ⊗ In−p) B2K3(J ⊗ Ism )

IN ⊗ G2 0 IN ⊗ G1

⎞

⎟
⎠ , Ā12

c =
⎛

⎜
⎝

B1K1(J ⊗ In−p)

B2K1(J ⊗ In−p)

0

⎞

⎟
⎠. It is obvious that Ac is stabiliz-

able if and only if Āc is stabilizable. According
to Theorem 3 in [27], Ac is Schur if and only if

(
Âi + λiB̂i(K2i , K1i ) λiB̂iK3i

(G2, 0) G1

)

and A22
i − LiA

12
i , i =

1, 2, . . . , N are Schur. This completes the proof.

Appendix D: Proof of Theorem 3.2

According to Theorem 3.1, Ac is stabilizable if and only

if A22
i − LiA

12
i and

(
Âi + λiB̂i(K2i , K1i ) λiB̂iK3i

(G2, 0) G1

)

are

Schur. It thus follows from Lemma 3.1 that (A22
i , A12

i )

is completely detectable. The gain matrix Li =
A22

i Pi(A
12
i )T (A12

i Pi(A
12
i )T )−1 can be obtained by the fol-

lowing discrete-time algebraic Riccati equation

A22
i Pi (A

22
i )T −Pi −A22

i Pi (A
12
i )T (A12

i Pi (A
12
i )T )−1A12

i Pi (A
22
i )T +Qi = 0.

(31)

Let Ki = (K2i , K1i , K3i ), we have(
Âi + λiB̂i(K2i , K1i ) λiB̂iK3i

(G2, 0) G1

)

= Ai + λiBiKi . By

Lemmas 3.1 and 3.2, the matrix pairs (Ai ,Bi ) are stabi-
lizable. Then, according to Lemma 3.3, if λi is distributed
in the stable domain Φi , Ai + λiBiKi is Schur, where
Ki = −(BT

i PiBi )
−1BT

i PiAi , and Pi can be solved by
(12). Therefore, the system Ac is Schur. This completes the
proof.

Appendix E: Proof of Theorem 3.3

According to the proof in Theorem 3.2, it is easy to
find suitable feedback gain matrix such that the nominal
form Ac of system matrix Āc is Schur. To solve the
robust leader-following consensus problem by distributed
feedback controller (9), the following Sylvester equation is
considered

X̄cA0 = ĀcX̄c + W̄c, (32)

with X̄c ∈ RN(2n−p+sm)×s . For each sufficiently small Δ,
Āc is stable. By the Assumption 3.2, (32) has an unique
solution X̄c. Let X̄c = (X̄T

c1, X̄
T
c2, X̄

T
c3, X̄

T
c4)

T , where
X̄c1, X̄c2, X̄c3 and X̄c4 have appropriate dimensions, we
have

X̄c3A0 = (θH ⊗ G2)X̄c1 + (IN ⊗ G1)X̄c3 − (θA0 ⊗ G2F0)(1N ⊗ Is)

= (θH ⊗ G2)X̄c1 + (IN ⊗ G1)X̄c3 − (θH ⊗ G2F0)(1N ⊗ Is)

= (IN ⊗ G1)X̄c3 + (IN ⊗ G2)[(θH ⊗ Ip)X̄c1 − (θH ⊗ F0)(1N ⊗ Is)].
(33)

Since (IN ⊗ G1, IN ⊗ G2) incorporates a pN-copy
internal model of A0, on the basis of Lemma 3.2, we obtain

(θH ⊗ Ip)X̄c1 − (θH ⊗ F0)(1N ⊗ Is) = (θH ⊗ Ip)[X̄c1 − (IN ⊗ F0)(1N ⊗ Is)] = 0. (34)
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Moreover, the matrix H is reversible, we have X̄c1 −
(IN ⊗ F0)(1N ⊗ Is) = 0. Let ζ̂ (k) = ζ(k) − X̄cω(k), and
consider the following equation

ζ̂ (k + 1) = ζ(k + 1) − X̄cω(k + 1) = Ācζ(k) + (W̄c − ĀcX̄c − W̄c)ω(k) = Ācζ̂ (k). (35)

Since Āc is Schur for each sufficiently small Δ, thus
ζ̂ (k) → 0 (k → ∞), then xm(k)−X̄c1ω(k) → 0 (k → ∞).
The purpose of this paper is to solve the robust leader-
follower consensus of HD MASs (1) and (2), i.e. ei(k) =
yi(k)−yr(k) → 0, k → ∞. After the linear transformation
(5), the error ei(k) can be expressed as ei(k) = xmi(k) −
yr(k) = xmi(k) − F0ω(k). The global form of ei(k) could
be denoted as e(k) = xm(k) − (IN ⊗ F0)(1N ⊗ Is)ω(k) =
xm(k) − X̄c1ω(k) → 0, k → ∞. Therefore, the robust
leader-follower consensus of HD MASs (1) and (2) under
directed topology is solved.

Appendix F: Proof of Theorem 4.1

By Theorem 3.1, Ac is Hurwitz if and only if the matrices

A22
i − LiA

12
i and

(
Âi + λiB̂i(K2i , K1i ) λiB̂iK3i

(G2, 0) G1

)

are

Hurwitz, where λi(λ1 ≤ λ2 ≤ · · · ≤ λN), i =
1, 2, . . . , N are the eigenvalues of the matrix H. Let

Ai =
(

Âi 0
(G2, 0) G1

)

, Bi =
(

B̂i

0

)

, and Ki =
(K2i , K1i , K3i ) = −(min Re(λi))

−1(Bi )
T Pi , where Pi is

the solution of the following Riccati equation

AT
i Pi + PiAi + In+p − PiBiBT

i Pi = 0, (36)

we have

(
Âi + λiB̂i(K2i , K1i ) λiB̂iK3i

(G2, 0) G1

)

=
Ai + λiBiKi , i = 1, 2, . . . , N . By Lemma 3.2, the
matrix pair (Ai ,Bi ), i = 1, 2, . . . , N is Hurwitz. By
Lemma 4.1, Ai + λiBiKi is Hurwitz, i.e. the matrix(

Âi + λiB̂i(K2i , K1i ) λiB̂iK3i

(G2, 0) G1

)

is Hurwitz. Besides,

on the basis of Lemma 3.1, the matrix (A22
i , A12

i ) is com-
pletely detectable, and the gain matrix Li = Pi(A

12
i )T R−1

i

can be obtained by the following continuous-time algebraic
Riccati equation

A22
i Pi + Pi(A

22
i )T + Qi − Pi(A

12
i )T R−1

i A12
i Pi = 0, (37)

where Qi = QT
i > 0 and Ri = RT

i > 0 are arbitrary
positive definite matrices. Based on the above analysis, the
closed loop system Ac is Hurwitz. This completes the proof.
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