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Abstract
K-nearest neighbor based structural twin support vector machine (KNN-STSVM) performs better than structural twin
support vector machine (S-TSVM). It applies the intra-class KNN method, and different weights are given to the samples
in one class to strengthen the structural information. For the other class, the redundant constraints are deleted by the inter-
class KNN method to speed up the training process. However, the empirical risk minimization principle is implemented
in the KNN-STSVM, so it easily leads to over-fitting and reduces the prediction accuracy of the classifier. To enhance the
generalization ability of the classifier, we propose an efficient regularized K-nearest neighbor structural twin support vector
machine, called RKNN-STSVM, by introducing a regularization term into the objective function. So there are two parts
in the objective function, one of which is to maximize the margin between the two parallel hyper-planes, and the other
one is to minimize the training errors of two classes of samples. Therefore the structural risk minimization principle is
implemented in our RKNN-STSVM. Besides, a fast DCDM algorithm is introduced to handle relatively large-scale problems
more efficiently. Comprehensive experimental results on twenty-seven benchmark datasets and two popular image datasets
demonstrate the efficiency of our proposed RKNN-STSVM.

Keywords TSVM · K-nearest neighbors · Structural information · Regularization

1 Introduction

The support vector machine (SVM) approach, introduced by
Vapnik [1], is an extremely powerful kernel-based machine
learning technique for data classifications. At present SVM
has been successfully applied in various aspects, such as
pattern recognition [2], text classification [3], and imbalance
classification [4]. For SVM, the target is to find a hyper-
plane that can separate different classes well. Many hyper-
planes can meet this requirement, and SVM finds the one
which follows the maximum margin principle in statistical
learning theory [1]. SVM solves a quadratic programming
problem (QPP), assuring that once an optimal solution is
obtained, it is the unique (global) solution. By introducing
kernel trick into the dual QPP, SVM can solve nonlinear
classification problems successfully and can also effectively
overcome the “curse of dimension”. It is well known that
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the training cost of SVM is O(l3), where l is the total size of
the training data. As the increasing of the number of training
samples, SVM costs much time.

To improve the computational speed of SVM. Recently,
Jayadeva et al. [5] proposed a twin support vector machine
(TSVM) for the binary classification data, which is based
on the idea of the GEPSVM [6]. TSVM generates two
nonparallel hyper-planes such that each hyper-plane is
closer to one class and as far as possible from the other. It
is implemented by solving two smaller-sized QPPs, which
makes the learning speed of TSVM approximately four
times faster than that of the classical SVM. Now, TSVM
has been widely used because of its low computational
complexity. Many variants of TSVM have been proposed,
such as smooth TSVM [7], twin support vector regression
[8–10], non-parallel Universum support vector machine
[11]. However, each of them minimizes the empirical
risk, which easily leads to the over-fitting problem.
Twin bounded support vector machine (TBSVM) [12, 13]
minimizes the structural risk by adding a regularization
term. Wang et al. [14] proposed an improved ν-twin
bounded support vector machine (Iν-TBSVM). Various
algorithms [15–20] also implement the structural risk
minimization principle, and have better generalization
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ability. But these algorithms do not sufficiently apply the
prior distribution information of samples within classes.

In fact, different classes may possess diverse structural
information when dealing with real world data. This
structural information may be important for classification
and has a great impact on the decision function. One obvious
disadvantage of TSVM is that TSVM usually pays more
attention to separating two classes well but ignores the
underlying structural information within classes. Based on
the studies of structural SVM, such as SLMM [21], SRSVM
[22]. In 2013, Qi et al. [23] proposed a novel structural twin
support vector machine (S-TSVM). This S-TSVM extracts
the structural information by using a hierarchical clustering
method and minimizes the tightness of each cluster by
using the form of the covariance matrix. To improve the
computational speed of S-TSVM, Xu et al. [24] proposed
the structural least square twin support vector machine (S-
LSTSVM). Since S-LSTSVM only needs to solve a pair of
linear equations, it greatly accelerates the calculation speed.

Although experimental results reveal that S-TSVM owns
excellent generalization ability, the S-TSVM has an obvious
disadvantage. It ignores that samples within different
clusters have different importance, and we can improve the
classification accuracy by studying the different information
of samples. Ye et al. [25] proposed a weighted TSVM
with local information (WLTSVM), and it introduces a
novel KNN method which gives different treatments to
different classes in objective function or constraints of
the model. Inspired by S-TSVM and WLTSVM, Pan et
al. [26] proposed a K-nearest neighbor based structural
twin support vector machine (KNN-STSVM). Recently,
Mir et al. [27] proposed KNN-based least squares twin
support vector machine (KNN-LSTSVM), which applies
the similarity information of samples into LSTSVM. And
Tanveer et al. [28] proposed an efficient regularized
K-nearest neighbor based weighted twin support vector
regression (RKNNWTSVR). By introducing regularization
terms into KNNWTSVR [10] and replacing 1-norm of
slack variables with 2-norm, RKNNWTSVR not only saves
computational cost, but also improves the generalization
performance.

However, KNN-STSVM involves the empirical risk
minimization principle, which easily leads to the over-
fitting problem if outliers exist [29–31] and reduces the
prediction accuracy of the classifier. RKNNWTSVR solves
the above problems by introducing extra regularization
terms in each objective function to implement the structural
risk minimization principle. But RKNNWTSVR ignores the
helpful underly structural information of the data, which
may contain useful prior domain knowledge for training
a model. Motivated by the studies above, we improve the

primal problem of KNN-STSVM by adding regularization
terms into the objective function. By doing this, our
new formulation, called RKNN-STSVM, is not only
singularity free but also theoretically supported by statistical
learning theory [32–34]. Similar to KNN-STSVM, RKNN-
STSVM constructs two nonparallel hyper-planes by solving
two smaller QPPs. We also incorporate the structural
information of the corresponding class into the model. In
addition, we not only strengthen the structural information
by giving different weights to the samples, but also delete
the redundant constraints to speed up the computation
process. The contributions of our paper are as follows:
(1) By introducing a regularization term, the matrix is
guaranteed to be reversible when solving the dual problems.
However, this extra prerequisite cannot always be satisfied
without a regularization term. The dual problem of our
algorithm can be derived without any extra assumption and
need not be modified anymore; (2) In the primal problem
of KNN-STSVM, the empirical risk is minimized, whereas
in our RKNN-STSVM the structural risk is minimized by
adding a regularization term with the idea of maximizing
the margin; (3) In order to shorten training time, an effective
method (the dual coordinate descent method, DCDM) is
applied to our RKNN-STSVM.

Nevertheless, like the SVM, the long training time is still
one of the main challenges of our RKNN-STSVM. So far,
many fast optimization algorithms have been presented to
accelerate the training speed, including the decomposition
method [35], sequential minimal optimization (SMO) [36],
the geometric algorithms [37], the dual coordinate descent
method (DCDM) [38], and so on. The recently proposed
DCDM algorithm can directly solve the dual QPP of SVM
by updating one variable sub-problem during each iteration.
The updated variable will derive the largest decrease on the
objective value. This DCDM method shows a fast learning
speed and great efficiency in experiments. In this paper,
we introduce it into our RKNN-STSVM. Comparisons of
the RKNN-STSVM with some other algorithms in terms of
classification accuracy and learning time have been made on
several UCI datasets and Caltech image datasets, indicating
the superiority of our RKNN-STSVM.

The rest of the paper is organized as follows. Section 2
outlines the TSVM, S-TSVM, and KNN-STSVM. Details
of RKNN-STSVM are given in Section 3, both the linear
and nonlinear cases are included. Section 4 discusses the
experimental results on twenty-seven benchmark datasets
and two popular image recognition datasets to investigate
the effectiveness of our proposed RKNN-STSVM. In
Section 5, the DCDM algorithm is introduced into RKNN-
STSVM to accelerate the learning speed. The last section
contains conclusions.
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2 Related work

In this section, we give a brief description of TSVM,
S-TSVM and KNN-STSVM. The training samples are
denoted by a set T = {(x1, y1), . . . , (xl, yl)}, where xi ∈
Rn, yi ∈ {1, −1}, i = 1, 2, . . . , l. For convenience, matrix
A ∈ Rl1×n represents the positive samples and matrix B ∈
Rl2×n represents the negative samples.

2.1 Twin support vector machine

TSVM generates two nonparallel hyper-planes instead of
a single one as in the conventional SVMs. The two
nonparallel hyper-planes are obtained by solving two
smaller sized QPPs as opposed to a single large one in
the standard SVMs. The linear TSVM aims to find two
nonparallel hyper-planes in n-dimensional input space,

wT
1 x + b1 = 0, wT

2 x + b2 = 0, (1)

such that each hyper-plane is closer to one class and as far
as possible from the other. A new sample is assigned to
class +1 or −1 depending upon its proximity to the two
nonparallel hyper-planes.

The formulations of linear TSVM can be written as
follows:

min
w1,b1,ξ

1

2
(Aw1 + e1b1)

T (Aw1 + e1b1) + c1e
T
2 ξ

s.t. −(Bw1 + e2b1) + ξ � e2, ξ � 0, (2)

and

min
w2,b2,η

1

2
(Bw2 + e2b2)

T (Bw2 + e2b2) + c2e
T
1 η

s.t. (Aw1 + e1b2) + η � e2, η � 0, (3)

where c1, c2 � 0 are pre-specified penalty factors, e1

and e2 are vectors of ones of appropriate dimensions. By
introducing the lagrangian multipliers, the Wolfe dual of
QPPs (2) and (3) can be represented as follows:

max
α

eT
2 α − 1

2
αT G(HT H)−1GT α

s.t. 0 � α � c1, (4)

where G = [B e] and H = [A e], and

max
γ

eT
1 γ − 1

2
γ T P (QT Q)−1P T γ

s.t. 0 � γ � c2, (5)

where P = [A e] and Q = [B e].
After resolving the QPPs (4) and (5), we can obtain

[
w(1)

b(1)

]
= −(HT H)−1GT α, (6)

and
[

w(2)

b(2)

]
= (QT Q)−1P T β. (7)

A new testing sample x ∈ Rn is assigned to a class
i = (+1, −1) by comparing the following perpendicular
distance which measures the distance of the sample from the
two hyper-planes (1), i.e.,

Class i = arg min
i=1,2

|xT w(i) + b(i)|
‖w(i)‖ . (8)

In TSVM, if the number of samples in two classes is
approximately equal to l/2, the computational complexity
of TSVM is O(2 × (l/2)3). Thus the ratio of run-times
between SVM and TSVM is l3/(2 × (l/2)3) = 4, which
implies that TSVM works approximately four times faster
than SVM [5].

2.2 Structural twin support vector machine

S-TSVM extracts the structural information of each class
by some clustering methods. Then it applies the data
distributions of the clusters in different classes into the
objective functions of TBSVM, which makes S-TSVM fully
exploit the structural information of samples into the model.
Suppose there are CP clusters in the positive class P and
CN clusters in the negative class N , respectively, ie., P =
P1 ∪ . . . Pi ∪ . . . PCP

, N = N1 ∪ . . . Nj ∪ . . . NCN
. Then

the subsequent optimization problem in the S-TSVM model
can be formulated as follows [23]:

min
w+,b+,ξ

1

2
‖Aw++e1b+‖2

2+c1e
T
2 ξ + 1

2
c2(‖w+‖2

2 + b2+)

+1

2
c3w

T+�+w+
s.t. −(Bw+ + e2b+) + ξ � e2,

ξ � 0, (9)

and

min
w−,b−,η

1

2
‖Bw− + e2b−‖2

2 + c4e
T
1 η + 1

2
c5(‖w−‖2

2+b2−)

+1

2
c6w

T−�−w−
s.t. (Aw− + e1b−) + η � e1, (10)

η � 0,

where ci � 0(i = 1, . . . , 6) are the pre-specified penalty
factors, e1 and e2 are vectors of ones of appropriate
dimensions, both ξ and η are slack variables. �+ = �P1 +
. . . + �PCP

, �− = �N1 + . . . + �NCN
, �Pi

and �Nj
are

respectively the covariance matrices of clusters in the two
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classes. The corresponding dual problems of S-TSVM are
given as follows:

max
α

eT
2 α − 1

2
αT G(HT H + c2I + c3J )−1GT α

s.t. 0 � α � c1e2, (11)

and

max
β

eT
1 β − 1

2
βT P (QT Q + c5I + c6F)−1P T β

s.t. 0 � β � c4e1, (12)

where

G = [B e2], H = [A e1], J =
[

�+ 0
0 0

]
, P = [A e2],

Q = [B e1] F =
[

�− 0
0 0

]
.

A new data point x ∈ Rn is classified as the positive
class or negative class depending on which of the two hyper-
planes it lies closer to. The decision function of S-TSVM
is

f (x) = arg min±

{ | xT w± + b± |
‖ w± ‖

}
. (13)

2.3 K-nearest neighbor structural twin support
vector machine

To further improve the computational precision and speed
of a classifier, KNN-STSVM is proposed in the spirit of
S-TSVM. The formulation of KNN-STSVM is similar to
TSVM, as it also tries to obtain two nonparallel hyper-
planes for two classes by solving a pair of small-sized QPPs
as follows [26]:

min
w+,b+,ξ

1

2

l1∑
i=1

l1∑
j=1

W
(1)
s,ij (w

T+x
(1)
j +b+)2+c1e

T−ξ+1

2
c2w

T+�+w+

s.t. −f
(2)
j (wT+x

(2)
j + b+) + ξj � f

(2)
j ,

ξj � 0, j = 1, . . . , l2, (14)

and

min
w−,b−,η

1

2

l2∑
i=1

l2∑
j=1

W
(2)
s,ij (w

T−x
(2)
j +b−)2+c3e

T+η+1

2
c4w

T−�−w−

s.t. f
(1)
j (wT−x

(1)
j + b−) + ηj � f

(1)
j ,

ηj � 0, j = 1, . . . , l1, (15)

where the parameters c1, c2, c3, c4 � 0 determine the
penalty weights, and ξ , η are slack variables. Both e+
and e− are vectors of ones with appropriate dimensions,
Ws,ij is the weight matrix and fj is the vector with only

0 or 1. �+ = �P1 + . . . + �PCP
, �− = �N1 +

. . . + �NCN
, �Pi

and �Nj
are respectively the covariance

matrixes corresponding to the ith and the j th clusters in two
classes. The corresponding dual problems of KNN-STSVM
are given as follows:

max
α

eT−Fα − 1

2
αT (FT G)(HT DH + c2J+)−1(GT F)α

s.t. 0 � α � c1e−, (16)

and

max
γ

eT+Pγ − 1

2
γ T (P T H)(GT QG + c4J−)−1(HT P )γ

s.t. 0 � γ � c3e+. (17)

A new testing sample x ∈ Rn is assigned to a class
i = (+1, −1) by comparing the following perpendicular
distance which measures the distance of the sample from the
two hyper-planes, i.e.,

Class i = arg min
i=1,2

|xT w(i) + b(i)|
‖w(i)‖ . (18)

3An efficient regularized K-nearest neighbor
structural twin support vector machine

Motivated by [23, 25, 26, 28], we propose a reasonable and
efficient variant of KNN-STSVM called regularized KNN-
based weighted structural twin support vector machine,
RKNN-STSVM for short. RKNN-STSVM has three steps:
clustering, applying KNN tricks, and learning. RKNN-
STSVM adopts some clustering techniques to capture
the data distribution within classes, and KNN tricks are
also applied to our model to improve the generalization
performance.

3.1 Clustering

Structural support vector machine usually considers the data
distribution through clustering methods. Here, we use the
same clustering methods (the Ward’s linkage clustering,
which is one of the hierarchical clustering method) as S-
TSVM to study the clusters in each individual class. The
main advantage of Ward’s linkage clustering (WIL) [39]
is that clusters derived from this clustering method are
compact and spherical, which provides a reliable basis to
calculate the covariance matrices. Concretely, if S and T

are two clusters, μS and μT are means of the clusters, the
Ward’s linkage W(S, T ) between clusters S and T can be
computed as [21]

W(S, T ) = |S| · |T | · ‖μS − μT ‖
|S| + |T | . (19)
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Initially, each individual sample is considered as a cluster.
The Ward’s linkage of two samples xi and xj is W(xi, xj ) =
‖xi − xj‖2/2. When two clusters are being merged to a
new cluster A′, the linkage W(A′, C) can be represented by
W(A, C), W(B, C) and W(A,B) as [21]

W(A′, C)= (|A|+|C|)(W, A, C)+(|B|+|C|)W(B, C)−(|C|)W(A, B)

|A|+|B|+|C| .

(20)

The Ward’s linkage between clusters to be merged increases
as the number of clusters decreases during the hierarchical
clustering. A relation curve between the merge distance
and the number of clusters can be determined by finding
the knee point [40]. Furthermore, the WIL can be also
applicable to the nonlinear case.

3.2 K-nearest neighbor method

Weighted TSVM [25] mines as much underlying similarity
information within samples as possible. Weighted TSVM
firstly constructs two neighbor graphs in the input space,
i.e. intra-class graph Gs and inter-class graph Gd , to search
the weights of samples from one class and to extract
the possible SVs residing in the other class. For each
sample xi in class +1, it defines two nearest sets: Neas(xi)

and Nead(xi). Neas(xi) contains its neighbors in class
+1, while Nead(xi) contains its neighbors in class -1.
Specifically,

Neas(xi) = {xj
i | if x

j
i and xi belong to the same class,

0 ≤ j ≤ k1}, (21)

and

Nead(xi) = {xj
i | if x

j
i and xi belong to the different classes,

0 ≤ j ≤ k2}. (22)

Clearly, Neas denotes a set of its k1-nearest neighbors
in class +1, and Nead stands for a set of its k2-nearest
neighbors in class −1. Two adjacent (i.e. similarity)
matrices of the plane of class +1 corresponding to Gs and
Gd can be defined [41], respectively, as follows:

Ws,ij =
{

1, if xj ∈ Neas(xi) or xi ∈ Neas(xj ),

0, otherwise,
(23)

and

Wd,ij =
{

1, if xj ∈ Nead(xi) or xi ∈ Nead(xj ).
0, otherwise.

(24)

When Ws,ij = 1 or Wd,ij = 1, an undirected edge
between xi and xj is added to the corresponding graph. To

find the possible SVs from samples in class -1, here we
redefine the weight matrix Wd,ij of Gd as follows:

fj =
{

1, if ∃ j, Wd,ij �= 0,

0, otherwise.
(25)

3.3 Linear case

By introducing the extra regularization terms (‖w+‖2
2 +

b2+) and (‖w−‖2
2 + b2−) into primal problems (14) and

(15), respectively, our RKNN-STSVM can be expressed as
follows:

min
w+,b+,ξ

1

2

l1∑
i=1

l1∑
j=1

W
(1)
s,ij (w

T+x
(1)
j + b+)2 + c1e

T−ξ

+1

2
c2w

T+�+w+ + 1

2
c3(‖w+‖2

2 + b2+)

s.t. −f
(2)
j (wT+x

(2)
j + b+) + ξj � f

(2)
j , (26)

ξj � 0, j = 1, . . . , l2,

and

min
w−,b−,η

1

2

l2∑
i=1

l2∑
j=1

W
(2)
s,ij (w

T−x
(2)
j + b−)2 + c4e

T+η

+1

2
c5w

T−�−w− + 1

2
c6(‖w−‖2

2 + b2−)

s.t. f
(1)
j (wT−x

(1)
j + b−) + ηj � f

(1)
j ,

ηj � 0, j = 1, . . . , l1, (27)

where c1, c2, . . . , c6 � 0 are positive parameters given
in advance, which are used to denote the tradeoff among
each term in the objective function, respectively. ξ and η

are slack variables, both e+ and e− are vectors of ones of
appropriate dimensions, Ws,ij andfj are defined as �+ =
�P1 + . . . + �PCP

, �− = �N1 + . . . + �NCN
, �Pi

and
�Nj

are respectively the covariance matrixes corresponding
to the ith and the j th clusters in the two classes.

To solve (26), the lagrangian function is defined as:

L1 = 1

2

l1∑
j=1

d
(1)
j (wT+x

(1)
j + b+)2 + c1e

T−ξ + 1

2
c2w

T+�+w+

+1

2
c3(‖w+‖2

2 + b2+)

−
l2∑

j=1

αj (−f
(2)
j (wT+x

(2)
j + b+) + ξj − f

(2)
j ) − βT ξ,

(28)

where d
(1)
j = ∑l1

i=1W
(1)
s,ij , α, β are lagrangian multipliers.

Differentiating the lagrangian function L1 with respect to
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variables w+, b+ and ξ yields the following Karush-Kuhn-
Tucker (KKT) conditions:

∂L1

∂w+
=

l1∑
j=1

d
(1)
j x

(1)
j (wT+x

(1)
j + b+) + c2�+w+

+
l2∑

j=1

αjf
(2)
j x

(2)
j + c3w+ = 0, (29)

∂L1

∂b+
=

l1∑
j=1

d
(1)
j (wT+x

(1)
j + b+)

l2∑
j=1

αjf
(2)
j + c3b+ = 0, (30)

∂L1

∂ξ
= c1e− − α − β = 0. (31)

Rewrite (29) and (30) in their matrix forms, we get the
following equations:

AT D(Aw++e+b+)+BT Fα+c2�+w++c3w+ = 0, (32)

eT+D(Aw+ + e+b+) + eT−Fα + c3b+ = 0, (33)

where D = diag(d
(1)
1 , d

(1)
2 , . . . , d

(1)
l1

) and F = diag(f
(2)
1 ,

f
(2)
2 , . . . , f

(2)
l2

) are diagonal matrices, and f
(2)
j (j =

1, 2, . . . , l2) is either 0 or 1. The following equation is
obtained by combining (32) and (33).

HT DHU + GT Fα + (c2J+ + c3I )U = 0, (34)

i.e.,[
w+
b+

]
= −(HT DH + c2J+ + c3I )−1GT Fα, (35)

where

G=[B e2], H =[A e1], J+ =
[

�+ 0
0 0

]
and U =[w+ b+]T .

Finally, we can derive the dual formulation of (26) as
follows:

max
α

eT−Fα − 1

2
αT (FT G)(HT DH + c2J+ + c3I )−1(GT F)α

s.t. 0 � α � c1e−. (36)

Similarly, the lagrangian function for (27) is defined as

L2 = 1

2

l2∑
j=1

d
(2)
j (wT−x

(2)
j + b−)2 + c4e

T+η + 1

2
c5w

T−�−w−

+1

2
c6(‖w−‖2

2 + b2−)

−
l1∑

j=1

γj (−f
(1)
j (wT−x

(1)
j + b−) + ηj − f

(1)
j ) − νT η,

(37)

where d
(2)
j = ∑l2

i=1W
(2)
s,ij , γ, ν are lagrangian multipliers.

After differentiating the lagrangian function (37) with
respect to variables w−, b− and η, we can obtain the
simplified dual QPP of (27), which is,

max
γ

eT+Pγ−1

2
γ T (P T H)(GT QG+c5J− + c6I )−1(HT P )γ

s.t. 0 � γ � c4e+, (38)

where Q = diag(d
(2)
1 , d

(2)
2 , · · · , d

(2)
l2

) and P = diag

(f
(1)
1 , f

(1)
2 , · · · , f

(1)
l1

) are diagonal matrices, f
(1)
j is either

0 or 1, J− =
[

�− 0
0 0

]
.

Once the solution γ is calculated, we will get the
following augmented vector,[

w−
b−

]
= (GT QG + c5J− + c6I )−1HT Pγ . (39)

3.4 Nonlinear case

For the nonlinear case, the two nonparallel hyper-planes are
modified as the following kernel-generated expressions:

K(x)μ+ + b+ = 0, K(x)μ− + b− = 0, (40)

where

K(x) = [K(x1, x), K(x2, x), ..., K(xl, x)], (41)

and K(·) stands for a chosen kernel function. The primal
QPPs of nonlinear RKNN-STSVM corresponding to the
hyper-planes (40) are respectively given as follows:

min
μ+,b+,ξ

1

2

l1∑
i=1

l1∑
j=1

W
(1)
s,ij (μ

T+K(x
(1)
j ) + b+)2 + c1e

T−ξ

+1

2
c2μ

T+φ(M)�
φ
+φ(M)μ++ 1

2
c3(‖μ+‖2

2+b2+)

s.t. −f
(2)
j (μT+K(x

(2)
j ) + b+) + ξj � f

(2)
j ,

ξj � 0, j = 1, . . . , l2, (42)

and

min
μ−,b−,η

1

2

l2∑
i=1

l2∑
j=1

W
(2)
s,ij (μ

T−K(x
(2)
j ) + b−)2 + c4e

T+η

+1

2
c5μ

T−φ(M)�
φ
−φ(M)μ−+ 1

2
c6(‖μ−‖2

2 + b2−)

s.t. f
(1)
j (μT−K(x

(1)
j ) + b−) + ηj � f

(2)
j ,

ηj � 0, j = 1, . . . , l1, (43)

where c1, c2, c3, c4 � 0 are predefined parameters, and e

is the vector of appropriate dimensions, Ws,ij and fj are

defined as in the linear case. �φ
+ and �

φ
− are respectively the
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covariance matrices in the two classes by the kernel Ward’s
linkage clustering.

The Wolfe dual of problem (42) is formulated as follows:

max
α

eT−Fα − 1

2
αT (FT Gφ)(HT

φ DHφ + c2J
φ
+ + c3I )−1(GT

φ F )α

s.t. 0 � α � c1e−, (44)

where Hφ = [K(A) e+], Gφ = [K(B) e−], J
φ
+ =[

�
φ
+ 0

0 0

]
, then we can further get

[
w+
b+

]
= −(HT

φ DHφ + c2J
φ
+ + c3I )−1GT

φ Fα. (45)

In a similar manner, the dual formulation of (43) is

max
γ

eT+Pγ−1

2
γ T (P T Hφ)(GT

φ QGφ+c5J
φ
−+c6I )−1(HT

φ P )γ

s.t. 0 � γ � c4e+. (46)

Once the solution γ is found, we get the following result,

[
w−
b−

]
= (GT

φ QGφ + c5J
φ
− + c6I )−1HT

φ Pγ . (47)

Here, specifications of the matrices D and Q are
analogous to the linear case.

A new point x ∈ Rn is classified as the positive class or
negative class depending on which of the two hyper-planes
given by (45) and (47) it lies closer to. The decision function
of RKNN-STSVM is

f (x) = arg min±

{ | xT w± + b± |
‖ w± ‖

}
. (48)

3.5 Analysis of algorithm

We first discuss the differences between TSVM, S-TSVM,
KNN-STSVM, and our RKNN-STSVM.

(1) Optimization of traditional TSVM costs around
O(l3/4) if we assume that the patterns in two
classes are approximately equal. As for S-TSVM,
the computational complexity of the clustering step
is O((l2

1 + l2
2)n). So the computational complexity

of S-TSVM is O((l2
1 + l2

2)n + l3/4). Thus, the
overall computational complexity of KNN-STSVM
and RKNN-STSVM is around O(l2log(l) + (l2

1 +
l2
2)n + l3/4). Certainly, this conclusion is under the

assumption of no constraints deleted. In fact, some
components of f are set to be 0, which implies that
the constraints are redundant, so the computational
complexity of KNN-STSVM and RKNN-STSVM is
less than O((l2

1 + l2
2)n + l3/4).

(2) Unlike TSVM and KNN-STSVM, our RKNN-
STSVM implements the structural risk minimization
principle by introducing extra regularization terms in
each objective function so that the problem becomes
well-posed. It can not only help to alleviate over-fitting
issue and improve the generation performance as in
conventional SVM but also introduce invertibility in
the dual formulation.

(3) Two parameters c3 and c6 introduced in our RKNN-
STSVM are the weights between the regularization
term and the empirical risk, so that they can be chosen
to improve the RKNN-STSVM performance.

4 Numerical experiments

To validate the superiority of our algorithm, in this section,
we compare our proposed RKNN-STSVM with TSVM,
Iν-TBSVM, S-TSVM, KNN-STSVM, KNN-LSTSVM on
twenty-seven benchmark datasets from UCI machine
learning repository1 or the LIBSVM Database [42]. They
are Australian (A), BCI-1a (B), Breast Cancer1 (B1), Breast
Cancer2 (B2), Breast Cancer3 (B3), Balance Scale (BS),
BUPA (BU), DBworld e-mail (D), Echocardiogram (E),
Fertility (F), Hepatitis (H), Haberman (HA), Heart (HE),
Ionosphere (I), IRIS (IR), LSVT (L), Liver Disorder (LD),
Monks (M), Pima (P), Parkinson (PA), Planning Relax (PR),
Sonar (S), Spect Heart (SH), Spambase (SP), Vertebral
(V), WPBC (W), Waveform (WA). For convenience, we
will use the abbreviations of them in the following paper.
Table 1 lists the characteristics of these datasets. To further
evaluate our algorithm, we also conduct experiments and
make comparisons on popular Caltech image datasets.

To make the results more convincing, we use the 5-fold
cross validation method to get the classification accuracy.
More specifically, we spilt each dataset into five subsets
randomly, and one of those sets is reserved as a test set
whereas remaining sets are considered for training. This
process is repeated five times until all subsets have been
a test one once. All experiments are carried out in Matlab
R2017a on Windows 10.

4.1 Parameters selection

The performance of six algorithms depends heavily on
the choice of kernel functions and their parameters. In

1http://archive.ics.uci.edu/ml/datasets.html
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Table 1 The statistics of twenty-seven benchmark datasets

Datasets #Samples #Positive #Negative #Features

A 690 307 383 14

B 268 133 135 5376

B1 194 46 148 33

B2 569 357 212 30

B3 683 239 444 9

BS 576 288 288 4

BU 345 145 200 6

D 64 29 35 4702

E 131 43 88 10

F 100 88 12 9

H 80 13 67 19

HA 306 225 81 3

HE 270 150 120 13

I 351 126 225 34

IR 150 50 100 4

L 126 42 84 310

LD 345 145 200 6

M 432 216 216 6

P 768 268 500 8

PA 195 147 48 22

PR 182 130 52 12

S 208 97 111 60

SH 267 212 55 44

SP 4601 1813 2788 57

V 310 210 100 6

W 198 47 151 34

WA 3304 1647 1657 21

this paper, we only consider Gaussian kernel function
k(xi, xj ) = exp(−‖xi − xj‖2/γ 2) for these datasets. We
choose optimal values of the parameters by the grid search
method. The Gaussian kernel parameter γ is selected from
the set {2i |i = −1, 0, . . . , 8}. For brevity’s sake, we
let c1 = c4, c2 = c5, c3 = c6 in S-TSVM, RKNN-
STSVM, c1 = c3, c2 = c4 in KNN-STSVM, r1 = r2,
ν1 = ν2 in Iν-TBSVM, and c1 = c2 in TSVM, KNN-
LSTSVM. The parameters c1, c2 are selected from the set
{2i |i = −1, 0, . . . , 8} and r1, r2 are selected from the
set {10i |i = −6, −5, . . . , 0}. In order to save calculation
time and maintain calculation accuracy, we calculate the
accuracy of the Breast Cancer 1 and Echocardiogram
datasets along with the curve of parameter c3 in Fig. 1,
we found that the optimal parameters are chosen from
10−6 to 1, so c3 is selected from the set {10i |i =
−6, −5, . . . , 0}. We also calculate the accuracy of the
Australian and the Breast Cancer 1 datasets along with the
curve of parameter k in Fig. 2, the optimal value for k

in KNN-STSVM, KNN-LSTSVM and RKNN-STSVM is
chosen from the set {3, 4, 5, 6, 10, 20}. The parameter ν1

is searched from the set {0.1, 0.2, . . . , 0.7} in Iν-TBSVM.
For large-scale datasets, the range of parameters will be
narrowed uniformly due to the long running time.

4.2 Result comparison and discussion

The experimental results on twenty-seven datasets are
summarized in Table 2, where the “Accuracy” denotes the
mean value of five times testing results, and plus or minus
the standard deviation. “Time” denotes the mean value of
the time taken by six methods, and each consists of training
time and testing time. And the optimal parameters of six
algorithms are shown in Table 3.

From the perspective of prediction accuracy in Table 2,
we can learn that our proposed RKNN-STSVM outperforms
other five algorithms, i.e., TSVM, S-TSVM, Iν-TBSVM,
KNN-STSVM and KNN-LSTSVM, for most datasets.
RKNN-STSVM follows, it produces better testing accuracy
than TSVM, Iν-TBSVM, S-TSVM, and KNN-LSTSVM for
most cases. The TSVM yields the lowest testing accuracy
and KNN-LSTSVM yields the lowest computational cost.
Two main reasons lead RKNN-STSVM to produce better
accuracy. One is that different weights are proposed to
the samples according to their numbers of KNNs, and
the point is important if it has more KNNs. The other
is that our RKNN-STSVM implements the structural risk
minimization principle by introducing extra regularization
terms in each objective function.

Compared with other five algorithms, our RKNN-
STSVM yields the highest testing accuracy on high-
dimensional datasets including both BCI-1a and Breast
Cancer3. This implies that our RKNN-STSVM is also
suitable for the high-dimensional dataset. However, it yields
the second lowest testing accuracy on high dimensional
dataset Dbworld e-mails. The main reason lies in that the
number of samples in this dataset is too small, it only has 64
samples, but has 4702 features. In large datasets, we can see
RKNNS-TSVM yields the highest testing accuracy and its
computational time is also lower than S-TSVM and KNN-
STSVM in Spambase (SP) and Waveform (WA) datasets.
But too many parameters leading to much training time is
the major drawback of our algorithm. In Section 5, we add
the DCDM fast algorithm to accelerate the calculation speed
of our RKNN-STSVM.

4.3 Friedman tests

From Table 2, one can easily observe that our proposed
RKNN-STSVM does not outperform other five algorithms
for all the datasets in terms of testing accuracy. To analyze
the performance of six algorithms on multiple datasets
statistically, as it was suggested in Dems̆ar [43] and
Garcı́a and Fernández [44], we use Friedman test with the
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Fig. 1 Changes of accuracy
with the growth of c3 on the
Breast Cance1 and
Echocardiogram datasets
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corresponding post hoc test which considered to be a simple,
nonparametric yet safe test. For this, the average ranks of
six algorithms on accuracy for all datasets are calculated
and listed in Table 4. Under the null-hypothesis that all the
algorithms are equivalent, one can compute the Friedman
statistic [43] according to (49):

χ2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ , (49)

where Rj = 1

N

∑
i r

j
i , and r

j
i denotes the j th of k

algorithms on the ith of N datasets. Friedman’s χ2
F is

undesirably conservative and derives a better statistic

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

, (50)

which is distributed according to the F -distribution with
k − 1 and (k − 1)(N − 1) degrees of freedom.

Fig. 2 Changes of accuracy with
the growth of k on the Australian
and Breast Cance1 datasets
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Table 2 Performance comparisons of six algorithms on twenty-seven datasets. Bold type shows the best result for each dataset

Datasets TSVM Iν-TBSVM S-TSVM KNN-STSVM KNN-LSTSVM RKNN-STSVM

Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

A 86.39 ± 2.35 86.67 ± 2.10 86.64 ± 3.83 87.25 ± 2.00 87.39 ± 2.21 87.39 ± 3.31

0.0926 0.0920 0.1286 0.1750 0.0557 0.1467

B 86.99 ± 4.31 89.60 ± 4.43 89.60 ± 5.01 89.60 ± 5.53 88.48 ± 3.52 90.34 ± 4.08

0.0828 0.0687 0.2193 0.2519 0.1049 0.2011

B1 77.83 ± 4.79 80.97 ± 4.93 80.38 ± 3.72 81.44 ± 1.00 80.42 ± 1.15 83.01 ± 3.77

0.0298 0.0256 0.0374 0.0229 0.0048 0.0251

B2 97.72 ± 1.19 98.25 ± 0.78 98.25 ± 0.55 98.25 ± 0.78 98.25 ± 0.55 98.42 ± 0.66

0.0709 0.0670 0.0945 0.1011 0.0350 0.0946

B3 97.22 ± 1.49 97.51 ± 1.88 97.52 ± 1.43 97.52 ± 1.50 97.51 ± 1.50 97.66 ± 1.62

0.0922 0.1393 0.1258 0.1322 0.0527 0.1324

BS 98.10 ± 1.50 97.25 ± 2.36 98.45 ± 1.27 98.81 ± 1.25 95.33 ± 4.92 98.96 ± 0.85

0.0646 0.0716 0.0859 0.1050 0.0331 0.0331

BU 73.04 ± 2.17 72.75 ± 2.49 73.91 ± 4.00 74.49 ± 2.98 73.91 ± 3.55 74.78 ± 3.85

0.0391 0.0358 0.0459 0.0379 0.0124 0.0401

D 79.62 ± 11.64 84.23 ± 11.17 87.31 ± 9.70 85.90 ± 5.85 79.62 ± 11.64 82.69 ± 10.46

0.0310 0.0243 0.1438 0.0437 0.0138 0.0387

E 90.37 ± 5.46 91.17 ± 6.43 92.26 ± 5.40 92.62 ± 4.86 92.62 ± 4.86 93.26 ± 4.26

0.0169 0.0214 0.0142 0.0195 0.0030 0.0211

F 89.30 ± 4.91 89.08 ± 4.91 89.30 ± 4.91 90.13 ± 5.30 89.30 ± 3.61 90.35 ± 4.26

0.0216 0.0119 0.0269 0.0184 0.0023 0.0276

H 88.72 ± 4.70 88.79 ± 4.40 89.97 ± 3.12 87.62 ± 3.51 88.64 ± 2.80 88.79 ± 4.40

0.0222 0.0185 0.0253 0.0162 0.0018 0.0317

HA 74.84 ± 2.58 76.81 ± 1.78 76.48 ± 2.30 77.13 ± 1.64 77.13 ± 1.38 77.79 ± 2.07

0.0455 0.0359 0.0455 0.0372 0.0104 0.0501

HE 85.56 ± 1.81 85.19 ± 2.62 85.93 ± 2.51 85.93 ± 2.77 86.30 ± 2.22 85.93 ± 3.01

0.0419 0.0336 0.0466 0.0354 0.0080 0.0377

I 92.87 ± 3.26 94.86 ± 2.33 94.01 ± 3.32 93.44 ± 3.08 93.45 ± 4.10 96.30 ± 2.14

0.0378 0.0469 0.0588 0.0475 0.0127 0.0446

IR 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± .00 100.00 ± 0.00

0.0224 0.0261 0.0261 0.0218 0.0039 0.0266

L 87.00 ± 8.31 87.83 ± 8.92 87.17 ± 8.19 89.17 ± 5.00 88.33 ± 6.12 89.00 ± 5.71

0.0217 0.0236 0.0190 0.0239 0.0039 0.0223

LD 72.17 ± 2.66 73.04 ± 2.17 74.20 ± 3.48 74.78 ± 3.25 72.75 ± 2.32 75.07 ± 2.96

0.0396 0.0460 0.0551 0.0477 0.0130 0.0541

M 81.52 ± 13.89 96.98 ± 4.13 81.52 ± 13.89 89.92 ± 13.04 82.95 ± 14.42 91.75 ± 10.94

0.0461 0.0534 0.0540 0.0614 0.0196 0.0587

P 77.08 ± 3.00 77.82 ± 3.16 78.22 ± 2.48 78.62 ± 3.14 78.62 ± 2.81 78.49 ± 3.03

0.1231 0.1136 0.1724 0.2036 0.0705 0.1897

PA 83.37 ± 9.68 84.94 ± 8.71 85.17 ± 7.20 86.99 ± 9.36 85.53 ± 10.71 87.33 ± 8.41

0.0223 0.0320 0.0249 0.0270 0.0052 0.0232

PR 71.46 ± 1.52 71.46 ± 1.52 71.46 ± 1.52 71.46 ± 1.52 71.46 ± 1.52 71.46 ± 1.52

0.0246 0.0290 0.0229 0.0289 0.0046 0.0268

S 70.42 ± 12.63 71.50 ± 15.86 72.25 ± 9.75 71.25 ± 10.84 70.00 ± 13.78 72.75 ± 10.74

0.0279 0.0320 0.0256 0.0289 0.0056 0.0384

SH 79.79 ± 2.91 83.17 ± 4.01 82.05 ± 3.30 82.04 ± 2.42 82.02 ± 4.99 83.56 ± 4.48

0.0401 0.0399 0.0334 0.0380 0.0099 0.0384
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Table 2 (continued)

Datasets TSVM Iν-TBSVM S-TSVM KNN-STSVM KNN-LSTSVM RKNN-STSVM

Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

SP 92.38 ± 4.49 92.23 ± 4.68 92.43 ± 4.25 92.56 ± 4.25 92.25 ± 4.71 92.58 ± 4.32

10.4367 11.9103 14.3491 15.1454 6.8930 13.9915

V 82.90 ± 10.97 82.90 ± 8.32 84.19 ± 8.86 84.52 ± 8.07 84.19 ± 5.90 84.84 ± 11.66

0.0394 0.0446 0.0384 0.0453 0.0102 0.0365

W 78.46 ± 6.20 79.74 ± 3.84 80.92 ± 4.34 81.90 ± 4.47 80.44 ± 5.40 83.92 ± 2.85

0.0231 0.0301 0.0281 0.0280 0.0046 0.0244

WA 92.01 ± 0.50 92.46 ± 0.61 92.28 ± 0.87 92.46 ± 0.99 92.34 ± 0.67 92.46 ± 0.88

4.7165 3.7437 6.0072 6.6676 3.5239 5.7681

We can obtain χ2
F = 59.7356 and FF = 20.6356

according to (49) and (50). Where FF is distributed
according to F -distribution with (5, 130) degrees of

freedom. The critical value of F(5, 130) is 2.2839 for
the level of significance α = 0.05, and similarly it
is 2.6656 for α = 0.025 and 3.1612 for α = 0.01.

Table 3 The optimal parameters of six algorithms used in the experiments

Dataset TSVM Iν-TBSVM S-TSVM KNN-STSVM KNN-LSTSVM RKNN-STSVM

(c1, γ ) (r1, ν1, γ ) (c1, c2, c3, γ ) (c1, c2, γ, k) (c1, γ, k) (c1, c2, c3, γ, k)

A (2,4) (10−6,0.2,4) (2,32,0.1,32) (8,4,4,5) (4,256,4) (0.5,128,10−6,64,3)

B (1,256) (10−4,0.6,256) (0.5,16,10−6,256) (2,256,256,4) (0.5,256,6) (32,0.5,0.01,256,3)

B1 (8,32) (10−5,0.3,32) (8,1,10−6,32) (16,1,32,3) (8,32,10) (8,256,10−6,64,5)

B2 (1,2) (10−6,0.2,4) (0.5,4,10−6,2) (4,2,4,20) (1,2,6) (1,256,10−5,16,6)

B3 (4,256) (1,0.3,2) (8,32,10−6,16) (64,1,32,4) (16,32,5) (32,128,0.1,16,6)

BS (8,4) (0.1,0.1,1) (8,16,10−6,2) (256,256,2,3) (4,4,3) (32,128,10−6,8,4)

BU (1,2) (10−4,0.7,2) (0.5,4,10−6,2) (1,4,2,3) (8,4,6) (4,2,0.1,1,4)

D (1,64) (10−6,0.6,256) (1,0.5,10−5,64) (128,4,256,20) (0.5,128,10) (0.5,0.5,0.1,128,20)

E (8,64) (10−3,0.1,4) (8,32,10−6,4) (0.5,1,32,6) (0.5,32,10) (64,8,10−5,16,5)

F (1,0.25) (10−6,0.1,0.5) (0.5,0.5,10−6,2) (0.5,4,4,3) (1,8,4) (0.5,16,10−3,4,4)

H (1,2) (0.01,0.7,8) (1,16,1,8) (0.5,0.5,4,3) (0.5,1,3) (0.5,32,10−4,32,5)

HA (1,4) (0.1,0.6,4) (0.5,128,10−6,4) (8,32,8,6) (4,16,5) (0.5,128,10−3,4,3)

HE (1,16) (10−6,0.4,8) (0.5,8,10−6,32) (8,4,64,6) (64,128,5) (2,128,1,2,4)

I (4,4) (10−3,0.4,2) (4,256,0.1,2) (1,256,2,20) (1,4,20) (4,16,1,1,20)

IR (1,0.125) (10−6,0.1,0.5) (1,1,1,0.5) (1,1,0.5,3) (0.5,0.5,4) (1,1,1,0.5,3)

L (1,16) (10−6,0.3,64) (1,4,1,8) (0.5,4,32,3) (0.5,64,3) (0.5,4,0.1,4,3)

LD (1,2) (10−6,0.6,2) (0.5,8,1,2) (8,128,2,10) (4,4,20) (4,16,10−3,2,10)

M (4,16) (10−6,0.6,4) (4,1,10−6,16) (0.5,64,2,20) (0.5,4,10) (0.5,2,10−6,4,20)

P (1,32) (1,0.2,1) (1,32,10−6,2) (32,256,2,10) (8,4,3) (32,128,1,1,20)

PA (1,32) (10−5,0.4,1) (1,32,1,1) (4,16,0.5,3) (32,64,6) (4,256,10−3,2,3)

PR (1,0.0625) (10−3,0.1,64) (0.5,128,10−6,2) (0.5,0.5,128,4) (0.5,128,4) (0.5,256,0.1,2,5)

S (16,64) (10−6,0.6,128) (16,128,1,16) (128,2,64,3) (0.5,64,3) (64,0.5,0.1,8,4)

SH (8,16) (0.01,0.3,0.5) (0.5,64,1,1) (256,64,1,6) (32,64,20) (4,128,0.1,0.5,5)

SP (4,2) (10−5,0.2,1) (2,2,10−6,2) (16,0.5,2,10) (2,2,10) (4,128,0.1,0.5,5)

V (8,16) (10−6,0.1,2) (4,8,10−6,1) (256,1,2,20) (2,1,3) (2,32,0.01,1,3)

W (4,4) (10−5,0.3,8) (16,4,10−6,4) (256,1,8,10) (64,8,20) (0.5,64,10−6,4,6)

WA (16,256) (10−5,0.2,64) (4,256,10−6,8) (16,256,16,5) (0.5,256,4) (16,256,10−5,16,5)

4268 F. Xie and Y. Xu



Table 4 Average rank on classification accuracy of six algorithms

Datasets TSVM Iν-TBSVM S-TSVM KNN-STSVM KNN-LSTSVM RKNN-STSVM

A 6 4 5 3 1.5 1.5

B 6 3 3 3 5 1

B1 6 3 5 2 4 1

B2 6 3.5 3.5 3.5 3.5 1

B3 6 4.5 2.5 2.5 4.5 1

BS 4 5 3 2 6 1

BU 5 6 3.5 2 3.5 1

D 5.5 3 1 2 5.5 4

E 6 5 3 3 3 1

F 4 6 4 2 4 1

H 4 2.5 1 6 5 2.5

HA 6 4 5 2.5 2.5 1

HE 5 6 3 3 1 3

I 6 2 3 5 4 1

IR 3.5 3.5 3.5 3.5 3.5 3.5

L 6 4 5 1 3 2

LD 6 4 3 2 5 1

M 5.5 1 5.5 3 4 2

P 6 4.5 4.5 1.5 1.5 3

PA 6 5 4 2 3 1

PR 3.5 3.5 3.5 3.5 3.5 3.5

S 5 3 2 4 6 1

SH 6 2 3 4 5 1

SP 4 6 3 2 5 1

V 5.5 5.5 3.5 2 3.5 1

W 6 5 3 2 4 1

WA 6 2 5 2 4 2

Average rank 5.35 3.94 3.48 2.74 3.85 1.63

Since the value of FF is much larger than the critical
value, there is a significant difference between the six
algorithms. Note that, the average rank of RKNN-STSVM
is far lower than the remaining algorithms. It means
that our RKNN-STSVM is more valid than the other five
algorithms.

4.4 Influence of parameter k

To investigate the influence of parameter k, we conduct
experiments on twenty datasets from former twenty-seven
datasets. The value of parameter k is chosen from the set
{3, 4, 5, 6, 10, 20}.

Table 5 shows that the accuracy of our proposed RKNN-
STSVM is closely related to the parameter of k, this
phenomenon is more pronounced in dataset DBworld e-
mail. It can be noticed that when k is gradually increased,
the accuracy of DBworld e-mail is also increased. And a too

large or too small value of k will both reduce the prediction
accuracy. Therefore, an appropriate parameter k is very
important for our model.

4.5 Image recognition datasets

We conduct experiments on Caltech image datasets,
including the Caltech 101 [45] and the Caltech 256 datasets
[46]. Caltech 101 dataset contains 102 categories, about 40
to 800 images per category. The size of each image is about
300 × 200 pixels. And the Caltech 256 dataset has 256
categories of images and at least 80 images per category. In
addition, the Caltech 256 dataset has a cluttered class and
the clutter category can be seen as noises or backgrounds. In
our experiments, we choose Emu, Pigeon in Caltech 101 and
Bonsai-101, Cactus in Caltech 256. We show some image
samples in Fig. 3. Every row of image samples come from
the same class.
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Table 5 Performance comparisons of RKNN-STSVM with different parameter k on twenty datasets. Bold type shows the best result for each
dataset

k 3 4 5 6 10 20

Datasets Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Australian 87.39 ± 3.31 86.95 ± 2.95 86.23 ± 3.10 86.23 ± 3.61 84.62 ± 5.04 81.57 ± 6.40

0.1627 0.1661 0.1578 0.1580 0.1557 0.1583

BCI-1a 90.34 ± 4.08 88.48 ± 3.89 88.11 ± 4.26 87.36 ± 4.53 87.74 ± 4.71 88.11 ± 4.42

0.2861 0.1894 0.1980 0.1803 0.1828 0.1953

Breast Cancer2 96.14 ± 2.26 95.79 ± 2.44 96.49 ± 2.00 96.14 ± 2.33 95.61 ± 2.93 94.91 ± 3.25

0.1797 0.0936 0.0964 0.0971 0.0953 0.0968

Breast Cancer3 96.49 ± 3.04 96.49 ± 2.71 96.79 ± 2.59 97.66 ± 1.62 96.93 ± 1.81 95.03 ± 2.93

0.1421 0.1356 0.1343 0.1331 0.1334 0.1326

Balance Scale 98.80 ± 1.02 98.96 ± 0.85 98.10 ± 1.60 97.92 ± 1.80 97.92 ± 1.80 96.90 ± 2.69

0.1089 0.1160 0.1121 0.1055 0.1050 0.1095

BUPA 73.04 ± 2.84 74.78 ± 3.85 73.91 ± 4.40 73.62 ± 3.48 72.75 ± 3.48 71.88 ± 3.62

0.0495 0.0540 0.0549 0.0560 0.0502 0.0558

DBworld e-mail 67.18 ± 7.50 70.38 ± 5.38 70.38 ± 5.38 75.00 ± 10.18 78.08 ± 9.07 82.69 ± 10.46

0.0396 0.0400 0.0399 0.0376 0.0407 0.0379

Echocardiogram 86.22 ± 4.02 87.82 ± 4.40 93.26 ± 4.26 89.26 ± 5.32 89.26 ± 3.93 88.62 ± 5.35

0.0258 0.0246 0.0266 0.0257 0.0256 0.0236

Haberman 77.79 ± 2.08 75.50 ± 3.66 74.52 ± 2.79 74.52 ± 2.79 75.82 ± 2.77 75.82 ± 2.35

0.0445 0.0502 0.0474 0.0475 0.0480 0.0485

Heart 83.70 ± 3.95 85.93 ± 3.01 85.19 ± 2.62 84.44 ± 2.22 83.33 ± 2.62 83.70 ± 2.46

0.0388 0.0433 0.0440 0.0378 0.0395 0.0400

Ionosphere 95.73 ± 2.39 95.73 ± 2.39 95.73 ± 2.39 95.44 ± 1.90 94.87 ± 2.14 96.30 ± 2.14

0.0500 0.0537 0.0545 0.0561 0.0549 0.0540

LSVT 89.00 ± 5.71 87.50 ± 7.45 88.17 ± 7.20 85.83 ± 8.58 86.67 ± 8.90 85.67 ± 11.94

0.0247 0.0274 0.0275 0.0278 0.0267 0.0267

Monks 88.51 ± 14.08 88.51 ± 14.08 88.96 ± 13.52 88.96 ± 13.52 90.36 ± 11.98 91.75 ± 10.94

0.0681 0.0675 0.0760 0.0706 0.0699 0.0693

Pima 65.12 ± 5.78 65.12 ± 5.78 65.12 ± 5.78 65.12 ± 5.78 69.47 ± 6.23 78.49 ± 3.03

0.2110 0.2381 0.2386 0.2081 0.2117 0.2202

Parkinson 87.33 ± 8.41 84.86 ± 9.46 86.28 ± 8.24 85.75 ± 7.57 83.06 ± 6.34 81.54 ± 8.49

0.0287 0.0276 0.0302 0.0289 0.0314 0.0306

Planning Relax 69.80 ± 3.30 70.35 ± 2.36 71.46 ± 1.52 70.91 ± 1.64 69.82 ± 2.37 68.71 ± 2.88

0.0290 0.0310 0.0312 0.0367 0.0308 0.0309

Sonar 69.92 ± 11.11 72.75 ± 10.74 70.83 ± 8.68 70.25 ± 10.20 70.67 ± 10.88 65.67 ± 9.00

0.0302 0.0381 0.0349 0.0363 0.0293 0.0321

Spect Heart 81.30 ± 3.20 82.43 ± 3.28 83.56 ± 4.48 82.07 ± 3.79 80.56 ± 3.47 80.56 ± 2.79

0.0438 0.0499 0.0445 0.0409 0.0399 0.0446

Vertebral 84.84 ± 11.66 83.87 ± 12.20 84.19 ± 12.88 83.87 ± 13.49 82.26 ± 14.21 82.26 ± 13.80

0.0483 0.0502 0.0490 0.0483 0.0504 0.0524

WPBC 77.95 ± 6.61 82.93 ± 3.74 81.94 ± 4.49 83.92 ± 2.85 81.83 ± 4.00 81.83 ± 1.68

0.0323 0.0323 0.0307 0.0300 0.0303 0.0339

Due to the lack of samples in the majority class in the
Caltech 101 dataset, we used no more than 50 samples
from each category. The Caltech 256 dataset provides more
categories and images and we used no more than 80 samples

from each category. As for the image feature extraction, the
popular dense-sift algorithm is used to extract features form
those images. Then, we quantize those features into 1000
visual-words with bag-of-words models. We also reduce
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Fig. 3 Image samples in Caltech datasets

the feature vectors to appropriate dimensions with PCA, to
retain 97% of the variance. Thus, we can use the kernel trick
to improve classification accuracy.

The experimental results on the Caltech datasets are
shown in Table 6. The experimental process and parameter
selection are the same as the previous benchmark exper-
iment. From the perspesctive of prediction accuracy in

Table 6, compared with other five algorithms, we can learn
that our RKNN-STSVM yields the highest testing accuracy
of most datasets. In addition, our proposed RKNN-STSVM
improves the classification accuracy of KNN-STSVM and
ensures that the computational time is not slower than KNN-
STSVM. It can be noticed that the TSVM yields the low-
est testing accuracy and KNN-LSTSVM yields the lowest

Table 6 Performance comparisons of six algorithms on four image datasets. Bold type shows the best result for each dataset

Datasets TSVM Iν-TBSVM S-TSVM KNN-STSVM KNN-LSTSVM RKNN-STSVM

Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Emu 72.00 ± 9.79 73.00 ± 9.80 83.00 ± 9.27 79.00 ± 7.35 72.00 ± 7.48 82.00 ± 6.78

(100 × 363) 0.0140 0.0190 0.0411 0.0312 0.0034 0.0271

Pigeon 62.11 ± 3.94 65.26 ± 5.37 69.47 ± 7.74 66.32 ± 9.18 64.21 ± 9.06 69.47 ± 7.74

(95 × 363) 0.0161 0.0166 0.0432 0.0288 0.0030 0.0270

Bonsai-101 78.75 ± 5.38 80.00 ± 5.08 82.50 ± 3.19 83.75 ± 4.59 73.75 ± 8.29 84.38 ± 3.42

(160 × 392) 0.0228 0.0303 0.0707 0.0447 0.0076 0.0425

Cactus 80.00 ± 3.19 80.63 ± 5.38 80.63 ± 5.00 81.88 ± 3.06 80.00 ± 2.50 81.88 ± 3.64

(160 × 392) 0.0338 0.0166 0.0696 0.0592 0.0076 0.0442
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Table 7 The optimal parameters of six algorithms used in the experiments

Dataset TSVM Iν-TBSVM S-TSVM KNN-STSVM KNN-LSTSVM RKNN-STSVM

(c1, γ ) (r1, ν1, γ ) (c1, c2, c3, γ ) (c1, c2, γ, k) (c1, γ, k) (c1, c2, c3, γ, k)

Emu (1,16) (10−6,0.1,16) (1,32,10−4,16) (1,0.5,4,10) (0.5,2,4) (0.5,256,10−3,16,10)

Pigeon (1,8) (10−6,0.2,128) (0.5,0.5,0.1,4) (256,4,16,20) (0.5,4,3) (0.5,128,0.1,4,10)

Bonsai-101 (0.5,2) (10−2,0.7,2) (0.5,4,10−3,8) (0.5,32,2,20) (0.5,256,20) (0.5,128,1,2,20)

Cactus (0.5,4) (10−4,0.4,16) (0.5,16,10−6,2) (16,8,32,10) (1,32,20) (1,4,0.1,4,20)

computational cost. At last, our proposed RKNN-STSVM
performs better than TSVM, Iν-TBSVM, KNN-LSTSVM
on four image datasets. The optimal parameters of six
algorithms used in the experiments are shown in Table 7.

5 The DCDM for accelerating RKNN-STSVM

5.1 The DCDM algorithm

Although Matlab’s built-in algorithm “Quadprog” can give
a generally precise solution, the consumption of time is
expensive for large-scale problems. In this section, to further
improve the solving efficiency, a novel fast algorithm dual
coordinate descent method (DCDM) [38] is embedded into
the learning process of our RKNN-STSVM to accelerate
the learning speed. DCDM is a kind of coordinate descent
method since it aims to decompose an optimization problem
into a series of single-variable sub-problems. That is,
in each iteration, DCDM only updates one variable. By
solving these sub-problems efficiently, we can realize the
optimization process in less time. The procedure to embed
DCDM into our RKNN-STSVM is shown below.

One of the dual QPP of the RKNN-STSVM is as follows
[38]:

min
α

f (α) = 1

2
αT Qα − eT α (51)

s.t. 0 � α � C.

The optimization process begins with an initial point
α0 ∈ Rn. The process from αk to αk+1 is referred as an outer
iteration. In each outer iteration, we have n inner iterations,
so that sequentially α1, α2, . . . , αn are updated. Each outer
iteration generates vectors αk,i ∈ Rn, i = 1, 2, . . . , n + 1,
such that αk,1 = αk, αk,n+1 = αk+1, and

αk,i = [αk+1
1 , . . . , αk+1

i−1 , αk
i , . . . , α

k
l ]T , ∀i = 2, . . . , n.

For updating αk,i to αk,i+1, we solve the following one-
variable sub-problem:

min
d

f (αk,i + dei) (52)

s.t. 0 � αk
i � Ci,

where ei = [0, . . . , 0, 1, 0, . . . , 0]T . The objective function
of (51) is a simple quadratic function of d:

f (αk,i + dei) = 1

2
Qiid

2 + �if (αk,i)d + constant, (53)

where �if is the ith component of the gradient �f . So (51)
has an optimum at d = 0 (i.e., no need to update αi) if and
only if

�P
i f (αk,i) = 0, (54)

where �P f (α) means the projected gradient

�P
i f (α) =

⎧⎪⎨
⎪⎩
�if (α), if 0 < αi < Ci,

min(0,�if (α)), if αi = 0,

max(0,�if (α)), if αi = Ci .

(55)

If (54) holds, we move to the index i+1 without updating
α

k,i
i . Otherwise, we must find the optimal solution of (51).

If Qii > 0, the solution is:

α
k,i+1
i = min(max(α

k,i
i − �if (αk,i)

Qii

, 0), Ci).

The stopping criterion we set for DCDM is ‖αk+1 −
αk‖ < ε (ε is a sufficient small real number) or maximum
iterations reaching 1000. A flowchart of DCDM is given in
Algorithm 1.
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Table 8 Performance comparisons of RKNN-STSVM and DCDM+RKNN-STSVM on twenty-five datasets

Datasets RKNN-STSVM DCDM+RKNN-STSVM Speedup

Accuracy(%) Time(s) Accuracy(%) Time(s)

Australian 87.39 ± 3.31 0.1467 87.39 ± 3.31 0.1110 1.32

BCI-1a 90.34 ± 4.08 0.2011 90.34 ± 4.08 0.1708 1.18

Breast Cancer1 83.01 ± 3.77 0.0251 81.96 ± 3.25 0.0153 1.64

Breast Cancer2 98.42 ± 0.66 0.0946 96.14 ± 2.33 0.0674 1.40

Breast Cancer3 97.66 ± 1.62 0.1324 97.66 ± 1.62 0.1198 1.11

Balance Scale 98.96 ± 0.85 0.0893 98.96 ± 0.85 0.0875 1.02

BUPA 74.78 ± 3.85 0.0401 74.78 ± 3.85 0.0274 1.46

DBworld e-mail 82.69 ± 10.46 0.0387 82.69 ± 10.46 0.0209 1.85

Echocardiogram 93.26 ± 4.26 0.0211 93.26 ± 4.26 0.0114 1.85

Fertility 90.35 ± 4.26 0.0276 90.35 ± 4.26 0.0061 4.52

Hepatitis 88.79 ± 4.40 0.0317 88.79 ± 4.40 0.0055 5.76

Haberman 77.79 ± 2.07 0.0501 77.79 ± 2.07 0.0258 1.94

Heart 85.93 ± 3.01 0.0377 85.93 ± 3.01 0.0209 1.80

Ionosphere 96.30 ± 2.14 0.0446 96.30 ± 2.14 0.0289 1.54

IRIS 100.00 ± 0.00 0.0266 100.00 ± 0.00 0.0081 3.28

LSVT 89.00 ± 5.71 0.0223 89.00 ± 5.71 0.0084 2.65

Liver Disorder 75.07 ± 2.96 0.0541 75.07 ± 2.96 0.0247 2.19

Monks 91.75 ± 10.94 0.0587 100.00 ± 0.00 0.0563 1.04

Pima 78.49 ± 3.03 0.1897 78.49 ± 3.03 0.1714 1.11

Parkinson 87.33 ± 8.41 0.0232 87.33 ± 8.41 0.0131 1.77

Planning Relax 71.46 ± 1.52 0.0268 71.46 ± 1.52 0.0111 2.41

Sonar 72.75 ± 10.74 0.0384 72.75 ± 10.74 0.0186 2.06

Spect Heart 83.56 ± 4.48 0.0384 83.56 ± 4.48 0.0195 1.97

Vertebra 84.84 ± 11.66 0.0365 84.84 ± 11.66 0.0258 1.41

WPBC 83.92 ± 2.85 0.0244 82.93 ± 3.37 0.0123 1.98

5.2 Experiments of the DCDM algorithm
for RKNN-STSVM

Now we introduce this DCDM algorithm into the dual
QPPs of our RKNN-STSVM, which have been given by
(44) and (46). Similarly, compare models (44) and (51),
the matrix Q in (51) is substituted by Gφ(HT

φ DHφ +
c2J

φ
+ + c3I )−1GT

φ . Notably, we have known that the F =
diag(f

(2)
1 , f

(2)
2 , . . . , f

(2)
l2

) in our QPP is a diagonal matrix

and f
(2)
j is either 0 or 1. That is to say, the component

of α corresponding to 0 in F has no contribution to the
optimization problem (44), so it can be ignored during
the iteration of DCDM, which will further improve the
computing speed.

In this experiment, twenty-five datasets are selected to
validate the significance of applying this DCDM algorithm
to speed up the operation. This initial value of α is a random
vector between 0 and c1, and the stopping condition in the

DCDM algorithm is chosen as [38]

‖αk+1 − αk‖ < ε, or maximum iterations reaching 1000.

We set ε = 10−2 in the experiments. Averages and standard
deviations of test accuracies (in %) and computation time
derived by RKNN-STSVM and RKNN-STSVM solved
with DCDM are shown in Table 8. The last column shows
the speedup of DCDM algorithm. These results indicate
that DCDM algorithm gives similar performance on testing
accuracy with the Matlab built-in algorithm, while it makes
our RKNN-STSVM obtain a faster learning speed, the
largest speedup almost reaches to 5.76 times.

6 Conclusion

In this paper, we present an improved version of KNN-
STSVM. We reformulate the primal problems of RKNN-
STSVM by adding regularization terms in the objective
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functions to utilize the structural risk minimization principle
and to remove singularity in the solution. Therefore,
our RKNN-STSVM avoids the over-fitting problem to a
certain degree and yields higher testing accuracy. Numerical
experiments on twenty-seven benchmark datasets and image
recognition datasets demonstrate the feasibility and validity
of our RKNN-STSVM. The DCDM fast algorithm is further
employed to speed up our RKNN-STSVM. The selection of
an appropriate parameter k can greatly improve the testing
accuracy of our algorithms. It should be pointed out that
there are several parameters in our RKNN-STSVM, so it
is meaningful to address the parameter selection in future
work.
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