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Abstract

Community structure is an important characteristic of complex networks. Uncovering communities in complex networks
is currently a hot research topic in the field of network analysis. Local community detection algorithms based on seed-
extension are widely used for addressing this problem because they excel in efficiency and effectiveness. Compared with
global community detection methods, local methods can uncover communities without the integral structural information of
complex networks. However, they still have quality and stability deficiencies in overlapping community detection. For this
reason, a local community detection algorithm based on internal force between nodes is proposed. First, local degree central
nodes and Jaccard coefficient are used to detect core members of communities as seeds in the network, thus guaranteeing that
the selected seeds are central nodes of communities. Second, the node with maximum degree among seeds is pre-extended
by the fitness function every time. Finally, the top k nodes with the best performance in pre-extension process are extended
by the fitness function with internal force between nodes to obtain high-quality communities in the network. Experimental
results on both real and artificial networks show that the proposed algorithm can uncover communities more accurately than
all the comparison algorithms.

Keywords Complex network - Local community detection - Seed-extension algorithm - Internal force

1 Introduction networks. A node in the network represents an individual,

while edges represent connections between individuals. The

In the real world, complex systems exist in all aspects of
people’s lives, such as social networks, protein interaction
networks and scientists’ collaborative networks [1]. Com-
plex systems are generally modeled as graphs or complex
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existence of communities is a crucial characteristic of com-
plex networks. The internal nodes of the community are
connected closely, whereas the connections between com-
munities are relatively sparse [2]. Uncovering communities
in complex networks and mining the hidden relationships
between communities are of utmost importance for complex
network analysis.

The Girvan and Newman’s method (GN) [3] is the first
algorithm for uncovering communities in complex net-
works. In the last decade, numerous algorithms for uncover-
ing communities in complex networks have been proposed
[4]. These algorithms can be divided into non-overlapping
community detection algorithms and overlapping commu-
nity detection algorithms. Most of the early methods [5,
6] for community detection focus only on identifying non-
overlapping communities in which each node belongs to a
single community. However, nodes in the network usually
belong to more than one community. For example, a per-
son may be a member of his family and a personnel of his
company. Palla et al. [7] proposed the first algorithm for
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uncovering overlapping communities in complex networks.
Henceforth, numerous algorithms have been proposed for
addressing the problem of uncovering overlapping com-
munities in complex networks [8—13]. The algorithms are
mainly based on local methods and global methods [14].
The global methods are not applicable to complex networks
with large scale or lack of integrity because it requires
the topology information of the entire network. Compared
with the global methods, local methods can uncover com-
munities without the integral structural information of the
complex networks. However, the accuracy of local methods
is generally affected by the initial node selection.

Seed-extension algorithms play an important role in
existing overlapping community detection methods. In
term of efficiency, the time complexity of seed-extension
algorithms is linear to the number of nodes or edges when
the network is sparse [15-17]. In term of effectiveness,
algorithms based on seed-extension perform well in
uncovering highly overlapping communities in many types
of complex networks [18-20]. However, algorithms based
on seed-extension still have weakness. They may select
seeds with poor quality or cannot fully utilize the local
information among nodes. In this paper, a local seed-
extension algorithm based on internal force between nodes
(InfoNode) is proposed. The main contributions of this
paper are as follows:

(1) InfoNode uses local degree central nodes and Jaccard
coefficient to detect core members in the network.
The detected core members are treated as seeds, thus
guaranteeing that the selected seeds are central nodes
of the communities.

(2) In order to fully utilize the local information between
nodes, the definition of internal force between nodes is
proposed. InfoNode combines internal force between
nodes with the fitness function in the community
extension stage, which greatly improves the accuracy
of community detection.

(3) A community pre-extension process is set up before
the community extension stage. InfoNode selects
the top k nodes with the best performance in the
community pre-extension process and then calculate
them accurately by fitness function with internal force
between nodes in community extension stage, which
can reduce the algorithm’s running time.

The rest of the paper is organized as follows: In
Section 2, we present the research related to seed-extension
algorithms with various strategies in seed selection and
community extension stage. Section 3 describes the
proposed community detection algorithm in detail. In

Section 4, a series of experimental results are given to verify
the performance of our method. Finally, the conclusion is
drawn in Section 5.

2 Related work

The algorithms based on seed-extension generally select
a seed as the initial community and then extend it
by continuously checking its neighboring nodes. The
method include two essential stages: seed selection and
community extension. In the stage of seed selection, its
aim is to detect core members of communities based
on node centrality index. In the stage of community
extension, its goal is to build communities from seeds
based on their influence or a greedy process with quality
function. In the following, various strategies for selecting
seeds and extending communities are introduced in detail,
respectively.

2.1 Seed selection strategies

Increasing studies show that the formation of communities
depends on core members [21, 22]. For algorithms based on
seed-extension, the quality of seeds has direct affection on
the algorithms’ performance. In last decade, various seed
selection strategies have been proposed [14]. Lancichinetti
et al. [23] proposed a simple method that depends on ran-
dom seed selection. The randomness brings efficiency but
also makes it unable to discover high-quality communi-
ties. Lee et al. [18] proposed an algorithm that considers
k-cliques in the network as initial communities so that it
can uncover highly overlapping communities. However, the
algorithm may ignore isolated sub-networks whose sizes are
too small. In literature [24] and [25], the local degree central
nodes whose degrees are greater than or equal to all their
neighbors’ degrees are selected as seeds. Intuitively, the core
members of a community are generally local degree central
nodes. The strategy can detect all the core members of com-
munities. However, it may also select non-core members.
Some algorithms [26, 27] calculate the conductance of each
node in the network and select local minimum conductance
nodes as seeds. This kind of method can detect high-quality
seeds but with a low time efficiency.

2.2 Community extension strategies
In the stage of community extension, each seed is taken

as an initial community and extended by spreading the
influence of the seed throughout the network [26, 28] or
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running a greedy process with a quality function [18, 23,
24]. The latter method attracts more interests of researchers.
Hence, various quality functions have been proposed in recent
years [29]. The quality function is optimized continuously
until it gets the maximum or minimum value.

Clauset [30] proposed a local extension optimization
algorithm that defines the local community modularity R,
which is calculated as follows:

Bin
R=—"" 1)
Bin + Bout

In (1), B is alocal community. B;, represents the number of
edges whose endpoints are all in B, while B,,; is the number
of edges those have one endpoint in B. The algorithm needs
to pre-define the size of communities. It continuously adds
the neighboring node that makes the largest increase of R to
current community, until the current community reaches the
predefined size.

Lou et al. [31] proposed the modularity M of community
S, which is calculated as follows:

@)

In (2), E;, represents the number of internal edges of
community S, while E,,; represents the number of edges
between the community boundary and the external nodes.
The algorithm proposes three heuristic node search methods
to partially address the problem of uncovering communities
in complex networks. However, it must set different
thresholds for networks with different sizes.

Lancichinetti et al. [23] proposed a fitness function F, to
measure the tightness of internal nodes of the community.
The fitness function is defined as follows:

(4

Fc:+ 3
e+ fon)® )

In (3), ff5 and f5,, are the total values of the internal
degrees and external degrees of community ¢, and « is the
resolution parameter used to control the size of communities
detected. The quality function can effectively measure the
tightness of nodes within the community, but it cannot fully

utilize the local information among nodes.
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3 The proposed community detection
algorithm

This section is organized as follows: first, the basic
notations and definitions used in the paper are presented
in Section 3.1; second, Section 3.2 describes the proposed
algorithm in detail; finally, the complexity analysis of our
method is given in Section 3.3.

3.1 Basic notations and definitions

A network is usually modeled as G = (V, E). V is the set of
nodes and E is the set of edges in the network. In this paper,
we only consider undirected and unweighted networks. The
notations used in this paper are listed in Table 1 and basic
definitions are given as follows.

Definition 1 (Jaccard coefficient) The Jaccard coefficient
[32] between two nodes is defined as:
_ IN@) NN Q)|

[N(u) UN ()|
Jaccard coefficient is defined to measure the similarity

between two nodes. The larger the value, more similar the
two nodes.

J(u,v) 4)

Definition 2 (Internal force) The internal force between
two nodes is defined as:

d(u) x d(v)
[1—J@,v)]?
In (5), g is a parameter used to control the magnitude of
internal force between two nodes, and we make its value as
1/d?>. When internal force between nodes is calculated, a
case may occur where the Jaccard coefficient between two
nodes is 1, which means the two nodes are too close”.

F(u,v) =g x Q)]

Table 1 Formal notations used in this paper

Notation Description

G(V,E) a graph G with node set V and edge set E
|4 anode set V = {vy, v, v3, -+, Uy}

E an edge set E = {(v;, vj)|v; € V,v; € V,i # j}
n the number of nodes in V

m the number of edges in E

d the average degree of nodes

q the number of local degree central nodes
d(v) the degree of node v

N(v) the neighboring node set of node v
Ns(C) the neighboring node set of community C
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Therefore, the Jaccard coefficient formula needs to be
slightly modified as follows:

IN(u) NN Q)|

S ) = S S UNW +1 ©
o du) x d(v)
Flu) =g x oty )

Definition 3 (Fitness function with internal force) The
fitness function with internal force is used to measure the
tightness of a group of nodes. Its specific formula is defined
as follows:

/
G
Fin

=i (8)
(F,5 + F,5)

Fg

In (8), Fi/nG and F(;f, are the total value of the internal force
and the external force of community G, respectively. The
larger the value of fitness function of a group nodes, the

more likely it is that they form a community.

Definition 4 (Node fitness to community) The fitness of
node v to community ¢ is used to determine whether the
node should be added to the community. It is defined as
follows:

Ff = FcUfv} — Fe (&)

In (9), if the value of F! is positive, it indicates that the
addition of node v to community ¢ can make its structure
more compact; on the contrary, it means that the addition of
the node v to community ¢ will make its internal structure
looser.

3.2 Algorithm description

Figure 1 shows the flowchart of InfoNode that is mainly
composed of two stages: seed selection and community
extension. In the seed selection stage, local degree central
nodes and Jaccard coefficient are used to detected core
members of communities. In the community extension
stage, InfoNode combines internal force between nodes
with the fitness function to extend communities. In the
following, the seed selection and community extension
stage are described in detail, respectively.

3.2.1 Seed selection

For algorithms based on seed-extension, the quality of
seeds directly affects the accuracy of communities detected.
In general, the selected seeds should have a considerable
“influence” in the local structure and be the core members
of communities. The process of selecting seeds is given in
Algorithm 1.

Algorithm 1 Seed selection.
Input: Graph G(V, E), e.

/g is the Jaccard coefficient

threshold
Output: Seed set Seeds
1: Seeds = @;

2: for eachv € V do
if v is a local degree central node, Seeds = SeedsU
{v};
4: end for
5: for each v € Seeds do
6: J() = {2 J(u,v)u € N}
7
8
9

w2

: end for
o Imax = max{J(v)|v € Seeds};
: for each v € Seeds do

10 ) = J )/ Iar:

11: if J (v) < € then

12: Seeds = Seeds — {v};
13: end if
14: end for

First, all local degree central nodes in the network are
selected as candidate seeds (line 2-3). Obviously, these
nodes have a considerable influence” on their neighboring
nodes. Second, in order to measure the “influence” of
candidate seeds on their neighboring nodes, InfoNode
calculates the sum of Jaccard coefficient of each candidate
seed with its neighboring nodes (line 5-6). The larger the
value, the greater "influence” the candidate seed has on its
surrounding nodes. Finally, InfoNode normalizes the sum
of Jaccard coefficient of each candidate seed and sets a
threshold ¢ to select seeds (line 8-14). When the candidate
seed is normalized to a value greater than ¢, it is defined as a
core member and used as the seed in community extension
stage.

Figure 2 shows an example of selecting seeds in a toy
network ENZYMES_g50". The parameter ¢ in seed selection
stage is defaulted by 0.5. In Fig. 3, we use the well-studied
Karate network [33] to verify the performance of our seed
selection method. The network has two communities, one of
which is led by a class instructor (node 0), and the other is
led by a club administrator (node 33). Figure 3 shows that
our seed selection method can accurately find the seeds in
the network.

3.2.2 Community extension
After obtaining seeds in the network, InfoNode extends

them to detect communities. The process of community
extension is given in Algorithm 2.

"http:/metworkrepository.com/index.php
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Algorithm 2 Community extension.

Input: Graph G(V, E, F), Seeds, k. //
internal force between nodes.

Output: community set C.

1: C=0;

2: Viunextended = V',

3: while Vyextended # < do

F represents

4 current community Cs = &,

5 if Seeds = @ then

6: Vseed = {max(d(v))|v € Seeds}

7 Seeds = Seeds — {Vseeq};

8 else

9 select a node from V,,extendeq randomly as the
seed Vseed;

10: end if

11: Cs = Cs U{vgeeal;
12: while Ns(Cs) # @ do

13: for each v in Ns(Cs) do

14: F¢. is calculated by (3) and (9);

15: end for

16: the top k nodes with the best performance in
pre-extension process are put into set Kn;

17: for ecach v in Kn do

18: F¢, is calculated by (8) and (9);

19: end for

20: fitnessmax = max(F¢ |v € Kn);

21: if fitness;ax > 0 then

22: Cs = CsU{vpax}; /' Upax represents

the corresponding node

23: else

24: break;

25: end if

26: update Ns(Cs);

27: end while

28: Vunextended = Vunextended — CS;

29: C=CUCs;
30: end while

According to Algorithm 2, the specific community
extension steps can be summarized as follows:

(1) The seeds obtained in the seed selection stage are
sorted via degree in non-ascending order. When
the seed set is non-empty, we select the seed with
maximum degree to be extended; otherwise, we
randomly select a node that have not been extended
as the seed (line 5-10). If all nodes in the network are
extended, the community extension stage ends.

(2) The value of fitness function of each neighboring node
to the current community is calculated and the top k
nodes those can maximize the value of fitness function
of current community are selected (line 13-16).

@ Springer

(3) The top k nodes with the best performance in step
(2) are accurately calculated by the fitness function
with internal force between nodes. The node that can
maximize the fitness value of the current community
is selected(line 17-20).

(4) If the selected node increases the value of fitness
function of current community, it will be added into
the current community. We update neighboring nodes
of the current community and the process will then
return to step (2); otherwise, the current community is
a final divided community and the process will return
to step (1) (line 21-26).

Figure 4 shows the example of extending communities
in the network. Considering the small size of the network,
we take the value of k as 3. The community extension
stage repeats this process until all nodes in the network
are extended. In Fig. 5, we extend the seeds obtained in
the seed selection stage in Karate network. The result
shows that our algorithm accurately divides the network into
two communities, and each node is divided into the right
community.

3.3 Algorithm complexity analysis

In seed selection stage, the time complexity of determining
whether one node is a local degree central node is O (nd)
and the time complexity of selecting seeds is O(g2d).
Before community extension stage, we should calculate the
internal force between nodes and the time complexity of this
step is O (nd). For algorithms based on seed-extension with
a quality function, the time complexity is almost linear to the
number of nodes or edges when communities are small, but
the worst-case complexity is O(n?) [23]. In summary, the
time complexity of InfoNode is O (nd) in a general complex
network. However, when the size of communities is close to
n, the time complexity of InfoNode is O (n?).

For the space complexity of InfoNode, all local degree
central nodes in the network need to be stored in seed
selection stage and the required space is O(q + n). In
community extension stage, the Jaccard coefficient between
the nodes must be stored and the required storage space is
O (nd + m). Therefore, the total space complexity of the
InfoNode algorithm is O(g + n + nd + m) which can be
reduced to O (m).

4 Experimental results and analysis

This section is organized as follows: first, the description of
real and artificial dataset is given in Section 4.1; second, we
introduce the experimental settings and evaluation metrics
in Section 4.2; finally, experimental results and analysis are
given in Section 4.3.
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Fig.1 The flowchart of
InfoNode

Read network data

Calculate the internal force
between nodes

~  Seed selection stage

Select local central nodes as
candidate seeds

¥

Detect core numbers from candidate
seeds by Jaccard coefficient

Output community
structures

All nodes have been

Select a seed to
be extended

expanded?

No

Select the most suitable
node to current communit;

Update the neighbor nodes of
current community

Some nodes meet
fitness function?

~  Community extension stage

Put current community
to final communities

4.1 Dataset description

(1) Real datasets. The real datasets used in the experiments
are all well-known and widely used in community detection
field. The real networks are extracted from various domains
with different scales and degree distributions, which can
not only verify the performance of community detection
algorithms, but also challenge them in the terms of
robustness and scalability. The specific information of real
datasets is shown in Table 2.

Fig.2 Example showing the
process of seed selection

(2) Artificial datasets. We use the LFR-benchmark [40] to
generate artificial datasets. The network generated by this
program can well control the distribution of nodes’ degree
and communities’ size. Four groups of artificial dataset are
generated by the program. The basic parameters are set as
follows:

(1) D1: N=5000, ©=0.1-0.7, on=0.1, om=3;
(2) D2: N=5000, ©=0.3, on=0.1,0.3, om=2-8;
(3) D3: N=5000, u=0.3, on=0.1-0.6, om=3;

1(2)=0.667 normalize
1(7)=10.976

J(2)=0.683> ¢
I(N=1>¢
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Fig.3 The selected seeds in Karate network

4) D4: N=2000-10000, ©=0.3, on=0.3, om=3.

The rest of the parameters are set by default: kmax=50,
minc=20, maxc=100. The specific description of the
parameters in artificial datasets is shown in Table 3. In
these experiments, we takes on the ratio of the number
of overlapping nodes to the total number of nodes in the
network.

4.2 Experimental settings and evaluation metrics
4.2.1 Experimental settings

In the experiments, InfoNode is compared with three state-
of-the-art approaches and three algorithms based on seed-

extension.

Fig.4 Example showing the
process of community extension

node 7 has the maximum degree among seeds

pre-extend community by Eq. (3) and Eq. (9)

extend community accurately by Eq. (8) and Eq. (9)
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Fig.5 Communities in the Karate network

The three state-of-the-art approaches are Attractor
[41], Ego-Splitting [42] and MUTILCOM [43]. Attractor
regards the network as a dynamic system and proposes
three intuitive interaction modes to dynamically discover
communities by simulating the changing distance between
nodes in the network. Ego-splitting is a framework
for detecting communities by leveraging local structures
to de-couple overlapping communities. MUTILCOM a
method for detecting multiple local communities those may
overlaps. The algorithm expands seeds those are selected by
embedding local networks around the initial seed set into
low dimensional space.

In addition, to show the advantages of seed selection
and community extension strategies used in our method,
we compared InfoNode with three algorithms based on
seed-extension: LFM [23], DEMON [44], and LMD [24].

take seed 7 as the initial community

the blue nodes are neighboring
nodes of community

the blue nodes with the best
performance in pre-extend process

o

add node 1 to current community
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Table 2 Description of real

datasets Dataset Number of nodes Number of edges Average degree Communities
karate? [33] 34 78 4.59 2
dolphins? [34] 62 159 5.13 2
polbooks? [35] 105 441 8.4 3
football? [3] 115 616 10.66 13
SFI® 118 200 3.3898 unknown
jazz* [36] 198 2742 27.7 unknown
08blocks® 300 584 3.8933 unknown
662_bus? 662 906 4.737 unknown
polblogs® [37] 1490 16715 22.44 unknown
tech-routers® 2114 6632 6.27733 unknown
power? [38] 4941 6594 2.67 unknown
CA-GrQc? [39] 14845 121251 16.12 unknown

2 http://www-personal.umich.edu/mejn/netdata/
b http://metworkrepository.com/index.php

LFM randomly selects seeds in the network and extends
communities by a greedy process with fitness function.
Demon considers all nodes in the network as seeds
and merges communities based on ego-networks and a
community consolidation strategy. LMD selects the local
degree central nodes as seeds and extends communities
around the seeds.

The experimental contents include three parts: algo-
rithms’ parameter experiments, algorithms’ accuracy exper-
iments on real and artificial datasets and the scalability
experiments of InfoNode.

4.2.2 Evaluation metrics

We chose two widely used evaluation metrics to verify our
method: the extension of modularity (EQ) [45] and the
Normalized Mutual Information (NMI) [46].

The specific calculation formula of the extended
modularity is defined as follows:

1 1 kyku
EQ = 3 Z Z m(Avw - W)ﬁ(&), cy) (10)

In (10), O, is the number of communities to which the node
v belongs, A is the adjacency matrix and k, is the degree of
node v. When node v and node w is connected, the value of
8(v,w) is 1; otherwise, it is 0. The closer to 1 the value of
EQ, the better quality of com7munity detection.

NMI uses information entropy to measure the difference
between communities detected and the ground-truth com-
munities. The larger the value of NMI, the better quality
of community detection. The specific calculation formula is
defined as follows:

Cy Cp - CijN
-2 Zi:l Zj:l Cl] log CiC;

NMI =
Y Cilog § + 352, Cijlog

an

In (11), C4(Cp) is the number of communities detected and
ground-truth, respectively. C;(C;) is the sum of elements
of community C in row i (column j) and N represents the
number of nodes in the network.

1 Mﬁ‘f—' e wa e f
-
-

i VEC,WEC; 0.9
0.8 X
0.7
Table 3 Parameter description of artificial datasets g'g .
. = 04 |:
Parameter Description S
0.3 T eeeeeseseses cfersesssecnnes deesssecsnonne +
=2 B T deoossens
N number of network nodes 0'1 |
kmax maximum degree of nodes 0 . . . )
minc minimum number of community nodes ! > 10 1 20
maxk maximum number of community nodes K
on number of overlapping nodes 01 eectee 02 03 =3 04
om number of communities the nodes belong to 0.5 0.6 +ecbee 0.7
“w community mix parameter

Fig.6 Experiments on parameter k
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Fig.7 Experiments on parameter &

4.3 Experimental results
4.3.1 Experimental results on algorithms’ parameters

There are three parameters used in InfoNode: «, k, and ¢.
Parameter « is used to control the scale of communities detec-
ted. When the value of « is large, the size of communities
detected is small; vice versa. It is the same parameter « in
LEM. Therefore, it is set to 0.8-1.2 as suggested in [23].

(1)  Experiments on parameter k

Parameter k is used to select the top k£ nodes those have
the best performance in the pre-expansion process. Obviously,
the larger the value of k, the better quality of community
detection, but the longer running time of InfoNode.
Therefore, we should choose a appropriate value of k.

Figure 6 shows the experimental results on parameter k
on the D1 dataset. As seen in the figure, as the value of k
increases, the NMI increases. When the community mixing

Table 4 EQ results on real datasets

parameter p is less than 0.5 and the value of k is 5, the
NMI can reach the maximum value because the community
structure in the network is clear and easy to be identified at
this time. When the community mixing parameter p reaches
0.5 or higher, the value of NMI does not increase until k
reaches approximately 15 because the community structure
in th network is fuzzy at this time and more nodes should
be calculated by fitness function with internal force between
nodes. Therefore, parameter k is suitable when its value is
5 in the network with a low community mix. It is more
appropriate to take the value of k as 15 in the network with
a high community mix.

(2) Experiments on parameter &

The parameter ¢ is used to select seeds in the network.
Obviously, when ¢ is taken as 0, all local degree central
nodes in the network are selected as seeds. When ¢ is taken
as 1, seeds are randomly selected from the nodes those are
not extended in the network.

Figure 7 shows the experimental results on parameter ¢
on the D1 dataset. When the community mixing parameter
u is less than 0.4, the value of NMI decreases until
¢ is approximately 0.7 because the community structure
in the network is relatively clear at this time, and the
quality of seeds selected has little effect on the accuracy
of communities detected. When the community mixing
parameter p reaches 0.4 or higher, the downward trend
of the value of NMI occurs until ¢ is approximately 0.5.
The quality of seeds selected has a considerable impact
on the accuracy of the communities detected because the
community structure in the network is relatively vague at
this time. Obviously, when the value of ¢ is small, there
are many seeds selected and the subsequent community
extension stage will perform some unnecessary operations.

Network Attractor Ego-Splitting MUTILCOM DEMON LMD LFM InfoNode
karate 0.3715 0.2295 0.0486 0.1559 0.3564 0.3321 0.3715
dolphins 0.2744 0.2038 0.2668 0.2805 0.4553 0.4534 0.4814
polbooks 0.5121 0.4186 0.4304 0.4177 0.4635 0.4239 0.4815
football 0.6005 0.1393 0.4279 0.3732 0.5586 0.5104 0.5704
SFI 0.5056 0.3995 0.4704 0.3805 0.5933 0.5422 0.6631
jazz 0.3839 0.3148 0.1044 0.0508 0.2713 0.2125 0.2782
08blocks 0.7942 0.8802 0.4087 0.8802 0.8802 0.4152 0.8802
662_bus 0.7622 0.8061 0.7391 0.6019 0.7561 0.6749 0.8268
polblog 0.8543 0.7707 0.6983 0.6401 0.8114 0.7982 0.8954
tech-routers 0.3637 0.1953 0.2301 0.1508 0.3809 0.2873 0.4278
power 0.5323 0.1904 0.5012 0.4845 0.5089 0.4858 0.6356
CA-GrQc 0.6134 0.5245 0.5873 0.4296 0.6276 0.5816 0.6716

Bold data signify that the algorithm performs well in various real datasets which not only verifies the performance of our method, but also

challenges it in the terms of robustness and scalability
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Therefore, the suitable value of parameter ¢ in InfoNode is
about 0.5.

4.3.2 Experimental results on real datasets

Table 4 shows the experimental results of £EQ on real
datasets. The accuracy of InfoNode is only slightly lower
than that of Attractor on polbooks, football and jazz,
because the average degree of nodes in the networks is
quite high. In addition, links in the networks are relatively
compact and more suitable for the algorithms based on
distance dynamics among nodes such as Attractor. In the
other nine real datasets, InfoNode has the highest EQ result
owing to our new seed selection method and the fitness
function with internal force in community extension stage.

On the other hand, Fig. 8 shows the NMI results on real
networks whose ground-truth communities are known. It
can be seen from the figure that our algorithm can detect
communities more accurately than all the other algorithms
on the four networks. Compared with other three algorithms
based on seed-extension, the strategy in seed selection of
InfoNode can obtain high-quality seeds in the network and
InfoNode combines internal force with the fitness function
for fully utilizing the local information between nodes.
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Fig. 10 NMI results on parameter om(on=0.1)

4.3.3 Experimental results on artificial datasets

Figure 9 shows the experimental results of different
algorithms’ accuracy on group DI artificial simulation
networks. The experimental results reveal that the accuracy
of InfoNode is higher than that of other algorithms in
all values of w. Attractor algorithm is based on changing
distance between nodes in the network. When communities
in the network are not obvious, it is difficult for Attractor
to simulate the changing distance between nodes. Ego-
Splitting algorithm is based on the ego-nets in the network
and it performs well when the value of p is small. However,
it is harder for Ego-Splitting to find ego-nets in the network
as the value of u increases. MUTILCOM algorithm selects
seeds by embedding local networks around the initial seed
set into low dimensional space. The quality of seeds selected
by the method decreases as the value of © increases. LFM
randomly selects nodes as seeds and does not fully utilize
local information between nodes. DEMON needs to fuse
local communities to form optimal global communities. It
tends to form multiple independent communities with the
increase of the value of w. The accuracy of community
detection is then reduced. LMD performs well when the
value of p is small. The number of local degree central
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Fig. 11 NMI results on parameter om(on=0.3)
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nodes increases when the increase of the value of .
LMD selects all local degree central nodes as seeds so
that the quality of the seeds is reduced. In addition, LMD
cannot fully utilize the local information between nodes. In
conclusion, the strategies used in InfoNode can improve the
accuracy of community detection.

Figures 10 and 11 show the experimental results of
each algorithm on group D2 artificial networks. The
experimental results indicate that as the value of om
increases, the accuracy of each algorithm will decrease. This
outcome is attributed to the artificial simulation network
becoming complicated and more difficult for each algorithm
to uncover communities. Overall, the accuracy of InfoNode
is better than that of other algorithms because of the
strategies in seed selection and community extension stage
in our method.

Figure 12 shows the experimental results of each algo-
rithm on group D3 artificial networks. The experimental
results reveal that as the value of on increases, that is, as
the number of overlapping nodes in the network increases,
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Fig. 13 Algorithms’ running time(s) experimental results
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the accuracy of each algorithm will decrease, but InfoNode
remains superior to the comparison algorithms. The accu-
racy of DEMON is only second to that of InfoNode, because
DEMON forms local communities based on label propaga-
tion which is suitable for networks with many overlapping
nodes.

4.3.4 Scalability experimental results

Figure 13 shows the running time of InfoNode and other
comparison algorithms on group D4 artificial networks. The
time efficiency of InfoNode is slightly lower than that of
LFM and LMD. LFM randomly selects seeds and does
not take advantages of internal force between nodes, so
it is more efficient than other algorithms based on seed-
extension. LMD is slightly more efficient than InfoNode
because it does not utilize the local information between
nodes. DEMON needs to extend all nodes in the network
and optimize communities detected, so it has a low time
efficiency. The time complexity of Attractor is linear to the
number of edges in the network, so it is slightly slower
that other three algorithms based on seed-extension. Ego-
Splitting algorithm can easily detect all the ego-nets in the
networks whose structure is not too complicated. However,
its time efficiency is still inferior to LFM, LMD and
InfoNode. The time complexity of MUTILCOM is high
because it selects the initial seeds by embedding the local
networks around the seeds into low dimensional space.

5 Conclusions

This study proposes a local community detection algorithm
based on internal force between nodes, which can accurately
and effectively uncover communities in the network. First,
we select seeds through the local degree central nodes
and Jaccard coefficient in the network. Second, the node
with the maximum degree among seeds adopts the fitness
function strategy for pre-extension every time. Finally, the
top k nodes with the best performance in the pre-expansion
process are extended by the fitness function with internal
force between nodes. As experimental results show on the
real and artificial datasets, our method can accurately and
effectively uncover communities in complex networks.
Future work will compare InfoNode with other state-of-
the-art methods. The parallelization based on MapReduce
model will be considered to improve the time efficiency
of InfoNode. At the same time, dynamic strategies will be
introduced to adapt to uncover communities in dynamic
networks, thus increasing the practicality of our method.
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