
Applied Intelligence
https://doi.org/10.1007/s10489-019-01518-0

Feature selection with Symmetrical Complementary Coefficient
for quantifying feature interactions

Rui Zhang1 · Zuoquan Zhang1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In the field of machine learning and data mining, feature interaction is a ubiquitous issue that cannot be ignored and has
attracted more attention in recent years. In this paper, we proposed the Symmetrical Complementary Coefficient which can
quantify feature interactions very well. Based on it, we improved the Sequential Forward Selection (SFS) algorithm and
proposed a new feature subset searching algorithm called SCom-SFS which only needs to consider the feature interactions
between adjacent features on a given sequence instead of all of them. Moreover, discovered feature interactions can speed
up the process of searching for the optimal feature subset. In addition, we have improved the ReliefF algorithm by screening
out representative samples from the original data set, and need not to sample the samples. The improved ReliefF algorithm
has been proved to be more efficient and reliable. An effective and complete feature selection algorithm RRSS is obtained
through the combination of the two modified algorithms. According to the experimental results, the proposed algorithm
RRSS outperformed five classic and two latest feature selection algorithms in terms of size of resulting feature subset,
Accuracy, Kappa coefficient, and adjusted Mean-Square Error (MSE).

Keywords Feature selection · ReliefF · Sequential Forward Selection · Feature interaction · Random Forest · Symmetrical
Complementary Coefficient

1 Introduction

Feature selection is an important part of machine learning
and data mining. Modern data sets are getting wider and
bigger. But sometimes this is not a good thing for some tasks
in machine learning such as classification and this problem
was described by [12] in detail. And they roughly divided
the methods of feature selection into three categories: filter
methods such as mRMR algorithm [25], wrapper methods
such as RFE algorithm [27], Boruta algorithm [20] and
embedded methods such as L1 and L2 regularization [23]
and different kinds of decision trees and their ensembles
such as Random Forest [2]. And the elements and process of
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feature selection can be described as generation, evaluation,
stopping criterion and validation [4]. In addition, there are
many ways to classify feature selection methods. According
to the evaluation of the relativity between features and the
class variable, they can be divided into the consistency
measure [4, 21, 38], the dependence measure [13, 35],
the distance measure [19, 24] and the information theory
measure [7, 18].

Furthermore, the current feature selection methods can
be classified according to whether they can cope with
different types of features which can be grouped into
irrelevant features, redundant features and the interactive
features. Irrelevant features do not help with learning tasks
[16]. Searching and deleting irrelevant features has always
been the major topic of feature selection. These methods
often give feature weights and ordering by measuring
the degree of association between features and class
variable [28]. But most of them cannot remove redundant
features, such as Relief [17] and its extension ReliefF [19].
Redundant features have a negligible effect on learning
and forecasting because most information provided by them
has already been presented by other features [36]. Some
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algorithms take it into consideration, such as CFS [13],
FCBF [35], CMIM [8], ACE [32]. Whereas, they cannot
recognize feature interactions.

A feature interaction is a ubiquitous issue that cannot
be ignored and has attracted more attention in recent years
[15]. A simple example of feature interactions is the concept
of exclusive OR operation: C = XOR(X1, X2) where C

is a Boolean label, X1 and X2 are the Boolean features.
X1 and X2 are irrelevant with Y separately, however they
have a strong relevance to Y when they are combined
together. Thus, Removing any one of them will have a
bad effect. There are few researches on feature interaction
currently. Jakulin and Bratko [14] introduced the concept
of interactive gain and used interactive information as a
way of qualifying the feature interactions. Wang et al. [34]
provides a flexible framework to extract different types of
information which can deal with feature interactions. Wang
and Song [33] proposed FEAST algorithm which is based
on the association rule mining and takes feature interactions
into account. Zeng et al. [37] proposed the interaction
weight factor which can reflect the information of whether a
feature is redundant or interactive and then brought forward
an Interaction Weight based Feature Selection(IWFS)
algorithm. Gao et al. [10] took composition of feature
relevancy into account and proposed the Composition of
Feature Relevancy (CFR) feature selection method. Tang
et al. [31] proposed the Five-dimensional Joint Mutual
Information(FJMI) feature selection algorithm which took
the higher-order feature interactions into account and
adopted the ‘maximum of the minimum’ method. Whereas,
there is no widely accepted method currently, in particular,
a better way to measure feature interactions.

In this paper, we will propose a new method of quanti-
fying feature interactions, namely, the Symmetrical Com-
plementary Coefficient. The Symmetrical Complementary
Coefficient is based on the Enhanced Complementary Coef-
ficient which is an improved version of the Complementary
Coefficient [30]. Based on the Symmetrical Complemen-
tary Coefficient, we will improve the Sequential Forward
Selection (SFS) algorithm and propose a new feature sub-
set search algorithm which is called SCom-SFS. In addition,
we will propose an improved ReliefF algorithm by selecting
representative instances. An effective and complete fea-
ture selection algorithm RRSS will be obtained through
the combination of the two modified algorithms. And it
will be compared with other five classic feature selection
algorithms and two latest algorithms in terms of four eval-
uation metrics, i.e., size of resulting feature subset, Accu-
racy, Kappa coefficient, and adjusted Mean-Square Error
(MSE).

The rest of the paper is organized as follows. In Section 2,
we describe the preliminaries. In Section 3, we introduce
the RF-efficient-ReliefF algorithm. In Section 4, we give the

definition of the Symmetrical Complementary Coefficient
and propose the SCom-SFS algorithm. In Section 5,
we bring in the RRSS algorithm and analyze its time
complexity and parameter’s selection. In Section 6 and 7, we
present the experiment, results and its analyses. Section 8
provides conclusions.

2 Preliminaries

This section introduces the knowledge associated with
the topic. Firstly, let’s introduce the famous ReliefF
algorithm, then introduce the SFS algorithm for feature
subset generation, and then introduce the concept of feature
interaction. Finally, we introduce the Random Forest and its
feature selection algorithm.

2.1 ReliefF algorithm

Relief algorithm is a classical filter method of feature
selection [17]. It is a method of calculating feature weights
for the binary classification problem. Kononenko [19]
extended it to ReliefF algorithm, which can be used for
multi-class problems. The basic idea of calculating feature
weights is to assign weights to the features through distance
measures. It believes that good features should make the
distances between samples with the same class as short
as possible, while the distances between samples with the
different classes are as long as possible. The weight of
feature A in each sampling is W(A), m is the sampling
times, S is the original data set, and n is the number of
features. The details of the algorithm are in Algorithm 1.

According to the obtained features’ weights, the thresh-
old of the ordering and weights can be given, and the
features with lower weights will be deleted. The ReliefF
algorithm only needs to calculate the feature weights on
the samples which are randomly sampled rather than on the
entire data set. The time cost of this algorithm depends on
the number of features and the sampling times.

2.2 Sequential Forward Selection

As a feature subset searching method, Sequential Forward
Selection (SFS) is essentially a kind of greedy algorithm.
The feature subset starts from an empty set, and features
are added one by one if it makes the evaluation function
better. So, evaluation function achieves the optimal in
this way. When there are no features to be selected, the
algorithm is terminated. The evaluation function can be
the classifier-dependent metrics such as accuracy or some
other classifier-independent metrics. The advantage of using
classifier related metrics is higher accuracy, but often cost
too much time. On the contrary, the advantage of using
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classifier-independent metrics is the faster speed, but the
accuracy is not that high.

2.3 Definition of feature interactions

Consider a supervised learning problem with one class
variable and n features. Feature interaction represents that
multiple features can be more effective than the sum of the
effects of the single feature. According to this, an informal
definition of feature interaction has been given [15].

k-way feature interaction works on k features
X1, X2, . . . , Xk . Define the function e(C; X1, X2, . . . , Xi)

(i = 1, 2, . . . , k) which evaluates the contribution from
feature(s) to the class variable C. If

e(C; X1, X2, . . . , Xk) ≥
k∑

i=1

e(C; Xi)

we can deem that there is a k-way feature interaction
between these k features. And these features are called the
interactive features. The difference between them

e(C; X1, X2, . . . , Xk) −
k∑

i=1

e(C; Xi)

can be seen as the strength of the existed feature interaction.
According to the concept of feature interaction, some

methods can be designed to describe it. Whereas there
isn’t a particularly good way to do it. It’s not easy to
search out interactive features, and multi-way interaction is
complex [14, 33, 34, 37]. But the quantification of feature
interactions is still very profitable and worth doing.

2.4 Random Forest

Random forest (RF) is an integrated machine learning
algorithm proposed by [2]. RF is one of the hottest
algorithms in the field of machine learning and data mining.
It is data-oriented and does not need any assumption on the
distribution of the data set. Compared with other models,
it has a faster operating speed and a better performance
on imbalanced data, multi-variable data, and big data.
It is robust to outliers and noises, and without over-
fitting problems. K sample sets {Sk}Kk=1 are obtained from
the initial data set S = {(x1, y1), (x2, y2), . . . , (xN , yN)}
through bootstrap sampling method. A decision tree hk is
built on each data set Sk . Each node of each tree randomly
selects the same number of features for splitting. The
combination of decision trees is the Random Forest. Then
the result is a vote or an average given by these decision
trees. It depends on whether the question is classification
or regression. For classification problems, the results can be
expressed by the following formula.

H(x) = arg maxy

K∑

k=1

I (hk(x) = y)

where hk(x)is the result given by the kth decision tree. I (·)
is the indicator function.

In the process of constructing Random Forest, the
ordering and the weights of features can be given. There are
two ways to calculate the weight of each feature:
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1. Mean Decrease Gini (MDG): Feature A’s weight is
measured by the decrease of Gini index caused by A.
The more Gini index goes down, the greater the weight
of A [29].

2. Mean Decrease Accuracy (MDA): Add noises to a
certain feature in OOB data [1]. The greater the OOB
error goes down, the more important this feature is.

After getting the feature weights, RF has its own feature
selection algorithm: Random Forest-based Wrapper Feature
Selection (RFWFS). The details of this algorithm are in
Algorithm 2. Through the combination of MDG or MDA
and RFWFS, reliable feature subset can be screened out.

Algorithm 2 RFWFS algorithm.

1: Rank the resulting feature weights from large to small;
2: Delete one feature with low weight in order at a time.

Each deletion can get a feature subset;
3: Using each feature subset to build RF. The feature

subset with highest accuracy is the optimal feature
subset.

3 RF-efficient-ReliefF algorithm

Although ReliefF algorithm is quick and effective, there are
still many deficiencies:

1. The resulting feature weights do not help remove
redundant features.

2. Sampling times m will affect the final weights and
ordering.

3. Although random sampling will reduce the time cost,
the weights and ordering will change with the sampling
results.

4. In the case of repeated sampling, repeated samples do
not have any significance for the update of feature
weights, but reduce the effectiveness and reliability of
the results.

5. The point which is the most important in my view is
that the data set has noisy data and bad data upon most
occasions, which seriously affects the results.

In response to the above problems, this paper proposes
a reliable and efficient algorithm: RF-efficient-ReliefF
algorithm.

RF has a high accuracy, especially for the data far from
the classification boundary. And RF has a fast operating
speed. Based on these characteristics, first of all, we can
establish a RF model on the original data set. For each
sample, there are some decision trees which did not use
it during the build process. So, we can give each sample
the proportion of votes for each class according to the vote
results of these trees. Based on the results of each sample,

we first calculate the average proportions of votes for each
class, and then filtered out those data whose proportion of
votes for its real class is higher than the average proportion
of votes for this class. ReliefF algorithm is used on the data
subset which can be seen as the high quality data collection.
The difference from the original algorithm is that we use all
samples in the data subset instead of sampling. In addition,
we adopted the same treatment as [26] used to assign k

different nearest neighbors the weights, which indicates that
k nearest instances have weights exponentially decreasing
with increasing rank. The original data set is S. Suppose the
classes for the data set are c = 1, 2, . . . , length(C) where
length(C) is the size of the class variable C. n is the number
of features. The details of the algorithm are in Algorithm 3.

RF-efficient-ReliefF has these advantages:

1. The selected data subset does not include noisy data and
bad data. It can be considered that the samples in it are
more beneficial to distinguish the class variable. The
feature weights derived from them are more effective.

2. The selected good data subset has roughly half of
the original data set, which can shorten the time cost
compared to using all the data.

3. No sampling is required, which eliminates the confu-
sion caused by the determination of sampling times, and
the results will not change with it.

In addition, we propose two alternatives:

– RF-e-R1: Also use the new data subset. For each sample
d in the data subset S′, let the normalized voting
proportion of d for its true class be its weight. And
during the implementation of the ReliefF algorithm,
feature weights are multiplied by sample weights
in each iteration. Still use all data subsets without
sampling.

– RF-e-R2: Using original samples for feature weight
calculation. Let each data’s voting proportion for its true
class be its weight. And during the implementation of
the ReliefF algorithm, feature weights are multiplied
by sample weights in each iteration. Still use all data
subsets without sampling.

In our research, we found that the effects of these
three algorithms are similar, but it is clear that the RF-
efficient-ReliefF algorithm is more convenient. Therefore,
it is chosen for further research in the subsequent sections.

4 Improved SFS algorithm based
on Symmetrical Complementary
Coefficient

In this section, firstly, we analyze some defects of the
SFS algorithm we have discovered. Then we give the
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definition of Symmetrical Complementary Coefficient and
its calculation formulas. And finally, the SFS algorithm

is improved based on the Symmetrical Complementary
Coefficient. This section gives two examples to help
explain.
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Table 1 Feature weights and ordering. Xi represents the i-th feature
of the original data set (i = 1, 2, . . . , 20)

Order Feature Weight

1 X1 0.57724
2 X3 0.18923
3 X2 0.15522
4 X5 0.09395
5 X12 0.09189
6 X7 0.08793
7 X4 0.07414
8 X6 0.07311
9 X9 0.07208
10 X15 0.06392
11 X13 0.06353
12 X14 0.06066
13 X19 0.03733
14 X11 0.03590
15 X8 0.03466
16 X17 0.02552
17 X16 0.02168
18 X18 0.01930
19 X20 0.00214
20 X10 0.00006

4.1 The defects of current SFS algorithm

The SFS algorithm starts from an empty feature subset and con-
tinuously adds features to it, as a consequence, the evalua-
tion function maintains optimal status in every addition. So,
you can only continue adding features to the future subset,
but can’t delete the features inside. The result obtained in this
way is not reliable, and it is easy to fall into local optimum.
But these defects can be alleviated by a pre-specified feature
ordering, for example, the algorithm proposed in the previous
section can be used to give the feature ordering. Then accord-
ing to the feature ordering, implement the SFS algorithm.

Here another defect of SFS algorithm is presented, that
is, feature interactions exist and SFS algorithm cannot
recognize them. When an added feature cannot make the
evaluation function optimal, it will be discarded. But in fact,
it may interact with features that haven’t been added yet,
so deleting it is a very hasty behavior. Using the classic
German credit data set gives the following example to
illustrate the existence of this problem.

Example 1 German credit data set has 20 features, and two
cases or states of the class variable. Table 1 shows the feature
weights and ordering calculated by the RF-efficient-ReliefF
algorithm. Features are sorted by weights from large to small.

We then use the accuracy of RF as an evaluation function
to implement the SFS algorithm in order to find the optimal

feature subset and its corresponding accuracy in this case.
As a comparison, we selected the first eight features in
Table 1 as a feature subset to calculate the accuracy. The two
cases are shown in Table 2.

From Table 2, we can see that although the result of using
the first 8 features is better, the SFS algorithm cannot search
out all of them, but instead added many features ranked
behind. Now we can see that the feature interactions cannot
be recognized by SFS.

4.2 Symmetrical Complementary Coefficient

As mentioned in the previous introduction, currently, there
is no widely accepted method. And, multi-way interaction
is complex and it’s not easy to search out all the
interactive features. Here we present a new method for the
quantification of feature interactions between small batch
features. Its definition and calculation are as follows.

Firstly, let us introduce the Complementary Coefficient.
The Complementary Coefficient was proposed by [30].
It has some good properties such as the contribution of
feature interactions to the classification task has been taken
into consideration and it’s calculation is fast. However, at
first it did not attract enough attention. It was not used
to describe feature interactions but merely to search for
important features. It is not symmetrical and the situation
of multiple features has not been considered. And we made
some changes to it.

The two features Xi, Xj of a given data set S are used
to characterize the entire data set respectively. And use
the classifier to classify the two data set which just have
one feature and get two models Mi, Mj . Then get their
corresponding misclassified sample sets Di, Dj . Note that,
you can use the reserved test set, just like cross-validation.
In this paper, we take RF as the classifier and use the OOB
data to find the Di and Dj . Mark Di’s subset whose samples
are classified correctly by Mj as Dij . Mark Dj ’s subset
whose samples are classified correctly by Mi as Dji . Note
that Dij �= Dji .

Table 2 The resulting feature subsets and their accuracies

Case Feature subset Accuracy

1 X1, X3, X2, X7, X6, X15, X13, X17, X18, X10 0.7702333

2 X1, X3, X2, X5, X12, X7, X4, X6 0.7773333

Case 1 represents the result given by SFS algorithm; Case 2 represents
the result given by using the first eight features. To avoid randomness,
repeat 10 times each time the accuracy is calculated and then do the
average. And the accuracy is calculated with OOB data which is a kind
of test data
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The Complementary Coefficient from Xj to Xi is
Com(i, j). The Complementary Coefficient from Xi to Xj

is Com(j, i).

Com(i, j) = |Dij |
|S|

Com(j, i) = |Dji |
|S|

where | · | is the number of the samples in the date set.
And in this paper, we put forward the Enhanced Comple-

mentary Coefficient. The Enhanced Complementary Coef-
ficient from Xj to Xi is ECom(i, j). The Enhanced Com-
plementary Coefficient from Xi to Xj is ECom(j, i).

ECom(i, j) = |Dij |
|Di | (1)

ECom(j, i) = |Dji |
|Dj | (2)

The Complementary Coefficient and Enhanced Comple-
mentary Coefficient are different. The denominator changed
from |S| to |Di | and |Dj |. Although the contribution of fea-
ture interactions to the whole classification task has been
taken into consideration in the case of using |S| as the
denominator, it’s unfair. Supposing Xi is a very good fea-
ture, Xj is a very bad feature, and Xk is another common
feature. Apparently, we have that |Di | ≤ |Dj |. So, under
normal circumstances we have |Dik|/|S| ≤ |Djk|/|S|.
Absolutely it’s unfair.

Let’s suppose that

|S|=1000, |Di |= 10, |Dj |=100, |Dik|= 9, |Djk|= 9,

so |Dik|/|S| = |Djk|/|S| = 0.009,

but |Dik|/|Di | = 0.9, |Djk|/|Dj | = 0.09

Obviously, the latter reflects more real and reliable feature
interactions.

We are the first to use the Enhanced Complementary
Coefficient to quantify feature interactions, and we have
slightly expanded it to obtain the Symmetrical Comple-
mentary Coefficient. Firstly, let’s consider the situation of
two features. The Symmetrical Complementary Coefficient
between Xi and Xj is SCom(i, j).

SCom(i, j) = SCom(j, i)= ECom(i, j)+ECom(j, i)

2

= 1

2
·
( |Dij |

|Di | + |Dji |
|Dj |

)
(3)

Symmetrical Complementary Coefficient can quantify the
strength of the interaction between the two features. It has
the following properties.

– SCom(i, j) ∈ [0, 1]
– SCom(i, j) = 0 indicates that there is no interaction

between the two features.

– SCom(i, j) > 0 indicates that there is a positive
interactive relationship between two features, that is, a
synergistic relationship.

– The bigger the SCom(i, j), the stronger the interaction
between the two features.

The situations of one-to-many, many-to-many can be
given similarly. Let U, V be the collections of feature
subscripts. They may contain many features or only one
features. Similarly there are DUV , DV U . So, the feature
interaction between two sets of features can be obtained.

SCom(U, V ) = SCom(V, U)

= ECom(U, V ) + ECom(V,U)

2

= 1

2
·
( |DUV |

|DU | + |DV U |
|DV |

)

However, it will take more time to do that. Computation
of Symmetrical Complementary Coefficient between two
features only need to use each feature to complete the
classification task. So it won’t take much time. In this paper,
we just care about the situation of two features.

Let’s observe the actual effect of the Symmetrical Comple-
mentary Coefficient by the following example which still
use the German Credit Data set, and compare the Sym-
metrical Complementary Coefficient with the Interaction
Information which is a classic quantification method of the
feature interaction relationship proposed by [14].

Interaction Information between feature Xi and Xj is
I (Xi; Xj ; C) whose formula is as follows. C is the class
variable.

I (Xi; Xj ; C) = I (Xi; Xj |C) − I (Xi; Xj)

where I (Xi; Xj |C) is the conditional mutual information
between Xi and Xj under C. I (Xi; Xj) is the mutual
information between Xi and Xj . I (Xi; Xj ; C) = 0 indi-
cates that there is no interaction between the two features.
I (Xi; Xj ; C) > 0 indicates that there is a positive interac-
tive relationship between two features. I (Xi; Xj ; C) < 0
indicates that there is a negative interactive relationship
which is also called the redundancy between two features.

Example 2 Feature ordering has been given by RF-
efficient-ReliefF algorithm. Compute the Symmetrical
Complementary Coefficient and the Interaction Information
between the kth feature and the k + 1st feature. The results
of SCom(i, j) and I (Xi; Xj ; C) are shown in Table 3.

It can be found from the table that under the feature
ordering obtained by RF-efficient-ReliefF algorithm, the
Interaction Information between each feature and its next
feature are all negative and close to 0. It indicates that
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Table 3 Results of SCom(i, j) and I (Xi;Xj ;C)

Feature SCom(i, j) I (Xi;Xj ;C)

X1 0.15194 −0.00086
X3 0.20682 −0.01580
X2 0.73519 −0.03259
X5 0.71500 −0.01407
X12 0 −0.01797
X7 0 −0.02878
X4 0 −0.02706
X6 0 −0.01285
X9 0 −0.00545
X15 0.03777 −0.01093
X13 0.03932 −0.01476
X14 0 −0.00137
X19 0 −0.00330
X11 0 −0.01368
X8 0 −0.01239
X17 0 −0.00500
X16 0 −0.00201

X18 0 −0.00156

X20 0 −0.00309

X10 0 0

Each value represents the feature interaction between the correspond-
ing feature and its next feature in the ordering. Since the last feature
does not have the next one, its value is 0

the interaction relations between features quantified by
the Interaction Information are all redundancy. Or there
are no interactions at all. Whereas, the results given
by Symmetrical Complementary Coefficient indicates that
there are feature interactions among six pairs of features,
and four of them are obvious.

As can be seen in Table 3, the Symmetrical Comple-
mentary Coefficient between X5 and X12 is 0.71500. From
Table 2 in Example 1, the original SFS cannot search out
the X5 and X12. It is precisely because SFS cannot recog-
nize the feature interaction between X5 and X12 by adding
features one by one. It happened that X5 and X12 cannot
improve the evaluation function respectively. As a conse-
quence, X5 and X12 have not been added to the optimal
feature subset.

The results of Example 2 show that the Symmetrical Com-
plementary Coefficient proposed in this paper is effective.
Moreover, by comparison, It is more efficient than Interac-
tion Information, at least in the German credit data set.

Note that the higher the Symmetrical Complementarity
Coefficient between the two features, does not represent that
the two features are more powerful for classification, but
only shows that the combination of these two features is
more powerful than they are used for classification respec-
tively. If one or two features are to be judged as good

correctly, besides observing the Symmetrical Complemen-
tary Coefficient between them, we must also look at their
performance in the classifier, because feature interaction is
only an auxiliary means and it should be combined with
features’ performance in the classifier which is absolutely
accurate and effective. If you choose to save the time cost
of feature selection, some classifier-independent indicators
can also be used.

What needs to be pointed out is that feature interaction
and feature redundancy are two opposite things. Therefore,
the redundant relationship between two features can be
ignored when the Symmetrical Complementary Coefficient
between them is large, and even if there is a strong
redundancy relationship between them, these two features
also deserve to be preserved. In next part, we will propose
an improved SFS algorithm based on the Symmetrical
Complementary Coefficient, which is called SCom-SFS.

4.3 SCom-SFS algorithm

For the reasons that the multi-way interaction is complex
and it is hard to search out all interactive features, we choose
to search for feature interactions in sequence. This idea is
very similar to the principle of SFS algorithm. Moreover,
the process of discovering feature interactions can speed up
the features’ search process. So we gathered them together
without strain. The new algorithm is called SCom-SFS algo-
rithm which can screen out the beneficial features at a faster
speed while identifying and quantifying feature interactions.

Its main idea is that under a given feature ordering,
firstly for each feature Xi which is the ith feature in
the ordering, calculate the Symmetrical Complementary
Coefficient between it and its next feature in the ordering
and let this value correspond to Xi like what we did
in Example 2. And if their symmetrical complementary
coefficient is greater than or equal to the threshold β,
the two features are seemed as partner of each other
and then they are going to be packaged. In the process
of implementing SFS algorithm, these two features will
advance and retreat together. Then if the symmetrical
complementary coefficient between the 2nd and the 3rd
features is greater than or equal to β, the 1st, the 2nd and
the 3rd features are seemed as partner of each other and
then they are packaged. This process will continue similarly
until the symmetrical complementary coefficient between
the kth and the k + 1st features is less than β. So the 1st,
2nd, 3rd ,. . ., kth features will be packaged and they will
advance and retreat together. Next consider the k + 1st and
k +2, etc. The defect that the original SFS algorithm cannot
recognize feature interactions will be solved in this way.
And the discovered feature interactions will speed up the
SFS algorithm. The details of the SCom-SFS algorithm are
in Algorithm 4.
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5 Combination of RF-efficient-ReliefF
algorithm and SCom-SFS algorithm

Firstly, we will introduce this new algorithm. And then
explain how to determine the threshold β and the time
complexity of this algorithm.

5.1 RRSS algorithm

From the former two sections, the RF-efficient-ReliefF algo-
rithm can solve some defects of the original ReliefF algorithm,
and obtain more reliable feature weights and ordering.
Whereas it determines neither how many features should
be deleted nor what features should be deleted. Simulta-
neously, under a given feature weights and ordering, the
SCom-SFS algorithm can recognize the feature interactions
and search out the optimal feature subset. After consider-
ing the above, we combined these two algorithms to get a
new and complete feature selection algorithm. We named
it RRSS Algorithm. In this algorithm, RF-efficient-ReliefF
can provide SCom-SFS a more reliable search sequence so
that it is not easy to fall into a local optimum, and SCom-
SFS can be seen as a correction to the feature ordering
provided by RF-efficient-ReliefF and get the optimal feature
subset. This algorithm’s flow chart is shown in Fig. 1.

5.2 Threshold’s determination and time complexity
of the algorithm

N is the number of samples in the data set, and n is the
number of features in the data set. The time complexity
of establishing a Random Forest is O(knNlog2N) where
k is the number of decision trees. The time complexity of
the original ReliefF algorithm is O(Nnm) where m is the
number of random samples. However, in the RF-efficient-
ReliefF algorithm, we use probably half of the original
data set instead of sampling. So, the time complexity of

RF-efficient-ReliefF algorithm is O(knNlog2N + N2

4 n).
In the process of calculating the Symmetrical Comple-

mentary Coefficient, it is necessary to establish Random
Forest for each feature. At the same time, their correspond-
ing misclassified samples’ sets need to be tested on one
or two other RF models. Given that it costs very little
time to run an established RF model and the number of
misclassified samples is often not too much, the time com-
plexity of this part can be ignored. So, the time complexity
of calculating the Symmetrical Complementary Coefficient
and packaging features is O(n · kNlog2N + (n − 1)) =
O(knNlog2N). It is the same time complexity as building a
Random Forest.

The time complexity of searching the optimal feature
subset needs to take the number of packages and the specific
evaluation function into account. In this paper, we select
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Fig. 1 The RRSS algorithm

the accuracy of Random Forest as the evaluation function
in order to make the resulting feature subsets good enough.
Suppose that the number of features in the feature subset
after each addition is {ni}Mi=1, where n1 ≤ n2 ≤ . . . ≤
nM ≤ n. So, the time complexity of searching the optimal
feature subset is O(n1kNlog2N + n2kNlog2N + . . . +
nMkNlog2N).

It has a lot to do with M . However, M depends on
threshold β. Consider two extremes. When β is small
enough, M = 1 which means all features were packed
together. Although the time complexity is greatly reduced,
this makes no sense for feature selection. When β is large
enough, M = n which means all features were not packed
with other features. This will not only lead to a high time

complexity, but also will also fail to recognize feature
interactions. Thus, threshold β’s determination is very
important. A good threshold should screen out the important
feature interactions which is quantified by Symmetrical
Complementary Coefficient. Here comes the question. How
large is the Symmetrical Complementary Coefficient worth
paying attention to? At first, we considered giving a fixed
threshold. Whereas, it is difficult to determine the threshold,
because the threshold depends on the size of the data set,
the specifics of features, and the problems studied. Solution
to this problem is what we will study further in the future.
In this paper, we will give a method which is actually a
piecewise function of determining the threshold that can get
good results.

Because using the results of the classification will lead
to small deviations, firstly let’s define the Symmetrical
Complementary Coefficient to be valid if it is greater than
0.05. The identification of feature interactions should be
treated with caution because it is the opposite of removing
features. Taking the mean of the valid symmetrical
complementary coefficients as a threshold is a good choice.
At the same time, we note that 0.5 is an important
demarcation point. It distinguishes the overall levels of
symmetrical complementary coefficients in different data
sets. Thresholds need to be determined more carefully when
symmetrical complementary coefficients are generally
large. We then subdivide the value of the mean further. The
threshold β can be given by the following equation.

β =

⎧
⎪⎪⎨

⎪⎪⎩

mean(SComvalid) If mean(SComvalid)∈ [0, 0.4)

0.5 If mean(SComvalid)∈ [0.4, 0.5)

mean(SComvalid) If mean(SComvalid)∈ [0.5, 0.8)

1 If mean(SComvalid)∈ [0.8, 1]
(4)

where mean(SComvalid) is the mean of the valid symmetri-
cal complementary coefficients. This piecewise function is
just an empirical result which can make the results of this
paper’s experimental data sets generally good. For a specific
data set, perhaps some search strategies yield better results,
but they will bring in more time cost.

6 Experiment

6.1 Data set

In this section, 10 real-world data sets from the UCI
repository [6] will be used. These data sets cover a wide
range of situations, i.e., different number of instances,
features, classes, and proportions of discrete features and
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Table 4 Date set description

Dataset N n Con Dis C

Breast-cancer 277 9 9 0 2

Germen-credit 1000 20 7 13 2

Chess-kr-vs-kp 3196 36 36 0 2

Soybean-small 47 35 0 35 4

Spambase 4601 57 0 57 2

Statlog-vehicle 846 18 0 18 4

Student 1044 32 16 16 2

Tic-tac-toe 958 9 9 0 2

Wine 178 13 0 13 3

Zoo 101 16 16 0 7

Column ‘N’ is the number of instances in these data sets, column ‘n’
is the number of features, column ‘Con’ is the number of continuous
feature variables, column ‘Dis’ is the number of discrete feature
variables, column ‘C’ is the number of cases or states of the class
variable. For the student data set [3], we put two different data together
and take the first column as the class variable

continuous features, which can represent a large proportion
of real-world applications. Their features are normalized
through Min-Max scaling before the experiment. And their
details are shown in Table 4.

6.2 Evaluationmetric

The number of features in the resulting feature subset,
accuracy, Kappa coefficient and mean-square error (MSE)
were selected as the evaluation metrics.

The Kappa coefficient is calculated with the confusion
matrix. The overall accuracy can only reflect the case
of samples that are correctly classified in the diagonal
direction. Whereas, Kappa coefficient also considers the
non-recognized and misclassified samples outside the
diagonal direction. Its value usually be between 0 and 1 and
the larger, the better.

Table 5 gives a typical resulting confusion matrix for
a problem with C cases or status of class variable, where

Table 5 A typical resulting confusion matrix

Predicted class Actual class

l1 l2 · · · lC Total

l1 n1,1 n1,2 · · · n1,C n̂1

l2 n2,1 n2,2 · · · n2,C n̂2

· · · · · · · · · · · · · · · · · ·
lC nC,1 nC,2 · · · nC,C n̂C

Total n1 n2 · · · nC N

ni,j denotes the number of observations of a class with
actual list status j that are classified as having listing status
i (i = 1, · · · , C, j = 1, · · · , C).

accuracy =
∑C

i=1 ni,i

N
p0 = accuracy

pe =
∑C

i=1 ni · n̂i

N2

kappa coeff icient = p0 − pe

1 − pe

MSE has some good properties, it can be expressed as the
sum of the variance and the square of the deviation, and the
smaller the MSE, the better. Since the MSE is for regression,
we make some adjustments. The voting proportion p of the
sample xi for its real class is taken as the predicted value
of the RF model. And 1 is taken as the true value of xi , as
follows.

f̂ (xi) = p f (xi) = 1

MSE = 1

N

N∑

i=1

(f̂ (xi) − f (xi))
2

6.3 Comparison algorithms

In Section 4, we illustrated the defects of original SFS
algorithm and how the SCom-SFS algorithm solved them.
Therefore, it is not necessary to compare SCom-SFS
algorithm with SFS algorithm.

We perform a comparison of RRSS, RF-efficient-
ReliefF, five classic feature selection algorithm and two
latest feature selection algorithms considering feature
interactions. The algorithms used for comparison in this
experiment are as follows.

1. MDG [2], the embedded method, which is included in
the process of building the RF.

2. ReliefF [19], one of the most famous feature selection
algorithms.

3. mRMR [25], one of the most famous feature selection
algorithms, which pays attention to the irrelevant
features and redundant features at the same time.

4. RFE [27], the wrapper methods.
5. Boruta [20], the wrapper methods.
6. CFR [10], one of the latest feature selection algorithms.
7. FJMI [31], one of the latest feature selection algorithms,

which takes high dimensional feature interactions into
account.

8. RF-efficient-ReliefF, the improved version of ReliefF,
proposed in this paper.
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Table 6 The numbers of selected samples to implement the new
ReliefF algorithm

Dataset N N ′

Breast-cancer 277 151

Germen-credit 1000 559
Chess-kr-vs-kp 3196 2142

Soybean-small 47 29
Spambase 4601 3286

Statlog-vehicle 846 456

Student 1044 606
Tic-tac-toe 958 522

Wine 178 115
Zoo 101 74

Column ‘N ′’ is the number of selected representative samples

9. RRSS, the combination of RF-efficient-ReliefF and the
SCom-SFS proposed in this paper.

Among them, RF-efficient-ReliefF, ReliefF, MDG,
mRMR, CFR, and FJMI need to artificially determine the
number of features selected. So, we implement RFWFS to
get their optimal feature subsets.

6.4 Experimental settings

These seven algorithms are tested on 10 data sets, using
Random Forests as the classifier which is provided by R

language. For the convenience of comparison, RF models
use the default parameters where the number of trees
is 500 and the number of randomly chosen attributes
at each node is equal to the first integer less than
log2(number of features)+1. In order to avoid randomness,
repeat the calculation of each evaluation metric for 30 times
and take the average then get the results. And the results
were calculated with OOB data. Breiman [1] has proved
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that using OOB data to estimate the results is unbiased.
Compared with the cross-validation, the calculation of OOB
estimation is simpler and faster, and its results are similar to
cross-validation.

We use the ‘CORElearn’ package in the R language
to implement ReliefF algorithm. The number of randomly
selected samples is m = 1000. The number of selected
nearest neighbor samples is k = 5.

We use the ‘mRMRe’ package in the R language to imple-
ment mRMR algorithm. All parameters are their default val-
ues.

We use the ‘caret’ package in the R language to
implement RFE algorithm. f unctions = rf Funcs,
method = “cv”, number = 5.

We use the ‘Boruta’ package in the R language to
implement Boruta algorithm. pV alue = 0.01, mcAdj =
T RUE, maxRuns = 100.

In the process of implementing CFR and FJMI, continuous
features are discretized by the Ameva algorithm [11]. The
discretized features are only used for feature selection, and
the classification process still uses these original features.

In the process of implementing algorithm RF-efficient-
ReliefF algorithm, no sampling required, and the number of
selected nearest neighbor samples is k = 5. Table 6 shows
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Fig. 5 Number of features obtained by these 9 algorithms

how many samples were selected to implement the new
ReliefF algorithm. There exists randomness when building
the RF classifier, so these numbers are derived from one RF.

In the process of implementing the RRSS algorithm, the
Symmetrical Complementary Coefficients were calculated.
Let SCom(i, i+1)(i = 1, 2, · · · , n−1) be the Symmetrical
Complementary Coefficients between feature Xi and its
next feature in the ordering like what we did in the
Example 2. And Since the last feature does not have the
next one, its default value is 0. Based on these coordinate
points {(Xi, SCom(i, i + 1))}n−1

i=1 , we can draw figures for
each data set. Figures 2, 3 and 4 show the Symmetrical
Complementary Coefficients of the first three data sets and
their thresholds. The threshold is represented by a horizontal
line. The figures of the remaining seven data sets, Figs. 6, 7,
8, 9, 10, 11 and 12, can be found in the Appendix.

In Fig. 2 the mean of the valid symmetrical complemen-
tary coefficients is 0.38579. So the threshold β = 0.38579
according to (4). And the feature X6 and X4 are packaged.

In Fig. 3 the mean of the valid symmetrical comple-
mentary coefficients is 0.45128. So the threshold β = 0.5
according to (4). And the feature X2, X5 and X12 are
packaged.

In Fig. 4 the mean of the valid symmetrical comple-
mentary coefficients is 0.41456. So the threshold β = 0.5
according to (4). And the feature X10, X33 and X21 are pack-
aged. Feature X15, X6 and X34 are packaged. Feature X9,
X18 and X35 are packaged. Feature X1, X22, X7 are pack-
aged. Feature X27 and X11 are packaged. Feature X31 and
X2 are packaged.

7 Results and analyses

In the experiment we selected four evaluation metrics, i.e.,
number of features in the resulting feature subset, Accuracy,
Kappa coefficient and MSE. Their results on the 10 data sets
and the average of the results are shown in Tables 7, 8, 9,
and 10, respectively. In these tables, the best algorithm for
each data set is emphasized with bold fonts, the second best
is marked with italic fonts.

RRSS achieved a lower number of features while maintain-
ing the best ranking, especially on the ‘Chess-kr-vs-kp’,
‘Spambase’, and ‘Wine’ data set. The number of features
obtained by these algorithms on ten data sets is shown in Fig. 5.

It seems unfair to average the results directly because
the average is affected by larger values greatly. So we gave
Friedman’s ranks [9] of these results. For each algorithm,
its rank in each data set is obtained first, and then average
them. The best performing algorithm is assigned the rank of
1, the second best performing algorithm is assigned the rank
of 2, etc. Table 11 shows the Friedman’s ranks of the four

Table 7 The number of features in the resulting feature subsets

Dataset MDG ReliefF RF-efficient-ReliefF mRMR RFE Boruta CFR FJMI RRSS

Breast-cancer 3 8 2 3 2 6 2 2 2

Germen-credit 10 10 8 15 7 14 10 9 10

Chess-kr-vs-kp 36 31 32 35 36 23 31 31 22

Soybean-small 18 2 2 17 6 16 4 2 3

Spambase 57 47 49 50 45 56 51 52 32

Statlog-vehicle 14 17 17 12 13 18 14 10 11

Student 14 21 26 29 21 32 24 27 14

Tic-tac-toe 9 9 9 9 9 9 9 9 9

Wine 13 12 12 12 12 13 6 11 5

Zoo 11 12 12 15 12 13 9 11 13

Average 18.5 16.9 16.9 19.7 16.3 20 16 16.4 12.1
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Table 8 Accuracy results(%)

Dataset MDG ReliefF RF-efficient-ReliefF mRMR RFE Boruta CFR FJMI RRSS

Breast-cancer 76.474 75.499 75.499 77.593 77.617 75.668 77.617 77.617 77.617
Germen-credit 77.430 76.413 77.760 75.693 76.653 76.757 77.383 77.223 78.100
Chess-kr-vs-kp 98.689 98.655 98.700 98.330 98.689 98.540 98.486 98.182 98.657
Soybean-small 99.929 100.000 100.000 100.000 98.683 99.504 99.787 100.000 100.000
Spambase 95.454 95.460 95.487 95.466 95.405 95.478 95.358 95.402 95.490
Statlog-vehicle 74.862 74.921 74.815 75.737 74.614 74.689 74.811 74.758 75.800
Student 88.646 87.372 87.414 88.560 89.202 87.369 87.037 87.333 90.134
Tic-tac-toe 96.173 96.173 96.173 96.173 96.173 96.173 96.173 96.173 96.173
Wine 98.071 98.057 98.057 98.071 98.034 98.090 97.715 97.959 98.783
Zoo 96.766 96.436 96.766 96.403 96.700 95.743 96.964 97.558 97.558
Average 90.249 89.899 90.067 90.067 90.177 89.801 90.133 90.207 90.824

Table 9 Kappa coefficient results(%)

Dataset MDG ReliefF RF-efficient-ReliefF mRMR RFE Boruta CFR FJMI RRSS

Breast-cancer 31.609 30.214 30.214 35.010 35.099 30.970 35.099 35.099 35.099
Germen-credit 41.951 38.413 41.953 35.699 39.757 39.364 41.974 41.521 43.197
Chess-kr-vs-kp 97.510 97.661 97.668 96.652 97.510 97.073 96.964 96.355 97.307
Soybean-small 99.611 100.000 100.000 100.000 97.460 99.320 99.710 100.000 100.000
Spambase 90.404 90.444 90.502 90.462 90.326 90.482 90.235 90.322 90.510
Statlog-vehicle 66.381 66.641 66.364 67.650 66.151 66.250 66.414 66.311 67.739
Student 68.131 62.771 62.988 66.420 68.768 62.378 61.663 62.544 71.990
Tic-tac-toe 91.302 91.302 91.302 91.302 91.302 91.302 91.302 91.302 91.302
Wine 97.106 97.124 97.124 97.077 97.020 97.106 96.538 96.906 98.154
Zoo 95.655 95.158 95.655 95.250 95.644 94.377 95.987 96.603 96.603
Average 77.966 76.973 77.377 77.552 77.904 76.862 77.589 77.696 79.190

Table 10 MSE results(%)

Dataset MDG ReliefF RF-efficient-ReliefF mRMR RFE Boruta CFR FJMI RRSS

Breast-cancer 20.220 20.970 20.970 19.495 19.458 20.320 19.458 19.458 19.458

Germen-credit 16.432 16.510 16.406 16.616 16.852 16.343 16.022 16.298 16.400
Chess-kr-vs-kp 1.583 1.780 1.680 2.083 1.581 1.894 1.892 2.029 1.884

Soybean-small 0.921 0.440 0.440 0.440 1.583 0.924 1.632 1.117 0.440

Spambase 3.779 3.755 3.751 3.766 3.781 3.770 3.780 3.766 3.701
Statlog-vehicle 17.220 17.130 17.130 17.935 17.221 17.191 17.215 18.569 18.381
Student 9.008 10.439 10.436 9.496 8.581 10.414 10.798 10.515 7.968

Tic-tac-toe 5.461 5.461 5.461 5.461 5.461 5.461 5.461 5.461 5.461

Wine 2.770 2.737 2.737 2.729 2.725 2.774 3.034 2.637 2.733
Zoo 4.555 4.683 4.555 6.157 4.723 5.104 5.295 5.368 4.421
Average 8.195 8.391 8.357 8.418 8.197 8.420 8.459 8.522 8.085

Table 11 Friedman’s ranks of
the four evaluation metrics of
different algorithms

Evaluation metric MDG ReliefF RF-efficient-ReliefF mRMR RFE Boruta CFR FJMI RRSS

Number 5.3 3.9 3.6 6 3.4 6.7 3.3 2.9 2.3

Accuracy 3.8 4.9 3.4 4.5 5.1 5.7 5.6 5 1.3

Kappa coefficient 4.3 4.4 3.3 4.7 5.1 6.1 5.1 4.8 1.4

MSE 4.4 4.1 3.4 5.1 4.4 5.2 5.5 4.9 2.7

Average 4.45 4.325 3.425 5.075 4.5 5.925 4.875 4.4 1.925
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Table 12 p-values of the Nemenyi test on the pairs of algorithms
which have significant differences

Algorithm p-value

RRSS vs. MDG 0.00056

RRSS vs. ReliefF 0.00192

RRSS vs. mRMR 0.0000089

RRSS vs. RFE 0.00072

RRSS vs. Boruta 0.0000000052

RRSS vs. CFR 0.000062

RRSS vs. FJMI 0.0022

RF-efficient-ReliefF vs. Boruta 0.00582

evaluation metrics of the nine algorithms and then average
them again. The best algorithm on these ten data sets is
emphasized with bold fonts, the second best is marked with
italic fonts.

In addition, all these 9 algorithms were compared to each
other by Nemenyi test [22] which is a non-parametric test.
All the tests were carried out with α = 0.05 which is the
level of significance. We put the ranks of the four evaluation
metrics together to implement the tests. Nemenyi test rejects
the hypotheses that the algorithms are equivalent if the
corresponding p-value ≤ 0.05. When there is a significant
difference, the best algorithm is marked with bold fonts.
Table 12 shows the p-values of the Nemenyi test on the pairs
of algorithms which have significant differences.

Then we performed the Wilcoxon signed rank test [5]
on RRSS algorithm and RF-efficient-ReliefF algorithm, and
on RF-efficient-ReliefF algorithm and ReliefF algorithm.
Table 13 shows the p-values. When there is a significant
difference, the best algorithm is marked with bold fonts.
We can find that the corresponding p-values are ≤ 0.05.
So we can reject the hypotheses that the two pairs of
algorithms are equivalent and hold that RRSS algorithm is
better than RF-efficient-ReliefF algorithm and RF-efficient-
ReliefF algorithm is better than ReliefF algorithm.

From these results, several points can be obtained.

– The RRSS algorithm which is the combination of RF-
efficient-ReliefF and SCom-SFS algorithm ranked first
among the nine algorithms. Overall, the RRSS algo-
rithm have much higher accuracy, Kappa coefficient
and smaller MSE than other algorithms while possess-
ing the smallest number of features in the resulting
feature subsets. Although it slightly performed bad on

Table 13 p-values of the Wilcoxon signed rank test

Algorithm p-value

RRSS vs. RF-efficient-ReliefF 0.005772

RF-efficient-ReliefF vs. ReliefF 0.02411

the Chess-kr-vs-kp data set, it significantly reduced the
number of features compared to other algorithms.

– The RF-efficient-ReliefF algorithm proposed in this
paper is better than the original ReliefF algorithm.
And the combination of it and RFWFS has a positive
statistical significant difference with Boruta algorithm.
The rest algorithms have no significant differences.

– The SCom-SFS algorithm proposed in this paper is
very successful. The combination of it and RF-efficient-
Relief is much better than the combination of RF-
efficient-Relief and RFWFS algorithm. The number of
features in the resulting subset selected by SCom-SFS
algorithm is much less than that of other algorithms,
because it can minimize the number of feature subset by
adding features instead of deleting features. Moreover,
SCom-SFS considers feature interactions. Based on
the feature ordering given by RF-efficient-ReliefF
algorithm, it can search out truly effective features, and
it is difficult to fall into local optimum. At the same
time, SCom-SFS can be seen as a correction to the
results of RF-efficient-ReliefF algorithm.

8 Conclusion

After analyzing the shortcomings of ReliefF algorithm, this
paper combines it with Random Forests and proposed the
RF-efficient-ReliefF algorithm. It can screen out represen-
tative samples that are more useful for the identification
of class labels, and the feature weights obtained are more
reliable. Moreover, it does not require sampling.

This paper proposed a new method of quantifying feature
interactions, namely, the Symmetrical Complementary Coef-
ficient. And we illustrated the superiority of it by using an
example.

We proposed the SCom-SFS which is based on the
Symmetrical Complementary Coefficient. It can recognise
the feature interactions and takes the strong feature
interactions into account in the subset searching process
through the given threshold. So as to search out the truly
effective feature subset at a faster speed by packaging these
features which have strong feature interactions.

We combined the RF-efficient-ReliefF algorithm with
the SCom-SFS algorithm to obtain a complete feature selection
algorithm, that is, the RRSS algorithm. It was tested on 10 data
sets and compared with the other 8 algorithms including
5 classic and 2 latest feature selection algorithms, and
found that the feature subsets obtained by it have the best
performance while having the minimum number of features.

In the future, we will find a better method to determine
the threshold more accurately, and combine the symmetrical
complementary coefficients with different algorithms to
make the feature interaction play a greater role.
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Appendix A: Symmetrical complementary
coefficients and thresholds of the remaining
seven data sets
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Fig. 8 Statlog-vehicle data set
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Fig. 9 Student data set

Fig. 7 Spambase data set
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Fig. 10 Tic-tac-toe data set
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Fig. 11 Wine data set
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Fig. 12 Zoo data set
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