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Abstract
The recent advances in deep convolutional neural networks (DCNNs) have convincingly demonstrated high-capability
reconstruction for single image super-resolution (SR). However, it is a big challenge for most DCNNs-based SR models
when the scaling factor increases. In this paper, we propose a novel Progressive Residual Network (PRNet) to integrate
hierarchical and scale features for single image SR, which works well for both small and large scaling factors. Specifically,
we introduce a Progressive Residual Module (PRM) to extract local multi-scale features through dense connected up-
sampling convolution layers. Meanwhile, by embedding residual learning into each module, the relative information between
high-resolution and low-resolution multi-scale features is fully exploited to boost reconstruction performance. Finally, the
scale-specific features are fused to the reconstruction module for restoring the high-quality image. Extensive quantitative
and qualitative evaluations on benchmark datasets illustrate that our PRNet achieves superior performance and in particular
obtains new state-of-the-art results for large scaling factors such as 4× and 8×.

Keywords Image super-resolution · Progressive residual network · Multi-scale features · Residual learning ·
Deep convolutional neural networks

1 Introduction

Image super-resolution (SR) is one of the most important
and challenging tasks in computer vision. It aims to generate
a visually pleasing high-resolution (HR) image from a low-
resolution (LR) input. This task widely benefits medical
imaging, virtual reality, video surveillance, to name a few.

Single image SR is an ill-posed problem as the given LR
image loses high-frequency information of the image. The

� Hui Yin
hyin@bjtu.edu.cn

Jin Wan
17120426@bjtu.edu.cn

Ai-Xin Chong
18112015@bjtu.edu.cn

Zhi-Hao Liu
16120394@bjtu.edu.cn

1 Beijing Key Laboratory of Traffic Data Analysis and Mining,
Beijing Jiaotong University, Beijing 100044, China

2 Key Laboratory of Beijing for Railway Engineering, Beijing
Jiaotong University, Beijing 100044, China

inverse problem of single image SR becomes particularly
pronounced when the scaling factor increases. The learning-
based approach attempts to solve this ill-posed problem by
directly or indirectly learning the mapping between LR and
its HR image counterpart.

In recent years, with the help of deep convolu-
tional neural networks (DCNNs), several frameworks for
image SR, e.g., [3, 10, 11, 15, 18], were proposed
where performance grows rapidly. Dong et al. [3] pro-
posed a Super-Resolution Convolution Neural Network
(SRCNN) which firstly used CNN to sample images and
achieved significant improvements. The performance of
SRCNN was limited by its shallow structure. In [10, 11],
Kim et al. increased the depth of network to 20, achiev-
ing notable improvements over SRCNN. In order to get
higher performance, the network tends to be deeper and
deeper. Recently, Lim et al. [18] built a very wide network
EDSR and a very deep oneMDSR by using simplified resid-
ual blocks, which achieved a very satisfactory performance
on super-resolution tasks. After that, many super-resolution
models of dense connection integration have been pro-
posed to effectively utilize hierarchical features, including
SRDenseNet [16] and RDN [32].

Although these latest models have produced promising
results by learning deeper hierarchical features, there are
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still several bottlenecks. A major issue is that the great
majority network models get relatively poor results in large
scaling factors such as 8×, as shown in Fig. 1. One of the
main reasons is that they may not be able to effectively
combine multi-scale feature information with hierarchical
feature information for reconstruction.

Our findings For SR, as objects in images have different
scales and perspectives, combining the hierarchical features
and multi-scale features from a deeper network would give
more clues for reconstruction. However, the previous SR
methods only gained and incorporated more contextual
knowledge through deeper networks and intricate skip
connections, such as EDSR [18] and RDN [32], it is
difficult to integrate complementary multi-scale feature
information using a single stream structure. Further, [28,
33] found that increasing the width of a deep network may
be more beneficial than increasing the depth. Therefore,
in order to facilitate information integration of the image
SR, multi-stream structure and network widening may be
effective. Finally, the existing super-resolution multi-scale
approach [17] did not fully utilize and fuse multi-scale
feature information. And it was not conducive to building
and training deeper network structures on limited hardware
facilities.

Our Contributions Inspired by these observations and find-
ings, we propose a progressive residual network (PRNet) for
still single image SR. Our networks successfully perform on
the large scaling factors, as shown in Fig. 1 (PRNet). We
summarize our research and contributions as follows:

– We propose a novel framework PRNet for high-quality
image SR. The network integrates multi-scale and
hierarchical feature information from the original LR
image by using multi-stream structure.

– We propose a Progressive Residual Module (PRM)
for local multi-scale features representation in PRNet,

which can not only extract the deep multi-scale features
from the image by progressive structure, but also fully
utilize all the different size layers within it via local
dense connections. Simultaneously, residual learning
is introduced to promote the flow of gradient and
information. It is worth mentioning that the larger
the scaling factor is, the more multi-scale feature
information will be fused by adjusting the width of
PRM.

– We propose an effective multi-scale features fusion
architecture for image reconstruction in PRNet, which
can adaptively fuse global feature information of
different scales to improve the performance of image
reconstruction.

– Extensive experimental results show that our model
achieves state-of-the-art performance on several pop-
ular benchmarks. And the larger the scaling factor
becomes, the more highlighted the superiority of PRNet
will be, which is due to its specially designed structure.

The remainder of this paper is organized as follows.
Section 2 reviews the related works. In Section 3, we
elaborate on the proposed methods. Experimental results
and analysis are reported in Section 4. Finally, Section 5
summarizes our work.

2 Related work

Single image super-resolution (SR) researches can be
divided into three classes: interpolation-based [31],
reconstruction-based [30] and learning-based [3, 16, 22–24,
27]. The most popular one is learning-based, includ-
ing neighbor embedding [6], sparse coding [25, 29] and
random forest [21]. Methods in this class learn the com-
plex mapping relationship between LR and HR by using
large training datasets. As an implementation of learning-
based approaches, SRCNN [3] employed a three-layer

Fig. 1 Visual comparison for 8x super-resolution on Urban100 [9]. PSNR: Bicubic (15.89 dB), LapSRN [15] (18.27 dB), EDSR [18] (19.53 dB),
MSRN [17] (19.41 dB), MSLapSRN [14] (18.52 dB), and PRNet (ours)(20.16 dB). (Zoom in for best view)
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Fig. 2 Illustrating the architecture of the proposed progressive resid-
ual network. a Initial multi-scale features extraction net (MSFENet).
b Progressive residual modules (PRMs). c Reconstruction net with
multi-scale features fusion (ReconNet). The horizontal and vertical

directions correspond to the hierarchical depth of the network and the
scale of the feature maps, respectively. Upper-right legend: 3 × 3 res-
block = a ReLU between two 3×3 convolutions, upscale = pixelshuffle
with different up-sampling scale factors, identity = no operation

full convolutional neural network to learn end-to-end
mapping between low/high resolution images, which was
the first successful attempt to apply CNN to SR prob-
lems. To expand the field of perception, DRCN [11] and
VDSR [10] increased the depth of network through skip
connections and residual learning. Those works often used
pre-processed LR images as input, which was upscaled to
HR space via an up-sampling operator, such as bicubic.
However, ESPCN [22] has been proved that it will increase
computational complexity and produce visible artifacts.

To solve this, many deep neural network models [16, 18,
23] were introduced to take advantage of the hierarchical
features of the original low-resolution (LR) image, while
the original low-resolution (LR) image did not use
preprocessing. Among these methods, the most well-
known one is EDSR [18] which was the champion of the
NTIRE2017 SR Challenge. It is based on SRResNet [16] to
enhance performance by removing the normalization layer
and using deeper and broader network structures.

Further, to make full use of the information across
several layers or blocks, the pattern of multiple or
dense skip connections between layers or modules is
adopted in SR. Inspired by densely connected convolutional
networks (DenseNet [8]) which achieved high performance
in image classification, [13, 27] utilized the DenseNet
structure as building modules to reuse learnt feature maps

and introduced dense skip connections to fuse features
at different levels. Compared with SRDenseNet [27],
RDN [32] used a residual dense connection method that
extracted and fused multi-level features from the original
LR image to further improve the performance.

The aforementioned methods showed impressive perfor-
mance of super-resolution, while most of them lose some
useful hierarchical features and ignored the multi-scale fea-
tures from the original LR image. Meanwhile, we believe
that as the scaling factor is amplified, more multi-scale
information should be integrated. Although Li et al. [17]
introduced two fixed-size convolution kernels (3 × 3 and
5×5) to detect image features of different scales, it is impos-
sible to adaptively select multi-scale features based on the
different scaling factors. To resolve these cases, we propose
progressive residual network (PRNet) to integrate hierarchi-
cal features and multi-scale features from all the layers in
the LR space efficiently. We will detail our PRNet in the
next section.

3 Progressive residual networks

In this section, we describe the design methodology of
the proposed PRNet. Firstly, we introduce the network
architecture of PRNet in Section 3.1. Then, Sections 3.2

J. Wan et al.1622



Fig. 3 Progressive residual
module (PRM) architecture

3.3 detail two main parts: progressive residual module and
reconstruction net with multi-scale features fusion.

3.1 Network architecture

In PRNet, the aim is to estimate a super-resolution
image ISR from a low-resolution input image ILR .
Correspondingly, we use IHR to denote the high-resolution
image. ILR is obtained by performing the down-sampling
operation. Figure 2 shows the architecture of our proposed
PRNet. It consists of three parts: initial multi-scale features
extraction net (MSFENet), multiple stacked progressive
residual modules (PRMs) and finally a reconstruction net
with multi-scale features fusion (ReconNet).

Specifically, a convolutional layer and several up-
sampling layers are used in MSFENet to extract the initial

multi-scale shallow featuresM0 = {Ms
0, s = 0, 1, 2, 3}. M0

0
is extracted from ILR and the formula is as follows:

M0
0 = FExt (I

LR) , (1)

where FExt (·) denotes 3 × 3 convolution operation. M0
0

is then used for further multi-scale features extraction and
global residual learning. So we can further have

Ms
0 = FUp(Ms−1

0 ) , (2)

where FUp(·) denotes 2× up-sampling operation used
in [18, 22], s ∈ {1, 2, 3}, and s corresponds to the sampling
factor (s = i for the scaling factor is 2i). M0 are the
extracted inital multi-scale features to be sent to the first
progressive residual module (PRM).

Fig. 4 Reconstruction net with
multi-scale features fusion
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Fig. 5 Convergence analysis of
PRNet with different number of
PRM
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Supposing T progressive residual modules are stacked to
act as the feature mapping, the output Mt of the t−th PRM
can be obtained by:

Mt = FPrn,t (Mt−1)

= FPrn,t (FPrn,t−1(. . . (FPrn,1(M0)) . . .)), t ∈ 1, . . . , T , (3)

where FPrn,t (·) denotes the operations of the t-th PRM.
FPrn,t (·) can be a composite function of operations, such as
convolution and rectified linear units (ReLU).

Finally, our model uses the up-sampling and convolution
layers in ReconNet to fuse multi-scale features and
reconstruct residual images. Therefore, our PRNet can be
formulated as:

ISR = FPRNet (I
LR)

= FRec(FPrn,t (FPrn,t−1(. . . (FPrn,1(M0)) . . .))

+M0
0 ) , (4)

where FPRNet (·) and FRec(·) denote the function of our
PRNet and the reconstruction net with multi-scale features
fusion respectively.

Given a training set
{
IHR
i , ILR

i

}
i=1,...,N , where N is the

number of training patches and IHR
i is the ground truth of

the low-quality patch ILR
i , the loss function of our PRNet

with the parameter set Θ , is

LSR(Θ) = 1

N

N∑

i=1

‖FPRNet (I
LR
i ) − IHR

i ‖1. (5)

3.2 Progressive residual module

In order to synthesize local hierarchical features and local
multi-scale features, we propose a progressive residual
module (PRM), as show in Fig. 3. Here we will present
more details of this structure, which contains local cross-
scale feature fusion (LSCFF) and local residual learning
(LRL).

Local cross-scale feature fusion is exploited to adaptively
fuse the states from preceding PRM and fully utilize
hierarchical information and multi-scale information in
current PRM. Different from previous studies, we construct

Table 1 Ablation investigation
of local residual learning
(LRL), local cross-scale feature
fusion (LCSFF), and
multi-scale features fusion
(MSFF)

Different combinations of LRL, LCSFF and MSFF

LRL × � × × × � � �
LCSFF × × � × � × � �
MSFF × × × � � � × �

PSNR 31.34 33.43 33.39 33.34 33.45 33.56 33.70 33.73

We observe the best performance (PSNR) on Set14 [29] with scaling factor ×2 in 200 epochs
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Fig. 6 Convergence analysis on
MCSFF, LRL, and MSFF. The
curves for each combination are
based on the PSNR on
Set14 [29] with scaling factor
×2 in 200 epochs
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a multi-stream sub-network in which complementary multi-
scale feature information can be detected and fused on
different streams. In this way, the hierarchical and multi-
scale features of the deep network can be integrated to
provide more clues for image reconstruction. The operation
can be formulated as:

M0
t,LC = pt ∗ σ (qt ∗ M0

t−1),

M1
t,LC = W 1

t ∗ [M1
t−1, (M

0
t,LC)↑2],

. . . . . .

Ms
t,LC = Ws

t ∗ [Ms
t−1, (M

s−1
t,LC)↑2]

+((Ms−2
t,LC)↑22 + . . . + (M0

t,LC)↑2s ) , (6)

Mt,LC = {Ms
t,LC, s = 0, 1, 2, 3}, (7)

where ∗ is the spatial convolution operator, ↑2s is the up-
sampling operator with scaling factor 2s , and pt , qt , Wt =
{Ws

t , s = 1, 2, 3} are convolutional layers at stage t . σ(∗) =
max(0, x) stands for the ReLU function, and [x, y] denotes
the concatenation operation with x and y.

Local residual learning is applied to further facilitate the
information flow. Formally, we define LRL as:

Mt = Mt,LC + Mt−1, (8)

where Mt−1 and Mt represent the input and output of
the PRM, respectively. The operation + is performed by
a shortcut connection and element-wise addition. LRL not

only makes the computational complexity greatly reduced,
but also promotes the performance of the network.

3.3 Reconstruction net withmulti-scale features
fusion

After extracting local features at different scales with a set
of PRMs, we further propose a multi-scale features fusion
structure for reconstruction, as shown in Fig. 4, which can
adaptively fuse global multi-scale feature information. It
consists of global residual fusion (GRF) and multi-scale
features fusion (MSFF).

Global residual learning is introduced to gain the feature-
maps before conducting up-sampling by

M0
F = hf ∗ M0

T + M0
0 , (9)

where M0
0 denotes the initial shallow feature-maps, M0

T

denotes the zeroth element of MT , which is the output of
the last PRM module of PRNet, ∗ is the spatial convolution
operator, and hf is the convolutional layer at the global
residual stage. All the other layers before global feature
fusion are fully exploited with our proposed progressive
residual modules (PRMs). PRM generates multi-level local
features of different sizes, which are further adaptively
fused into the image up-sampling process to enhance the
reconstruction performance.

Multi-scale features fusion is then utilized to adaptively
fuse global feature information of different scales in the up-
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Table 2 Quantitative evaluation of state-of-the-art SR algorithms: average PSNR / SSIM for scale factors 2×, 3×, 4× and 8×

Dataset Scale Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

Bicubic 2 33.69 / 0.931 30.25 / 0.870 29.57 / 0.844 26.89 / 0.841 30.86 / 0.936

SRCNN [3] 36.72 / 0.955 32.51 / 0.908 31.38 / 0.889 29.53 / 0.896 35.76 / 0.968

SelfExSR [9] 36.60 / 0.955 32.24 / 0.904 31.20 / 0.887 29.55 / 0.898 35.82 / 0.969

FSRCNN [4] 37.05 / 0.956 32.66 / 0.909 31.53 / 0.892 29.88 / 0.902 36.67 / 0.971

VDSR [10] 37.53 / 0.959 33.05 / 0.913 31.90 / 0.896 30.77 / 0.914 37.22 / 0.975

DRRN [23] 37.74 / 0.959 33.23 / 0.914 32.05 / 0.897 31.23 / 0.919 37.92 / 0.976

SRDCNN [13] 37.26 / 0.957 32.69 / 0.899 31.55 / 0.891 - / - - / -

LapSRN [15] 37.52 / 0.959 33.08 / 0.913 31.80 / 0.895 30.41 / 0.910 37.27 / 0.974

EDSR [18] 38.11 / 0.960 33.92 / 0.920 32.32 / 0.901 32.93 / 0.935 39.10 / 0.977

MSRN [17] 38.08 / 0.961 33.74 / 0.917 32.23 / 0.901 32.22 / 0.933 38.82 / 0.977

D-DPBN [7] 38.09 / 0.960 33.85 / 0.919 32.27 / 0.900 32.55 / 0.932 38.89 / 0.978

RDN [32] 38.24 / 0.961 34.01 / 0.921 32.34 / 0.902 32.89 / 0.935 39.18 / 0.978

PRNet (ours) 38.24 / 0.961 34.02 / 0.921 32.35 / 0.902 32.93 / 0.936 39.12 / 0.978

PRNet+ (ours) 38.30 / 0.962 34.09 / 0.922 32.40 / 0.903 33.14 / 0.937 39.34 / 0.979

Bicubic 3 30.41 / 0.869 27.55 / 0.775 27.22 / 0.741 24.47 / 0.737 26.99 / 0.859

SRCNN [3] 32.78 / 0.909 29.32 / 0.823 28.42 / 0.788 26.25 / 0.801 30.59 / 0.914

SelfExSR [9] 32.66 / 0.910 29.18 / 0.821 28.30 / 0.786 26.45 / 0.810 27.57 / 0.821

FSRCNN [4] 33.18 / 0.914 29.37 / 0.824 28.53 / 0.791 26.43 / 0.808 31.10 / 0.921

VDSR [10] 33.67 / 0.921 29.78 / 0.832 28.83 / 0.799 27.14 / 0.829 32.01 / 0.934

DRRN [23] 34.03 / 0.924 29.96 / 0.835 28.95 / 0.800 27.53 / 0.764 32.74 / 0.939

SRDCNN [13] 33.59 / 0.923 29.54 / 0.824 28.80 / 0.797 - / - - / -

LapSRN [15] 33.82 / 0.922 29.87 / 0.832 28.82 / 0.798 27.07 / 0.828 32.21 / 0.935

EDSR [18] 34.65 / 0.928 30.52 / 0.846 29.25 / 0.809 28.80 / 0.865 34.17 / 0.948

MSRN [17] 34.38 / 0.926 30.34 / 0.840 29.08 / 0.804 28.08 / 0.855 33.44 / 0.943

D-DPBN [7 -/--/--/--/--/-]

RDN [32] 34.71 / 0.930 30.57 / 0.847 29.26 / 0.809 28.80 / 0.865 34.13 / 0.948

PRNet (ours) 34.67 / 0.929 30.57 / 0.847 29.25 / 0.809 28.77 / 0.865 34.05 / 0.948

PRNet+ (ours) 34.79 / 0.930 30.65 / 0.848 29.31 /0.810 28.96 / 0.868 34.37 / 0.950

Bicubic 4 28.43 / 0.811 26.01 / 0.704 25.97 / 0.670 23.15 / 0.660 24.93 / 0.790

SRCNN [3] 30.50 / 0.863 27.52 / 0.754 26.91 / 0.712 24.53 / 0.725 27.66 / 0.859

SelfExSR [9] 30.34 / 0.862 27.41 / 0.753 26.84 / 0.713 24.83 / 0.740 27.83 / 0.866

FSRCNN [4] 30.72 / 0.866 27.61 / 0.755 26.98 / 0.715 24.62 / 0.728 27.90 / 0.861

VDSR [10] 31.35 / 0.883 28.02 / 0.768 27.29 / 0.726 25.18 / 0.754 28.83 / 0.887

DRRN [23] 31.68 / 0.888 28.21 / 0.772 27.38 / 0.728 25.44 / 0.764 29.46 / 0.896

SRDCNN [13] 31.16 / 0.879 27.85 / 0.764 27.08 / 0.709 - / - - / -

LapSRN [15] 31.54 / 0.885 28.19 / 0.772 27.32 / 0.727 25.21 / 0.756 29.09 / 0.890

EDSR [18] 32.46 / 0.897 28.80 / 0.788 27.21 / 0.742 26.64 / 0.803 31.02 / 0.915

MSRN [17] 32.07 / 0.890 28.60 / 0.775 27.52 / 0.727 26.04 / 0.790 30.17 / 0.903

D-DPBN [7] 32.47 / 0.898 28.82 / 0.786 27.72 / 0.740 26.38 / 0.795 - / -

RDN [32] 32.47 / 0.899 28.81 / 0.787 27.72 / 0.742 26.61 / 0.803 31.00 / 0.915

PRNet (ours) 32.49 / 0.899 28.86 / 0.788 27.74 / 0.742 26.68 / 0.805 31.15 / 0.917

PRNet+ (ours) 32.63 / 0.900 28.95 / 0.790 27.81 / 0.744 26.87 / 0.808 31.52 / 0.920

J. Wan et al.1626



Table 2 (continued)

Bicubic 8 24.40 / 0.658 23.10 / 0.566 23.67 / 0.548 20.74 / 0.516 21.47 / 0.650

SRCNN [3] 25.33 / 0.690 23.76 / 0.591 24.13 / 0.566 21.29 / 0.544 22.46 / 0.695

SelfExSR [9] 25.49 / 0.703 23.92 / 0.601 24.19 / 0.568 21.81 / 0.577 22.99 / 0.719

FSRCNN [4] 25.60 / 0.697 24.00 / 0.599 24.31 / 0.572 21.45 / 0.550 22.72 / 0.692

VDSR [10] 25.93 / 0.724 24.26 / 0.614 24.49 / 0.583 21.70 / 0.571 23.16 / 0.725

DRRN [23] 26.18 / 0.738 24.42 / 0.622 24.59 / 0.587 21.88 / 0.583 23.60 / 0.742

LapSRN [15] 26.15 / 0.738 24.35 / 0.620 24.54 / 0.586 21.81 / 0.581 23.39 / 0.735

EDSR [18] 26.97 / 0.775 24.94 / 0.640 24.80 / 0.596 22.47 / 0.620 24.58 / 0.778

MSRN [17] 26.59 / 0.725 24.88 / 0.596 24.70 / 0.541 22.37 / 0.598 24.28 / 0.752

MSLapSRN [14] 26.34 / 0.756 24.57 / 0.627 24.65 / 0.590 22.06 / 0.596 23.90 / 0.756

D-DPBN [7] 27.21 / 0.784 25.13 / 0.648 24.88 / 0.601 22.73 / 0.631 - / -

PRNet (ours) 27.18 / 0.784 25.15 / 0.648 24.89 / 0.602 22.77 / 0.633 24.97 / 0.793

PRNet+ (ours) 27.34 / 0.788 25.27 / 0.652 24.98 / 0.604 22.95 / 0.640 25.25 / 0.799

Red indicates the best and blue indicates the second best performance

sampling process. We name this operation as multi-scale
features fusion (MSFF) formulated as:

M1
F = W 1

f ∗ [M1
T , (M0

F )↑2] ,

. . . . . . (10)

Ms
F = Ws

f ∗ [Ms
T , (Ms−1

F ))↑2] ,

I SR = rf ∗ Ms
F , (11)

where ∗ is the spatial convolution operator, ↑2 is the
up-sampling operator with scaling factor 2, and Wf =
{Ws

f , s = 1, 2, 3} and rf are convolutional layers
at the multi-scale features fusion stage. [x, y] denotes
concatenation operation with x and y.

4 Experiments

In this section, we first describe the implementation and
training details of our network. We then validate the con-
tributions of different components in the proposed network
and compare the proposed PRNet with several state-of-the-
art SR methods on benchmark datasets. We present the
quantitative evaluation and qualitative comparison. Finally,
we apply our approach to real photos.

4.1 Implementation and training details

Datasets and Metrics In our work, we choose DIV2K [1]
as the training dataset, a new high-quality image dataset
for image restoration challenge. DIV2K consists of 800
training images, 100 validation images, and 100 test images.

We train all of our models with 800 training images
and use 14 validation images in the training process. For
testing, we use five standard benchmark datasets: Set5 [2],
Set14 [29], B100 [19], Urban100 [9], and Manga109 [20].
These datasets contain a wide variety of images that can
fully verify our model. Following previous works, all testing
is based on luminance channel in YCbCr space, and scaling
factors: ×2, ×3, ×4, and ×8 are used for training and
testing.

Training Setting Following settings of [18], in each training
batch, we randomly extract 16 LR RGB patches with the
size of 48×48 as inputs. We randomly augment the patches
by flipping and rotating before training. To maintain the
image details, instead of transforming the RGB patches into
a YCbCr space, we use the 3-channel image information
from the RGB for training. The entire network is optimized
by Adam [12] with L1 loss by setting β1 = 0.9 and β2 =
0.999. The learning rate is initially set to 10−4 and halved
at every 2 × 10−5 mini-batch updates for 3 × 10−5 total
mini-batch updates. All experiments are conducted using
Pytorch [5], MATLAB R2015b on NVIDIA TITAN Xp
GPUs.

4.2 Model analysis

In this section, we first analyze the effects of the number of
PRM, which is closely related to the depth of the network.
We then use ablation experiments to evaluate several key
design methodologies of PRNet.

PRMs and Network depth We investigate the basic network
parameters: the number of PRM (denote as T for short).

Progressive residual networks for image super-resolution 1627



Fig. 7 Visual comparison for
4× SR on BSD100 [19],
Urban100 [9], and
Manga109 [20] datasets. The
best results are highlighted.
(Zoom in for best view)

We use the performance of SRCNN [3] as a reference.
For illustration purpose, we train the proposed model with
different number of PRM, that is the different depth of
whole PRNet. We choose T = 8, 16, 32. As shown in
Fig. 5, larger T would lead to higher performance. This
is mainly because the network becomes deeper with larger
T . On the other hand, although PRNet with smaller T

would suffer some performance degradation during training,
it still outperforms SRCNN [3] due to its powerful feature
representation and fusion capabilities. More importantly,
PRNet allows deeper and wider network, with bigger T and
s, where more hierarchical features and more multi-scale
features are extracted for higher performance.

Ablation Investigation Table 1 shows the ablation inves-
tigation on the effects of local cross-scale feature fusion
(LCSFF) , local residual learning (LRL), and multi-scale

features fusion (MSFF). The eight networks have the same
number of PRMs (T = 16). The baseline is obtained
without LCSFF, LRL, or MSFF and performs very poorly
(PSNR = 31.34 dB). This is due to the difficulty of training
and also demonstrates that stacking many basic blocks in a
very deep network does not yield better performance.

We then add one of the LRL, LCSFF or MSFF to the
baseline (the 2nd to 4th combinations in Table 1). The
results prove that each component can greatly improve the
performance of the baseline. We further remove one of
LRL, LCSFF, or MSFF from PRNet to verify the validity of
each component design. The quantitative results in Table 1
show that each component can significantly improve the
performance of the network.

This is because LRL can promote the flow of information
and gradients. LCSFF can fully combine multi-scale fea-
tures and hierarchical features in feature extraction. MSFF
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Fig. 8 Visual comparison for
8× SR on Urban100 [9] and
Manga109 [20] datasets. The
best results are highlighted.
(Zoom in for best view)

can effectively fuse multi-scale features in reconstruction.
A similar phenomenon can be seen when we use these
three components simultaneously (denote as the full model).
PRNet using three components performs the best.

We can also visualize the convergence process of the
above combinations in Fig. 6. The convergence curves
are consistent with our analyses and indicate that LCSFF,
LRL or MSFF can stabilize the training process without
obvious performance degradation. These quantitative and
visual analysis prove the benefits and effectiveness of the
proposed LCSFF, LRL or MSFF.

4.3 Comparisons with state-of-the-art methods

To confirm the ability of the proposed network, we perform
several experiments and analysis. We compare our network
with 11 state-of-the-art SR algorithms: SRCNN [3],
SelfExSR [9], FSRCNN [4], VDSR [10], DRRN [23],
SRDCNN [13], LapSRN [15], EDSR [18], MSRN [17], D-
DBPN [7], and RDN [32]. Similar to [18, 32], we also
adopt the self-ensemble strategy [26] to further improve our
PRNet and denote the self-ensembled PRNet as PRNet+.

Table 2 shows quantitative comparisons for ×2, ×3, ×4,
and ×8 SR. It is worth noted that D-DBPN [7] has to

divide each image in Manga109 into four parts and then
calculate PSNR separately which will significantly improve
the super-resolution performance. For a fair comparison, we
do not compare the results of D-DBPN [7] on the Manga109
dataset in the 8× up-sampling sampling factor, and the
result of other datasets are cited from their paper.

When compared with all previous methods, our PRNet+
performs the best on all the datasets with all scaling factors.
Even without self-ensemble, our PRNet also achieves the
best average results on most datasets. Specifically, for the
scaling factor ×3, our PRNet would not hold a similar
advantage over RDN [32]. This is mainly because we adjust
the number of feature map channels of our network (252
and 28). However, our results are still better than the rest
of the models. Moreover, we have better applicability than
D-DBPN [7]. For the scaling factor ×2, ×4, and ×8, our
PRNet performs the best on all datasets. On the other hand,
when the scaling factor becomes larger (e.g., ×8), the gains
of our PRNet over EDSR [18] also becomes larger.

We also provide visual comparison results as qualita-
tive comparisons. Figure 7 shows the visual comparisons
on the 4× scale. For image “21077” and “HighschoolKi-
mengumi vol 20”, we observe that most of the compared
methods would produce blurred artifacts and distorted
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Fig. 9 Visual results on
real-world images with scaling
factor x4. The two rows show
SR results for images “banner”
and “building” respectively.
“CEWV” is the ground-truth of
“banner” and denotes the
“Committee to End the War in
Vietnam”. (Zoom in for best
view)

edges. By contrast, our PRNet can restore sharper and more
natural edges, and produce more faithful results. For the
visually farther texture in the image “img 093”, all meth-
ods of comparison can’t reconstruct it correctly. While
our PRNet can obviously reconstruct it. This is mainly
because PRNet uses multi-scale feature information through
multi-scale features fusion.

To further illustrate the analysis above, we show visual
comparisons for 8× SR in Fig. 8. For image “img 092”,
due to the large scaling factor, the results of Bicubic
would lose details and produce an incorrect texture
structure. This false pre-amplification result would also
lead some state-of-the-art methods (e.g., SRCNN, VDSR,
and DRRN) to reconstruct totally erroneous structures.
Even the original LR as input, other methods cannot
reconstruct the right structure either. While, our PRNet can
recover them correctly and clearly. Similar observations
are shown in image “Hamlet”. Our proposed PRNet can
integrate multi-scale and hierarchical feature information to
enhance the ability of feature representation and improve
the performance of reconstruction.

4.4 Super-resolving real-world photos

We also conduct SR experiments on two historical real-
world images, “banner” (with 400 × 270 pixels) and
“building” (with 400× 327 pixels). In this case, the original
HR images are not available and the degradation model is
unknown either. We compare our PRNet with VDSR [10],
LapSRN [15], EDSR [18], and RDN [32]. As shown in
Fig. 9, our PRNet recreates finer details and more loyal
to real-world scenarios than other state-of-the-art methods.
These results further indicate the benefits of learning multi-
scale features from the original input image. Combining

the hierarchical features and multi-scale features performs
robustly for unknown degradation models.

5 Conclusion

In this paper, we propose a Progressive Residual Network
(PRNet) for image SR, where progressive residual module
(PRM) serves as the basic build module. In each PRM,
dense connected up-sampling convolution layers allow full
usage of local multi-scale features. The local residual
leaning (LRL) further improves the flow of information
and gradient. Moreover, we propose the multi-scale features
fusion (MSFF) to fuse multi-scale features extracted from
previous PRMs during reconstruction. By fully using local
and global multi-scale features, our PRNet leads to a dense
fusion of hierarchical and scale features. We use the same
PRNet structure to handle the bicubic degradation model
and real-world data. Extensive benchmark evaluations
demonstrate that our PRNet yields superior results and
successfully outperforms other state-of-the-art methods on
large scaling factors such as 4× and 8× enlargement.
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