
Applied Intelligence
https://doi.org/10.1007/s10489-019-01520-6

Dynamic uncertain causality graph based on Intuitionistic fuzzy sets
and its application to root cause analysis

Li Li1 ·Weichao Yue1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Dynamic uncertain causality graph (DUCG), which is based on probability theory, is used for uncertain knowledge
representation and reasoning. However, the traditional DUCG has difficulty expressing the causality of the events with crisp
numbers. Therefore, an intuitionistic fuzzy set based dynamic uncertain causality graph (IFDUCG) model is proposed in this
paper. The model focuses on describing the uncertain event in the form of intuitionistic fuzzy sets, which can handle with the
problem of describing vagueness and uncertainty of an event in the traditional model. Then the technique for order preference
by similarity to an ideal solution (TOPSIS) method is combined with IFDUCG for knowledge representation and reasoning
so as to integrate more abundant experienced knowledge into the model to make the model more reliable. Then some
examples are used to validate the proposed method. The experimental results prove that the proposed method is effective
and flexible in dealing with the difficulty of the fuzzy event of knowledge representation and reasoning. Furthermore, we
make a practical application to root cause analysis of aluminum electrolysis and the results show that the proposed method
is available for workers to make decisions.

Keywords Dynamic uncertain causality graph · Knowledge representation and reasoning · Uncertainty · IFDUCG ·
Intuitionistic fuzzy set

1 Introduction

During the past years, many graphical models for knowl-
edge representation and reasoning have been proposed,
including Bayesian network (BN) [1, 2], Petri net(PN) [3–
5], artificial neural network (ANN) [6, 7], and so on. These
methods have been used in some applications. However,
there are some shortcomings. For example, the establish-
ment of these models require precise and sufficient knowl-
edge, while empirical knowledge is usually limited and
incomplete in many cases. In addition, BN is NP hard in the
process of reasoning for a large and complex system. ANN
lacks the ability of interpreting knowledge due to its infer-
ence mechanism. For PN, it is easy to cause the problem of
state space explosion when there are too many nodes.

As a newly graphical model, dynamic uncertain causality
graph model(DUCG) can address the drawback of require-
ment of complete information. DUCGmodel is proposed by
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Zhang [8, 9] for knowledge representation and reasoning.
DUCG links events with causality chain by graphic symbols
[10] definitely and easily. Meanwhile, a whole DUCG can
be decomposed into several small modules as sub-DUCGs
which can simplify the complex causality among events.
Moreover, it allows incomplete knowledge representation
and makes an exact inference at the same time. Thus, it
greatly reduces the difficulty of building a knowledge base
and reasoning process. Over the past few years, DUCG has
been widely applied in fault diagnosis of complex systems
such as nuclear power plants, chemical processes, clinical
expert systems [11, 12] and so on.

In spite of its advantage over various applications,
the basic DUCG model has been criticized for kinds
of reasons, mainly including: (1) it only considered the
individual events and probabilities, (2) it just addressed
the discrete variables and certain evidence, (3) it only
addressed the directed acyclic graph, (4)it was limited to
model cases of specified causal structure while ignoring
statistics knowledge, (5)the knowledge was assigned with a
crisp value neglecting the uncertainty. In response, in [13], it
addressed that the variables of DUCG can be either acquired
from historical data or given by experienced engineers,
and the individual events were extended to matrix. Zhang
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[14] proposed a new approach which took continuous
variables and uncertain situations into consideration. In
[15] a DUCG with directed cyclic diagram was developed
to meet the requirement of feedback among variables.
Three kinds of mode of DUCG were put forward in [16]
to model complicated cases in which historical statistics
knowledge was in different situations with overlap or not
and new variables may not be contained in the original
information. Zhao [17] proposed a new simplified DUCG
model by combining the fuzzy decision tree with DUCG
when extracting knowledge.

Despite the fact that much research has been studied
to improve the performance of DUCG, little attention has
been paid to handle with the uncertainty and fuzzy prob-
lem of knowledge in DUCG. Firstly, the probabilities of
events are accurate numbers in DUCG which are usually
acquired from statistical data or historical data based on
the experienced expert. But in many cases various uncer-
tainties are ubiquitous, such as ambiguity, randomness, and
time-varying. For example, in the root cause analysis of alu-
minum reduction production, as the processes of production
are accompanied by complex electrochemical reactions,
external conditions are changeable, and disturbances are
inevitable in the operation, it is difficult to acquire empir-
ical knowledge accurately in the traditional DUCG model.
Furthermore, it has low ability and credibility of knowledge
representation and inference in the form of accurate num-
bers in the fuzzy circumstances. Therefore, the purpose of
the paper is to propose a new DUCGmodel to overcome the
shortcomings of the traditional model in fuzzy situations.

In this paper, a new type DUCG model is proposed
based on intuitionistic fuzzy sets, which is called the
intuitionistic fuzzy sets based DUCG (IFDUCG) model.
Firstly, the IFDUCG model for characterizing the uncertain
event is established based on intuitionistic fuzzy sets
(IFs). It contributes to make a good reference of the
fuzzy knowledge for the possible causality. Meanwhile,
with the uncertain data represented by membership and
non-membership degree [18–20], the IFDUCG model can
increase the reliability of dealing with fuzzy information
to some degrees. Moreover, it is available to find the root
cause according to the causal relationship when applied
for the root cause analysis of the industrial systems in
uncertain situations. Subsequently, an inference mechanism
of IFDUCG model based on the TOPSIS [21] method is
developed to acquire more empirical knowledge, which
can make the model more reliable and flexible in dealing
with knowledge ambiguity and uncertainty [22, 23]. Finally,
the established model and proposed inference algorithm
are demonstrated by simulation and production application.
It validates that the new model provides a useful and
reliable way for root cause analysis of aluminum reduction
production.

Based on the above analyses, the rest of this paper
is organized as follows. In Section 2, we briefly review
the basic theory of DUCG and operators of intuitionistic
fuzzy sets. In Section 3, we propose an IFDUCG
model and reasoning algorithm of IFDUCG based on
TOPSIS in details. After that, we validate the proposed
model by simulation and comparison. In Section 4, the
proposed method is applied to solve problems of aluminum
electrolytic cell root cause analysis in production. The
superiority and validity are demonstrated by numerical
examples as well. Conclusions are drawn in Section 5.

2 Preliminaries

In this section, the basic theory of DUCG and operators of
intuitionistic fuzzy sets are briefly reviewed.

2.1 DUCGmodel

DUCG provides an effective way of knowledge representa-
tion and inference to the causality relation among observ-
able variables. As shown in Fig. 1, a typical DUCG with
directed cyclic cases uses different type of event to express
the variables and the uncertain causality links between them
[8, 9]. The types are defined as F-, B-, X- in Fig. 1. Usually,
the B-type variable or an event drawn as a square repre-
sents a parent variable, which is called a basic event and can
merely be a cause of other events. The X-type variable or
an event drawn as a circle represents a child variable, which
represents an intermediate/node event and can be a cause
event. The F-type variable is called a connection event vari-
able that represents the uncertain causality relationship from
the parent/child variable to the child variable.

In Fig. 1, there is a one-way arc from B1 to X2 meaning
that B1 is the cause/parent of X2. The double-direction arc
between X2 and X3 denotes that they interact with each
other, and this is called a directed cyclic situation. The F-
type variable, for example, F2;1 means the probability of the
event B1 causing X2. As shown in Fig. 1, if variable has k

states, for example, B1 has states of B11, B12, · · · , B1k . It
means B11 has different possibilities to be the cause of X21,
X22,· · · , X2k , where the probabilities depend on the value
of F21;11, F21;12,· · · , F21;1k . It is the same with the states of
B12,· · · , B1k and other variables.

Definition 1 [8, 9] Suppose variable V is either X- or B-
type variable, in the case of matrices, the basic model of
DUCG is defined as

Xn =
∑

i

Fn;iVi =
∑

i

(rn;i/rn)An;iVi (1)

Fn;i = (rn;i/rn)An;i (2)
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Fig. 1 Example of DUCG model

where the connection event variable Fn;i is consist of two
parts: the weighting part (rn;i/rn) and the functional event
An;i . An;i represents the effect event between parent event
and child event, while the subscript n represents the variable,
the subscript i represents the state of the variable. rn;i
represents the degree of association between Xn and Vi , and
rn = ∑

i

rn;i .

In the case of events, it is defined that Bi =
(Bi1, Bi2, · · · , Bik), Xi = (Xi1, Xi2, · · · , Xik), Bi, Xi ∈
Rk×1, then the DUCG model can be represented by (3)

Xnk =
∑

i

∑

j

Fnk;ij Vij =
∑

i

(rn;i/rn)
∑

j

Ank;ij Vij (3)

Fnk;ij = (rn;i/rn)Ank;ij (4)

where Xnk means the k-th state of Xn . Vij means the j-th
state of Vi . Fnk;ij represents the probabilities between event
Xnk and event Vij . Fnk;ij is the member of the connection
event variable matrix Fn;i and is consist of two parts: the
weighting part (rn;i/rn) and the functional matrix Ank;ij .
Ank;ij is the member of the functional event An;i and
represents the effect event between event Xnk and event
Vij , while the subscript n and i represents the variable, the
subscript k and j represents the state of the variable. rn;i
represents the degree of association between Xnk and Vij ,

and rn = ∑
i

rn;i . Thus, the DUCG model can be illustrated

as Fig. 2. From this figure, we can know that the X-type
variable can be represented by the combination of parent
events and weighted events.

Definition 2 [8, 9]. Suppose that the lower case letters
indicate the probabilities of the corresponding upper case
letter, for example, ank;ij = Pr{Ank;ij } and xnk = Pr{Xnk},
and it satisfies

∑
k

ank;ij = 1 , then

xnk = Pr{Xnk} =
∑

i

(rn;i/rn)
∑

j

ank;ij Pr{Vij }

=
∑

i

(rn;i/rn)
∑

j

ank;ij vij

=
∑

i

(rn;i/rn)ank;ivi (5)

where ank;ij and rn;i are commonly given by domain
experienced experts, which are explicitly vague related with
experienced knowledge. Pr{·} means the probability of the
event. According to the (1)–(5), the final expression of
Xnk will be expanded as the combination with only B-,
A-, r- type variable by repeatedly applying the basic (3).
Finally, the probability of Xnk can be computed by applying
(4). Based on the theory, the probability of joint events

Xnk=Xnk;1j+Xnk;2j+ +Xnk;ij

(rn;1/rn) (rn;2/rn) (rn;i/rn)

V1j V2j VijParent event

Weighted event

+: XOR operator

Fig. 2 Illustration of DUCG model
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and posterior probability of events can be calculated and
simplified by using the assumptions later .

Assumption 1 [14, 15]. Any state of a variable cannot
simultaneously result in any state of the same variable.
According to the rule of contradiction, an event itself cannot
be both cause and consequence simultaneously, so that it
breaks the directed cyclic cases in DUCG.

Assumption 2 [14, 15]. During an absorption weighting
event, when there is more than one absorption event, they
have the same opportunity to absorb the absorption event.
Thus, the DUCG model with directed cyclic cases can be
simplified by applying the assumptions.

2.2 Intuitionistic fuzzy sets

Definition 3 [23, 24]. Let X be the universe of discourse
with a generic element x . Then an IFs M can be defined as

M = {(x, μM(x), νM(x))|x ∈ X}
where μM(x) and νM(x) are respectively the degrees of
membership and non-membership of element x. Meanwhile,
μM(x) and νM(x) conform to the rules that μM(x) ∈
[0, 1], νM(x) ∈ [0, 1] and 0 ≤ μM(x) + νM(x) ≤ 1.

In the proposed DUCG model, μM(x) and νM(x) denote
the probabilities of occurrence and non-occurrence of the
events x respectively. For convenience, the intuitionistic
fuzzy number (IFNs) is represented as the form of a =
(μa, νa), which conform to the rulesμa ∈ [0, 1], νa ∈ [0, 1]
and 0 ≤ μa + νa ≤ 1.

Definition 4 [23, 24]. Suppose that a1 = (μ1, ν1) and
a2 = (μ2, ν2) are IFNs. Then the basic operators are defined
as:

(1) a1 ⊕ a2 = (μ1 + μ2 − μ1μ2, ν1ν2)

(2) a1 ⊗ a2 = (μ1μ2, ν1 + ν2 − ν1ν2)

(3) λa1 = (1 − (1 − μ1)
λ, ν1

λ), λ > 0
(4) a1

λ = (μ1
λ, 1 − (1 − ν1)

λ), λ > 0

where λ is a positive real number. While in DUCG model,
expression (1) refers to the probability of which event a1
and a2 occur separately, and expression (2) denotes the
probability of which event a1 and a2 occur simultaneously.

Definition 5 [25, 26]. Suppose that M and N are IFs. Then
the division operator is defined as:

M/N = {(x, μM/N(x), νM/N(x))|x ∈ X}
where

μM/N(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μM(x)

μN(x)
, if μM(x) ≤ μN(x) and νM(x) ≥ νN(x) and μN(x) �= 0

and μM(x)vN(x) − μN(x)vM(x) ≥ μM(x) − μN(x)

1, others

and

νM/N(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

νM(x)−νN (x)
1−νN (x)

, if μM(x) ≤ μN(x) and νM(x) ≥ νN(x) and μN(x) �= 0
and μM(x)vN(x) − μN(x)vM(x) ≥ μM(x) − μN(x)

0, others

The division operator is used to compute the conditional
probability of the events.

Definition 6 [27, 28]. Let X = {x1, x2, . . . xn} be a finite
set, the normalized Hamming distance of IFs M and N is
defined as

d(M, N) = 1

2n

n∑

i=1

(|μM(xi)−μN(xi)|+|νM(xi)−νN(xi)|

+|μN(xi)−μM(xi)+νN(xi)−νM(xi)|) (6)

Definition 7 [29, 30]. The intuitionistic fuzzy weighted
averaging (IFWA) operator is expressed as:

IFWA(a1, a2, · · · , an) = λ1a1 ⊕ λ2a2 ⊕ · · · ⊕ λnan

=
(
1 −

n∏

i=1

(1 − μi)
λi ,

n∏

i=1

νi
λi

)

(7)
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where λ = (λ1, λ2, . . . λn)
T is the weight vector of the IFNs

ai(i = 1, 2, . . . , n), λi subject to λi ∈ [0, 1] and
n∑

i=1
λi = 1.

Definition 8 [29, 30]. The intuitionistic fuzzy weighted
geometric (IFWG) operator is expressed as:

IFWG(a1, a2, · · · , an) = a1
λ1 ⊗ a2

λ2 ⊗ · · · ⊗ an
λn

=
(

n∏

i=1

μi
λi , 1 −

n∏

i=1

(1 − νi)
λi

)

(8)

where λi ∈ [0, 1] and
n∑

i=1
λi = 1 and λ = (λ1, λ2, . . . λn)

T

is the weight vector of the IFNs ai(i = 1, 2, . . . , n). The
IFWA and IFWG operators take the weighted information of
different events into account, so that they show the different
importance degree of different factors in the proposed
model.

3 The proposed IFDUCGmodel

3.1 Model establishment

In traditional DUCG, the probability of basic events and
connection events in the DUCG model is often considered
to be an exact number. However, in many cases, the events
are complicated, variable and uncertain due to lack of
information or the limited experienced knowledge, which
will result in the fact that the traditional DUCG model fails
in handling with the uncertain problems with incomplete
knowledge. In this paper, the DUCG model combined with
intuitionistic fuzzy set is proposed to provide an effective
method to describe the uncertain events, which is helpful for
dealing with the problems in traditional DUCG model.

Let B1, B4 be basic event variables, X2, X3 be node
event variables, and F2,1, F2,3, F3,2, F3,4 connection event
variables. And there is a one-way arc from B1 to X2

and B4 to X3, and double-direction arc between X2 and
X3. Then F2;1 is the probability from the variable B1 to
variable X2, F2;3 is the probability from the variable X3

to variable X2, F3;2 is the probability from the variable
X2 to variable X3, F3;4 is the probability from the variable
B4 to variable X3. Suppose that every event variables have
three states, for example, B1 has states of B11, B12, B13. It
means B11 has different possibilities to be the cause of X21,
X22, X23, where the probabilities depend on the variables
of F21;11, F21;12, F21;13. It is the same with the states of
other variables. The causal relationship between different
variables can be shown in Fig. 3.

The process of the establishment of IFDUCG model
consists of the following steps:

(1) Construct the causal relationship among different
events of IFDUCG based on knowledge of experienced
experts firstly. In order to express the model clearly,
the example shown in Fig. 1 is simplified as Fig. 3.
Then we can acquire the relations among B1, X2, X3,
B4 and form the causality diagram according to the
given information and basic rules of DUCG;

(2) Obtain the expression of node events according to the
causality, as shown in Fig. 3, the node events of X2,
X3 are expressed as (9)–(10).

X2 = F2;1B1 + F2;3X3 (9)

X3 = F3;4B4 + F3;2X2 (10)

The basic principle of the conventional DUCG is that
variables can be obtained as crisp numbers from experts.
But the information is usually uncertain and fuzzy due to the
time pressure, scarcity of information, and the technicians
limited knowledge about the professional problem. Thus,
the F - type variables take the form of intuitionistic fuzzy
sets. The membership and non-membership degrees of
intuitionistic fuzzy number can be acquired by triangular
function, trapezoid function, normal function and so on,
which are based on the knowledge of domain technicians.
For example, f2;1 can be expressed as (11).

f2;1 = Pr(F2;1) =
(

f21;11 f21;12 f21;13
f22;11 f22;12 f22;13
f23;11 f23;12 f23;13

)

=
(

< μ21;11, ν21;11 > < μ21;12, ν21;12 > < μ21;13, ν21;13 >
< μ22;11, ν22;11 > < μ22;12, ν22;12 > < μ22;13, ν22;13 >
< μ23;11, ν23;11 > < μ23;12, ν23;12 > < μ23;13, ν23;13 >

)

(11)

(3) Expand the expression according to the rules men-
tioned in Section 2 and then simplify it by removing
the unrelated variables from the expression. As a
result, the final expression of any event is the combi-
nation of the basic event and the connection event, for
example, the event of X2 is expanded as (12).

X2 = F2;1B1 + F2;3(F3;4B4 + F3;2X2)

= F2;1B1 + F2;3F3;4B4 + F2;3F3;2X2 (12)

With refer to the assumptions in Section 2, X2 can be
simplified as (13).

X2 = F2;1B1 + F2;3F {2}
3;4 B4 (13)

thus X2k can be expressed as (14).

X2k = F2k;1B1 + F2k;3F {2}
3k;4B4, k = 1, 2, 3 (14)

then we can get (15).

x2k = Pr(X2k) = (r2;1/r2)a2k;1b1 + (r2;3/r2)a2k;3
×(r3;4/r

{2}
3 )a3k;4b4, k = 1, 2, 3 (15)

245



L. Li and W. Yue

Fig. 3 Example of typical
IFDUCG model

X2B1 X3 B4
F2;1 F3;2

F2;3

B11

B12

B13

X21

X22

X23

B41

B42

B43

X31

X32

X33

F3;4

where

r2 = r2;1 + r2;3
r3 = r3;2 + r3;4

r
{2}
3 = r3;4

a2k;1 = (
< μ′

2k;11, ν′2k;11 > < μ′
2k;12, ν

′
2k;12 > < μ′

2k;13, ν
′
2k;13 >

)

a2k;3 = (
< μ′

2k;31, ν
′
2k;31 > < μ′

2k;32, ν
′
2k;32 > < μ′

2k;33, ν
′
2k;33 >

)

a3k;4 = (
< μ′

3k;41, ν
′
3k;41 > < μ′

3k;42, ν
′
3k;42 > < μ′

3k;43, ν
′
3k;43 >

)

b1 =
(

< μ′′
11, ν

′′
11 >

< μ′′
12, ν

′′
12 >

< μ′′
13, ν

′′
13 >

)

and

b4 =
⎛

⎝
< μ′′

41, ν
′′
41 >

< μ′′
42, ν

′′
42 >

< μ′′
43, ν

′′
43 >

⎞

⎠

(4) Compute the probability of the interested events and
then sort the results based on the intuitionistic fuzzy
theory. In the case of uncertain probabilities quantified
by intuitionistic fuzzy sets, probabilistic inference are
made by posteriori probabilities which is defined as
(16).

Pr{Hkj |E} = Pr{HkjE}/Pr{E} (16)

where Hkj represents the case related to B-, X- type
events, and E represents the given events related to
B-, X- type events. Pr{·} means the probability of the
event. Suppose that it is interested in the events of
B1,2|X2,2X3,2, and B4,2|X2,2X3,2 in Fig. 3, namely,
we want to know which is more likely to cause the
event of X2,2X3,2 between B1,2 and B4,2. Thus we can
compute the posteriori probabilities of B1,2|X2,2X3,2,
and B4,2|X2,2X3,2 in the form of intuitionistic fuzzy
numbers and then compare the results based on the
computation rules of the intuitionistic fuzzy theory
[31–33].

Pr{B1,2|X2,2X3,2} = Pr{B1,2X2,2X3,2}/Pr{X2,2X3,2}

3.2 Reasoning process of IFDUCGmodel based
on TOPSIS

IFDUCG considers the fuzzy knowledge, involving more
abundant information than traditional DUCG. In order to
combine more domain information with IFDUCG model,
a TOPSIS [34] method is incorporated into IFDUCG for
knowledge reasoning and decision making in the paper,
which locate optimal and non-optimal results for the rules
based on the experience of experts to provide users more
efficient decision options. The framework based on a com-
bined application of the method of IFDUCG and TOPSIS is
shown in Fig. 4. The procedure for IFDUCG model based
on TOPSIS is given as follows: (1) Construct the intuition-
istic fuzzy matrix according to the opinions of experienced
experts. Suppose r̃ij = (μij , νij ) be an intuitionistic fuzzy
number, then the matrix can be acquired as (17).

Rm×n =

⎛

⎜⎜⎜⎝

< μ11, ν11 > < μ12, ν12 > · · · < μ1n, ν1n >
< μ21, ν21 > < μ22, ν22 > · · · < μ2n, ν2n >

...
...

. . .
...

< μm1, νm1 > < μm2, νm2 > · · · < μmn, νmn >

⎞

⎟⎟⎟⎠

(17)

According to IFDUCG model, we can get the posteriori
probabilities by means of intuitionistic fuzzy rules, which
constitutes the elements of intuitionistic fuzzy matrix. The
elements are calculated by combining IFWA and IFWG
operators.

r̃ij = (μij , νij ) = s⊕
p=1

(
λ̂p(ã

λp1
p1 ⊗ ã

λp2
p2 ⊗ · · · ⊗ ã

λpq
pq )

)
, q = 1, 2, . . . , t

(2) Obtain intuitionistic fuzzy ideal solution. Let r̂ =
(1, 0) be the ideal solution, namely, the incidence
probability of events in IFDUCG is 1, then we can
obtain the reference matrix as (18).

R̄m×n =

⎛

⎜⎜⎜⎝

r̂ r̂ · · · r̂

r̂ r̂ · · · r̂
...
...
. . .

...
r̂ r̂ · · · r̂

⎞

⎟⎟⎟⎠ (18)
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Construct the intuitionistic fuzzy matrix

Determine the intuitionistic fuzzy ideal solution

Compute the distance measures

Compute the gray correlation coefficient

Determine the weights of attribute

Compute the gray correlation degree

Rank the alternatives

Part 2:

TOPSIS

Part 1:

Intuitionistic fuzzy DUCG
IFWA and IFWG operators

Establish the IFDUCG 

Hamming distance

Fig. 4 The framework based on a combined application of the method of IFDUCG and TOPSIS

(3) Compute the distance of intuitionistic fuzzy numbers
between r̃ij and r̂ according to the expression of
Hamming distance(HD) shown as (6).

(4) Compute the gray correlation coefficient (GCC)
between the intuitionistic fuzzy number r̃ij and the
intuitionistic fuzzy ideal solution r̂, where the gray
correlation coefficient [34] ξij is defined as (19).

ξij = �min + ρ�max

�ij + ρ�max
, i = 1, 2, . . . , m; j = 1, 2, . . . , n

(19)

where �min = min{�ij , i = 1, 2, · · · , m; j =
1, 2, · · · , n}, �max = max{�ij , i = 1, 2, · · · , m; j =
1, 2, · · · , n}, �ij = d{r̃ij , r̂}, ρ ∈ [0, 1]. In general,
the value of ρ is 0.5.Usually, the larger the value ξij ,
the closer the value r̃ij to the ideal solution, which
denotes the greater the probability of occurrence in
IFDUCG.

(5) Determine the weights of attribute. The attribute may
not be equally important. Let ωj be the grade of
importance and it can be given by the domain expert¡ s
knowledge. The more important the event in IFDUCG,
the larger the coefficient of attribute.

(6) Compute the gray correlation degree [34] ψi which is
defined as (20).

ψi =
n∑

j=1

ωjξij , i = 1, 2, · · · , m. (20)

(7) Rank the alternatives. After the value of gray
correlation degree (GCD) of every alternative is
calculated, rank the alternatives based on descending
orders of ψi . The greater the value of ψi , the higher
probability of the events.

3.3 Validity of IFDUCGmodel

To demonstrate the effectiveness and superiority of the
IFDUCG model, we did some experiments where we
compared the performance of the proposed method with the
well-known approaches of Bayesian network(BN) [2], Petri
nets (PN) [4, 5] and DUCG [14].

For comparison, the typical instances are selected from
the illustrative example in the reference [5]. Then we
applied BN, DUCG and IFDUCG algorithm for a fault
diagnosis reasoning system respectively. Based on the
mentioned information in reference [5], we mapped the fault
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X2X1 X4X3

X6X5 X7

X9X8 X10

Fig. 5 Bayesian network of the example

diagnosis system into BN, DUCG and IFDUCG which are
shown in Figs. 5 and 6. Although the schematic diagram of
DUCG and IFDUCG are the same, the reasoning process
are different from each other.

By the experience on Bayesian network learning
presented in reference [2], we know that the reasoning
process of BN relates with the prior and conditional
probabilities of events. And for a given event A, the full
probability of event can be obtained by [2]

P{A} =
n∑

i=1

P{Bi}/P{A|Bi}

According to the knowledge and experiences given by
experts in [5], the prior and conditional probabilities tables
of BN can be shown as Tables 1, 2 and 3. Then we can obtain
the full probability of event as Table 4. From Table 4, it is
easy to obtain that the event of X8 is the most possible fault
in the system.

Based on DUCG model presented in reference [14], we
describe the knowledge by modules, which are composed of
child variables and its parent variables, as shown in Fig. 6.

X6X5 X7

X9X8 X10

B1 B2 B3 B4

F5;1 F5;2 F5;3 F6;3 F7;3 F7;4

F8;6 F8;7 F9;7 F10;7

Fig. 6 DUCG of the example

Table 1 Prior probability of event

X1 X2 X3 X4 X5 X6 X7

Prior probability 0.8 0.9 0.7 0.8 0.2 0.3 0.2

According to the given rules of DUCGmodel, we can obtain
that

X8 = F8;5X5 + F8;6X6 + F8;7X7

= F8;5(F5;1B1 + F5;2B2 + F5;3B3) + F8;6F6;3B3

+F8;7(F7;3B3 + F7;4B4)

= F8;5F5;1B1 + F8;5F5;2B2 + (F8;5F5;3 + F8;6F6;3
+F8;7F7;3)B3 + F8;7F7;4B4 (21)

X9 = F9;7(F7;3B3 + F7;4B4)

= F9;7F7;3B3 + F9;7F7;4B4 (22)

X10 = F10;7(F7;3B3 + F7;4B4)

= F10;7F7;3B3 + F10;7F7;4B4 (23)

Given that the knowledge parameters of DUCG model
are set as Tables 5 and 6. The results are shown in Table 7.
From Table 7, we can draw that the fault of X8 may occur
with the biggest probability of 0.4052.

Taking the same example as mentioned above, we
establish the IFDUCG model as follows.

(1) According to the event rules referred in the paper, and
based on Fig. 6, we can obtain event X8, X9 and X10

as (24)–(26).

X8 = F8;5X5 + F8;6X6 + F8;7X7

= F8;5(F5;1B1 + F5;2B2 + F5;3B3) + F8;6F6;3B3

+F8;7(F7;3B3 + F7;4B4)

= F8;5F5;1B1 + F8;5F5;2B2 + (F8;5F5;3
+F8;6F6;3 + F8;7F7;3)B3 + F8;7F7;4B4 (24)

X9 = F9;7(F7;3B3 + F7;4B4)

= F9;7F7;3B3 + F9;7F7;4B4 (25)

X10 = F10;7(F7;3B3 + F7;4B4)

= F10;7F7;3B3 + F10;7F7;4B4 (26)

(2) Events are described as IFNs based on the definitions
of linguistic terms in [36]. Then the events are
represented as Tables 8 and 9. According to (24)–(26),

Table 2 Conditional probability of event

X1 X2 X3 X4

X5 0.5 0.3 0.2 0.0

X6 0.0 0.0 0.5 0.0

X7 0.0 0.0 0.3 0.2
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Table 3 Conditional probability of event

X5 X6 X7

X8 0.4 0.2 0.2

X9 0.0 0.0 0.45

X10 0.0 0.0 0.15

Table 4 Full probability of event

X8 X9 X10

Full probability 0.2796 0.1431 0.0954

Table 5 Probability of event

B1 B2 B3 B4

Probability 0.8 0.9 0.7 0.8

Table 6 The value of parameter

Parameter Value Parameter Value

a5;1 0.5 r5;1 0.3

a5;2 0.3 r5;2 0.4

a5;3 0.2 r5;3 0.6

a6;3 1.0 r6;3 0.2

a7;3 0.5 r7;3 0.2

a7;4 0.5 r7;4 0.4

a8;5 0.9 r8;5 0.1

a8;6 0.8 r8;6 0.2

a8;7 0.9 r8;7 0.2

a9;7 0.95 r9;7 0.2

a10;7 0.85 r10;7 0.6

Table 7 Probability of event

X8 X9 X10

Probability 0.4052 0.3642 0.3258

Table 8 IFNs description of event

IFNs

B1 < 0.75, 0.15 >

B2 < 0.85, 0.10 >

B3 < 0.65, 0.25 >

B4 < 0.75, 0.15 >

Table 9 The intuitionistic fuzzy representation of Parameter

Parameter Intuitionistic fuzzy representation

a5;1 < 0.50, 0.40 >

a5;2 < 0.25, 0.65 >

a5;3 < 0.15, 0.80 >

a6;3 < 0.95, 0.05 >

a7;3 < 0.50, 0.40 >

a7;4 < 0.50, 0.40 >

a8;5 < 0.85, 0.10 >

a8;6 < 0.75, 0.15 >

a8;7 < 0.85, 0.10 >

a9;7 < 0.95, 0.05 >

a10;7 < 0.75, 0.15 >

Table 10 Results of IFDUCG

IFNs GCC GCD

X8 < 0.3509, 0.5130 > 1.0000 0.1000

X9 < 0.3408, 0.5338 > 0.9901 0.0990

X10 < 0.2690, 0.5830 > 0.9252 0.0925

Table 11 Results of different methods

Methods Comparative results

BN P(X8) > P (X9) > P (X10)

FPN P(X8) > P (X9) > P (X10)

LRPN P(X8) > P (X9) > P (X10)

DUCG P(X8) > P (X9) > P (X10)

IFDUCG P(X8) > P (X9) > P (X10)
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we can have the intuitionistic fuzzy representation
of event X8, X9 and X10 as shown in Table 10 by
applying intuitionistic fuzzy operators.

(3) Given that the ideal solution is r̂ =< 1, 0 >, then
we compute the Hamming distance between the given
intuitionistic fuzzy numbers and the ideal solution as
(6).

d(X8, r̂) = 1

2
(|1 − 0.3509| + |0 − 0.5130|

+|1 − 0.3509 + 0 − 0.5130|) = 0.6491

d(X9, r̂) = 0.6592

d(X10, r̂) = 0.7310

(4) Compute the gray correlation coefficient (GCC)
between the intuitionistic fuzzy number and the
intuitionistic fuzzy ideal solution as Eq. (9).

�min = 0.6491

�max = 0.7310

ξX8 = 0.6491 + 0.5 ∗ 0.7310

0.6491 + 0.5 ∗ 0.7310
= 1.000

ξX9 = 0.9901

ξX10 = 0.9252

(5) Supposed that the attributes are equally important in
the system. Given that ωj = 0.1 , then we can calculate
the gray correlation degree (GCD) by (20).

(6) Rank the GCD based on descending orders. It is
obvious that ψX8 > ψX9 > ψX10 . Then we know that
the probability of event X8 is bigger than event X9 and
X10. The result conforms to the one presented in [5].

Table 11 presents the results of different methods.
From Table 11, we know that the same ranking results is
produced by the approaches of BN, FPN, LRPN,DUCG
and IFDUCG. The comparison results indicate that the
established IFDUCG model is effective. Morever, the
proposed IFDUCG model has advantages over the other
methods which can be listed as follows. First, by introducing
IFs, the proposed IFDUCG model can successfully deal
with the kinds of intuitionistic information in knowledge
representation. The IFs considering both membership and
non-membership of an event are rather appropriate for the
description of the uncertain information. In this way, the
proposed model provides a better way for experts to express
their preference. Second, through the different integrated
operators of IFs and the combination with TOPSIS, the
IFDUCG model can consider more abundant information
in the process of information inference and reduce the
information loss to a certain extent. Thus, it contributes
in providing much more reliable references for making
decisions. As a result, conclusion can be drawn that the
IFDUCG proposed in this paper is effective.

4 Industrial application

4.1 IFDUCG used for root cause analysis
of aluminum reduction cell condition

The proposed IFDUCG model is applied to root cause
analysis of aluminum reduction cell condition. In general, in
the industrial process of aluminum reduction, an abnormal
aluminum reduction cell condition may appear randomly,
and it is expected to judge what happens, which can
be provided to workers to decide what can be done to
adjust the current condition to a normal one. Firstly, some
typical parameters are selected to build the IFDUCGmodel,
which includes operating parameters of the setting voltage
(SV ), the numbers of AlF3 addition (NoA) and aluminum
tapping (AlT ), and the state parameters of bath temperature
(BaT ), molecular ratio (MoR), aluminum level (AL) and
electrolyte level (EL). Based on the causality of these
parameters given by knowledgeable experts, the IFDUCG
model can be drawn as Fig. 7, among which the root node
is of fuzzification, for example, the state of SV is often
divided into three grades, namely, high (greater than 4.25V),
normal (4.05-4.25V), low (less than 4.05V). Similarly, the
other parameters can also be divided into three grades.
Usually, the division of the unobservable state is determined
by domain technician.

Usually, membership function is a valid method to
describe fuzzy number. Triangular fuzzy number is intro-
duced in the paper to express the membership and non-
membership. The triangular fuzzy function [35] is defined
as (27)–(28).

μ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x − a)ωa/(a − a), a ≤ x < a

ωa, x = a

(x − a)ωa/(a − a), a < x < a

0, x < a or x > a

(27)

ν(x) =

⎧
⎪⎪⎨

⎪⎪⎩

[a − x + ua(x − a)]/(a − a), a ≤ x < a

ua, x = a

[a − x + ua(x − a)]/(a − a), a < x < a

1, x < a or x > a

(28)

According to (27)–(28), suppose thatwa=0.9, ua=0.1 and
the setting voltage is 4.09V, then the intuitionistic fuzzy
representation of the setting voltage is < 0.18, 0.82 >, <

0.72, 0.28 >, < 0.00, 1.00 > when the state is high, normal
and low respectively, as shown in Table 12. Similarly,
the intuitionistic fuzzy representation of the parameters
can be acquired according to the aluminum reduction cell
condition. The explanation of the parameter is shown in
Table 13.
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Fig. 7 The IFDUCG model based on aluminum reduction production

4.2 Illustration of the proposed approach

(1) Acquire the expression of node events based on Fig. 7
and then simplify them as (29)–(32) according to the
assumption mention in the Section 2.

X4k = F4k;1B1+F4k;2B2+F4k;3B3 + F4k;5kX5k + F4k;6kX6k + F4k;7kX7k

= F4k;1B1 + F4k;2B2 + F4k;3B3 + F4k;5k(F5k;2B2 + F5k;4kX4k)

+F4k;6k(F6k;3B3 + F6k;4kX4k) + F4k;7kF7k;4kX4k

= F4k;1B1 + (F4k;2 + F4k;5kF {4}
5k;2)B2 + (F4k;3 + F4k;6kF {4}

6k;3)B3

(29)

X5k = F5k;4kF {5}
4k;1B1 +

(
F5k;4kF {5}

4k;2 + F5k;2
)

B2

+
(
F5k;4kF {5}

4k;3 + F5k;4kF {5}
4k;6kF

{4}
6k;3

)
B3 (30)

X6k = F6k;4kF {6}
4k;1B1 +

(
F6k;4kF {6}

4k;2 + F6k;4kF {6}
4k;5kF

{4}
5k;2

)

× B2 + (F6k;3 + F6k;4kF {6}
4k;3)B3 (31)

X7k = F7k;4kF {7}
4k;1B1 +

(
F7k;4kF {7}

4k;2 + F7k;4kF {7}
4k;5kF

{4}
5k;2

)
B2

+
(
F7k;4kF {7}

4k;3 + F7k;4kF {7}
4k;6kF

{4}
6k;3

)
B3 (32)

(2) Get the intuitionistic fuzzy representation of variables.

Table 12 Intuitionistic fuzzy representation of the parameters

Linguistic terms SV NoA AlT

High < 0.18, 0.82 > < 0.10, 0.70 > < 0.20, 0.20 >

Normal < 0.72, 0.28 > < 0.75, 0.20 > < 0.85, 0.15 >

Low < 0.00, 1.00 > < 0.00, 1.00 > < 0.00, 1.00 >

According to the basic and aggregated operators of
intuitionistic fuzzy numbers, we can calculate the intu-
itionistic fuzzy number of parameters under different
states, for example, when bath temperature is normal
(X42), molecular ratio normal (X52), aluminum level
high (X61) and electrolyte level low (X73), then we
need to acquire the intuitionistic fuzzy representation
of different states of the setting voltage, the num-
bers of AlF3 addition and aluminum tapping, namely
the fuzzy representation of posterior probability of
events B1k|X42X52X61X73, B2k|X42X52X61X73 and
B3k|X42X52X61X73 where k=1,2,3. The results are
shown as Table 14.

(3) Suppose that the intuitionistic fuzzy ideal solution is
< 1, 0 >, then we can compute the Hamming distance
between intuitionistic fuzzy numbers and the ideal
solution. The results are shown as Table 15.

(4) Compute the gray correlation coefficient (GCC)
between the intuitionistic fuzzy number and the intu-
itionistic fuzzy ideal solution. The results are shown as
Table 16.

(5) Determine the weights wi , then compute the gray cor-
relation degree (GCD). Weights are decided according
to the technicians assessments in the experiment. The
results are shown as Table 17.

From Table 17, we can know that the gray correlation
degree of the event of B31|X42X52X61X73 acquires the
greatest value among all, which manifests that B31 is the
most likely happening events when in the evidence of
X42X52X61X73, namely, the most likely state is that alumi-
num tapping (AlT) is in high state when the state parameters
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Table 13 The explanation of the variables

Variables Explanation in detail

Setting Voltage (SV ) The proper voltage can keep the energy of the cell balanced.

Numbers of AlF3 addition (NoA) The suitable NoA can keep the energy and the material of the cell balanced.

It can have influence on BT and MoR.

Aluminum Tapping (AlT ) The suitable AlT can keep the energy and the material of the cell balanced.

It can have influence on BT and MoR.

Bath Temperature (BT ) It can have an effect on the operation of cell.

Molecular Ratio (MoR) It influences the alumina solubility.

Aluminum Level (AL) The advisable AL can keep the energy of the cell balanced and the SV stable.

Electrolyte Level (EL) It can keep the stability of heat and the cell itself.

Table 14 The intuitionistic fuzzy representation of events

Events IFN

B11|X42X52X61X73 < 0.7883, 0.2100 >

B12|X42X52X61X73 < 0.7091, 0.2390 >

B13|X42X52X61X73 < 0.0000, 1.0000 >

B21|X42X52X61X73 < 0.7065, 0.1010 >

B22|X42X52X61X73 < 0.7091, 0.1810 >

B23|X42X52X61X73 < 0.0000, 1.0000 >

B31|X42X52X61X73 < 0.8895, 0.0100 >

B32|X42X52X61X73 < 0.7994, 0.0895 >

B33|X42X52X61X73 < 0.0000, 1.0000 >

Table 15 The Hamming distance between different events

Events HD

B11|X42X52X61X73 0.2108

B12|X42X52X61X73 0.2650

B13|X42X52X61X73 1.0000

B21|X42X52X61X73 0.1702

B22|X42X52X61X73 0.2360

B23|X42X52X61X73 1.0000

B31|X42X52X61X73 0.0603

B32|X42X52X61X73 0.1450

B33|X42X52X61X73 1.0000

Table 16 The GCC among different IFNs

Events GCC

B11|X42X52X61X73 0.7881

B12|X42X52X61X73 0.7324

B13|X42X52X61X73 0.3735

B21|X42X52X61X73 0.8359

B22|X42X52X61X73 0.7613

B23|X42X52X61X73 0.3735

B31|X42X52X61X73 1.0000

B32|X42X52X61X73 0.8685

B33|X42X52X61X73 0.3735

Table 17 The GCD of different events

Events GCD

B11|X42X52X61X73 0.0778

B12|X42X52X61X73 0.1099

B13|X42X52X61X73 0.0486

B21|X42X52X61X73 0.1170

B22|X42X52X61X73 0.0914

B23|X42X52X61X73 0.0482

B31|X42X52X61X73 0.1987

B32|X42X52X61X73 0.0955

B33|X42X52X61X73 0.0336
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Table 18 The situations of abnormal cell conditions

Group

Variable
BaT MoR AL EL

1 High High Normal Normal

2 High High Low Normal

3 High High Low High

4 Normal High Low Normal

5 Normal High Normal Normal

6 High High Normal High

7 Normal Normal Low High

8 Normal High Low High

9 Normal High Normal High

10 Normal Normal Normal High

11 High Normal High Low

12 Normal High High Low

13 Normal Normal High Low

14 Normal High High Normal

15 Normal Normal High Normal

16 Low Normal Normal Normal

17 Low Low Normal Normal

18 High Normal Low Normal

19 High Normal Low High

20 High Normal Normal Normal

of BaT is normal, MoR is normal, AL4 is high, and EL is
low. Meanwhile, it can be acquired the same results from the
experts according to the actual production. Thus, it shows
that the result based on the developed method is consistent
with the one provided by experts.

In order to demonstrate the effectiveness of the proposed
method, the reasoning results of the method is compared
with the actual situation of aluminum reduction production.
20 groups of abnormal cell conditions are adopted for
analysis and demonstration as shown in Table 18. The
results based on the proposed method and the actual
production given by experts are shown as Table 19.

Based on the reasoning process, it can be inferred that
the abnormal state along with the maximum gray correlation
degree denotes the most likely cause of the cell condition
in Table 19. Then it can be concluded that the root cause
is the state possessed the maximum GCD value. And a
conclusion can be drawn from the consistency in Table 19
that 19 groups obtain the same result with the results given
by domain technicians among 20 groups.

4.3 Comparative analysis and discussion

To further demonstrate the validity of the proposed
IFDUCG in root cause analysis of aluminum reduction cell
condition, we do a comparative analysis with the method of

fuzzy-Bayesian network for root cause analysis proposed in
[37].

The results acquired through IFDUCG are displayed
in Table 19. From Table 19, we can calculate that the
accuracy of IFDUCG model achieves 95% which is as high
as the accuracy of method in [37]. In comparison with
the method in [37], the FBN defines the uncertainty of
the variables on the model with a conditional probability
table (CPT) while the construction of CPT requires a
large amount of statistical data. Meanwhile, the expression
and reasoning of the knowledge applicable to FBN in
the case of single assignment is not applicable in the
case of multiple assignments, and FBN requires complete
knowledge. In contrast, IFDUCG allows for incomplete
knowledge representation which can greatly reduce the
workload and difficulty of building knowledge bases and
reasoning. What’s more, IFDUCG is suitable for both
single assignment and multiple assignment situations. Most
importantly, the IFDUCG can provide the events with
possibility and impossibility as shown in Table 14, which
is more credible than that of FBN with only possibility. It
provides a better way for experts to express their preference
by IFDUCG model. Therefore, it can draw a conclusion
that the proposed method is more effective and useful in
the application of the root cause determination of abnormal
aluminum reduction cell conditions.

According to the analysis mentioned above, the advantages
of the proposed IFDUCG can be summarized as follows:

(1) Experts’ knowledge is hard to precisely express by
crisp numbers under uncertain environment, however,
intuitionistic fuzzy sets are effective methods to handle
with these circumstances. Therefore, the study on
DUCG model based on IFs is considerably important.

(2) In the proposed method, fuzziness can be reflected
in the membership and non-membership degree of
intuitionistic fuzzy sets. In this way, the vagueness of
the original information can be kept and completely
applied for final reasoning. Therefore, the proposed
method is more competent in uncertain information
representation and reasoning than the other methods
considered, wherein the fuzziness in variable is
ignored or distorted.

(3) The IFDUCG is based on intuitionistic fuzzy sets,
which has been demonstrated to be effective in
the DUCG. The proposed IFDUCG combined with
TOPSIS captures more cognitive uncertainty of the
engineers without knowledge distortion and loss. The
influence of knowledge distortion and loss on the
final result is important, and it can be surveyed
by experiments. Therefore, the proposed method
increases the reliability and stability of dealing
uncertain information to a certain extent.
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Table 19 The comparison of results

Group SV NoA AlT Result
reasoned
by model

Result
given by
experts

Consistency

High Normal Low High Normal Low High Normal Low

1 0.0503 0.0731 0.1800 0.0704 0.0465 0.0975 0.0603 0.1048 0.0630 SV Low SV Low Y

2 0.0557 0.1461 0.2200 0.0708 0.1096 0.1151 0.0607 0.0892 0.0763 SV Low SV Normal N

3 0.1463 0.0589 0.0433 0.0646 0.0265 0.0367 0.0517 0.0384 0.0900 SV High SV High Y

4 0.1598 0.1411 0.0636 0.1198 0.1059 0.0631 0.1482 0.0821 0.0440 SV High SV High Y

5 0.2100 0.0736 0.0659 0.0987 0.0492 0.0557 0.1622 0.1076 0.0456 SV High SV High Y

6 0.0876 0.1117 0.0592 0.2140 0.1192 0.0587 0.1109 0.0697 0.0410 NoA High NoA High Y

7 0.0800 0.0653 0.0580 0.1500 0.0495 0.0494 0.0626 0.0955 0.0405 NoA High NoA High Y

8 0.0857 0.1277 0.0575 0.2200 0.1138 0.0571 0.1030 0.0800 0.0398 NoA High NoA High Y

9 0.0887 0.0653 0.0584 0.1760 0.0406 0.0494 0.1094 0.0997 0.0405 NoA High NoA High Y

10 0.0581 0.0964 0.0575 0.1560 0.1138 0.0571 0.0745 0.0808 0.0398 NoA High NoA High Y

11 0.0940 0.0748 0.0594 0.0891 0.0374 0.0503 0.1150 0.0835 0.0412 AlT High AlT High Y

12 0.0984 0.0977 0.0623 0.0925 0.1118 0.0619 0.1540 0.0857 0.0432 AlT High AlT High Y

13 0.1000 0.0655 06270 0.1298 0.0469 0.0530 0.1800 0.1004 0.0434 AlT High AlT High Y

14 0.0932 0.1500 0.0535 0.1194 0.1018 0.0531 0.1760 0.0912 0.0370 AlT High AlT High Y

15 0.0924 0.0820 0.0576 0.1193 0.0483 0.0487 0.1660 0.0983 0.0399 AlT High AlT High Y

16 0.0971 0.1057 0.0594 0.1379 0.0940 0.0590 0.1500 0.1014 0.0412 AlT High AlT High Y

17 0.0895 0.0716 0.0589 0.1360 0.0460 0.0499 0.1870 0.0899 0.0408 AlT High AlT High Y

18 0.0788 0.1099 0.0486 0.1170 0.0914 0.0482 0.1987 0.0955 0.0336 AlT High AlT High Y

19 0.0871 0.0641 0.0574 0.0860 0.0473 0.0485 0.2000 0.0979 0.0397 AlT High AlT High Y

20 0.0932 0.1500 0.0535 0.1350 0.1057 0.0531 0.1864 0.0751 0.0370 AlT High AlT High Y

5 Conclusions

Based on the fact that most real-world situations involve
uncertain and vague information provided by experienced
experts, a new model named IFDUCG model was proposed
in this paper to solve the fuzzy problem in the DUCGmodel.
The fuzzy parameters of the IFDUCGmodel were identified
from the domain engineers in the form of intuitionistic
fuzzy sets. Later on, IFDUCG model based on TOPSIS
method had been presented for knowledge representation
and inference. Finally, numerical experiments and industrial
applications have been conducted to verify the validity of
the developed method. The experimental results showed
that the proposed method had fine granularity and
representation ability with the superiority of intuitionistic
fuzzy sets considering both membership degree and non-
membership degree. What’s more, it had considerable
guiding significance for actual production. However, in the
future, it was expected that the new approach would provide
a novel solution for more practical problems and had more
available applications as well.
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