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Abstract
Pythagorean fuzzy set, initially extended by Yager from intuitionistic fuzzy set, is capable of modeling information with
more uncertainties in the process of multi-criteria decision making (MCDM), thus can be used on wider range of conditions.
The fuzzy decision analysis of this paper is mainly built upon two expressions in Pythagorean fuzzy environment, named
Pythagorean fuzzy number (PFN) and interval-valued Pythagorean fuzzy number (IVPFN), respectively. We initiate a novel
axiomatic definition of Pythagorean fuzzy distance measurement, including PFNs and IVPFNs. After that, corresponding
theorems are put forward and then proved. Based on the defined distance measurements, the closeness indexes are developed
for both expressions, inspired by the idea of technique for order preference by similarity to ideal solution (TOPSIS) approach.
After these basic definitions have been established, the hierarchical decision approach is presented to handle MCDM
problems under Pythagorean fuzzy environment. To address hierarchical decision issues, the closeness index-based score
function is defined to calculate the score of each permutation for the optimal alternative. To determine criterion weights, a
new method based on the proposed similarity measure and aggregation operator of PFNs and IVPFNs is presented according
to Pythagorean fuzzy information from decision matrix, rather than being provided in advance by decision makers, which can
effectively reduce human subjectivity. An experimental case is then conducted to demonstrate the applicability and flexibility
of the proposed decision approach. Finally, extension forms of Pythagorean fuzzy decision approach for heterogeneous
information are briefly introduced to show its potentials on further applications in other processing fields with information
uncertainties.

Keywords Multi-criteria decision making (MCDM) · Pythagorean fuzzy number ·
Interval-valued Pythagorean fuzzy number · Distance measure · Closeness index ·
Aggregation

1 Introduction

As a generalization of fuzzy sets (FSs) [66], intuitionistic
fuzzy sets (IFSs) defined by Atanassov [2] fully describe
the objective world from three aspects of support, opposi-
tion and neutrality, respectively, and thus have been widely
studied and applied by researchers [10, 13]. Although IFSs
can express human’s subjective opinions from a certain per-
spective, as Yager puts forward, in the real decision-making
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process, there may be cases where the sum of the supporters
and the opponents of a decision-maker is greater than one.
For example, to assess whether an employee is qualified
for a job, bosses indicate that their support for member-
ship of ’Yes’ is 0.8 and the support against membership is
0.5. Obviously, these two values have a sum greater than
one, they are not allowable for intuitionistic membership
grades. To address this issue, Yager et al. [62, 64] studied the
complement operations of FSs, interval-valued fuzzy sets
(IVFSs) and IFSs, and then Pythagorean fuzzy sets (PFSs)
were proposed that allow the sum of membership and non-
membership to exceed one and the sum of squares to not
exceed one. The two membership values in the above exam-
ple are allowable as Pythagorean membership grades since
0.82+0.52 ≤ 1. As an extension of IFSs, it enables decision-
makers to make decisions without modifying the provided
information to meet the constraints of IFSs in such situa-
tions [52, 58, 68]. It can be seen from this case that PFSs
can express more uncertain information than IFSs, which
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imply that PFSs are more advantageous than IFSs in fuzzy
and imprecise modeling [3, 27, 53].

A considerable number of studies have reported decision-
making models and methods within the PFSs environment,
of which the most commonly employed is the aggregation
operator [1, 37, 40, 60]. Moreover, many other correspond-
ing studies [4, 5, 7, 46, 67] have been conducted on decision
making process, for example, Pythagorean fuzzy multi-
granulation rough set is developed in [69] and a general
algorithm is given for decision making problems [12, 55,
57]. IVPFNs is an effective tool to model the uncertain and
imprecise information based on some novel score functions
[9, 17, 18] and aggregation operators [26, 31]. In addtion,
hesitant Pythagorean fuzzy sets (HPFSs) [30] are also devel-
oped for decision-making by some aggregation operators
[16, 39, 51, 71] in hesitant situations. The real application
needs efficient to handle uncertainty [11, 59]. Due to the
increasing maturity of PFS, it has been extended to vari-
ous forms, such as IVPFSs and HPFSs, which have made
outstanding contributions to solve MCDM problems . In
order to further improve the theory and explore more appli-
cations, scholars conducted a more in-depth study on their
information measures and properties.

Information measure plays an important role in uncer-
tainty information processing [70]. Because of the advan-
tages in expressing and dealing with uncertain informa-
tion, Pythagorean membership grades have been widely
employed and studied, so its information measures and
properties have received widespread attention. The basic
Pythagorean fuzzy information measures are introduced
by Peng et al. [45]. The distance measures of PFSs were
defined in [65, 73, 74], and based on which the correspond-
ing decision methods were put forward to solve MCDM
problems. In addition, property analysis has been studied
in Pythagorean fuzzy environment, such as the properties
of continuous Pythagorean fuzzy information [19, 42], the
properties of some operations [43, 44]. In summary, to
deal with uncertainty efficiently [6, 25, 56], the purpose
of developing the information measures and exploring the
properties of Pythagorean fuzzy information are to improve
its performance in real MCDM problems.

We have covered the beginning of Pythagorean member-
ship grades, its advantages in representing and processing
uncertain information, and its wide variety of extended
forms that are applied widespreadly in MCDM field. In
what follows, the Pythagorean fuzzy information measures
and properties analysis are illustrated in great detail. In
view of the practicality and effectiveness of Pythagorean
membership grades in the field of MCDM and in order to
solve the limitations and shortcomings in previous studies,
in this paper, we attempt to construct a hierarchical MCDM

framework and develop novel decision approach to solve
it in the Pythagorean fuzzy environment. Firstly, aiming at
the irrationality in the existing distance measures, such as
[74] and [48], we proposed a novel distance measure for
PFNs and IVPFNs, whose reasonableness and superiority
can be seen from the comparative analysis in Section 2.
Based on this distance measure, we define a new closeness
index for PFNs and IVPFNs and compare it with the one in
[72]. The advantages of the proposed closeness index can be
demonstrated by the experimental results. A crucial issue in
dealing with MCDM problems is how to determine the cri-
terion weight. In the current work, weight is mostly given by
experts in advance, such as [9, 46] and [73]. This way will
undoubtedly lead to more subjectivity, which would reduce
the credibility and convincingness of the decision results. To
eliminate this effect, we propose a new similarity measure-
based method to determine the criterion weight in this paper,
which can effectively reduce human’s subjective factors and
improve the accuracy of the decision results. Another key
issue is how to aggregate the Pythagorean fuzzy values
between different criteria. In response to this problem, a
new aggregation operator is presented in this paper to fuse
the corresponding evaluation information of different cri-
teria. Based on the above preparation, a score function is
defined to determine the optimal selection. To illustrate the
superiority of the proposed decision method, we apply it in
a risk assessment example and conduct an in-depth analy-
sis of the decision results. Finally, we extend the proposed
decision approach to other areas of uncertain information
modeling. To sum up, this article has the following con-
tributions: (1) A novel distance measure is introduced for
PFNs and IVPFNs; (2) An improved closeness index is
developed for PFNs and IVPFNs; (3) An aggregation oper-
ator is proposed for PFNs and IVPFNs; (4) A new method
of weight generation is presented; (5) A novel score func-
tion is defined for hierarchical MCDM process; (6) The
proposed decision approach is extended for heterogeneous
information.

The rest of this paper is organized as follows. The related
work of PFNs and IVPFNs is completed in Section 2
and 3. First, the basic concepts of them are reviewed
briefly. Second, distance measures of them are defined.
Then, the closeness indexes of them are developed based on
defined distance measures. Last, aggregation operators for
PFNs and IVPFNs are presented. The decision approach for
MCDM under Pythagorean fuzzy environment is proposed
in Section 4. In Section 5, an application is conducted
using the proposed decision approach in risk assessment.
Section 6 extends the proposed decision approach to other
fields for heterogeneous information. The conclusion and
future study of this article are given in Section 7.
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2 Pythagorean fuzzy number

Many methods and models are used to handle uncertainty,
such as Z numbers [24, 47], belief structure [20, 63], D
numbers [75] and evidence theory [29, 49]. In this section,
the general definition of Pythagorean fuzzy numbers (PFNs)
and some basic operations on them are introduced firstly,
then, the distance between two PFNs is defined and proved
to satisfy all the axioms for distance. Drawing on the ideas
of TOPSIS, a closeness index is developed as a measure
of PFN’s magnitude based on the defined distance. Next,
a novel Pythagorean fuzzy weighted averaging aggregation
operator is proposed for PFNs.

Definition 1 Let X be a fixed set, then a PFS in X is defined
as

P = {< x, P (μP (x), νP (x)) > |x ∈ X} (1)

where μP : X → [0, 1] represents the membership degree
and νP : X → [0, 1] is the non-membership degree of the
element x ∈ X to P, and it holds that 0 ≤ (μP (x))2 +
(νP (x))2 ≤ 1, in addition, πP (x) =

√
1 − μ2

P (x) − ν2P (x)

is named the degree of indeterminacy, and a PFN is defined
by Zhang and Xu [74] as P(μP (x), νP (x)) denoted by
β = P(μβ, νβ) for convenience.

The difference and relationship between IFSs and PFSs
are shown in the Fig. 1, it is obvious that a PFS can express
more fuzzy information than an IFS because it has more
space than IFS. It is note that an IFN must be a PFN, but a

Fig. 1 Comparison of spaces between IFN and PFN [62, 74]

PFN will degenerate into an IFN only if μβ + νβ ≤ 1. The
distance measure between two PFNs is given as following
definition.

Definition 2 Let βi = P(μβi
, νβi

)(i = 1, 2) be two PFNs,
the distance between β1 and β2 is defined as:

d(β1, β2) = 1√
2

√
(μβ1 − μβ2)

2 + (νβ1 − νβ2)
2 (2)

Theorem 1 Let βi = P(μβi
, νβi

)(i = 1, 2) be two PFNs,
then 0 ≤ d(β1, β2) ≤ 1.

Proof of Theorem 1 is given in Appendix A.

Theorem 2 Let βi = P(μβi
, νβi

)(i = 1, 2) be two PFNs,
then d(β1, β2) = 0 if and only if β1 = β2.

Theorem 3 Let βi = P(μβi
, νβi

)(i = 1, 2) be two PFNs,
then d(β1, β2) = d(β2, β1).

Theorem 4 Let βi = P(μβi
, νβi

)(i = 1, 2, 3) be three
PFNs. If β1 ≤ β2 ≤ β3, then d(β1, β2) ≤ d(β1, β3) and
d(β2, β3) ≤ d(β1, β3).

Proof of Theorem 4 is given in Appendix B.

Remark 1 In this part, the new proposed distance measure
between PFNs will be compared with some existing
classical methods, the process will be conducted by some
examples which are constructed to illustrate the advantages
of the presented measure.

Currently, the more commonly employed distance
measure in the field of PFNs is developed by Zhang and Xu
in [74], which is defined as:

dZ&X(β1, β2) = 1

2
(|(μβ1)

2 − (μβ2)
2| + |(νβ1)

2

−(νβ2)
2| + |(πβ1)

2 − (πβ2)
2|) (3)

of which related parameters are the same as Definition 2.
Below a special example will be given to show that in

some cases Zhang and Xu’s method fails to measure PFSs’
distance, but the new proposed measure can obtain the
reasonable results.

Example 1 Let’s assume two PFNs: β1 = ξ+ = P(1, 0)
(defined in Remark 2), β2 = P(μ, ν). The distance measure
can be calculated as d(β1, β2) = 1√

2

√
(1 − μ)2 + ν2 and

dZ&X(β1, β2) = 1 − μ2 using our proposed method and
Zhang and Xu’s method, respectively, based on Definition 2

539



L. Fei and Y. Deng

Fig. 2 The comparison between the proposed distance measure and Zhang and Xu’s method

and (3). The trend of the two distance measure with the
changes of μ and ν is shown in Fig. 2. What has been
defined as the fact that β1 = ξ+ is the biggest PFN based
on Definition 2, therefore, when μ takes a constant, the
distance between β1 and β2 should change in the same
direction as μ, and so does ν. The results obtained by the
proposed distance measure follow this rule as shown in
Fig. 2b, but Zhang and Xu’s method do not. It can be seen
from Fig. 2a that when μ takes a fixed value, the distance
does not change with the change of ν, but a fixed value. A
special case is given that when μ = 0, the distance between
β1 and β2 is always 1, and such a result is obviously a
violation of the facts. Therefore, such a conclusion can be
drawn from this example that Zhang and Xu’s method fails
to measure the distance of PFNs accurately in some specific
cases, but the proposed measure works.

Also prominent studies in the distance measure of PFNs
are done by Peng et al., who defined multiple distance

measures for PFNs in [45]. In this example, these distance
measures will be compared with the proposed method
with some special cases to highlight the advantages of our
approach.

Example 2 Let’s assume two PFNs: β1 = ξ+ = P(1, 0),
β2 = P(0, ν). Authors proposed 12 methods to measure the
distance between PFNs in [45], the specific definitions are
omitted here. The distance between β1 and β2 is calculated
using methodD2,D3,D4,D5,D7,D9,D11 defined by Peng
et al. and our method and the results are shown in Fig. 3. (D1

is the same as Zhang and Xu’s method, D5 and D6, D7 and
D8, D9 and D10 are the same for single element in PFNs,
respectively.) What is the fact the distance between β1 and
β2 should increase gradually as the value of ν varies from 0
to 1. It can be found from Fig. 3 D4, D5, D7 and D9 fail to
measure the distance between β1 and β2, but D2, D3, D11

and our method work.

Fig. 3 Comparison between the
proposed distance measure and
the methods of Peng et al.
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Fig. 4 The trend of closeness index when β from ξ+ to ξ−

The distance measure D2, D3, D11 are effective in
Example 2, the next example is designed to illustrate D2

will fail to measure the distance accurately in some cases.

Example 3 Let’s assume two PFNs: β1 = P(0, 0), β2 =
P(x, x). We have D2(β1, β2) = 0 based on the definition
of D2 in [45]. Apparently this result does not reflect
the distance between β1 and β2 correctly, the reasonable
distance can be obtained based on the proposed method as
d(β1, β2) = x, which can reveal the fact that the distance
increases with increasing x value.

The following counterexample is constructed to negative
the generality of method D11.

Example 4 Let’s assume two PFNs: β1 = P(0, 1), β2 =
P(0, ν). It is easy to get D11(β1, β2) = 1, which is
counterintuitive obviously. The reasonable result can be
measured using the proposed method as d(β1, β2) =
1√
2
(1 − ν).

Some analyses of the above examples reveal that the
existing distance measures of PFNs would fail under certain
conditions and the proposed method yields reasonable
results. Note that D3 is a combination of D1 and D2, but D1

and D2 do not hold in some cases, so we consider D3 is not
reliable either.

Remark 2 According to [62], the order relationship
between two PFNs β1 and β2 satisfies β1 ≥ β2 if and only
if μβ1 ≥ μβ2 and νβ1 ≤ νβ2 . So it is natural to obtain the
biggest PFN ξ+ = P(1, 0) and the smallest PFN ξ− =
P(0, 1).

Score functions are important to rank alternatives in
MCDM, lots of useful score functions have been proposed,
such as the gained and lost dominance score (GLDS)
method [54] and Score-HeDLiSF method [34]. Motivated
by the idea of TOPSIS [22], Zhang [72, 74] considered
ξ+ = P(1, 0) and ξ− = P(0, 1) as the positive ideal PFN
and the negative ideal PFN respectively and defined the
closeness index of PFN as:

ð(β)= dZ&X(β, ξ−)

dZ&X(β, ξ−) + dZ&X(β, ξ+)
= 1 − (νβ)2

2 − (μβ)2 − (νβ)2

(4)

Then a new ranking method for PFNs is proposed based on
the closeness index ð(β) as:

Definition 3 Let βi = P(μβi
, νβi

)(i = 1, 2) be two PFNs,
ð(β1) and ð(β2) are the closeness indexes of β1 and β2, then

(1) If ð(β1) < ð(β2), then β1 ≺ð β2;
(2) If ð(β1) > ð(β2), then β1 �ð β2;
(3) If ð(β1) = ð(β2), then β1 ∼ð β2.

Example 5 Let β1 = P(
√
5/3, 2/3) and β2 = P(2/3,√

11/6) are two PFNs, according to (4), we have

ð(β1) = 1 − (2/3)2

2 − (
√
5/3)2 − (2/3)2

= 5/9,

ð(β2) = 1 − (
√
11/6)2

2 − (2/3)2 − (
√
11/6)2

= 5/9.

Obviously, ð(β1) = ð(β2), that is, β1 ∼ð β2 based on
Definition 3, so this is an ambiguous ranking result with the
fact that β1 and β2 are two different PFNs. That is to say the
closeness index proposed by Zhang fails to rank the order of
PFNs in some cases. A novel concept of closeness index for
PFNs is presented in this paper based on the new proposed
distance measure for solving the above shortcomings.

Definition 4 Let β = P(μβ, νβ) be a PFN, ξ+ = P(1, 0)
be the positive ideal PFN and ξ− = P(0, 1) be the negative
ideal PFN, then the closeness index of β is defined as
follows:

�(β) = d(β, ξ−)

d(β, ξ−) + d(β, ξ+)

=
1√
2

√
[μ2

β + (νβ − 1)2]
1√
2

√
[μ2

β + (νβ − 1)2] + 1√
2

√
[(μβ − 1)2 + ν2β ]

=
√

μ2
β + (νβ − 1)2

√
μ2

β + (νβ − 1)2 +
√

(μβ − 1)2 + ν2β

(5)
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It is obvious if β = ξ−, then �(β) = 0; if β = ξ+, then
�(β) = 1. And the following theorems can be obtained.

Theorem 5 For any PFN β = P(μβ, νβ), the closeness
�(β) ∈ [0, 1].

Theorem 6 For two PFNs βi = P(μβi
, νβi

)(i = 1, 2), if
β1 ≤ β2, then �(β1) ≤ �(β2).

Proof of Theorem 6 is given in Appendix C.
A novel ranking method for PFSs can be developed based

on the new definition of closeness index �(β).

Definition 5 Let βi = P(μβi
, νβi

)(i = 1, 2) be two PFNs,
�(β1) and�(β2) are the closeness indexes of β1 and β2, then

(1) If �(β1) < �(β2), then β1 ≺� β2;

(2) If �(β1) > �(β2), then β1 �� β2;
(3) If �(β1) = �(β2), then β1 ∼� β2.

Example 6 Let PFN β = P(μ, ν), μ ∈ [1, 0] and ν ∈
[0, 1]. When β changes from ξ+ to ξ−, the trend of the
closeness index is shown in Fig. 4. It is obvious that the
closeness index will get the maximum value 1 when β =
ξ+, and the minimum value 0 will be obtained when β =
ξ−. Therefore, the overall trend in Fig. 4 is consistent with
this fact. In particular, the closeness index is given when
μ2 + ν2 = 1 which denoted by the curly braces. This
example can partly illustrate the rationality of the proposed
closeness index.

Example 7 (Continued Example 5) Let β1 = P(
√
5/3, 2/3)

and β2 = P(2/3,
√
11/6), according to Definition 4, we

have

�(β1) =
√

(
√
5/3)2 + (2/3 − 1)2√

(
√
5/3)2 + (2/3 − 1)2 +

√
(
√
5/3 − 1)2 + (2/3)2

= 0.5336,

�(β2) =
√

(2/3)2 + (
√
11/6 − 1)2√

(2/3)2 + (
√
11/6 − 1)2 +

√
(2/3 − 1)2 + (

√
11/6)2

= 0.5543.

So, we have �(β1) ≤ �(β2), that is, β1 ≺� β2 based
on Definition 5. The conclusion can be drawn from the
comparison results of Example 5 and Example 7 that the
novel proposed closeness index �(β) is more reasonable
than Zhang’s method.

The general approach in dealing with multi-criterion
decision-making problems is to aggregate the decision
values under different criteria , and it is also the same in
Pythagorean fuzzy environment. To solve MCDM problems
more effectively in Pythagorean fuzzy environment, the
Pythagorean fuzzy weighted averaging aggregation operator
(Yager’s operator) is developed by Yager [62] to aggregate
multiple PFNs as follows:

Definition 6 Let βj = P(μβj
, νβj

)(j = 1, 2, . . . , n) be a
group of PFSs, Yager’s operator is defined as:

PFWAYager (β1, β2, . . . , βn)

= w1β1 ⊕ w2β2 ⊕ · · · ⊕ wnβn

= P

(
n∑

i=1

wiμβi
,

n∑
i=1

wiνβi

)
(6)

where wi is the weight of βi , and it holds that wi ≥ 0(i =
1, 2, . . . , n) and

∑n
i=1 wi = 1.

Example 8 Let β1 = P(0.9, 0.3), β2 = P(0.5, 0.6), and
β3 = P(0.7, 0.4) be three PFNs, and the weight vector is

w = (0.3, 0.2, 0.5)T , the aggregated result can be calculated
based on Definition 6 as:

PFWAYager (β1,β2,β3) = P

(∑3

i=1
wiμβi

,
∑3

i=1
wiνβi

)

= P(0.72, 0.41).

In order to aggregate PFNs more effective for deal-
ing with MCDM problems, a new Pythagorean fuzzy
weighted aggregation (PFWA) operator are proposed as
follows:

Definition 7 Let βi = P(μβi
, νβi

)(i = 1, 2, . . . , n) be a
group of PFNs, according to the definition of PFNs, we have
μ2

βi
+ν2βi

+π2
βi

= 1, so naturally, β̇i = I (μ2
βi

, ν2βi
, π2

βi
) is an

IFS, which will be weighted by w as β̇w = I (μβ̇, νβ̇ , πβ̇)

that is still an IFS, where μβ̇ = ∑n
i=1 wiμ

2
βi
, νβ̇ =∑n

i=1 wiν
2
βi
, and πβ̇ = 1 −∑n

i=1 wi(μ
2
βi

+ ν2βi
). Then the

aggregation operator of β̇ can be defined as:

w1β̇1 ⊕ w2β̇2 ⊕ · · · ⊕ wnβ̇n

= I

⎛
⎝μ2

β̇
+ 2μβ̇πβ̇

1 − 2μβ̇νβ̇

,
ν2
β̇

+ 2νβ̇πβ̇

1 − 2μβ̇νβ̇

,
2π2

β̇
− πβ̇ − 2μβ̇νβ̇

1 − 2μβ̇νβ̇

⎞
⎠

(7)
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Fig. 5 Comparison of spaces between IVIFN and IVPFN

So the new PFWA operator for PFNs is defined as follows:
β̂ = PFWA(β1, β2, . . . , βn)

= w1β1 ⊕ w2β2 ⊕ · · · ⊕ wnβn

= P(μ̂, ν̂) = P

⎛
⎜⎝

√√√√μ2
β̇

+ 2μβ̇πβ̇

1 − (μβ̇νβ̇ )2
,

√√√√ ν2
β̇

+ 2νβ̇πβ̇

1 − (μβ̇νβ̇)2

⎞
⎟⎠(8)

where wi is the weight of βi , and it holds that wi ≥ 0(i =
1, 2, . . . , n) and

∑n
i=1 wi = 1. In addition, it satisfies

μ̂2 + ν̂2 ≤ 1, and π̂ =
√

2π2
β̇
−πβ̇−2μβ̇νβ̇

1−(μβ̇νβ̇ )2
.

Example 9 (Continued Example 8) Let β1 = P(0.9, 0.3),
β2 = P(0.5, 0.6), and β3 = P(0.7, 0.4) be three PFNs, the
weight vector w = (0.3, 0.2, 0.5)T , the aggregated result
can be calculated based on (8) as:

Firstly,
μβ̇ = 0.3 · 0.92 + 0.2 · 0.52 + 0.5 · 0.72 = 0.5380,

νβ̇ = 0.3 · 0.32 + 0.2 · 0.62 + 0.5 · 0.42 = 0.1790,

πβ̇ = 1 − (0.3 · (0.92 + 0.32) + 0.2 · (0.52 + 0.62)

+0.5 · (0.72 + 0.42)) = 0.2830

Then,
PFWA(β1, β2, β3)

= P

⎛
⎝
√
0.53802 + 2 · 0.5380 · 0.2830

1 − 2 · 0.5380 · 0.1790 ,

√
0.17902 + 2 · 0.1790 · 0.2830

1 − 2 · 0.5380 · 0.1790

⎞
⎠

= P(0.8577, 0.4064)

Remark 3 According to Definition 7, the operational laws
of two PFNs: β1 = P(μβ1 , νβ1), β2 = P(μβ2 , νβ2) can be
defined naturally (when the number of PFNs degenerates
into 2) as follows:

let μβ = μ2
β1

+ μ2
β2

, νβ = ν2β1 + ν2β2 , πβ = π2
β1

+ π2
β2

,

so β1 ⊕ β2 = P

⎛
⎝
√

μβ(πβ + 1
2μβ)

2 − μβνβ

,

√
νβ(πβ + 1

2νβ)

2 − μβνβ

⎞
⎠

(9)

where β1 and β2 are equal weights, denoted as wβ1 =
wβ2 = 1

2 .

3 Interval-valued Pythagorean fuzzy number

In the current section, the basic concept and related
definitions are introduced of IVPFNs firstly, then the novel
distance measure between two IVPNSs is developed and the
closeness index for IVPNSs is proposed based on the new
distance measure. Next, the interval-valued Pythagorean
fuzzy weighted aggregation operator are defined for
aggregating IVPNSs.

Definition 8 Let a set X be fixed, an IVPFS P̃ in X is
defined by:

P̃ = {< x, P̃ (μ̃P̃ (x), ν̃P̃ (x)) > |x ∈ X} (10)

where μ̃P̃ (x), ν̃P̃ (x) ∈ [0, 1] are interval values, μ̃L

P̃
(x)

and μ̃U

P̃
(x) are , respectively, the lower and upper limits

of μ̃P̃ (x); similarly, ν̃L

P̃
(x) and ν̃U

P̃
(x) are , respectively,

the lower and upper limits of ν̃P̃ (x), and with (μ̃U

P̃
(x))2 +

(̃νU

P̃
(x))2 ≤ 1.

An IVPFN is defined by Zhang [72] as P̃ (μ̃
P̃
(x), ν̃

P̃
(x))

denoted by β̃ = P̃ ([μ̃L

β̃
, μ̃U

β̃
], [ν̃L

β̃
, ν̃U

β̃
]) for convenience.

Apparently, an IVPFN will degenerate into a PFN if
μ̃L

P̃
(x) = μ̃U

P̃
(x) and ν̃L

P̃
(x) = ν̃U

P̃
(x). In addition, an

IVPFN will degenerate into an interval-valued intuitionistic
fuzzy number (IVIFN) if μ̃U

P̃
(x)+ ν̃U

P̃
(x) ≤ 1. The compari-

son of spaces between IVIFN and IVPFN is shown in Fig. 5,
it is obvious that a IVPFS can express more uncertain infor-
mation than an IVIFS because it has more space than IVIFS.

Remark 4 IVPFN is an effective tool to deal with MCDM
problems because it can express more uncertainty and
fuzziness, mainly in the following two aspects: 1) it can
express more extensive information than PFN, for example,
IVPFN β̃ = P̃ ([0.4, 0.6], [0.2, 0.3]) means decision maker
considers the alternative meets the criterion of 0.4 − 0.6,
while the non-criterion is 0.2 − 0.3, however, PFNs can
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only express this degree using a certain real number. 2)
IVPFNs can express more information than IVIFNs, as
already mentioned in Definition 4, for example, IVPFN β̃ =
P̃ ([0.7, 0.8], [0.4, 0.6]), it represents the greatest degree of
trust and mistrust the alternative can meet the criterion as
0.8 and 0.6, respectively. However, it is obvious that 0.82 +
0.62 ≥ 1, so IVIFNs will fail to express the information
precisely in this case.

Distance function is very important in data process
[8]. To employ IVPFNs more effectively, a new distance
measure between different IVPFNs is proposed as below.

Definition 9 Let β̃i = P̃ ([μ̃L

β̃i
, μ̃U

β̃i
], [̃νL

β̃i
, ν̃U

β̃i
])(i = 1, 2)

be two IVPFNs, the distance measure between β̃1 and β̃2 is
defined as follows:

d(β̃1, β̃2) =
√
2

4

(√
(μ̃L

β̃1
− μ̃L

β̃2
)2 + (̃νL

β̃1
− ν̃L

β̃2
)2

+
√

(μ̃U

β̃1
− μ̃U

β̃2
)2 + (̃νU

β̃1
− ν̃U

β̃2
)2
)

(11)

Theorem 7 Let β̃i = P̃ ([μ̃L

β̃i
, μ̃U

β̃i
], [̃νL

β̃i
, ν̃U

β̃i
])(i = 1, 2) be

two IVPFNs, then 0 ≤ d(β̃1, β̃2) ≤ 1.

Proof of Theorem 7 is given in Appendix D.

Theorem 8 Let β̃i = P̃ ([μ̃L

β̃i
, μ̃U

β̃i
], [̃νL

β̃i
, ν̃U

β̃i
])(i = 1, 2) be

two IVPFNs, then d(β̃1, β̃2) = 0 if and only if β̃1 = β̃2.

Theorem 9 Let β̃i = P̃ ([μ̃L

β̃i
, μ̃U

β̃i
], [̃νL

β̃i
, ν̃U

β̃i
])(i = 1, 2) be

two IVPFNs, then d(β̃1, β̃2) = d(β̃2, β̃1).

Theorem 10 Let β̃i = P̃ ([μ̃L

β̃i
, μ̃U

β̃i
], [̃νL

β̃i
, ν̃U

β̃i
])(i = 1, 2)

be three IVPFNs. If β̃1 ≤ β̃2 ≤ β̃3, then d(β̃1, β̃2) ≤
d(β̃1, β̃3) and d(β̃2, β̃3) ≤ d(β̃1, β̃3).

As noted, Theorems 8, 9 and 10 are natural to be proved,
so the proofs are omitted here.

Remark 5 According to [72], the order relationship between
two IVPFNs β̃1 and β̃2 satisfies β̃1 ≥ β̃2 if and only if
μ̃L

β̃1
≥ μ̃L

β̃2
, μ̃U

β̃1
≥ μ̃U

β̃2
, ν̃L

β̃1
≤ ν̃L

β̃2
and ν̃U

β̃1
≤ ν̃U

β̃2
. So it is

natural to obtain the biggest IVPFN ξ̃+ = P̃ ([1, 1], [0, 0])
and the smallest IVPFN ξ̃− = P̃ ([0, 0], [1, 1]).

A novel concept of closeness index for IVPFNs is
presented in this paper based on the new distance measure
in Definition 9 as follows.

Definition 10 Let β̃ = P̃ ([μ̃L

β̃
, μ̃U

β̃
], [̃νL

β̃
, ν̃U

β̃
]) be an

IVPFN, ξ̃+ = P̃ ([1, 1], [0, 0]) be the positive ideal IVPFN

and ξ̃− = P̃ ([0, 0], [1, 1]) be the negative ideal IVPFN,
then the closeness index of β̃ is defined as follows:

�(β̃) = d(β̃,̃ξ−)

d(β̃,̃ξ−)+d(β̃,̃ξ+)

=
√
2
4 (
√

(μ̃L
β̃
)2+(̃νL

β̃
−1)2+

√
(μ̃U

β̃
)2+(̃νU

β̃
−1)2)(√

2
4 (
√

(μ̃L

β̃
)2 + (̃νL

β̃
− 1)2 +

√
(μ̃U

β̃
)2 + (̃νU

β̃
− 1)2)

+
√
2
4 (
√

(μ̃L

β̃
− 1)2 + (̃νL

β̃
)2 +

√
(μ̃U

β̃
− 1)2 + (̃νU

β̃
)2)
)

= (
√

(μ̃L
β̃
)2+(̃νL

β̃
−1)2+

√
(μ̃U

β̃
)2+(̃νU

β̃
−1)2)(

(
√

(μ̃L

β̃
)2 + (̃νL

β̃
− 1)2 +

√
(μ̃U

β̃
)2 + (̃νU

β̃
− 1)2)

+(
√

(μ̃L

β̃
− 1)2 + (̃νL

β̃
)2 +

√
(μ̃U

β̃
− 1)2 + (̃νU

β̃
)2)
)

(12)

It is obvious if β̃ = ξ̃−, then �(β̃) = 0; if β̃ = ξ̃+, then
�(β̃) = 1. And the following theorems can be obtained.

Theorem 11 For any IVPFN β̃ = P̃ ([μ̃L

β̃
, μ̃U

β̃
], [̃νL

β̃
, ν̃U

β̃
]),

the closeness index �(β̃) ∈ [0, 1].

Theorem 12 For two IVPFNs β̃i = P̃ ([μ̃L

β̃i
, μ̃U

β̃i
], [̃νL

β̃i
,

ν̃U

β̃i
])(i = 1, 2), if β̃1 ≤ β̃2, then �(β̃1) ≤ �(β̃2).

Proof of Theorem 12 is given in Appendix E.
Then a new ranking method for IVPFNs is proposed

based on the closeness index �(β̃) as:

Definition 11 Let β̃i = P̃ ([μ̃L

β̃i
, μ̃U

β̃i
], [̃νL

β̃i
, ν̃U

β̃i
])(i = 1, 2)

be two IVPFNs, �(β̃1) and �(β̃2) are the closeness index of
β̃1 and β̃2, then

(1) If �(β̃1) < �(β̃2), then β̃1 ≺� β̃2;
(2) If �(β̃1) > �(β̃2), then β̃1 �� β̃2;
(3) If �(β̃1) = �(β̃2), then β̃1 ∼� β̃2.

To select the best alternative in MCDM problems, the
preference information of decision makers need to be
aggregated by some proper aggregation operators [21], and
IVPFNs naturally suit this situation. A new aggregation
operator for IVPFNs is proposed in this paper denoted as
IVPFWA operator. Firstly, a method is developed to convert
IVPFNs to PFNs based on the C-OWA operator introduced
by Yager [61] to aggregate the elements on a continuous
interval as follows:

Definition 12 AC-OWA operator is a mapping f : � → R

defined on a function Q as:

fQ([βL, βU ]) =
∫ 1

0

dQ(y)

dy
· [βU − (βU − βL)y]dy, (13)

where Q is called the basic unit interval monotonic (BUM)
function, andQ : [0, 1] → [0, 1] is monotonic withQ(0) =
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0 and Q(1) = 1. � denotes the collection of all closed
intervals [28].

In addition, Yager [61] pointed out that if λ = ∫ 1
0 Q(y)dy

is the attitudinal character of Q, λ ∈ [0, 1], then the repre-
sentation can be obtained as: fQ([βL, βU ]) = (1− λ)βL +
λβU . λ can be considered as a representation of decision
makers’ attitudes, and optimistic tendency is denoted by
0.5 < λ ≤ 1, neutral is λ = 0.5, and 0 ≤ λ < 0.5 means the
pessimistic attitude.

To obtain the best alternative, some data aggregation and
processing methods were proposed for decision makers to
aggregate their preference information [15, 50]. Zhou et al.
[76] proposed the continuous interval-valued intuitionistic
fuzzy ordered weighted averaging (C-IVIFOWA) operator
based on C-OWA operator, which was improved by Lin
et al. [36] by modifying some of the flaws. The improved
C-IVIFOWA operator GQ is shown as follows:

GQ(β̃) =
(
fλ

(
[μL

β̃
, μU

β̃
]
)

, f1−λ

(
[νL

β̃
, νU

β̃
]
))

=
(
(1 − λ)μL

β̃
+ λμU

β̃
, λνL

β̃
+ (1 − λ)νU

β̃

)
(14)

Motivated by the definition of Lin et al., we develop the
operator to aggregate IVPFNs into PFNs as follows.

Definition 13 Let β̃ = P̃ ([μ̃L

β̃
, μ̃U

β̃
], [̃νL

β̃
, ν̃U

β̃
]) be an

IVPFN, a continuous interval-valued Pythagorean fuzzy
weighted averaging (C-IVPFWA) operator is a mapping
G :��→ � defined on a function Q as:

G̃Q(β̃) =
(
fλ

(
[μ̃L

β̃
, μ̃U

β̃
]
)

, f1−λ

(
[ν̃L

β̃
, ν̃U

β̃
]
))

=
(
(1 − λ)μ̃L

β̃
+ λμ̃U

β̃
, λν̃L

β̃
+ (1 − λ)ν̃U

β̃

)
(15)

where �� and � are the collection of IVPFNs and PFNs,
respectively. G̃Q is also called G̃λ for convenience.

Since μ̃L

β̃
, μ̃U

β̃
, ν̃L

β̃
, ν̃U

β̃
∈ [0, 1], we have 0 ≤ (1−λ)μ̃L

β̃
+

λμ̃U

β̃
≤ μ̃U

β̃
≤ 1, and 0 ≤ λν̃L

β̃
+ (1− λ)ν̃U

β̃
≤ ν̃U

β̃
≤ 1, then

((1−λ)μ̃L

β̃
+λμ̃U

β̃
)2+(λν̃L

β̃
+(1−λ)ν̃U

β̃
)2 ≤ (μL

β̃
)2+(νL

β̃
)2 ≤

1. So, G̃Q(β̃) is a PFN.
It is easy to defined the IVPFWA operator based on Def-

inition 13 and 7 to aggregate multiple IVPFNs as follows.

Definition 14 Let β̃i = P̃ ([μ̃L

β̃i
, μ̃U

β̃i
], [̃νL

β̃i
, ν̃U

β̃i
])(i = 1, 2,

. . . , n) be n IVPFNs. At first, we represent β̃i as a PFN
using C-IVPFWA proposed in Definition 13 as:

G̃Q(β̃i) =
(
(1 − λ)μ̃L

β̃i
+ λμ̃U

β̃i
, λν̃L

β̃i
+ (1 − λ)ν̃U

β̃i

)

|=
(
μ̃β̃i

, ν̃β̃i

)
(16)

|= means ’Abbreviated as’, the IVPFWA operator can be
defined as follows:

IV PFWA(β̃1, β̃2, . . . , β̃n)

= w1β̃1 ⊕ w2β̃2 ⊕ · · · ⊕ wnβ̃n

= P

⎛
⎜⎝

√√√√ μ̃2
β̇

+ 2μ̃β̇ π̃β̇

1 − (μ̃β̇ ν̃β̇ )2
,

√√√√ ν̃2
β̇

+ 2ν̃β̇ π̃β̇

1 − (μ̃β̇ ν̃β̇ )2

⎞
⎟⎠ (17)

where μ̃β̇ = ∑n
i=1 wiμ̃

2
β̃i
, ν̃β̇ = ∑n

i=1 wiν̃
2
β̃i
, and π̃β̇ =

1 − ∑n
i=1 wi(μ̃

2
β̃i

+ ν̃2
β̃i

), and wi indicates the importance

degree of β̃i , satisfying wi ≥ 0(i = 1, 2, . . . , n) and∑n
i=1 wi = 1.

Example 10 Let β̃1 = P([0.6, 0.8], [0.4, 0.5]), β̃2 =
P([0.6, 0.7], [0.4, 0.6]) and β̃3 = P([0.7, 0.8], [0.4, 0.5])
be three IVPFNs, and the weight vector w =
(0.3, 0.2, 0.5)T . Assume that decision maker select the
BUM function Q(y) = y2, so the attitudinal character
λ = ∫ 1

0 Q(y)dy = 1
3 . These three IVPFNs will first be

aggregated into three PFNs, respectively, based on (15).

G̃Q(β̃1) =
((

1 − 1

3

)
· 0.6 + 1

3
· 0.8, 1

3
· 0.4

+
(
1 − 1

3

)
· 0.5

)

= (0.6667, 0.4667)

G̃Q(β̃2) =
((

1 − 1

3

)
· 0.6 + 1

3
· 0.7, 1

3
· 0.4

+
(
1 − 1

3

)
· 0.6

)

= (0.6333, 0.5333)

G̃Q(β̃3) =
((

1 − 1

3

)
· 0.7 + 1

3
· 0.8, 1

3
· 0.4

+
(
1 − 1

3

)
· 0.5

)

= (0.7333, 0.4667)

Next, the aggregation results of β̃1, β̃2 and β̃3 are calculated
by (17) as:

IV PFWA(β̃1, β̃2, β̃3) = w1β̃1 ⊕ w2β̃2 ⊕ w3β̃3

= P(0.7994, 0.4891)

Remark 6 According to Definition 14, the operational laws
of two IVPFNs β̃1 = P̃ ([μ̃L

β̃1
, μ̃U

β̃1
], [̃νL

β̃1
, ν̃U

β̃1
]) and β̃2 =
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Fig. 6 The hierarchical
framework of MCDM problem

P̃ ([μ̃L

β̃2
, μ̃U

β̃2
], [̃νL

β̃2
, ν̃U

β̃2
]) can be defined naturally (when the

number of IVPFNs degenerates into 2) as follows:

Let μ̃β̃ = μ̃2
β̃1

+ μ̃2
β̃2

, ν̃β̃ = ν̃2
β̃1

+ ν̃2
β̃2

, π̃β̃ = π̃2
β̃1

+ π̃2
β̃2

so β̃1 ⊕ β̃2=P

⎛
⎜⎝

√√√√ μ̃β̃ (π̃β̃ + 1
2 μ̃β̃ )

2−μ̃β̃ ν̃β̃

,

√√√√ ν̃β̃ (π̃β̃ + 1
2 ν̃β̃ )

2−μ̃β̃ ν̃β̃

⎞
⎟⎠

(18)

where G̃Q(β̃1) = ((1−λ)μ̃L

β̃1
+λμ̃U

β̃1
, λν̃L

β̃1
+(1−λ)ν̃U

β̃1
) |=

(μ̃β̃1
, ν̃β̃1

) and G̃Q(β̃2) = ((1− λ)μ̃L

β̃2
+ λμ̃U

β̃2
, λν̃L

β̃2
+ (1−

λ)ν̃U

β̃2
) |= (μ̃β̃2

, ν̃β̃2
).

4 Pythagorean fuzzy approach for MCDM
analysis

Decision making under uncertainty is inevitable in real
world [14, 35, 77], some significant ranking techniques
are developed from multiple perspectives, such as hesitant
fuzzy [33, 41] and probabilistic linguistic [23, 32]
environments. In this section, a hierarchical Pythagorean
fuzzy decision approach is proposed to solve MCDM
problems based on the defined closeness indexes and
aggregation operators of PFNs and IVPFNs. To deal with
the Pythagorean fuzzy MCDM problems more factual and
reasonable, a method of weight determination is developed
based on the defined distance measure of PFNs and
IVPFNs. In addition, some special cases of the proposed
approach are also discussed.

4.1 Problem description of Pythagorean fuzzy
decision

Pythagorean fuzzy MCDM problems can be described as
having n (n ≥ 2) main criteria {C1, C2, . . . , Cn} and m
(m ≥ 2) alternatives {A1, A2, . . . , Am}. There are ti sub-
criteria {Ci(1), Ci(2), . . . , Ci(t (i))} under each main criterion

Ci(i ∈ 1, 2, . . . , n), where ti represents the number
of sub-criteria under ith main criterion. The hierarchical
framework of Pythagorean fuzzy MCDM problem with
two-layer criteria structure is shown in Fig. 6.

The preference information from the decision-maker will
be represented by PFNs or VIPFNs. As noted, we defined
the subset CI as the expression criteria whose assessment
information are denoted by PFNs, simultaneously, CII

is the representation criteria whose Pythagorean fuzzy
information are indicated by IVPFNs. It satisfiesCI ∪CII =
C and CI ∩ CII = φ, and if Cj(t) ∈ CI , then xij (t)

means a PFN which denoted as βij (t) = P(μβij (t)
, νβij (t)

); if
Cj(t) ∈ CII , then xij (t) means an IVPFN which denoted as
β̃ij (t) = P([μ̃L

β̃ij (t)
, μ̃U

β̃ij (t)
], [ν̃L

β̃ij (t)
, ν̃U

β̃ij (t)
]). xij (t) expresses

the Pythagorean fuzzy value of t th sub-criterion under ith
main criterion for alternative Aj , then the decision matrix
of Pythagorean fuzzy MCDM problems can be represented
as Table 1.

Remark 7 In practical decision-making process, if the crisp
values can be employed for decision-maker to determine
the degree to which an alternative meets a certain criterion,
PFNs would be used to express the assessment informa-
tion of decision-maker at this time; however, if it is difficult
for decision-maker to give the degree to which an alterna-
tive can meet a certain criterion based on the crisp values,
in which case IVPFNs would be applied to express an

Table 1 The Pythagorean fuzzy decision matrix

Alternatives Main-criteria & Sub-criteria

C1 ... Ci ... Cn

C1(1)...C1(t1) Ci(1)...Ci(ti ) Cn(1)...Cn(tn)

A1 x11(1)...x11(t1) ... x1i(1)...x1i(ti ) ... x1n(1)...x1n(tn)

A2 x21(1)...x21(t1) ... x2i(1)...x2i(ti ) ... x2n(1)...x2n(tn)

... ... ... ... ... ...

Am xm1(1)...xm1(t1) ... xmi(1)...xmi(ti ) ... xmn(1)...xmn(tn)
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assessment interval. This flexible way to represent assess-
ment information is also a great advantage of the proposed
decision approach.

The Pythagorean fuzzy decision approach is proposed in
the following section.

4.2 Pythagorean fuzzy decision approach

Firstly, according to the decision matrix given in Table 1, for
each alternative Aj , its closeness index of t th sub-criterion
under ith main criterion �ij (t) will be calculated based
on (5) and (12). There exist m alternatives in Pythagorean
fuzzy MCDM problems based on the above description, so
naturally there are m! possible ranking results for these m

alternatives. The γ th permutation £γ is denoted as:

£γ = (. . . , Aξ , . . . , Aζ , . . .), γ = 1, 2, . . . , m! (19)

where Aξ and Aζ ∈ {A1, A2, . . . , Am}, and Aξ ranked
higher than Aζ .

With respect to a permutation £γ , we consider its
rationality depends on how well the alternatives’ position in
this permutation matches their dominance relation. In other
words, if the alternatives in £γ are ranked exactly as their
performance, then £γ will be a perfect permutation, and
vice versa. So how do we determine whether a permutation
is reasonable? We define a score function F(£γ ) as the
representation of the rationality of a permutation £γ . The
core idea of function F is that if Aζ is superior to Aξ , then
we think their ranking is consistent with their performance,
in which case it is a contribution to the permutation £γ

and vice versa is a rejection. Especially, if they have the
same score, their order has no effect on permutation £γ . The
performance of a couple of alternatives (Aξ , Aζ ) can be cal-
culated as the concordance/discordance index based on the
defined closeness index under the Pythagorean fuzzy envi-
ronment. So, the concordance/discordance index �

γ

ξζ i(t) for
the couple of alternatives (Aξ ,Aζ ) of γ th permutation under
t th sub-criterion of ith main criterion can be denoted as:

(I) When C ∈ CI ,

�
γ

ξζ i(t) = �(βξi(t)) − �(βζ i(t))

=

(
(
√

μ2
βξi(t)

+ (νβξi(t)
− 1)2)(

√
(μβζi(t)

− 1)2 + ν2βζi(t)
)

−(
√

μ2
βζi(t)

+ (νβζi(t)
− 1)2)(

√
(μβξi(t)

− 1)2 + ν2βξi(t)
)
)

(
(
√

μ2
βξi(t)

+ (νβξi(t)
− 1)2 +

√
(μβξ i(t) − 1)2 + ν2βξi(t)

)

(
√

μ2
βζi(t)

+ (νβζi(t)
− 1)2 +

√
(μβζi(t)

− 1)2 + ν2βζi(t)
)
)

(20)

where βji(t) = P(μβji(t)
, νβji(t)

) is the Pythagorean fuzzy
expression of t th sub-criterion under ith main criterion for
alternative Aj .

The obvious conclusion can be drawn from (20) that:

(i) IF �(βξi(t)) > �(βζ i(t)), that is, �
γ

ξζ i(t) > 0,
which means the order Aξ � Aζ is consistent with
their factual performance, i.e., this order can make
a contribution to the permutation £γ i(t), denoted as
F(£γ i(t)) = F(£γ i(t)) + |�γ

ξζ i(t)|, where £γ i(t) means
γ th permutation of t th sub-criterion under ith main
criterion.

(ii) IF �(βξi(t)) < �(βζ i(t)), that is, �
γ

ξζ i(t) < 0,
which means the order Aξ � Aζ is inconsistent
with their factual performance, i.e., this order can
make a rejection to the permutation £γ i(t), denoted as
F(£γ i(t)) = F(£γ i(t)) − |�γ

ξζ i(t)|.
(iii) IF �(βξi(t)) = �(βζ i(t)), that is, �

γ

ξζ i(t) = 0, which
means Aξ and Aζ have the same factual performance,
i.e., this order has no effect on the permutation £γ i(t),
so F(£γ i(t)) remains the same value.

According to the above analyses, as the rationality of the
permutation £γ of t th sub-criterion under ith main criterion,
the score function F(£γ i(t)) (C ∈ CI ) can be summarize
as:

F(£γ i(t))=

⎧
⎪⎨
⎪⎩

F(£γ i(t))=F(£γ i(t)) + |�γ

ξζ i(t)|, �
γ

ξζ i(t) > 0
F(£γ i(t)), �

γ
ξζ = 0

F(£γ i(t))=F(£γ i(t)) − |�γ

ξζ i(t)|, �
γ

ξζ i(t) < 0

(21)

(II) When C ∈ CII ,

�̃
γ

ξζ i(t)

= �(β̃ξ i(t))−�(β̃ζ i(t))

=

((√
(μ̃L

β̃ξi(t)
)2+(̃νL

β̃ξi(t)
−1)2+

√
(μ̃U

β̃ξi(t)
)2+(̃νU

β̃ξi(t)
−1)2

)

(√
(μ̃L

β̃ζ i(t)
−1)2+(̃νL

β̃ζ i(t)
)2+

√
(μ̃U

β̃ζ i(t)
−1)2+(̃νU

β̃ζ i(t)
)2
)

−
(√

(μ̃L

β̃ξi(t)
−1)2+(̃νL

β̃ξi(t)
)2+

√
(μ̃U

β̃ξi(t)
−1)2+(̃νU

β̃ξi(t)
)2
)

(√
(μ̃L

β̃ζ i(t)
)2+(̃νL

β̃ζ i(t)
−1)2+

√
(μ̃U

β̃ζ i(t)
)2+(̃νU

β̃ζ i(t)
−1)2

))

(((√
(μ̃L

β̃ξi(t)
)2+(̃νL

β̃ξi(t)
−1)2+

√
(μ̃U

β̃ξi(t)
)2+(̃νU

β̃ξi(t)
−1)2

)

+
(√

(μ̃L

β̃ξi(t)
−1)2+(̃νL

β̃ξi(t)
)2+

√
(μ̃U

β̃ξi(t)
−1)2+(̃νU

β̃ξi(t)
)2
))

((√
(μ̃L

β̃ζ i(t)
)2+(̃νL

β̃ζ i(t)
−1)2+

√
(μ̃U

β̃ζ i(t)
)2+(̃νU

β̃ζ i(t)
−1)2

)

+
(√

(μ̃L

β̃ζ i(t)
−1)2+(̃νL

β̃ζ i(t)
)2+

√
(μ̃U

β̃ζ i(t)
−1)2+(̃νU

β̃ζ i(t)
)2
)))

(22)

where β̃j i(t) = P̃ ([μ̃L

β̃ji(t)
, μ̃U

β̃ji(t)
], [̃νL

β̃ji(t)
, ν̃U

β̃ji(t)
]) is the

interval-valued Pythagorean fuzzy expression of t th sub-
criterion under ith main criterion for alternative Aj .
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The obvious conclusion can be drawn from (22) that:

(i) IF �(β̃ξi(t)) > �(β̃ζ i(t)), that is, �̃
γ

ξζ i(t) > 0, which
means the order Aξ � Aζ is consistent with their fac-
tual performance, i.e., this order can make a contribu-
tion to the permutation £γ i(t), denoted as F(£γ i(t)) =
F(£γ i(t)) + |�̃γ

ξζ i(t)|.
(ii) IF �(β̃ξi(t)) < �(β̃ζ i(t)), that is, �̃

γ

ξζ i(t) < 0, which
means the order Aξ � Aζ is inconsistent with their
factual performance, i.e., this order can make a rejec-
tion to the permutation £γ i(t), denoted as F(£γ i(t)) =
F(£γ i(t)) − |�̃γ

ξζ i(t)|.
(iii) IF �(β̃ξi(t)) = �(β̃ζ i(t)), that is, �̃

γ

ξζ i(t) = 0, which
means Aξ and Aζ have the same factual performance,
i.e., this order has no effect on the permutation £γ i(t),
so F(£γ i(t)) remains the same value.

According to the above analyses, as the rationality of the
permutation £γ of t th sub-criterion under ith main criterion,
the score function F(£γ i(t)) (C ∈ CII ) can be summarize
as:

F(£γ i(t))=

⎧
⎪⎨
⎪⎩

F(£γ i(t))=F(£γ i(t)) + |�̃γ

ξζ i(t)|, �̃
γ

ξζ i(t) > 0

F(£γ i(t)), �̃
γ
ξζ = 0

F(£γ i(t))=F(£γ i(t)) − |�̃γ

ξζ i(t)|, �̃
γ

ξζ i(t) < 0

(23)

The new decision matrix of Pythagorean fuzzy MCDM
problems can be expressed as Table 2.

Remark 8 With respect to F(£γ i(t)) (γ = 1, 2, . . . , m!),
its initial value is 0, and there will be m(m − 1)/2
comparisons for m alternatives in the permutation £γ . The
final score of the γ th permutation of t th sub-criterion under
ith main criterion should be the sum of all the m(m − 1)/2
operations.

There is no doubt that the determination of criterion
weights is an important task in MCDM problems, in
some work weights are given by experts in advance [9,
46, 73], which will introduce more subjectivity in the
decision-making process. In order to minimize inevitable

subjectivity, in this paper, a novel weighting approach is
proposed based on the new defined similarity measure in
Pythagorean fuzzy environment. Next we first introduce the
similarity measure between two PFNs or IVPFNs, which is
driven by the distance measure based on Definition 2 and 9.

Definition 15 Let βi = P(μβi
, νβi

)(i = 1, 2) be two
PFNs, the similarity between β1 and β2 is defined as:

s(β1, β2) = d(β1, (β2)
c)

d(β1, β2) + d(β1, (β2)c)
(24)

where d(·) is the distance measure between PFNs, and (β2)
c

is the complement operation of PFN β2 defined in [7, 62].

Definition 16 Let β̃i = P̃ ([μ̃L

β̃i
, μ̃U

β̃i
], [̃νL

β̃i
, ν̃U

β̃i
])(i = 1, 2)

be two IVPFNs, the similarity measure between β̃1 and β̃2

is defined as follows:

s(β̃1, β̃2) = d(β̃1, (β̃2)
c)

d(β̃1, β̃2) + d(β̃1, (β̃2)c)
(25)

where d(·) is the distance measure between IVPFNs and
(β̃2)

c is the complement operation of IVPFN β̃2 defined
in [72].

It is easy to prove the defined similarity measures of
PFNs and IVPFNs satisfy the relevant axioms, so the proof
process is omitted here.

Suppose the number of criteria is n, and each criterion is
expressed under Pythagorean fuzzy environment by a PFN
or an IVPFN. The similarity measure of each couple of
PFNs and IVPFNs can be obtained based on Definition 15
and 16, then the similarity measure matrix (SMM) can
be constructed which provides us the agreement between
different Pythagorean fuzzy expressions as:

SMM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 s12 · · · s1j · · · s1n
s21 1 · · · s2j · · · s2n
...

...
. . .

...
...

sj1 sj2 · · · 1 · · · sjn

...
...

...
. . .

...
sn1 sn2 · · · snj · · · snn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 2 The new Pythagorean
fuzzy decision matrix Permutations Main-criteria & Sub-criteria

C1 ... Cn

C1(1), · · · , C1(t1) Cn(1), · · · , Cn(tn)

£1 F(£11(1)), ..., F (£11(t1)) ... F(£1n(1)), ..., F (£1n(tn))

£2 F(£21(1)), ..., F (£21(t1)) ... F(£2n(1)), ..., F (£2n(tn))

... ... ... ...

£m! F(£m!1(1)), ..., F (£m!1(t1)) ... F(£m!n(1)), ..., F (£m!n(tn))
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The support degree of criterion Ci is defined as:

Sup(Ci) =
n∑

j=1,j �=i

s(Ci, Cj ) (26)

The credibility degree of criterion Ci can be defined as:

Crd(Ci) = Sup(Ci)∑n
i=1 Sup(Ci)

(27)

It is noted that the credibility degree is actually the weight
of the criterion which denotes its relative importance in all
criteria and satisfies obviously that

∑n
i=1 Crd(Ci) = 1. The

following example illustrates how to determine the weight
based on the above proposed method.

Example 11 Consider a MCDM problem with four criteria
{C1, C2, C3, C4}, and the performance of alternative Aj

under each criterion are expressed by PFNs as: βj1 =
P(0.5, 0.3), βj2 = P(0.6, 0.7), βj3 = P(0.7, 0.4), βj4 =
P(0.8, 0.3). Then the similarity measure matrix can be
obtained based on Definition 15 and 16 as:

⎡
⎢⎢⎣

1 0.4665 0.6484 0.6422
0.4665 1 0.3874 0.4142
0.6484 0.3874 1 0.8000
0.6422 0.4142 0.8000 1

⎤
⎥⎥⎦

Then the support degree of each criterion can be calculated
based on (26) as: Sup(C1) = 1.7571, Sup(C2) = 1.2681,
Sup(C3) = 1.8358, Sup(C4) = 1.8564. Then the credibil-
ity degree of each criterion can be obtained based on (27) as:
Crd(C1) = 0.2616, Crd(C2) = 0.1888, Crd(C3) =
0.2732, Crd(C4) = 0.2764, that is, the weight of each cri-
terion is W1 = 0.2616, W2 = 0.1888, W3 = 0.2732,
W4 = 0.2764.

After defining the method to determine weights, let’s
discuss how to implement the aggregation of sub-criteria
under each main criterion in the hierarchical framework of
MCDM problem. For alternative Aj , the weights of sub-
criteria under each main criterion Ci can be calculated
based on (27) as w

j

i(∗). Then the overall weights of sub-
criteria under each main criterion can be obtained by
calculating the average as wi(∗) = ∑m

j=1 w
j

i(∗)/m. Then
the Pythagorean fuzzy expresses of sub-criteria can be
aggregated into their corresponding main criterion based
on Definition 7 and 14. For alternative Aj under main
criterion Ci , the aggregation result of sub-criteria can be
denoted as βji = PFWA(βji(1), . . . , βji(ti )) and β̃j i =
IV PFWA(β̃ji(1), . . . , β̃j i(ti )). The following example is
conducted to illustrate how to aggregate sub-criteria into a
main criterion based on the obtained weights.

Example 12 (Continued Example 11) Consider a MCDM
problem with four criteria {C1, C2, C3, C4}, and the perfor-
mance of alternative Aj under each criterion are expressed
by PFNs as: βj1 = P(0.5, 0.3), βj2 = P(0.6, 0.7),
βj3 = P(0.7, 0.4), βj4 = P(0.8, 0.3). According to Exam
ple 11, the weights of the four criteria is W1 = 0.2616,
W2 = 0.1888, W3 = 0.2732, W4 = 0.2764. Now they
can be aggregated into a PFN based on Definition 7 as:
βi = PFWA(βj1, βj2, βj3, βj4) = P(0.7940, 0.4525).

The MCDM framework after weighted aggregation is
shown in Table 3.

So far the score F(£γ i(t)) of permutation £γ and weight
of t th sub-criterion of ith main criterion have been obtained,
next, the score of permutation £γ of each main criterion
will be calculated by aggregating all of the sub-criteria and
denoted as F(£γ i) = ∑ti

t=1 F(£γ i(t)) · wt(i).
To obtain the final score of permutation £γ , the weights

of all the main criteria need to be calculated based on
the aggregated decision matrix shown in Table 3 as wi .
Then the final score of permutation £γ can be obtained as
F(£γ ) = ∑n

i=1 F(£γ i) · wi . Finally, the optimal alternative
should be the one with the highest score denoted as £∗ =
maxm!

γ=1{F(£γ )}.
Here we have finished the description of the MCDM

problems under Pythagorean fuzzy environment and intro-
duced the decision-making approach based on the devel-
oped closeness index and aggregation operator. To make
the readers clearly understand the approach above which is
highly summarized as the following steps.

– Step 1. According to the description of Pythagorean
fuzzy decision problem, the hierarchical framework
of MCDM problem can be determined and the
Pythagorean fuzzy decision matrix can be obtained.

– Step 2. List the possible m! permutations of the m

alternatives, and calculate the score of each permutation
based on the score function ((21) and (23)).

Table 3 The Pythagorean fuzzy decision matrix after aggregation
operation. On the left side of the table is the aggregation result of the
sub-criteria under each of the main criterion in Table 1, and on the right
side represents the aggregation result of all the main criteria from the
left side

Alternatives Main criteria Decision objective

C1 ... Ci ... Cn

A1 x11 ... x1i ... x1n x1

A2 x21 ... x2i ... x2n x2

... ... ... ... ... ... ...

Am xm1 ... xmi ... xmn xm
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Table 4 The hierarchy of criteria for the risk assessment problem

Main criterion Sub-criteria

C1 Technology risk C1(1) Technological advancement
C1(2) Technological substitutability
C1(3) Technological reliability
C1(4) Technological suitability

C2 Market risk C2(1) Market capacity
C2(2) Market share
C2(3) Product competitiveness
C2(4) Product life cycle
C2(5) Marketing strategies

C3 Policy risk C3(1) Changes of national macro-economic
policy
C3(2) New products industry’s outlook
C3(3) Compatibility between projects
and policies

C4 Financial risk C4(1) Loan interest rate
C4(2) The ability of enterprise financing
C4(3) Return of investment

– Step 3. Calculate the weights of all the sub-criteria
under each main criterion based on (27), then aggregate
all sub-criteria under each main criterion based on the
obtained weights and Definition 7 and 14.

– Step 4. Calculate the score of permutation of each
main criterion by aggregating the scores of all the
sub-criteria.

– Step 5. Calculate the weights of all main criteria based
on (27).

– Step 6.Obtain the final score of each permutation based
on the data of Step 4 and weights of Step 5.

– Step 7. Select the permutation which has the highest
score as the final decision-making result.

4.3 Some special cases of the proposed approach

The decision approach under Pythagorean fuzzy environ-
ment is developed for the framework of two-level criteria
MCDM problems. In practice, there may exist some special
cases in this framework, for example, the decision-making
framework is a single-level structure, the expression of deci-
sion matrix are given by PFNs only, weights of criteria are
given by decision makers in advance, ect. In these special
cases, special consideration should be given to decision-
making issues. Some of the differences in the decision-
making process and the issues that need to be addressed are
listed below.

Case 1: When the framework of MCDM problems
degenerate into a single criterion layer structure, the
decision-making process becomes simpler. Specifically,
the overall decision process needs only one weighting
operation, in this way, the aggregation process developed
in Definition 7 and 14 is omitted, only need to calculate
the weights of all the criteria based on (27), and then
to aggregate the score of each criterion to complete the
decision-making activities.

Case 2: In a special case, the decision matrix given by deci-
sion-making experts is only expressed by PFNs. The deci-
sion-making process is still simplified in this case, for exam-
ple, calculating the closeness index, computing the score of
permutation and aggregating the Pythagorean fuzzy expres-
sion are all available under the definition of PFNs, thus
greatly saving the algorithm’s time and space overhead.

Case 3: In the process of decision-making, if the weights
of the criteria are given by decision-makers, the step
of calculating the weights is omitted in this case,
accordingly, the aggregation process of PFNs and

Table 5 The values of
alternatives under each
criterion

Sub-criteria Alternatives

A1 A2 A3

C1(1) P (.8, .2) P (.8, .4) P (.6, .6)
C1(2) P̃ ([.6, .8], [.4, .5]) P̃ ([.6, .7], [.4, .6]) P̃ ([.7, .8], [.4, .5])
C1(3) P̃ ([.5, .7], [.3, .6]) P̃ ([.8, .9], [.2, .3]) P̃ ([.6, .7], [.4, .6])
C1(4) P (.6, .5) P (.9, .2) P (.8, .1)
C2(1) P̃ ([.8, .9], [.2, .3]) P̃ ([.5, .7], [.4, .5]) P̃ ([.7, .9], [.3, .4])
C2(2) P (.6, .6) P (.7, .5) P (.7, .2)
C2(3) P̃ ([.6, .7], [.3, .5]) P̃ ([.6, .9], [.1, .3]) P̃ ([.5, .7], [.4, .6])
C2(4) P (.7, .6) P (.5, .8) P (.6, .5)
C2(5) P̃ ([.6, .7], [.2, .3]) P̃ ([.7, .9], [.1, .3]) P̃ ([.5, .7], [.4, .5])
C3(1) P (.7, .4) P (.8, .6) P (.6, .5)
C3(2) P (.9, .3) P (.9, .2) P (.8, .5)
C3(3) P̃ ([.7, .9], [.1, .3]) P̃ ([.7, .8], [.4, .5]) P̃ ([.6, .8], [.2, .3])
C4(1) P (.8, .2) P (.9, .3) P (.8, .5)
C4(2) P (.7, .5) P (.8, .2) P (.7, .1)
C4(3) P̃ ([.8, .9], [.2, .3]) P̃ ([.7, .9], [.1, .3]) P̃ ([.5, .7], [.2, .5])
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IVPFNs is unnecessary and the decision-making process
becomes more concise.

5 Application of Pythagorean fuzzy decision
approach in risk assessment

In this section, the process of risk assessment of strate-
gic emerging industries is demonstrated based on the above
decision approach under Pythagorean fuzzy environment,
which is conducted to illustrate the applicability and effective-
ness of the proposed Pythagorean fuzzy decision approach.

5.1 Description of the risk assessment problem

Strategic emerging industries are based on major techno-
logical breakthroughs and major development needs. They
are industries that have a leading role in promoting over-
all and long-term economic and social development, which
ensures the sustained economic growth in China. They
have the following characteristics: intensive knowledge and
technology, less consumption of material resources, great
potential for growth and good overall efficiency. Thus,
how to select the appropriate leading company in strate-
gic emerging industries is significant to nurture and develop
strategic emerging industries. Strategic emerging industries
are composed of seven parts, they have been the key target
and direction of the national industry development, among
which the new energy industry has been vigorously sup-
ported and promoted by the central government of China.
There are three leading companies (Jinko A1, Trina Solar
A2 and ReneSola A3) of a new energy industry are consid-
ered by government [38], so the proposed MCDM approach
will be applied to select the best one from the perspective
of risk of the technique innovation. The hierarchy of assess-
ment criteria is a two-level structure with main criteria and
sub-criteria given by experts and shown in the Table 4. This
risk assessment issue is conducted in Pythagorean fuzzy
environment, the values under each criterion of the alterna-
tives will be represented by PFNs or IVPFNs, and the data
in this case come from [72], which is illustrated in Table 5.

5.2 Decision process

In Step 1 and 2, there will be 6 (= 3!) possible permutations
of three alternatives, and they are:

£1 = (A1, A2, A3), £2 = (A1, A3, A2), £3 = (A2, A1, A3),

£4 = (A2, A3, A1), £5 = (A3, A1, A2), £6 = (A3, A2, A1).

Then the score of each permutation under each sub-criterion
will be calculated based on the score function F, and the Ta
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Table 7 The weights of all the sub-criteria of each criterion

Alternatives Main-criteria & Sub-criteria

C1 C2 C3 C4

C1(1) C1(2) C1(3) C1(4) C2(1) C2(2) C2(3) C2(4) C2(5) C3(1) C3(2) C3(3) C4(1) C4(2) C4(3)

A1 .2261 .2581 .2504 .2654 .2140 .1695 .2110 .1897 .2158 .3205 .3369 .3426 .3501 .2949 .3550

A2 .2600 .2074 .2705 .2621 .2111 .2045 .2346 .1175 .2323 .3295 .3244 .3461 .3217 .3404 .3379

A3 .2204 .2705 .2565 .2526 .2033 .1974 .1861 .2087 .2045 .3217 .3401 .3382 .3330 .3366 .3304

w̄i(j) .2355 .2453 .2592 .2600 .2094 .1905 .2106 .1720 .2175 .3239 .3338 .3423 .3349 .3240 .3411

results are shown in Table 6. In Step 3, the weights of all
the sub-criteria of each criterion will be determined based
on the weighting method proposed in Section 4.2. Firstly,
for each alternative, the weights of each sub-criterion
are computed, then the final weights are determined by
averaging all alternatives, and the results are shown in
Table 7. The next operation is to aggregate all of the
sub-criteria under each main criterion, and the aggregation
results are shown in Table 8. In Step 4, the score of each
permutation under all the main criteria will be obtained
based on the weights calculated in Step 3, and the results
are shown in Table 9. In Step 5, the weights of all the main
criteria will be calculated based on the aggregation results
of Table 8, and the results are shown on the last line of
Table 9. In Step 6, the final score of each permutation will
be obtained by calculating the weighting values of the four
main criteria base on Table 9, and the final results are shown
in Table 10. In the last step, apparently, the conclusion can
be drawn from Table 10 that the optimal permutation is
£3 : A2 � A3 � A1, so the best leading company is Trina
Solar A2 from the results of risk assessment. It is obvious
the proposed Pythagorean fuzzy decision approach provide
business or government with an effective way to handle
hierarchical MCDM problems, such as risk assessment in
Pythagorean fuzzy environment.

Table 8 The Pythagorean fuzzy representation of all the alternatives
under main criteria

Alt Main criteria

C1 C2 C3 C4

A1 P(.7864, P (.8086, P (.9184, P (.9067,

.4652) .4608) .2711) .3030)

A2 P(.9180, P (.7759, P (.9182, P (.9421,

.3106) .5051) .3639) .1975)

A3 P(.6979, P (.7722, P (.8200, P (.8307,

.4631) .4650) .4420) .3826)

5.3 Discussion and analysis

The ranking of alternatives can be obtained using the
above Pythagorean fuzzy decision approach, so that the best
goal can be selected naturally. As noted, to determine the
weights of main criteria, all sub-criteria under each main
criterion are aggregated in Step 3. In the decision-making
method presented above, the purpose of this operation is
simply to obtain weights of main criteria, but after this
operation, if we aggregate all of the main criteria to obtain
the corresponding Pythagorean fuzzy representation of each
alternative, then the closeness index of each alternative can
be calculated based on (5) and (12), which can also be
considered as a measure to make decisions. Based on this
consideration, the aggregation results of all the main criteria
and corresponding closeness indexes of all the alternatives
are calculated and shown in Table 11, where the ranking
of all the alternatives is easy to be obtained that A2 �
A1 � A3 based on the values of closeness indexes. The
decision process of the proposed approach in Section 4.2
for permutation £3 is given in Fig. 7a, and the process
using the weighted aggregation method to get the final
closeness index for alternative A2 is shown in Fig. 7b.
By comparison, we can find that the weighted aggregation
method mainly provides the weights for criteria of each
layer for the decision approach proposed in this paper,

Table 9 The score of each permutation under all the main criteria

Permutations Main criteria

C1 C2 C3 C4

£1 −.0240 .0224 .2058 .1075
£2 −.1931 .0244 .0963 −.1150
£3 .1691 −.0019 .1094 .2225
£4 −.1691 .0019 −.1094 −.2225
£5 .1931 −.0244 −.0963 .1150
£6 .0240 −.0224 −.2058 −.1075
w̄i .2497 .2435 .2561 .2507
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Table 10 The final score of each permutation

Permutations F(£γ )(γ = 1, 2, 3, 4, 5, 6) Ranking of alternatives

£1 .0791 A1 � A2 � A3

£2 −.0464 A1 � A3 � A2

£3 .1256 A2 � A1 � A3

£4 −.1256 A2 � A3 � A1

£5 −0464 A3 � A1 � A2

£6 −.0791 A3 � A2 � A1

while the weighted aggregation method itself can also work
as a decision method. Consider the Case 3 mentioned in
Section 4.3, when the weights of criteria are given by the
decision-makers, the approach we proposed can also work
independently of the weighted aggregation method, and
at this time, they are two independent decision algorithm.
A lot of work has been tried by scholars to deal with
MCDM problems under Pythagorean fuzzy environment.
In what follows, we will compare our approach with some
other existing methods from the aspects of application
environment, type of criteria weights, type of problem, main
idea, etc., separately. As Table 12 shows, the following
conclusions can be easily obtained:

(i) The proposed approach can be applied synchronously
in the PFN and IVPFN decision environment, while
other methods can not work except [72], for example,
method [40] can only be used with PFNs data, method
[18] can only work on IVPFNs data and method [30]
can only act on HPFNs data.

(ii) With regard to the expression and determination
of criterion weights, except for the approach we
proposed, the weights of other methods all come from
the decision-maker, which undoubtedly increases
the subjectivity of decision-making process. Our
approach determines the weights according to the
decision matrix, doing so can effectively weaken
the subjective factors of human decision-making and
make the result of decision-making more accurately.

(iii) The proposed approach and method [72] can effec-
tively deal with hierarchical MCDM problems, which

Table 11 The ranking results by aggregating all the criteria and
comparing the closeness index of alternatives

Alternatives Aggregation results Closeness index Ranking

A1 P(.9544, .2680) 0.8156 2

A2 P(.9733, .2138) 0.8531 1

A3 P(.8960, .3838) 0.7322 3

can not be done by method [18, 40] and [30]. From
the view of main idea and contribution, our work
is more prominent than other papers, mainly in the
following aspects: our paper proposed the distance
measure between different PFNs and IVPFNs, and
based on this we define the closeness indexes of PFNs
and VIPFNs. In addition, the weighted aggregation
operators of PFNs and IVPFNs are developed, which
ensure the efficient and accurate implementation of
Pythagorean fuzzy decision-making.

6 Extension of the proposed decision
approach for other uncertain information

In the previous sections, the Pythagorean fuzzy approach for
MCDM problems has been introduced based on PFNs and
IVPFNs expression of decision information. Consider that
the decision matrix may be represented by other uncertain
information, in order to adapt our approach to a broader
uncertain environment, the proposed approach is extended
further to handle other uncertain information, including
fuzzy numbers (FNs), triangular fuzzy numbers (TFNs),
intuitionistic fuzzy numbers (IFNs), hesitation fuzzy num-
bers (HFNs), interval numbers (INs) and interval valued
fuzzy numbers (IVFNs).

As aforementioned, we define six subsets Cψ(ψ = 1, 2,
3, 4, 5, 6) as the expression of criteria whose assessment
information are denoted by FNs, TFNs, IFNs, HFNs, INs,
IVFNs, respectively, which can be denoted as:

– When Ci(t) ∈ C1, xij (t) = F(μij (t)) will be expressed
by FNs;

– When Ci(t) ∈ C2, xij (t) = T (aL
ij (t), a

M
ij (t), a

U
ij (t)) will be

expressed by TFNs;
– When Ci(t) ∈ C3, xij (t) = I (μij (t), νij (t)) will be

expressed by IFNs;

– When Ci(t) ∈ C4, xij (t) = H(h1ij (t), h
1
ij (t), ..., h

#xij (t)

ij (t) )

will be expressed by HFNs;
– When Ci(t) ∈ C5, xij (t) = ã[a−

ij (t), a
+
ij (t)] will be

expressed by INs;
– When Ci(t) ∈ C6, xij (t) = Ĩ ([μL

ij (t), μ
U
ij (t)], [νL

ij (t),

νU
ij (t)]) will be expressed by IVFNs.

The main reason why the proposed Pythagorean fuzzy
decision approach is effective is that the closeness indexes
of PFNs and IVPFNs are defined, which play a crucial role
in the final ranking of the alternatives. Therefore, as an
extension of the proposed decision approach, we first define
the closeness index of different assessment information
for MCDM problems, and note that all the expressions of
uncertain information are assumed to be normalized. The

553



L. Fei and Y. Deng

Fig. 7 The comparison of the
decision process between the
proposed Pythagorean fuzzy
decision approach and weighted
aggregation method

closeness indexes of FNs, TFNs, IFNs, HFNs, INs and
IVFNs are defined, separately, as follows:

Definition 17 Consider a normalized decision matrix
M = (xij (t))m×n×tj expressed by uncertain information, if

Cj(t) ∈ C1, then xij (t) = F(μij (t)) is a FN, whose closeness
index can be defined as:

�(ij (t)) = μij (t) (28)

Table 12 Comparison analysis between the proposed approach and the existing methods

The method Environment Type of criteria weights Type of problem Main idea

Ma’s method [40] PFNs Crisp numbers MCDM Symmetric Pythagorean fuzzy
weighted geometric operators

Garg’s method [18] IVPFNs Crisp numbers MCDM Interval-valued Pythagorean fuzzy
weighted average and weighted
geometric operators & accuracy
function

Liang’s method [30] HPFNs Crisp numbers MCDM Extension of TOPSIS method under
hesitant Pythagorean fuzzy sets

Zhang’s method [72] PFNs & IVPFNs IVPFNs & Crisp numbers Hierarchical MCDM Hierarchical QUALIFLEX approach

Our method PFNs & IVPFNs PFNs & IVPFNs Hierarchical MCDM The closeness index-based score
function & Aggregate operator &
Weighting method
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Definition 18 Consider a normalized decision matrix
M = (xij (t))m×n×tj expressed by uncertain information, if
Cj(t) ∈ C2, then xij (t) = T (aL

ij (t), a
M
ij (t), a

U
ij (t)) is a TFN,

whose closeness index can be defined as:
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Definition 19 Consider a normalized decision matrix
M = (xij (t))m×n×tj expressed by uncertain information, if
Cj(t) ∈ C3, then xij (t) = I (μij (t), νij (t)) is an IFN, whose
closeness index can be defined as:

�(ij (t)) =
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where πij (t) = 1 − μij (t) − νij (t).

Definition 20 Consider a normalized decision matrix
M = (xij (t))m×n×tj expressed by uncertain information, if

Cj(t) ∈ C4, then xij (t) = H(h1ij (t), h
1
ij (t), ..., h

#xij (t)

ij (t) ) is a
HFN, whose closeness index can be defined as:
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(32)

where #xij (t) is the number of the elements in xij (t).

Definition 21 Consider a normalized decision matrix
M = (xij (t))m×n×tj expressed by uncertain information, if
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Cj(t) ∈ C5, then xij (t) = ã[a−
ij (t), a

+
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closeness index can be defined as:
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Definition 22 Consider a normalized decision matrix
M = (xij (t))m×n×tj expressed by uncertain information, if

Cj(t) ∈ C6, then xij (t) = Ĩ ([μL
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is an IVFN, whose closeness index can be defined
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It is noted that the distance measures used in Defini-
tion 17–22 are normalized Euclidean distance.

There will be m! possible ranking results for m

alternatives in MCDM problems to be dealt with. The
concordance/discordance index �̌

γ

ξζj (t) for a couple of
alternatives (Aξ , Aζ ) of γ th permutation under t th sub-
criterion of ith main criterion can be denoted as (29).

According to the aforementioned analyses, as the
rationality of the permutation £γ of t th sub-criterion under
ith main criterion, the score function F(£γ i(t)) (C ∈ Cψ ,
ψ = 1, 2, 3, 4, 5, 6) can be summarize as:

F(£γ i(t))=

⎧
⎪⎨
⎪⎩

F(£γ i(t))=F(£γ i(t)) + |�̆γ

ξζ i(t)|, �̆
γ

ξζ i(t) > 0

F(£γ i(t)), �̆
γ
ξζ = 0

F(£γ i(t))=F(£γ i(t)) − |�̆γ

ξζ i(t)|, �̆
γ

ξζ i(t) < 0

(35)

When the score function F(£γ i(t)) is obtained, the other
decision processes are similar to the Section 4.2, and the
specific details are omitted here.

As noted, the weights of criteria in above MCDM
problems may be derived from decision makers, or
determined using a method similar to the one in Section 4.2.
In addition, the weights may be expressed in crisp numbers
or in the same form as assessment information, and of
course, they can also be represented in a mixed way.
Because this is beyond the scope of this paper, there is not
too much illustration here.

7 Conclusion and further study

In this paper, we proposed a novel approach for hierarchical
multi-criteria decision-making problems from Pythagorean
fuzzy perspective. Within the framework of hierarchical
MCDM approach, the distance measures are initially
defined for PFNs and IVPFNs and some basic theorems are
developed and proved to satisfy the corresponding axioms.
Based on the defined distance measures, the closeness
indexes are presented for PFNs and IVPFNs as the measure
of their magnitude motivated by TOPSIS idea. Afterward,
the score function is defined to calculate the score, denoted
as the rationality, of each permutation for the optimal
objective. With respect to criterion weights, taking into
account the weights given by decision makers in advance
would increase the uncertainty of the decision process, a
novel weight determination method is presented, which
employs Pythagorean fuzzy data from decision matrix.
Furthermore, in the process of dealing with hierarchical
MCDM problem, the fusion of different criteria would
be conducted to obtain the upper level goal, so the
new weighted aggregation operators, called PFWA and
IVPFWA are developed for PFNs and IVPFNs, respectively.
And finally, the optimal permutation will be determined
as the one with the highest score according to the
score function. In order to demonstrate the effectiveness
and superiority of the proposed decision approach, an
experiment about risk assessment is conducted under
Pythagorean fuzzy environment. As illustrated in Section 2,
the novel distance measure is superior to other existing
methods, which determines that the developed closeness
index is better than others, which undoubtedly can increase

556



Multi-criteria decision making in Pythagorean fuzzy environment

the accuracy of the decision results. In addition, the new
presented criterion weight determination method can reduce
human’s subjectivity to a certain extent and also laid the
foundation for the reliability of decision making. The
final extension of the proposed decision approach for
heterogeneous information also provides a reference for its
further application in other fields, which greatly enriches its
flexibility and extensibility. What’s more, as depicted in the
comparison analysis of Section 5.3, the proposed approach
have different degrees of advantage over other methods in
several aspects, such as the usage environment, the type of
criterion weights and the problems that can be solved.

Admittedly, there still remain some issues to be
addressed in future research, in what follows we summary
several noticeable aspects. First, the number of permutations
increases tremendously with the number of alternatives,
which specifically means that m alternatives correspond
to m! permutations, this will increase the computational
complexity of the decision approach; Second, the presented
aggregation operators for PFNs and IVPFNs does not
preserve the property that the membership value in the
aggregated result is between all the source Pythagorean
fuzzy representation. For example, assume two PFNs: P1 =
(0.5, 0.1) and P2 = (0.6, 0.2), the result can be denoted as
P1⊕P2 = (0.7138, 0.1863) using the proposed aggregation
operator for PFNs. Obviously 0.7138 > 0.5 and 0.7138 >

0.6, it can be seen that the belief of the aggregated PFNs
moves closer to a certain element, which may also be seen
as a breakthrough, because it can help decision makers
employ multi-source information better; Third, the BUM
function is needed based on the aforementioned conversion
method from the continuous IVPFNs to PFNs, but there is
no specific discussion on how to determine this function
in this paper, which may effect the final decision results.
Although there are some drawbacks at present, the proposed
Pythagorean fuzzy decision approach is still an useful tool
for hierarchical MCDM problem.

In future studies, the issues in the current version
listed above will be improved firstly, mainly including the
reduction of the approach’s computational complexity, the
further explanation of the aggregation operators’ properties,
and the sensitivity analysis of the BUM function. Another
significant topic is to explore the relationship between
these two methods, which are mentioned and discussed in
Section 5.3. As it describes, in addition to the decision
approach proposed in this paper, the weighted aggregation
method itself can also work as a decision method, and the
decision results based on these two methods for the case
of risk assessment are consistent, then whether this is a
coincidence, or there is a certain quantitative relationship

between them, which will be further studied in the following
work. Additionally, in future research, the decision-making
ideas of this paper will be extended to solve more MCDM
problems in Pythagorean fuzzy linguistic environment and
type-2 Pythagorean fuzzy environment.
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Appendix A: Proof of Theorem 1

Proof Let

dT emp(β1, β2) =
√

(μβ1 − μβ2)
2 + (νβ1 − νβ2)

2 (36)

s.t .

⎧
⎨
⎩

0 ≤ (μβ1)
2 + (νβ1)

2 ≤ 1
0 ≤ (μβ2)

2 + (νβ2)
2 ≤ 1

0 ≤ μβ1 , νβ1 , μβ2 , νβ2 ≤ 1

A coordinate system is established and shown in
Fig. 8, which takes μ as the vertical axis with ν as the
horizontal axis. According to the constraints, we know
that P(μβ1 , νβ1) and P(μβ2 , νβ2) are the two points of
the shaded part in the coordinate system. Based on (41),
dT emp(β1, β2) is the distance between point β1 and β2. The
maximum and minimum values between them are 0 and

√
2,

respectively. That is, dT emp(A, B) ∈ [0, √2]. Based on (2),
we have 0 ≤ d(β1, β2) ≤ 1.

Fig. 8 The coordinate system for μ and ν
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Appendix B: Proof of Theorem 4

Proof As β1 ≤ β2 ≤ β3, we have μβ1 ≤ μβ2 ≤ μβ3 and
νβ1 ≥ νβ2 ≥ νβ3 based on the Definition in [62]. As shown
in Fig. 8, we take arbitrary values μβ1 , μβ2 , μβ3 and νβ1 ,
νβ2 , νβ3 on the coordinate axis. Their intersection points β1,
β2 and β3 form a triangle. Obviously, ∠β1β2β3 is always
an obtuse angle, so β1β2 < β1β3 and β2β3 < β1β3. That
is, dT emp(β1, β2) ≤ dT emp(β1, β3) and dT emp(β2, β3) ≤
dT emp(β1, β3). So d(β1, β2) ≤ d(β1, β3) and d(β2, β3) ≤
d(β1, β3).

Appendix C: Proof of Theorem 6

Proof According to Definition 4, we have

�(β1) − �(β2)

=
√

μ2
β1

+(νβ1 − 1)2
√

μ2
β1

+(νβ1 −1)2+
√

(μβ1 −1)2+ν2β1

−
√

μ2
β2

+(νβ2 − 1)2
√

μ2
β2

+(νβ2 −1)2+
√

(μβ2 −1)2+ν2β2

=

(
(
√

μ2
β1

+(νβ1 −1)2)(
√

μ2
β2

+(νβ2 −1)2+
√

(μβ2 −1)2+ν2β2 )

−(
√

μ2
β2

+(νβ2 −1)2)(
√

μ2
β1

+(νβ1 −1)2+
√

(μβ1 −1)2+ν2β1 )
)

(
(
√

μ2
β1

+(νβ1 −1)2+
√

(μβ1 −1)2+ν2β1 )

(
√

μ2
β2

+(νβ2 −1)2+
√

(μβ2 −1)2+ν2β2 )
)

=

(
(
√

μ2
β1

+(νβ1 −1)2)(
√

(μβ2 −1)2 + ν2β2 )

−(
√

μ2
β2

+(νβ2 −1)2)(
√

(μβ1 −1)2+ν2β1 )
)

(
(
√

μ2
β1

+(νβ1 −1)2+
√

(μβ1 −1)2+ν2β1 )

(
√

μ2
β2

+(νβ2 −1)2+
√

(μβ2 −1)2+ν2β2 )
)

(37)

Since

(μ2
β1

+ (νβ1 − 1)2) − (μ2
β2

+ (νβ2 − 1)2)

= μ2
β1

− μ2
β2

+ ((νβ1 − 1)2) − (νβ2 − 1)2
))

= (μβ1 + μβ2)(μβ1 − μβ2) + (νβ1 + νβ2 − 2)(νβ1 − νβ2)

(38)

Since β1 ≤ β2, we have 0 ≤ μβ1 ≤ μβ2 ≤ 1 and
1 ≥ νβ1 ≥ νβ2 ≥ 0 according to Definition in [62]. So,
μβ1 + μβ2 ≥ 0, μβ1 − μβ2 ≤ 0, νβ1 + νβ2 − 2 ≤ 0,
νβ1 − νβ2 ≥ 0; that is, (μβ1 + μβ2)(μβ1 − μβ2) ≤ 0 and
(νβ1+νβ2−2)(νβ1−νβ2) ≤ 0, so (μ2

β1
+(νβ1−1)2)−(μ2

β2
+

(νβ2−1)2) ≤ 0, then (μ2
β1

+(νβ1−1)2) ≤ (μ2
β2

+(νβ2−1)2),

then
√

μ2
β1

+ (νβ1 − 1)2 ≤
√

μ2
β2

+ (νβ2 − 1)2. Similarly,

we have
√

(μβ2 − 1)2 + ν2β2 ≤
√

(μβ1 − 1)2 + ν2β1 . So, in

(37), we have

(√
μ2

β1
+(νβ1−1)2

)(√
(μβ2−1)2+ν2β2

)

−
(√

μ2
β2

+(νβ2−1)2
)(√

(μβ1−1)2+ν2β1

)
≤0 (39)

and

(√
μ2

β1
+ (νβ1 − 1)2 +

√
(μβ1 − 1)2 + ν2β1

)

(√
μ2

β2
+ (νβ2 − 1)2 +

√
(μβ2 − 1)2 + ν2β2

)
≥ 0 (40)

So, �(β1) − �(β2) ≤ 0, that is, �(β1) ≤ �(β2).

Appendix D: Proof of Theorem 7

Proof Let

dL
T emp(β1, β2) =

√
(μ̃L

β̃1
− μ̃L

β̃2
)2 + (̃νL

β̃1
− ν̃L

β̃2
)2 (41)

dU
T emp(β1, β2) =

√
(μ̃U

β̃1
− μ̃U

β̃2
)2 + (̃νU

β̃1
− ν̃U

β̃2
)2 (42)

s.t .

⎧
⎪⎨
⎪⎩

0 ≤ (μ̃U

β̃1
)2 + (̃νU

β̃1
)2 ≤ 1

0 ≤ (μ̃U

β̃2
)2 + (̃νU

β̃2
)2 ≤ 1

0 ≤ μ̃U

β̃1
, ν̃U

β̃1
, μ̃U

β̃2
, ν̃U

β̃2
≤ 1

According to the proof of Theorem 1, it is easy to have
dL
T emp(β1, β2) ∈ [0, √2] and dU

T emp(β1, β2) ∈ [0, √2], that
is, 0 ≤ d(β̃1, β̃2) ≤ 1 based on (11).

Appendix E: Proof of Theorem 12

Proof

�(β̃1) − �(β̃2)

= d(β̃1, ξ̃
−)

d(β̃1, ξ̃−) + d(β̃1, ξ̃+)
− d(β̃2, ξ̃

−)

d(β̃2, ξ̃−) + d(β̃2, ξ̃+)

=
(
√

(μ̃L

β̃1
)2 + (̃νL

β̃1
− 1)2 +

√
(μ̃U

β̃1
)2 + (̃νU

β̃1
− 1)2)

(
(
√

(μ̃L

β̃1
)2 + (̃νL

β̃1
− 1)2 +

√
(μ̃U

β̃1
)2 + (̃νU

β̃1
− 1)2) +

(
√

(μ̃L

β̃1
− 1)2 + (̃νL

β̃1
)2 +

√
(μ̃U

β̃1
− 1)2 + (̃νU

β̃1
)2)
)
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−
(
√

(μ̃L

β̃2
)2+ (̃νL

β̃2
−1)2+

√
(μ̃U

β̃2
)2+ (̃νU

β̃2
−1)2)

(
(
√

(μ̃L

β̃2
)2+ (̃νL
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−1)2+

√
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β̃2
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(
√
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β̃2
− 1)2 + (̃νL

β̃2
)2 +

√
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β̃2
− 1)2 + (̃νU

β̃2
)2)
)

=

(
(
√
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β̃1
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− 1)2)

(
√
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β̃2
)2) −
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β̃1
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− 1)2 + (̃νU

β̃1
)2)

(
√

(μ̃L

β̃2
)2 + (̃νL

β̃2
− 1)2 +

√
(μ̃U

β̃2
)2 + (̃νU

β̃2
− 1)2)

)
(
((
√

(μ̃L

β̃1
)2 + (̃νL

β̃1
− 1)2 +

√
(μ̃U

β̃1
)2 + (̃νU

β̃1
− 1)2) +

(
√

(μ̃L

β̃1
− 1)2 + (̃νL

β̃1
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β̃1
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((
√

(μ̃L

β̃2
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β̃2
− 1)2 +

√
(μ̃U

β̃2
)2 + (̃νU

β̃2
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β̃2
)2 +
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β̃2
− 1)2 + (̃νU

β̃2
)2))

)

(43)

According to (39) and corresponding definition in [72], we
have

(√
(μ̃L

β̃1
)2 + (̃νL

β̃1
− 1)2 +

√
(μ̃U

β̃1
)2 + (̃νU

β̃1
− 1)2

)

≤
(√

(μ̃L

β̃2
)2 + (̃νL

β̃2
− 1)2 +

√
(μ̃U

β̃2
)2 + (̃νU

β̃2
− 1)2

)
,

(√
(μ̃L

β̃2
− 1)2 + (̃νL

β̃2
)2 +

√
(μ̃U

β̃2
− 1)2 + (̃νU

β̃2
)2
)

≤
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(μ̃L

β̃1
− 1)2 + (̃νL

β̃1
)2 +

√
(μ̃U

β̃1
− 1)2 + (̃νU

β̃1
)2
)
(44)

so,

(√
(μ̃L

β̃1
)2 + (̃νL

β̃1
− 1)2 +

√
(μ̃U

β̃1
)2 + (̃νU

β̃1
− 1)2

)

(√
(μ̃L

β̃2
− 1)2 + (̃νL

β̃2
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(μ̃U

β̃2
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β̃2
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β̃1
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β̃2
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β̃2
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)
(45)

so,

(√
(μ̃L

β̃1
)2 + (̃νL

β̃1
− 1)2 +

√
(μ̃U

β̃1
)2 + (̃νU

β̃1
− 1)2

)

(√
(μ̃L

β̃2
− 1)2 + (̃νL

β̃2
)2 +

√
(μ̃U

β̃2
− 1)2 + (̃νU

β̃2
)2
)

−
(√

(μ̃L

β̃1
− 1)2 + (̃νL

β̃1
)2 +

√
(μ̃U

β̃1
− 1)2 + (̃νU

β̃1
)2
)

(√
(μ̃L

β̃2
)2 + (̃νL

β̃2
− 1)2 +

√
(μ̃U

β̃2
)2 + (̃νU

β̃2
− 1)2

)
≤ 0

(46)

and,
((√

(μ̃L

β̃1
)2 + (̃νL

β̃1
− 1)2 +

√
(μ̃U

β̃1
)2 + (̃νU

β̃1
− 1)2

)

+
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(μ̃L

β̃1
− 1)2 + (̃νL

β̃1
)2 +
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β̃1
− 1)2 + (̃νU
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− 1)2 +
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β̃2
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β̃2
− 1)2
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+
(√
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β̃2
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)2 +
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β̃2
− 1)2 + (̃νU
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≥ 0 (47)

so, �(β̃1) − �(β̃2) ≤ 0, that is �(β̃1) ≤ �(β̃2).
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