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Abstract
In this paper, human facial emotions are detected through normalized minimal feature vectors using semi-supervised Twin
Support Vector Machine (TWSVM) learning. In this study, face detection and tracking are carried out using the Constrained
Local Model (CLM), which has 66 entire feature vectors. Based on Facial Animation Parameter’s (FAPs) definition, entire
feature vectors are those things that visibly affect human emotion. This paper proposes the 13 minimal feature vectors that
have high variance among the entire feature vectors are sufficient to identify the six basic emotions. Using the Max &
Min and Z-normalization technique, two types of normalized minimal feature vectors are formed. The novelty of this study
is methodological in that the normalized data of minimal feature vectors fed as input to the semi-supervised multi-class
TWSVM classifier to classify the human emotions is a new contribution. The macro facial expression datasets are used by
a standard database and several real-time datasets. 10-fold and hold out cross-validation is applied with the cross-database
(combining standard and real-time). In the experimental result, using ‘One vs One’ and ‘One vs All’ multi-class techniques
with 3 kernel functions produce a 36 trained model of each emotion and their validation parameters are calculated. The
overall accuracy achieved for 10-fold cross-validation is 93.42 ± 3.25% and hold out cross-validation is 92.05±3.79%.
The overall performance (Precision, Recall, F1-score, Error rate and Computation Time) of the proposed model was also
calculated. The performance of the proposed model and existing methods were compared and results indicate them to be
more reliable than existing models.

Keywords Semi-supervised learning · Minimal feature vectors · Twin support vector machines ·
Facial animation parameters · Human-computer interaction

1 Introduction

For the past three decades several researchers have displayed
more interest in human emotion recognition for Human
Computer Interaction (HCI), affecting computing, etc. In [1,
2] and [3] research determined the facial emotion analysis
criteria using the still images that had a high recognition
rate, but not in video sequences. The work carried out
in [4] and [5] established the automatic facial emotion
recognition system (FERs) from facial video sequences,
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which analyse facial emotion through detection and tracking
of feature points. From a literature review in [6] and [7] it
is suggested that facial emotion is defined by the maximum
number of facial feature points with Action Units (AUs)
[8]. A maximum feature point for facial emotion creates
complex data in computation with less accuracy [6–9]. To
overcome this problem, selecting the minimal feature points
is essential. Paul Ekman [10] used the Facial Action Coding
System (FACS), which defines only muscular movement of
a facial feature. FACS also defines the basic six emotions
on a human face. However, FACS uses a combination of
additional facial features (i.e. the eyebrow, jaw and mouth
region, etc.) to define human facial emotions. In FACS, the
facial emotion recognition system has more data complexity
and high computation time using 40 Action Units (AUs).
In this case, Facial Animation Parameters (FAPs) define
human facial emotions through the facial feature point
movements. Facial Animation Parameters (FAPs) [11]
defines facial emotion of action units within 10 groups
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using entire feature points. FAP also defines facial emotions
with minimal facial actions. In line with FAPs, this paper
concentrates only on minimal feature vectors of human
emotion. In [12], the geometric deformable model (CLM)
has specific face detection and tracking mechanisms when
compared to different face modelling, which is considered
state of the art.

From the literature survey [1–3] and [13–21] and [22]
the FER system developed by various supervised learning
systems achieved good accuracy. However, the robust
and automatic facial emotion recognition system is not
suitable above those FERs. Therefore, semi supervised
learning was chosen for FERs because it is better than
supervised learning of FERs. From the survey of [23–
25] and [26] the semi-supervised Twin Support Vector
Machines (TWSVMs) has a high performance compared
to the other classifier models. From the [27, 28] and [29]
other semi-supervised learning of facial emotion has less
accuracy and moderate performance. In this study, multi-
class TWSVMs was used to detect human motions.

The purpose of this study is to detect human emotions
using semi-supervised learning with minimal facial feature
vectors from videos. Four essential steps are involved
in this emotion recognition system. First, Constrained
Local Method (CLM) is used for face detection, tracking,
and extracting the feature points. Second, the minimal
feature vectors are formed based on FAPs of AUs. Third,
using normalization, minimal feature vectors are obtained.
Finally, the normalized minimal feature vectors are fed as
input to the TWSVMs for facial emotion classification.
Section 2 describes the methods involving facial emotion

systems. Section 3 describes the experimental analysis and
validation. Section 4 outlines the experimental results and
discussion of the proposed system. Section 5 summarises
the conclusion and recommendations for future studies.

2 Facial emotion recognition system

The architecture of the robust facial emotion recognition
system is shown in Fig. 1 and contains the following five
steps:

2.1 Facial detection and tracking

The non-rigid shape of the face is employed by the Point
Distribution Model (PDM). In PDM, 2D vertex meshes
is symbolized as dimensionality shaped vectors. PDM is
applied through Principal Component Analysis (PCA) for
acquiring aligned non-rigid face shapes. Before PCA, the
Procrustes analysis is applied for removing the parameters
s, R, tx, ty of aligned mesh shapes. The 2D PDM is
linearly deformed by the variation of non-rigid shapes and
is combined with the transformation, placing the shape in an
image frame as shown in (1).

xi = sR(x̃i ) + Ttx,ty ⇐ Ts,R,tx ,ty (x̃i ) (1)

Where s, R, tx, ty denotes as scale, rotation, and translation
respectively. Where xi denotes ith landmark of 2D PDM’s
location, xi denotes as mean shape of 2D PDM and pose
parameters of PDM represent as p= (s,R,t,q). In CLM
fitting, applied Subspace Constrained Mean Shift (SCMS)

Fig. 1 Facial emotion recognition system architecture
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[30] is applied to combine the good local (patch) search
and optimised 2D PDM landmark fitting. In an exhaustive
local search, using linear logistic regression [31] gives the
response maps for the ith landmark position in image frame,
which is given in (2).

p(li = aligned|I, x) = 1

1 + exp{αCi(I, x) + β} (2)

Where li is a discrete random variable that denotes the ith

number of iterations, it aligns to correct the PDM landmark
value. I denotes the 2D location in local images (x). β is
the regression coefficient and denotes as to correct the 2D
landmark of local maps. Ci is the linear classifier of a local
detector which is defined in (3) with xm

i=1 ∈ Ωxi
(image

patch) and bi is shape vector parameters.

Ci(I(xi )) = wT
i [I(xi ); ....; I(xm)] + bi (3)

The optimized probabilistic function of local response
image for each landmark detection is given in (4). Once the
response maps of each landmark of local search have been
found that the probabilistic function is maximized.

p
({li = aligned}ni=1 |p) =

n∏

i=1

p(li = aligned|) (4)

With respect to p. PDM parameters, xi is parametrized
of response images. The active shape model is defined as
a summation of weighted least square difference between
the maximum response map and peak response of PDM
coordinates, which is given in (5).

Q(p) =
n∑

i=1

wi‖xi − μi‖2 (5)

A first order Taylor expansion is applied in (4) for minimis-
ing the active shape model, which leads to convergence of
the PDM landmark. This is defined in (6).

xi ≈ xci + JiΔp (6)

And solving the parameter update is defined in (7).

Δp =
(

n∑

i=1

wiJT
i Ji

)−1 (
n∑

i=1

wiJT
i (μi − xc

i )

)

(7)

The current parameter is applied in p ← p + Δp

to estimate the pose and shape. Here Jacobian is J =
[J1; · · · ; Jn] and current shape parameter update is x =
[xc

1; · · · ; xc
n] . For independent maximisation and non-

parametric representation of the Kernel Density Estimate
(KDE), [32] is applied for each PDM landmark location in

(a) Enitre Feature vectors (b) Minimal Feature vectors

Fig. 2 Entire and minimal feature vectors of six facial emotions movements
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Table 1 Entire feature vectors
by FAPs Emotion Group(Grp) no affected No of fpts affected Total no of fpts affected

Surprise 2, 4, 8 0–16, 17-26, 48–65 45

Happy 2, 4, 8 17–26, 48–65 28

Disgust 2, 3, 4, 9 17–26, 31-35, 36–47, 48-65 46

Fear 2, 4, 8 0–16, 17–26, 48–65 45

Anger 2, 3, 4, 8 17–26, 36-47, 48–65 40

Sad 2, 4, 8 17–26, 48–65 28

the Mean-Shift Algorithm (MSA) [33]. This consists of a
fixed point iteration and is defined in (8). Equation (8) is
applied iteratively until it reaches convergence Δp

xτ+1
i ←

∑

μiεΨxc
i

αi
μi

N
(
x(τ )
i ; μi, σ

2I
)

∑
yεΨxc

i

αyi N
(
x(τ )
i ; y, σ 2I

)μi (8)

To convert the shape constrained to optimisation, which is
defined in (9), MSA uses a two-step strategy: i) compute
the mean-shift update for each 2D PDM landmark, ii)
constrain the mean-shifted landmark to remain in the PDM
parametrization using a least-square fit. The Gauss Newton
update for least square PDM constraint is also defined in (9).

Q(p) =
n∑

i=1

‖xi − x(τ+1)
i ‖2 (9)

The image that has a high probabilistic function of local
response obtained from (4) is given as an input to the EM
algorithm to find the difference between the peak responses.
The Q-function of M-step is defined in (10), and is formed
using the linear shape model in (6).

Δp = J†
[
x(τ+1)
1 − xc

1; · · · · · · ; x(τ+1)
n − xc

n

]
(10)

Where J † denotes the pseudo-inverse of J and x
(τ+1)
i , it

denotes the ith landmark of mean shift update parameters,
which is given in (8). The kernel width relaxation and local
optima is addressed in the subspace constrained mean shift
(SCMS)[30].

2.2 Feature vectors displacement

The geometric deformable model (CLM) is carried out
to perform face detection, tracking and extraction from
video. The feature vectors displacement (di,j ) is defined as
the facial feature point movement between the consecutive
frame by frame sequence. (di,j ) is the difference between
the grid node displacements of the first to ith node coordi-
nates. The feature vectors displacement is given in (11).

di,j =
[

Δxi,j

Δyi,j

]

=
F,N∑

i,j=1

⎡

⎢⎢
⎢
⎣

a11 − a12 a12 − a13 · · · a1,j+1 − a1,j+2
a21 − a22 a22 − a23 · · · a2,j+1 − a2,j+2
...

... · · · ...
ai+1,1 − ai+1,2 · · · · · · am,n − am,n+1

⎤

⎥⎥
⎥
⎦

(11)

i = 1, . . . , F , j = 1, . . . , N , where Δxi,j , Δyi,j are
x, y axis coordinates of grid node displacement of the ith

node in the j th frame, respectively. F is the number of grid
node (F = 66 no. of nodes of CLM) and N is the number
of extracted facial frames from video. The grid deformation
feature vector displacement gj consists of feature vector
displacement of the every geometric grid node di,j , gj

which is given in (12).

gj = [
d1,j , d2,j , · · · · · · , dE,j

]T (12)

2.3 Minimal feature vectors displacement

The pictorial representations of feature points that are
affected by different emotions are shown in Fig. 2. The
entire feature vectors and minimal feature vectors of the six
basic emotions are shown in Fig. 2a and b, respectively.

Table 2 Minimal feature vectors

Emotion Grp no affd No of fpts affd Tot.no of fpts affd minimal feature variance range other fpts diff variance range

Surprise 4,8 (20, 23) & (56–58) 5 ebw (5.5–61.9) & olp (3.6–53.9) (20–55.2) & (28.4–43.9)

Happy 8 48 & 54 2 clp(1.9–9.7) (1.5–5.6)

Disgust 3 40, 41, 46 & 47 4 eld (1.9–18.6) (15.5–16.4)

Fear 4,8 (20, 23) & (56–58) 5 ebw (1.2–18.5) & olp (0.2–11.9) (11.7–17.8) & (6.2–10.2)

Anger 4 21 & 22 2 ebw (1.4–32) (15.4–29.3)

Sad 2,8 (48, 54 & (56–58)) 5 clp & olp(0.07–3.5) (0.04–2.26)
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In [11], [34] describe the groups, number of FAPs, and
textual description of emotion, which are affected by the
six basic emotions. Based on the definition of FAPs, which
is illustrated in Tables 1 and 2, it provides the information
regarding the number of feature points and group numbers
that are affected by the six basic emotions. Table 1 provides
information about the entire set of feature points involved
in six emotions. Insight of any emotion is given as onset,
where staring points of emotion, apex, where emotion
reaches peak position, and offset, where emotion returns to

the neutral state. The entire set of feature vectors of any
emotion is the displacement between the onset and offset
phase. From the literature [6, 9] and [35], the entire vectors
displacement has a high data redundancy, less accuracy, and
low data computation. To increase the accuracy and reduce
computation time, the minimal feature vectors displacement
is chosen. Any emotion that reaches the apex phase from
onset phase is defined as the peak response. The minimal
feature vectors displacements are chosen based on the
high variance values among feature points during the peak

Table 3 The hold-out validation result of Surprise eyebrow in both multi-classifier and normalization

Norm One vs One Kernel Acc(%) Pre Rec F1-sco Err.rte Comp.Time (sec)

One vs One Max & Min Sur vs Hap Lin 91.87 0.71 0.67 0.69 0.32 7.73

Sur vs Ang Lin 89.33 0.57 0.82 0.68 0.17 1.95

Sur vs Dis Lin 91.87 0.68 0.73 0.71 0.26 2.09

Sur vs Fea Lin 91.74 0.82 0.49 0.62 0.50 1.84

Sur vs Sad Lin 91.74 0.71 0.65 0.68 0.34 1.87

Sur vs Hap Poly 91.61 0.70 0.66 0.68 0.33 2.95

Sur vs Ang Poly 90.34 0.61 0.75 0.68 0.24 1.97

Sur vs Dis Poly 91.36 0.68 0.67 0.68 0.32 2.11

Sur vs Fea Poly 91.49 0.68 0.70 0.69 0.29 1.81

Sur vs Sad Poly 91.74 0.73 0.60 0.69 0.39 2.37

Sur vs Hap RBF 91.87 0.72 0.65 0.67 0.34 3.12

Sur vs Ang RBF 89.96 0.59 0.82 0.69 0.17 2.21

Sur vs Dis RBF 90.47 0.62 0.74 0.69 0.25 2.31

Sur vs Fea RBF 91.61 0.70 0.65 0.68 0.34 2.37

Sur vs Sad RBF 91.61 0.71 0.64 0.68 0.35 2.26

Z-norm Sur vs Hap Lin 91.23 0.67 0.69 0.68 0.30 2.17

Sur vs Ang Lin 85.26 0.47 0.89 0.62 0.10 2.24

Sur vs Dis Lin 86.53 0.50 0.86 0.63 0.14 2.05

Sur vs Fea Lin 91.49 0.72 0.60 0.66 0.39 1.83

Sur vs Sad Lin 90.34 0.62 0.74 0.68 0.25 1.71

Sur vs Hap Poly 88.44 0.54 0.83 0.66 0.16 2.80

Sur vs Ang Poly 77.64 0.37 0.95 0.54 0.04 2.09

Sur vs Dis Poly 89.33 0.57 0.82 0.68 0.17 2.19

Sur vs Fea Poly 80.05 0.39 0.84 0.53 0.15 2.22

Sur vs Sad Poly 87.04 0.51 0.85 0.64 0.15 2.05

Sur vs Hap RBF 88.18 0.54 0.82 0.65 0.17 2.81

Sur vs Ang RBF 60.36 0.25 0.99 0.4 0.01 2.23

Sur vs Dis RBF 84.63 0.46 0.88 0.61 0.11 2.23

Sur vs Fea RBF 91.49 0.74 0.57 0.65 0.43 2.77

Sur vs Sad RBF 87.8 0.53 0.80 0.64 0.19 2.50

One vs All Max & Min Sur vs All Lin 91.86 0.77 0.56 0.65 0.43 2.29

Sur vs All Poly 91.48 0.73 0.58 0.65 0.41 2.22

Sur vs All RBF 91.74 0.80 0.51 0.63 0.48 2.72

Z-norm Sur vs All Lin 91.61 0.71 0.64 0.68 0.35 2.08

Sur vs All Poly 89.58 0.58 0.78 0.67 0.21 2.61

Sur vs All RBF* 95.29 0.83 0.82 0.83 0.26 1.73
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response of an emotion. In Table 2, the high variance
range of minimal feature is calculated and tabulated. The
major feature movement for six facial emotions are eyebrow
(ebw), outer lip (olp), eyelids (eld) and corner lip (clp).
Table 2, shows the differences of variance range of the other
than minimal feature points that are also tabulated.

Based on the definition of FAPs and the facts stated
above, surprise emotion involves 45 entire feature points. In

those 45 feature points, 5 feature points have a high variance
compared to the remaining 40 feature points. Similarly, for
all the emotions, the minimal feature vectors points are
determined and are tabulated in Table 2. Table 2 provides
details of the minimal feature points of six emotions that
are affected. The minimal feature points from eyebrow,
mouth, and eyelids are observed. To obtain effective
performance and improve accuracy, less data redundancy

Table 4 The hold-out validation result of Surprise mouth in both multi-classifier and normalization

Norm One vs One Kernel Acc(%) Pre Rec F1-sco Err.rte Comp.Time (sec)

One vs One Max & Min Sur vs Hap Lin 90.1 0.91 0.3 0.45 0.7 2.46

Sur vs Ang Lin 95.2 0.95 0.69 0.8 0.31 2.42

Sur vs Dis Lin 90.7 0.85 0.39 0.53 0.61 2.62

Sur vs Fea Lin 91 0.78 0.47 0.59 0.53 2.31

Sur vs Sad Lin 91 0.76 0.49 0.6 0.51 2.14

Sur vs Hap Poly 90.5 0.73 0.48 0.58 0.52 2.61

Sur vs Ang Poly 90.3 0.71 0.5 0.59 0.5 2.56

Sur vs Dis Poly 90.9 0.78 0.46 0.58 0.54 2.48

Sur vs Fea Poly 91 0.67 0.67 0.67 0.33 2.35

Sur vs Sad Poly 90.5 0.72 0.5 0.59 0.5 2.52

Sur vs Hap RBF 90.3 0.9 0.33 0.48 0.67 3.022

Sur vs Ang RBF 90.9 0.76 0.48 0.59 0.52 2.89

Sur vs Dis RBF 90.9 0.76 0.48 0.59 0.52 3.04

Sur vs Fea RBF 91.1 0.68 0.67 0.67 0.33 3.98

Sur vs Sad RBF 90.7 0.74 0.5 0.6 0.5 2.73

Z-norm Sur vs Hap Lin 90.8 0.74 0.48 0.58 0.52 2.08

Sur vs Ang Lin 89.2 0.96 0.22 0.35 0.78 1.93

Sur vs Dis Lin 91.4 0.81 0.45 0.58 0.55 2.34

Sur vs Fea Lin 91.1 0.85 0.42 0.57 0.58 2.48

Sur vs Sad Lin 89.9 0.7 0.46 0.56 0.54 2.40

Sur vs Hap Poly 89.4 0.65 0.5 0.56 0.5 2.20

Sur vs Ang Poly 90.5 0.67 0.6 0.63 0.4 2.21

Sur vs Dis Poly 88.8 0.58 0.65 0.61 0.35 3.01

Sur vs Fea Poly 70.5 0.28 0.75 0.41 0.25 2.36

Sur vs Sad Poly 85.1 0.45 0.84 0.59 0.16 2.34

Sur vs Hap RBF 91 0.79 0.46 0.58 0.54 2.49

Sur vs Ang RBF 90.5 0.7 0.54 0.61 0.46 2.71

Sur vs Dis RBF 89.2 0.62 0.53 0.57 0.47 2.56

Sur vs Fea RBF 90.5 0.64 0.68 0.66 0.32 2.46

Sur vs Sad RBF 91 0.7 0.6 0.65 0.4 2.74

One vs All Max & Min Sur vs All Lin 95.10 0.90 0.71 0.8 0.28 2.39

Sur vs All Poly 95.2 0.91 0.72 0.8 0.28 2.86

Sur vs All RBF 95.48 0.90 0.75 0.82 0.25 2.83

Z-norm Sur vs All Lin 90.20 0.76 0.40 0.53 0.59 2.03

Sur vs All Poly 90.3 0.7 0.51 0.59 0.49 2.32

Sur vs All RBF* 96.4 0.93 0.79 0.86 0.20 1.75
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and computation time are selected by the minimal feature
points. From (11) and (12), the minimal feature vectors
displacements are obtained.

2.4 Normalization of feature vectors displacement

For data scaling, normalization is applied on the minimal
feature vectors displacement to increase the feature scaling.
In this paper, Max & Min and Z-normalization are applied

and compared to obtain the feature scaling as defined in
(13). Using normalization, the normalized data of minimal
feature vectors displacement is formed.

Max &Min (−1,1) f(x) = 2

(
x − Max(x)

Max(x) − Min(x)

)
− 1

Z-norm (−1,1) f(x) = x − μ

σ
(13)

Table 5 The hold-out validation result of Happy mouth in both multi-classifier and normalization

Norm One vs One Kernel Acc(%) Pre Rec F1-sco Err.rte Comp.Time (sec)

One vs One Max & Min Hap vs Ang Lin 91.89 0.94 0.75 0.83 0.25 2.49

Hap vs Dis Lin 93.31 0.9 0.85 0.87 0.15 2.08

Hap vs Fea Lin 81.47 0.6 0.92 0.73 0.08 1.88

Hap vs Sad Lin 91.76 0.94 0.74 0.83 0.26 1.93

Hap vs Sur Lin 92.15 0.93 0.77 0.84 0.23 1.97

Hap vs Ang Poly 93.69 0.93 0.83 0.88 0.17 2.88

Hap vs Dis Poly 93.44 0.89 0.86 0.88 0.14 2.11

Hap vs Fea Poly 90.99 0.79 0.91 0.85 0.09 2.08

Hap vs Sad Poly 93.56 0.93 0.83 0.87 0.17 2.11

Hap vs Sur Poly 92.92 0.9 0.83 0.86 0.17 2.12

Hap vs Ang RBF 93.44 0.9 0.85 0.88 0.15 2.50

Hap vs Dis RBF 92.79 0.86 0.88 0.87 0.12 2.10

Hap vs Fea RBF 91.51 0.81 0.91 0.85 0.09 2.20

Hap vs Sad RBF 92.92 0.86 0.89 0.87 0.11 2.17

Hap vs Sur RBF 90.73 0.79 0.9 0.84 0.1 2.02

Z-norm Hap vs Ang Lin 91.89 0.93 0.75 0.83 0.12 2.73

Hap vs Dis Lin 93.31 0.9 0.85 0.87 0.15 1.97

Hap vs Fea Lin 81.08 0.6 0.92 0.73 0.08 2.01

Hap vs Sad Lin 91.89 0.94 0.75 0.83 0.25 1.75

Hap vs Sur Lin 92.02 0.93 0.76 0.84 0.24 1.92

Hap vs Ang Poly 92.79 0.85 0.89 0.87 0.11 2.51

Hap vs Dis Poly 91.25 0.8 0.9 0.85 0.1 2.39

Hap vs Fea Poly 88.93 0.75 0.9 0.82 0.1 1.98

Hap vs Sad Poly 93.32 0.87 0.88 0.88 0.12 1.98

Hap vs Sur Poly 92.79 0.85 0.89 0.87 0.11 3.11

Hap vs Ang RBF 87.8 0.72 0.9 0.8 0.1 2.25

Hap vs Dis RBF 92.54 0.84 0.89 0.87 0.11 1.99

Hap vs Fea RBF 89.58 0.76 0.91 0.83 0.09 2.01

Hap vs Sad RBF 92.41 0.84 0.89 0.86 0.11 2.76

Hap vs Sur RBF 85.84 0.68 0.92 0.78 0.08 2.04

One vs All Max & Min Hap vs All Lin 91.7 0.93 0.74 0.83 0.25 3.93

Hap vs All Poly 93.8 0.93 0.83 0.88 0.17 2.78

Hap vs All RBF 92.4 0.93 0.78 0.85 0.22 2.47

Z-norm Hap vs All Lin 91.89 0.94 0.76 0.84 0.24 2.70

Hap vs All Poly 92.3 0.83 0.9 0.86 0.14 2.71

Hap vs All RBF 95.64 0.93 0.9 0.92 0.09 2.47
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2.5 Facial emotion classifier-bilinear classifier

In this system, the TWSVM classifier is used to classify
the basic six facial emotions. The normalized data of
minimal feature vectors displacement is given as input to
the two classes TWSVM [23, 25] and [26] to classify facial
emotion. Using TWSVM, the two non-parallel hyperplanes
for each class is constructed to solve the quadratic
programming problem. In this case, let gj = {

(xi , yi )
}
;

i = 1, . . . , k; x ∈ �n; yi ∈ {−1, +1} is the training

dataset of normalized minimal feature vectors displacement.
The separating hyperplane of linear data is defined in (14).
Separating the minimal feature vectors displacement gj =
�L in the order of positive and negative class is formed
by the Karush-Kuhn Tucker (K.K.T) conditions, which is
provided in (14).

f(x)+ = xT · w+ + b+ = 0

f(x)− = xT · w− + b− = 0 (14)

Table 6 The hold-out validation result of Fear eyebrow in both multi-classifier and normalization

Norm One vs One Kernel Acc(%) Pre Rec F1-sco Err.rte Comp.Time (sec)

One vs One Max & Min Fea vs Hap Lin 76.5 0.16 0.22 0.19 0.78 2.10

Fea vs Ang Lin 58.7 0.15 0.52 0.23 0.48 1.94

Fea vs Dis Lin 72 0.13 0.22 0.16 0.78 1.79

Fea vs Sad Lin 76.6 0.16 0.22 0.19 0.78 2.10

Fea vs Sur Lin 18.2 0.12 0.92 0.21 0.08 1.91

Fea vs Hap Poly 76.7 0.16 0.22 0.19 0.78 2.36

Fea vs Ang Poly 69 0.17 0.4 0.24 0.6 2.02

Fea vs Dis Poly 72.6 0.17 0.32 0.22 0.68 1.97

Fea vs Sad Poly 78.3 0.16 0.19 0.17 0.81 1.90

Fea vs Sur Poly 21.5 0.11 0.81 0.2 0.19 1.87

Fea vs Hap RBF 76.7 0.16 0.22 0.19 0.78 2.34

Fea vs Ang RBF 60.7 0.16 0.53 0.24 0.47 2.15

Fea vs Dis RBF 68 0.17 0.41 0.24 0.59 2.05

Fea vs Sad RBF 77 0.16 0.22 0.19 0.78 2.03

Fea vs Sur RBF 20.3 0.11 0.82 0.2 0.18 1.98

Z-norm Fea vs Hap Lin 72.8 0.17 0.33 0.22 0.67 2.707

Fea vs Ang Lin 39 0.13 0.73 0.22 0.27 2.03

Fea vs Dis Lin 64.9 0.15 0.42 0.22 0.58 1.92

Fea vs Sad Lin 70.9 0.16 0.34 0.22 0.66 1.99

Fea vs Sur Lin 18.9 0.11 0.85 0.22 0.15 1.66

Fea vs Hap Poly 72.7 0.17 0.33 0.22 0.67 2.06

Fea vs Ang Poly 63.5 0.15 0.45 0.23 0.55 1.94

Fea vs Dis Poly 74.5 0.17 0.28 0.21 0.72 3.08

Fea vs Sad Poly 57.6 0.14 0.51 0.22 0.49 1.96

Fea vs Sur Poly 31.9 0.1 0.61 0.18 0.39 1.99

Fea vs Hap RBF 75.2 0.17 0.27 0.21 0.73 6.32

Fea vs Ang RBF 55.4 0.15 0.6 0.25 0.4 2.43

Fea vs Dis RBF 62.6 0.16 0.48 0.24 0.52 2.40

Fea vs Sad RBF 73.6 0.17 0.32 0.22 0.68 2.80

Fea vs Sur RBF 33.4 0.14 0.84 0.23 0.16 2.29

One vs All Max & Min Fea vs All Lin 81.45 0.37 0.75 0.49 0.25 3.74

Fea vs All Poly 72.17 0.23 0.6 0.34 0.41 2.29

Fea vs All RBF 83.74 0.41 0.78 0.54 0.22 3.61

Z-norm Fea vs All Lin 62.64 0.16 0.49 0.24 0.51 2.69

Fea vs All Poly 82.08 0.38 0.76 0.51 0.24 2.63

Fea vs All RBF* 89.58 0.54 0.87 0.67 0.13 2.14
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Where wT is the weight vector and b is a bias. The objective
function of linear TWSVM is corresponding to one class
and constraints to the other class are defined by (15).

min(w+, b+, ξ) 1
2‖Xw+ + e+b+‖2 + c1e

T−ξ
s.t − (Yw+ + e−b+) + ξ ≥ e−, ξ ≥ 0

min(w−, b−, ξ) 1
2‖Yw− + e−b−‖2 + c2e

T+η
s.t − (Xw− + e+b−) + ξ ≥ e+, η ≥ 0

(15)

Where c+, c− are a penalty parameter and are slack
variables. e+, e− are vectors of suitable dimensions. Let
H = [XT+ eT+] and G = [XT− eT−]. In (16), the Lagrangian and

Wolf dual problem are formulated and they obtained from
the equation of TWSVM.

maxα eT−α − 1
2α

T G(HT H)−1GT α

s.t 0 ≤ α ≤ c1e−
maxβ eT+β − 1

2β
T H(GT G)−1HT β

s.t 0 ≤ β ≤ c2e+

(16)

Where Lagrangian multipliers are α and β. In (17)
introduces a term δI (δ > 0) to avoid becoming singular and
the ill-conditioning of HT G. Where I denotes a regularisation

Table 7 The hold-out validation result of Fear mouth in both multi-classifier and normalization

Norm One vs One Kernel Acc(%) Pre Rec F1-sco Err.rte Comp.Time (sec)

One vs One Max & Min Fea vs Hap Lin 79 0.21 0.27 0.23 0.73 1.92

Fea vs Ang Lin 89.2 0.54 0.8 0.64 0.2 1.86

Fea vs Dis Lin 76 0.2 0.32 0.24 0.68 2.19

Fea vs Sad Lin 84.7 0.22 0.11 0.14 0.89 2.60

Fea vs Sur Lin 19.5 0.13 0.97 0.23 0.03 2.91

Fea vs Hap Poly 38 0.12 0.67 0.21 0.33 2.78

Fea vs Ang Poly 65.6 0.17 0.47 0.25 0.53 2.25

Fea vs Dis Poly 84 0.2 0.11 0.14 0.89 2.69

Fea vs Sad Poly 49.1 0.14 0.61 0.22 0.39 2.12

Fea vs Sur Poly 22 0.12 0.85 0.21 0.15 2.13

Fea vs Hap RBF 44.6 0.13 0.63 0.22 0.37 2.61

Fea vs Ang RBF 72.3 0.18 0.35 0.23 0.65 1.94

Fea vs Dis RBF 84.9 0.23 0.11 0.15 0.89 2.19

Fea vs Sad RBF 70.9 0.18 0.38 0.24 0.62 2.07

Fea vs Sur RBF 21.9 0.12 0.85 0.21 0.15 2.32

Z-norm Fea vs Hap Lin 48.2 0.12 0.53 0.22 0.47 3.71

Fea vs Ang Lin 84.3 0.11 0.04 0.06 0.96 2.47

Fea vs Dis Lin 71.8 0.18 0.37 0.24 0.63 2.35

Fea vs Sad Lin 85.3 0.05 0.01 0.02 0.99 1.94

Fea vs Sur Lin 18.7 0.13 0.99 0.23 0.01 1.96

Fea vs Hap Poly 52.6 0.13 0.52 0.21 0.48 2.47

Fea vs Ang Poly 82.6 0.16 0.11 0.13 0.89 2.54

Fea vs Dis Poly 70.9 0.15 0.31 0.22 0.69 2.08

Fea vs Sad Poly 83.8 0.23 0.15 0.18 0.85 2.06

Fea vs Sur Poly 39.3 0.12 0.62 0.22 0.38 3.19

Fea vs Hap RBF 61.2 0.13 0.38 0.19 0.62 2.72

Fea vs Ang RBF 69.5 0.14 0.29 0.19 0.71 2.03

Fea vs Dis RBF 70.6 0.06 0.1 0.07 0.9 2.22

Fea vs Sad RBF 70.2 0.15 0.3 0.20 0.7 2.51

Fea vs Sur RBF 22.3 0.12 0.83 0.21 0.17 2.04

One vs All Max & Min Fea vs All Lin 92 0.64 0.8 0.71 0.2 2.51

Fea vs All Poly 86.2 0.46 0.77 0.57 0.23 2.97

Fea vs All RBF 86.1 0.46 0.76 0.57 0.24 2.39

Z-norm Fea vs All Lin 32.5 0.11 0.66 0.19 0.34 2.76

Fea vs All Poly 67.9 0.16 0.39 0.23 0.61 3.05

Fea vs All RBF* 93.8 0.67 0.98 0.79 0.02 2.39
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identity matrix. The function of non-parallel hyperplane of
TWSVM from the α and β value is defined in (17).

u1 = −(HT H + δI)−1GT α

u2 = −(GT G + δI)−1HT β
(17)

Where ui=1,2 = [wT±b±]T . From (17), the weight vector
and bias value of optimal hyperplane of linear TWSVM
is obtained. For validation, a new data sample is assigned
to class ‘i’ by the decision function, as given in (18). A

decision surface classified in the new data depends upon
whether its distance is closer to hyperplane (18).

Class (i) = argmin i=1,2
|xT w(i) + b(i)|

‖w(i)‖ (18)

For Non-Linear cases of TWSVM, the training data
are examined with the Kernel Function such as Linear,
Polynomial and Radial Base Function (RBF) [23–25] and
[26]. The Multi class TWSVM [25, 26] and [36] has two
approaches: ‘One vs One’ and ‘One vs All’. The ‘One

Table 8 The hold-out validation result of Anger eyebrow in both multi-classifier and normalization

Norm One vs One Kernel Acc(%) Pre Rec F1-sco Err.rte Comp.Time (sec)

One vs One Max & Min Ang vs Hap Lin 79 0.29 0.28 0.29 0.72 2.88

Ang vs Dis Lin 84.1 0.38 0.08 0.13 0.92 3.12

Ang vs Fea Lin 73.8 0.32 0.65 0.43 0.35 1.68

Ang Vs Sad Lin 77.8 0.29 0.34 0.31 0.66 2.27

Ang vs Sur Lin 41.8 0.2 0.95 0.33 0.05 1.77

Ang vs Hap Poly 74.2 0.3 0.54 0.39 0.46 2.24

Ang vs Dis Poly 84.1 0.2 0.02 0.03 0.98 2.01

Ang vs Fea Poly 58.2 0.25 0.91 0.4 0.09 2.11

Ang Vs Sad Poly 76.7 0.3 0.4 0.34 0.6 2.45

Ang vs Sur Poly 39.6 0.2 0.96 0.32 0.04 2.04

Ang vs Hap RBF 79 0.3 0.29 0.29 0.71 3.56

Ang vs Dis RBF 84 0.18 0.02 0.03 0.98 2.83

Ang vs Fea RBF 70 0.31 0.8 0.45 0.2 2.87

Ang Vs Sad RBF 77.6 0.3 0.36 0.33 0.64 2.10

Ang vs Sur RBF 47.8 0.22 0.95 0.35 0.05 2.27

Z-norm Ang vs Hap Lin 79.9 0.29 0.24 0.26 0.76 2.09

Ang vs Dis Lin 83.5 0.34 0.1 0.16 0.9 1.84

Ang vs Fea Lin 77.5 0.29 0.34 0.31 0.66 1.70

Ang Vs Sad Lin 76.4 0.3 0.44 0.36 0.56 2.07

Ang vs Sur Lin 67.9 0.3 0.84 0.44 0.16 1.86

Ang vs Hap Poly 74.2 0.32 0.61 0.42 0.39 2.87

Ang vs Dis Poly 80.3 0.24 0.14 0.18 0.86 3.70

Ang vs Fea Poly 58.4 0.26 0.92 0.40 0.08 2.27

Ang Vs Sad Poly 69.5 0.31 0.83 0.45 0.17 2.49

Ang vs Sur Poly 50.7 0.22 0.92 0.36 0.08 2.39

Ang vs Hap RBF 78.9 0.29 0.28 0.28 0.72 3.21

Ang vs Dis RBF 83.7 0.36 0.1 0.16 0.9 3.03

Ang vs Fea RBF 72.9 0.31 0.65 0.42 0.35 2.18

Ang Vs Sad RBF 75.2 0.3 0.47 0.36 0.53 3.23

Ang vs Sur RBF 61.6 0.27 0.9 0.41 0.1 2.09

One vs All Max & Min Ang vs All Lin 79.7 0.39 0.6 0.47 0.4 2.93

Ang vs All Poly 76.7 0.33 0.54 0.41 0.46 2.50

Ang vs All RBF 90 0.66 0.68 0.67 0.32 2.76

Z-norm Ang vs All Lin 74.7 0.3 0.5 0.38 0.5 2.60

Ang vs All Poly 75.3 0.3 0.46 0.36 0.54 3.58

Ang vs All RBF* 91.9 0.66 0.86 0.75 0.14 2.35
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vs One’ approach is a ‘divide and conquer’ approach,
consisting of building one TWSVM class for each pair
of subclasses. The ‘One vs All’ is a ‘single approach’
consisting of built TWSVM which is one class versus all
other classes. This paper carried out both approaches of
multi class TWSVM and it proved more effective in the
‘One vs All’ approach.

3 Experimental analysis and validation

3.1 Experimental settings

The FAPs [11], [34] ’s definition has a combination of AU,
for emotion identification, with entire and minimal feature
vectors. This is shown in Fig. 2. From the FAPS definition

Table 9 The hold-out validation result of Disgust eyelids in both multi-classifier and normalization

Norm One vs One Kernel Acc(%) Pre Rec F1-sco Err.rte Comp.Time (sec)

One vs One Max &Min Dis vs Hap Lin 60.8 0.24 0.78 0.37 0.22 1.90

Dis vs Ang Lin 53.5 0.23 0.9 0.36 0.1 1.78

Dis vs Fea Lin 53.2 0.23 0.93 0.37 0.07 2.04

Dis vs Sad Lin 58.6 0.24 0.82 0.37 0.18 1.85

Dis vs Sur Lin 35.9 0.18 0.99 0.31 0.01 1.94

Dis vs Hap Poly 55.7 0.23 0.87 0.36 0.13 2.17

Dis vs Ang Poly 59.7 0.24 0.82 0.37 0.18 1.84

Dis vs Fea Poly 44.5 0.2 0.97 0.34 0.03 2.05

Dis vs Sad Poly 61.4 0.25 0.81 0.38 0.19 1.99

Dis vs Sur Poly 41 0.2 0.99 0.33 0.01 2.00

Dis vs Hap RBF 73.5 0.32 0.71 0.44 0.29 2.50

Dis vs Ang RBF 65.7 0.27 0.78 0.4 0.22 2.09

Dis vs Fea RBF 56.8 0.23 0.87 0.37 0.13 2.22

Dis vs Sad RBF 69.7 0.29 0.75 0.42 0.25 2.37

Dis vs Sur RBF 54.6 0.23 0.89 0.36 0.11 2.45

Z-norm Dis vs Hap Lin 57.8 0.24 0.85 0.37 0.15 2.28

Dis vs Ang Lin 67.7 0.28 0.75 0.41 0.25 2.05

Dis vs Fea Lin 43.9 0.21 0.98 0.34 0.02 1.92

Dis vs Sad Lin 70 0.3 0.74 0.42 0.26 2.08

Dis vs Sur Lin 32.9 0.18 0.99 0.3 0.01 2.16

Dis vs Hap Poly 69.6 0.29 0.75 0.42 0.25 2.11

Dis vs Ang Poly 61.7 0.25 0.78 0.38 0.22 2.02

Dis vs Fea Poly 66.1 0.27 0.75 0.4 0.25 1.99

Dis vs Sad Poly 67.7 0.28 0.76 0.41 0.24 1.97

Dis vs Sur Poly 60.6 0.25 0.8 0.38 0.2 2.08

Dis vs Hap RBF 81.5 0.41 0.58 0.48 0.42 2.76

Dis vs Ang RBF 70.7 0.3 0.74 0.43 0.26 2.46

Dis vs Fea RBF 67.9 0.28 0.71 0.4 0.29 3.09

Dis vs Sad RBF 77.8 0.37 0.68 0.48 0.32 2.63

Dis vs Sur RBF 57.9 0.24 0.82 0.37 0.18 2.29

One vs All Max & Min Dis vs All Lin 61.7 0.25 0.81 0.38 0.19 2.79

Dis vs All Poly 54.3 0.23 0.91 0.37 0.09 2.31

Dis vs All RBF 80.3 0.4 0.68 0.5 0.32 3.64

Z-norm Dis vs All Lin 69.5 0.29 0.75 0.42 0.25 3.33

Dis vs All Poly 68.4 0.29 0.76 0.42 0.24 2.15

Dis vs All RBF* 88.27 0.56 0.92 0.7 0.07 2.07
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[34], the entire feature vectors displacement is in the form
of the neutral to peak response then returning to the neutral
state (i.e. expressive time episode = onset, apex and offset
phase). In this system, the geometric deformable grid node
(CLM) has L = 66*2 = 132 dimensions. The feature vectors
displacement is employed for the set of six emotions (i.e.
Surprise (SUR), Happy (HAP), Disgust (DIS), Fear (FEA),
Angry (ANG) and Sad (SAD)) using TWSVM. In this
proposed system, CLM and TWSVM are developed in
C++ with open framework and Matlab2014b, which are

implemented with an Intel i5 processor. In both training
and testing phases, standard databases such as the MMI
facial expression database [37], Oulu Database [38], CK
[39], Extended CK+ database [40] and Mahonb Laughter
database [41] are used. A few real-time databases were also
used [24] in which the video rate was 25 frames/sec. In
training and testing phases, let gj be the feature vectors
displacements of the extracted face image sequence from
the standard database as i = 1, . . . , N , N = 6, emotions
in face, which is shown in Fig. 2. The normalized data of

Table 10 The hold-out validation result of Sad mouth in both multi-classifier and normalization

Norm One vs One Kernel Acc(%) Pre Rec F1-sco Err.rte Comp.Time (sec)

One vs One Max & Min Sad vs Hap Lin 79.6 0.4 0.34 0.37 0.66 3.74

Sad vs Ang Lin 76.3 0.3 0.26 0.36 0.74 2.52

Sad vs Fea Lin 67.6 0.22 0.34 0.27 0.66 1.95

Sad vs Dis Lin 82.3 0.49 0.28 0.28 0.72 1.93

Sad vs Sur Lin 54 0.27 0.92 0.41 0.08 2.20

Sad vs Hap Poly 83.5 0.53 0.49 0.51 0.51 2.54

Sad vs Ang Poly 68 0.32 0.72 0.39 0.28 2.29

Sad vs Fea Poly 78.2 0.42 0.65 0.51 0.35 2.11

Sad vs Dis Poly 49 0.25 0.93 0.44 0.07 2.16

Sad vs Sur Poly 41.7 0.23 0.98 0.37 0.02 2.48

Sad vs Hap RBF 85.4 0.63 0.4 0.51 0.6 3.41

Sad vs Ang RBF 72.3 0.34 0.62 0.4 0.38 2.67

Sad vs Fea RBF 84.1 0.56 0.43 0.49 0.57 2.44

Sad vs Dis RBF 53.1 0.26 0.9 0.44 0.1 2.19

Sad vs Sur RBF 46.2 0.24 0.96 0.39 0.04 2.53

Z-norm Sad vs Hap Lin 78.6 0.36 0.27 0.31 0.73 3.22

Sad vs Ang Lin 74 0.31 0.39 0.39 0.61 2.76

Sad vs Fea Lin 57 0.22 0.59 0.33 0.41 1.89

Sad vs Dis Lin 65 0.28 0.63 0.34 0.37 1.74

Sad vs Sur Lin 78.5 0.3 0.17 0.21 0.83 1.90

Sad vs Hap Poly 84.9 0.6 0.42 0.49 0.58 2.32

Sad vs Ang Poly 78.9 0.4 0.39 0.51 0.61 1.88

Sad vs Fea Poly 83.5 0.54 0.36 0.43 0.64 1.89

Sad vs Dis Poly 80.8 0.46 0.58 0.42 0.42 2.03

Sad vs Sur Poly 67.1 0.33 0.86 0.48 0.14 3.63

Sad vs Hap RBF 79 0.43 0.65 0.52 0.35 3.06

Sad vs Ang RBF 66.2 0.3 0.7 0.47 0.3 2.33

Sad vs Fea RBF 69.5 0.33 0.69 0.44 0.31 2.11

Sad vs Dis RBF 68.6 0.34 0.8 0.42 0.2 2.63

Sad vs Sur RBF 52.2 0.26 0.91 0.4 0.09 2.19

One vs All Max & Min Sad vs All Lin 84 0.63 0.22 0.32 0.78 3.75

Sad vs All Poly 84.5 0.65 0.25 0.36 0.75 3.64

Sad vs All RBF 84.1 0.64 0.22 0.33 0.78 3.04

Z-norm Sad vs All Lin 83.7 0.78 0.1 0.18 0.9 2.16

Sad vs All Poly 85.3 0.75 0.24 0.36 0.76 2.84

Sad vs All RBF* 88.6 0.83 0.44 0.57 0.56 1.61
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(a) Hold-out cross validation of Accuracy (b) 10-fold cross validation of Accuracy

Fig. 3 Bar chart representation of Accuracy of the proposed system (‘One vs All’) using both validation

minimal feature vectors is fed as input to the multi-class
TWSVM to classify facial emotions.

3.2 Training and testing

The 10-fold and hold out cross-validation technique is
applied in both training and testing phases. A new database
is formed through the fusion of existing standard databases
such as MMI, Oulu, CK, CK+, Mahnob and a few real-
time datasets. The normalized minimal feature vectors
of cross-databases are given to hold out validation. In
cross- validation, 80% of normalized datasets are given to
the training phase and the remaining 20% of datasets is
used as a testing phase for validating the facial emotion

classifier. In validation, the multi-class TWSVM of 3
kernel cases (Linear, Polynomial and RBF) with both
normalization are evaluated. In hold out cross-validation,
3 kernel case of penalty and kernel parameters values
such as c1, c2 and γ = 0.5 is applied. In 10-fold cross-
validation, the grid search mechanism is formulated for
attaining the optimal parameters such as Cost (c1 and c2)
and Gamma (γ ) value in the training phase. The range of
Cost (c1and c2) is 10−5, 10−4.5, ...., 104.5, 105 and Gamma
(γ ) is 2−5, 2−4.5, ...., 24.5, 25 are applied in the training
phase. From the training phase, the optimal value of Cost
and Gamma value is formed by the optimal trained model
and then testing the unknown data of six emotions. In cross-
validation, the linear case is considered where Cost value

(a) Hold-out cross validation of Precision, Recall, Error rate,F1-

score

(b) 10-fold cross validation of Precision, Recall, Error rate,F1-

score

Fig. 4 Bar chart representation of Precision, Recall, Error.rate,F1-score of the proposed system (‘One vs All’) using both validation
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and non-linear case (Poly, RBF), whereas Cost and Gamma
value are considered. The Confusion Matrix of ‘One vs
One’ and ‘One vs All’ is employed in both phases.

From the results of the Confusion Matrix, validation
parameters such as True Positive (TP), True Negative (TN),
False Positive (FP), False Negative (FN), Accuracy (Acc),
Precision (Pre), Recall (Rec), F1-score (F1-sco), Error
rate (Err.rte), and Computational Time (Comp. Time) are
calculated. For each emotion, 18 models of multi-class
(‘One vs One’ and ‘One vs All’ with 3 kernel) with one
normalization method are calculated. A total of 36 models
are calculated by Max & Min and Z-normalization through
the multi class TWSVM classifier. The computation time
of training and testing phase of all basic emotions are also
calculated.

4 Experimental results and discussion

4.1 Experimental results

4.1.1 Hold out cross validation

Max-Min and Z-norm is applied on minimal feature vector
displacement to produce the global normalized data which is
fed as input to multi-class classifiers and validated with the
hold out method for each kernel namely Linear, Polynomial
(Poly) and RBF. In cases of ‘One vs One’ and ‘One vs

All’, the validation parameter (accuracy, precision, recall,
F1-score, error rate) of the six basic emotions are computed
and shown in Tables 3, 4, 5, 6, 7, 8, 9, 10. From the
Table 3–10, it is inferred that ‘One vs All’ multi classes
have higher performance than the ‘One vs One’ multi
classes. From the Table 3–10, the bar chart representation
of validation parameter of proposed model (‘One vs All’)
are plotted and shown in Figs. 3, 4, 5. In Figs. 3–5, relations
between the validation parameters, Multi class and facial
emotions. From Fig. 3a, it is inferred that the six emotions:
Surprise (95.85%), Happy (95.6%), Disgust (88.26%), Fear
(91.69%), Anger (91.89%) and Sad (88.6%) have high
accuracy, which is achieved in RBF kernel of ‘One vs All’
using Z-norm. Similarly, the validation parameter such as
Precision, Recall, Error rate, F1-score, Computation Time
for training and testing phase are also shown in Table 3–10,
is calculated. From Tables 3–10 and Figs. 3a, 4a and 5, it
is inferred that RBF kernel of ‘One vs All’ using Z-norm
has high Precision, high Recall, high F1-score, less Error
rate and less computational time compared to other kernel
(multi class) of normalization. The overall performance of
the proposed model which was higher in RBF (‘One vs
All’) and Z-norm are calculated and tabulated in Table 19.
From Table 19, the overall validation parameter such as
Accuracy is 92.05± 3.79%, Precision is 0.75± 0.18, Recall
is 0.68±0.25, Error rate is 0.32±0.25, F1-score is 2.74±
0.98 and computation time 2.05±0.43 sec of basic six
emotions are achieved.

Fig. 5 Bar chart representation
of Computation time of the
proposed system (One vs All)
using both validation
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Table 11 The 10-fold validation result of Surprise eyebrow in both multi-classifier and normalization

Norm One vs One Kernel 10-fold Acc(%) Pre Rec F1-sco Err.rte Time (s)

(Acc(%), Cost(c1, c2) Gamma(γ ) Time(s)

One vs One Max & Min Sur vs Hap Lin 94 2.5,1.5 − 34.78 87.43 0.65 0.97 0.78 0.03 1.36

Sur vs Ang Lin 97.2 3.5,1 − 27.81 85.12 0.75 0.91 0.83 0.09 1.42

Sur vs Dis Lin 84.8 1.5,0.5 − 26.34 74.51 0.89 0.72 0.8 0.28 0.95

Sur vs Fea Lin 100 3,1.5 − 28.02 81.98 0.7 0.93 0.8 0.07 0.79

Sur vs Sad Lin 92.3 0.5,2 − 30.05 81.45 0.65 0.93 0.76 0.08 0.93

Sur vs Hap Poly 94 2.5,2 3.5 36.35 89.82 0.72 0.98 0.83 0.02 2.28

Sur vs Ang Poly 97.2 0.5,1 1.5 26.27 85.95 0.77 0.92 0.84 0.08 0.99

Sur vs Dis Poly 81.8 0.5,1 0.5 25.88 75.49 0.77 0.79 0.78 0.21 1.06

Sur vs Fea Poly 91.7 0.5,1 1 26.65 88.29 0.88 0.89 0.88 0.11 1.04

Sur vs Sad Poly 89.7 0.5,1 3 28.35 81.45 0.67 0.9 0.77 0.1 1.08

Sur vs Hap RBF 66 2,0.5 3.5 38.62 87.43 0.65 0.97 0.78 0.03 1.29

Sur vs Ang RBF 52.8 1.5,1.5 1.5 31.05 88.43 0.86 0.89 0.88 0.11 1.43

Sur vs Dis RBF 54.8 1.5,0.5 3.5 29.09 73.53 0.68 0.81 0.74 0.19 1.22

Sur vs Fea RBF 52.8 1.5,1.5 1.5 31.25 88.29 0.86 0.91 0.88 0.09 1.25

Sur vs Sad RBF 56.4 2,0.5 2 32.03 81.45 0.67 0.9 0.77 0.1 1.41

Z-norm Sur vs Hap Lin 96 1.5,0.5 − 33.83 83.23 0.53 0.97 0.68 0.03 1.45

Sur vs Ang Lin 91.7 0.5,0.5 − 30.77 93.39 0.93 0.93 0.93 0.07 1.05

Sur vs Dis Lin 97.2 2.5,0.5 − 26.37 85.59 0.74 0.98 0.84 0.02 1.01

Sur vs Fea Lin 87.9 1,1 − 24.29 77.45 0.74 0.84 0.79 0.16 1.07

Sur Vs Sad Lin 94.9 2.5,0.5 − 27.13 79.03 0.58 0.94 0.72 0.06 0.94

Sur vs Hap Poly 96 1.5,1 3.5 33.8 93.41 0.86 0.94 0.9 0.06 2.13

Sur vs Ang Poly 100 2.5,1 3.5 26.73 89.26 0.88 0.89 0.88 0.11 1.26

Sur vs Dis Poly 100 0.5,1 3 27.63 90.99 0.86 0.96 0.91 0.04 1.25
Sur vs Fea Poly 93.5 0.5,1.5 0.5 25.32 78.43 0.88 0.77 0.82 0.23 1.04
Sur vs Sad Poly 94.9 3,1 3.5 26.9 82.26 0.95 0.74 0.83 0.26 1.39
Sur vs Hap RBF 66 2,0.5 3.5 41.07 91.62 0.79 0.96 0.87 0.04 2.45
Sur vs Ang RBF 52.8 1.5,1.5 1.5 33.14 89.26 0.79 0.98 0.87 0.02 1.75
Sur vs Dis RBF 52.8 1.5,1.5 1.5 35.67 91.89 0.88 0.96 0.92 0.04 1.86
Sur vs Fea RBF 54.8 1.5,0.5 2.5 29.56 69.61 0.58 0.83 0.68 0.18 1.93
Sur vs Sad RBF 56.4 2,0.5 2 31.77 79.03 0.58 0.94 0.72 0.06 1.53

One vs All Max & Min Sur vs All Lin 93.4 0.5,1 − 105.6 85.14 0.46 0.5 0.5 0.5 14.8
Sur vs All Poly 14.2 0.5,0.5 3.5 95.18 85.64 0.49 0.52 0.5 0.48 14.4
Sur vs All RBF 93.4 1,3.5 1 84.16 86.15 0.53 0.53 0.5 0.47 14.3

Z-norm Sur vs All Lin 95.9 0.5,1 − 119.8 91.94 0.74 0.71 0.72 0.29 20.2
Sur vs All Poly 14.2 0.5,0.5 3.5 194.8 89.17 0.79 0.59 0.68 0.41 24.9
Sur vs All RBF* 97.5 3,3.5 3 125.4 95.71 0.83 0.9 0.9 0.13 20.3

4.1.2 10-fold cross validation

The 10-fold cross-validation result of system shown in
Tables 11, 12, 13, 14, 15, 16, 17, 18. Similarly, used Max
& Min and Z-normalization with 3 kernel to attain the
36 optimal trained model of the FER system. Table 11–
18 shows the 10 fold cross-validation of accuracy, cost,

gamma, and validation parameter result of tested data. In
Table 11, it is inferred that the RBF kernel of the ‘One
vs All’ model achieved high performance using 10-fold
validation of z-normalization data. From the result of the
10-fold RBF kernel model is the cost and gamma value for
creating the optimal trained model for the surprise eyebrow
feature. Then the tested data is given to the optimal trained
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Table 12 The 10-fold validation result of Surprise mouth in both multi-classifier and normalization

Norm One vs One Kernel 10-fold Acc(%) Pre Rec F1-sco Err.rte Time (s)

Acc(%), Cost(c1, c2) Gamma(γ ) Time(s)

One vs One Max & Min Sur vs Hap Lin 84.62 0.5,2.5 − 52.24 78.53 0.47 0.87 0.61 0.13 2.49

Sur vs Ang Lin 92.11 2.5,3 − 41.87 64.41 0.9 0.59 0.71 0.41 1.49

Sur vs Dis Lin 91.43 1,1.5 − 30.88 81.2 0.64 0.97 0.77 0.03 1.01

Sur vs Fea Lin 90.91 2.5,2.5 − 28.4 74.51 0.9 0.72 0.8 0.28 1.27

Sur vs Sad Lin 95 3,2 − 35.44 87.69 0.81 0.9 0.85 0.1 2.27

Sur vs Hap Poly 88 0.5,1.5 1 43.49 80.98 0.53 0.89 0.67 0.11 2.88

Sur vs Ang Poly 94.44 2,1 2 58.13 71.19 0.41 1 0.59 0 2.01

Sur vs Dis Poly 91.43 3.5,1 3.5 36.1 76.92 0.9 0.71 0.79 0.29 4.11

Sur vs Fea Poly 91.43 3,2 3 28.03 73.53 0.97 0.69 0.81 0.31 1.59

Sur vs Sad Poly 95 2,2 2 34.48 73.08 0.41 0.96 0.58 0.04 1.7

Sur vs Hap RBF 63.46 2,0.5 3.5 49.36 78.53 0.47 0.87 0.61 0.13 3.01

Sur vs Ang RBF 52.78 0.5,0.5 3.5 34.95 74.58 0.48 1 0.65 0 1.43

Sur vs Dis RBF 54.29 2.5,0.5 3.5 45.8 82.91 0.84 0.82 0.83 0.18 2.92

Sur vs Fea RBF 57.58 2.5,0.5 3.5 31.6 74.51 0.9 0.72 0.8 0.28 1.35

Sur vs Sad RBF 52.5 1.5,0.5 3 44.26 80 0.57 0.97 0.72 0.03 2.09

Z-norm Sur vs Hap Lin 89.8 1,1 − 34.52 77.64 0.41 0.88 0.56 0.12 1.47

Sur vs Ang Lin 97.22 2,0.5 − 33.34 75 0.48 1 0.65 0 1.53

Sur vs Dis Lin 94.29 3.5,3 − 34.76 71.3 0.41 1 0.58 0 2.27

Sur vs Fea Lin 90.91 0.5,1 − 33.04 77 0.63 0.95 0.75 0.05 1.34

Sur Vs Sad Lin 94.74 0.5,1 − 29.54 87.5 0.73 0.98 0.84 0.02 0.75

Sur vs Hap Poly 93.88 2,1.5 2.5 37.23 77.02 0.36 0.95 0.52 0.05 2.83

Sur vs Ang Poly 97.22 0.5,1 0.5 58.86 85.34 0.8 0.88 0.84 0.12 2.05

Sur vs Dis Poly 94.29 3.5,1 3.5 41.36 78.26 0.57 0.97 0.72 0.03 1.6

Sur vs Fea Poly 93.94 1,1.5 2.5 25.1 79 0.8 0.82 0.81 0.18 0.88

Sur vs Sad Poly 97.37 0.5,1 3.5 29.19 85.16 0.77 0.88 0.82 0.12 1.71

Sur vs Hap RBF 65.31 2,0.5 3 39.77 77.64 0.41 0.88 0.56 0.12 7.03

Sur vs Ang RBF 52.78 1.5,1.5 1.5 33.14 86.21 0.71 1 0.83 0 1.98

Sur vs Dis RBF 51.52 0.5,0.5 3.5 47.4 83.48 0.7 0.95 0.8 0.05 1.58

Sur vs Fea RBF 54.84 1.5,0.5 3 29.31 79 0.7 0.91 0.79 0.09 1.71

Sur vs Sad RBF 55.26 1.5,1.5 1.5 33.6 77.34 0.48 1 0.65 0 5

One vs All Max & Min Sur vs All Lin 92.74 0.5,0.5 − 100.2 90.02 0.33 0.89 0.49 0.05 17.3

Sur vs All Poly 15.57 0.5,0.5 3.5 133.1 89.78 0.33 0.9 0.48 0.1 29.4

Sur vs All RBF 91.94 3,2.5 3 110.5 87.53 0.16 0.9 0.26 0.1 20.6

Z-norm

Sur vs All Lin 95.8 0.5,3.5 − 90.9 90.15 0.36 0.87 0.51 0.13 12.1

Sur vs All Poly 14.53 0.5,0.5 3.5 108.6 90.15 0.38 0.84 0.52 0.16 21.5

Sur vs All RBF* 95.8 2,1.5 3.5 77.76 95.44 0.8 0.95 0.84 0.11 16.8

model achieving high validation parameter when compared
to other multi class models of surprise eyebrow. Similarly,
in Tables 11–18, it is inferred that the RBF kernel of ‘One
vs All’ model achieved high performance using 10-fold
validation of z-normalization data. Somehow emotion has
attained high accuracy in different optimal models but the

performance is less than the RBF Trained model. From
Fig. 3b, it is inferred the six emotions such as Surprise
(96.6%), Happy (96%), Disgust(91.6%), Fear(90.15%),
Anger(93.16%) and Sad(90.67%) has high accuracy is
achieved in RBF kernel of ‘One vs All’ using Z-norm.
From Table 11–18 and Figs. 3b, 4b and 5 this inference the
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Table 13 The 10-fold validation result of Happy mouth in both multi-classifier and normalization

Norm One vs One 10-fold Acc(%) Pre Rec F1-sco Err.rte Time (s)

(Acc(%), Cost(c1, c2) Gamma(γ ) Time(s)

One vs One Max & Min Hap vs Ang Lin 92.31 2,0.5 − 67.97 84.94 0.76 1 0.87 0 3.66

Hap vs Dis Lin 90.2 3,0.5 − 53.53 86.06 0.96 0.84 0.9 0.16 3.66

Hap vs Fea Lin 95.92 1.5,0.5 − 37.97 89.4 0.96 0.89 0.93 0.11 2

Hap vs Sad Lin 94.23 2,0.5 − 48.86 79.66 0.67 0.99 0.8 0.01 1.23

Hap vs Sur Lin 96 0.5,0.5 − 49.58 83.95 0.78 0.97 0.86 0.03 3.63

Hap vs Ang Poly 94.23 2,2.5 2 51.31 89.16 0.83 1 0.91 0 3.89

Hap vs Dis Poly 93.88 3,2 3 49.7 81.21 0.98 0.78 0.87 0.22 2.66

Hap vs Fea Poly 93.88 2,1.5 2 63.97 89.4 0.97 0.89 0.93 0.11 4.69

Hap vs Sad Poly 96.3 2.5,1.5 3 51.19 83.05 0.73 0.99 0.84 0.01 2.25

Hap vs Sur Poly 96 0.5,1 2.5 60.73 86.42 0.98 0.84 0.9 0.16 2.83

Hap vs Ang RBF 66 2,0.5 3.5 50.74 88.55 0.82 1 0.9 0 3.14

Hap vs Dis RBF 67.35 2,0.5 3.5 65 86.06 0.94 0.85 0.9 0.15 7.11

Hap vs Fea RBF 70.21 2.5,0.5 3.5 37.08 85.43 0.98 0.84 0.9 0.16 2.28

Hap vs Sad RBF 63.46 2,0.5 3.5 50.08 86.44 0.78 0.99 0.87 0.01 2.74

Hap vs Sur RBF 68.75 2,0.5 3.5 42.96 86.42 0.83 0.96 0.89 0.04 2.86

Z-norm Hap vs Ang Lin 93.15 2,2.5 − 44.76 83.13 0.74 1 0.85 0 2.04

Hap vs Dis Lin 93.88 3.5,2.5 − 54.14 84.24 0.97 0.82 0.89 0.18 2.23

Hap vs Fea Lin 93.88 2,0.5 − 34.53 90.07 0.96 0.9 0.93 0.1 1.6

Hap vs Sad Lin 94.44 2,0.5 − 70 78.53 0.64 1 0.78 0 1.96

Hap vs Sur Lin 93.88 1,0.5 − 40.05 80.13 0.75 0.96 0.84 0.04 1.95

Hap vs Ang Poly 90.38 0.5,1 0.5 38.55 93.37 0.94 0.95 0.95 0.05 1.9

Hap vs Dis Poly 85.71 3.5,3.5 3.5 67.49 86.67 0.92 0.88 0.9 0.13 4.69

Hap vs Fea Poly 93.88 3,1 3 39.19 90.73 0.96 0.91 0.94 0.09 2.25

Hap vs Sad Poly 94.44 3,1 2 40.98 93.22 0.92 0.96 0.94 0.04 2.55

Hap vs Sur Poly 93.88 2,1 3 44.2 91.39 0.92 0.95 0.94 0.05 3.81

Hap vs Ang RBF 66 2,0.5 3.5 43.55 89.76 0.84 1 0.91 0 1.91

Hap vs Dis RBF 85.71 3.5,3.5 3.5 67.49 86.67 0.92 0.88 0.9 0.13 4.69

Hap vs Fea RBF 70.21 2.5,0.5 3.5 41.93 88.74 0.98 0.87 0.92 0.13 2.5

Hap vs Sad RBF 63.46 2.5,0.5 3.5 69.77 89.27 0.84 0.98 0.9 0.02 2.32

Hap vs Sur RBF 70.21 2,0.5 3.5 49.63 88.74 0.98 0.87 0.92 0.13 2.42

One vs All Max & Min Hap vs All Lin 91.67 0.5,2 − 116.8 85.64 0.47 0.98 0.64 0.02 6.78

Hap vs All Poly 72.5 3,0.5 3.5 123 84.38 0.42 0.98 0.59 0.02 22.8

Hap vs All RBF 92.5 0.5,1 1 113.6 88.41 0.58 0.98 0.73 0.02 13.7

Z-norm Hap vs All Lin 94.33 1.5,1 − 108.7 85.14 0.46 0.96 0.62 0.04 8.99

Hap vs All Poly 72.5 3,0.5 3.5 164.1 90.18 0.67 0.95 0.78 0.05 14.1

Hap vs All RBF* 96 3.5,1 3.5 140.9 95.21 0.9 0.95 0.91 0.05 19.3

RBF kernel model has high optimal performance for all six
basic emotions when compared to the other model.

The overall performance of proposed model that is
higher in RBF (‘One vs All’) and Z-norm are calculated
and tabulated in Table 19. From Table 19, the overall
validation parameter such as Accuracy is 93.42±3.25%

(10-fold) and 92.56±3.02% (test), Precision is 0.76± 0.11,
Recall is 0.73±0.22, Error. Rate is 0.27±0.22, F1-score is
20.76±0.22 and computation time 15.08±4.08 sec of basic
six emotions are achieved. From the experiments, it is found
that the minimal feature vector which is specified in Table 2
is good enough to classify the basic six emotions such as
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Table 14 The 10-fold validation result of Fear eyebrow in both multi-classifier and normalization

Norm One vs One Kernel 10-fold Acc(%) Pre Rec F1-sco Err.rte Time (s)

(Acc(%), Cost(c1, c2) Gamma(γ ) Time(s)

One vs One Max & Min Fea vs Hap Lin 85.11 0.5,0.5 − 51.11 78.06 0.29 0.87 0.43 0.13 1.41

Fea vs Ang Lin 81.82 1.5,0.5 − 30.12 73.39 0.49 0.79 0.6 0.21 0.93

Fea vs Dis Lin 84.85 1,0.5 − 44.14 74.75 0.58 0.81 0.68 0.19 1.36

Fea vs Sad Lin 75 1,1.5 − 42.62 66.96 0.22 0.83 0.35 0.17 1.57

Fea vs Sur Lin 90.02 0.5,1 − 40.55 74.51 0.73 0.7 0.72 0.3 0.91

Fea vs Hap Poly 87.23 0.5,1 0.5 56.94 77.42 0.24 0.92 0.39 0.08 2.14

Fea vs Ang Poly 81.82 0.5,1 1 30.24 77.06 0.58 0.81 0.68 0.19 0.91

Fea vs Dis Poly 84.85 2.5,1.5 2.5 43.83 73.74 0.56 0.81 0.66 0.19 2.06

Fea vs Sad Poly 75 0.5,1 0.5 47.16 66.96 0.22 0.83 0.35 0.17 1.28

Fea vs Sur Poly 87.1 1.5,1 1.5 39.66 66.67 0.84 0.58 0.69 0.42 1.52

Fea vs Hap RBF 68.09 2.5,0.5 3.5 58.8 73.55 0.09 1 0.16 0 6.67

Fea vs Ang RBF 54.55 1.5,0.5 3.5 31.9 73.39 0.49 0.79 0.6 0.21 1.01

Fea vs Dis RBF 54.55 1.5,0.5 3.5 46.76 71.72 0.49 0.81 0.61 0.19 1.85

Fea vs Sad RBF 58.33 1.5,0.5 3.5 62.61 70.54 0.33 0.83 0.48 0.17 3.58

Fea vs Sur RBF 51.61 1.5,0.5 3.5 46.89 74.51 0.73 0.7 0.72 0.3 1.69

Z-norm Fea vs Hap Lin 89.36 0.5,1 − 89.04 72.9 0.67 0.53 0.59 0.47 2.82

Fea vs Ang Lin 87.88 0.5,3.5 − 75.19 71.56 0.73 0.63 0.68 0.37 1.81

Fea vs Dis Lin 87.88 2.5,0.5 − 69.54 70.71 0.71 0.67 0.69 0.33 2.52

Fea vs Sad Lin 83.12 1.5,0.5 − 101.2 68.11 0.56 0.29 0.38 0.71 3.77

Fea vs Sur Lin 83.87 0.5,0.5 − 63.23 69.61 0.38 0.85 0.52 0.15 1.64

Fea vs Hap Poly 90.19 2,3.5 2 87.55 74.84 0.53 0.57 0.55 0.43 8.4

Fea vs Ang Poly 90.04 0.5,1 1.5 83.51 73.39 0.73 0.66 0.69 0.34 2.73

Fea vs Dis Poly 54.55 1.5,0.5 3.5 185.4 68.69 0.64 0.66 0.65 0.34 4.09

Fea vs Sad Poly 87.01 3,1 3 125.2 19.69 0.87 0.16 0.28 0.84 4.58

Fea vs Sur Poly 90.32 1,3.5 1.5 66.21 68.63 0.44 0.74 0.56 0.26 2.54

Fea vs Hap RBF 68.09 2.5,0.5 3.5 98.9 76.13 0.38 0.65 0.48 0.35 11.7

Fea vs Ang RBF 54.55 1.5,0.5 3.5 80.72 71.56 0.64 0.66 0.65 0.34 3.69

Fea vs Dis RBF 54.55 1.5,0.5 3.5 78.68 75.76 0.64 0.78 0.71 0.22 2.94

Fea vs Sad RBF 19.48 0.5,0.5 3.5 194.1 62.6 0.67 0.27 0.39 0.73 3.74

Fea vs Sur RBF 51.61 1.5,0.5 3.5 79.04 59.8 0.49 0.55 0.52 0.45 2.7

One vs All Max & Min Fea vs All Lin 87.5 1,0.5 − 156.7 80.1 0.51 0.29 0.37 0.71 4.92

Fea vs All Poly 12.5 0.5,0.5 3.5 238.3 83.63 0.22 0.25 0.24 0.75 66.5

Fea vs All RBF 88.33 1,1.5 1 176 85.39 0.64 0.41 0.5 0.59 57.7

Z-norm Fea vs All Lin 87.5 1.5,0.5 − 151.7 81.61 0.56 0.32 0.41 0.68 5

Fea vs All Poly 12.5 0.5,0.5 3.5 379.3 85.64 0.24 0.32 0.28 0.68 19.7

Fea vs All RBF* 90.17 1.5,1 3.5 213.3 88.66 0.76 0.48 0.59 0.52 5.36

Surprise (eyebrow+outer lip), Happy (corner lip), Disgust
(eyelids), Fear (eyebrow + outer lip), Anger (eyebrow) and
Sad (corner lip+outer lip).

4.2 Discussion

From Table 20 the comparison of various classifier mod-
els for recognition of facial emotion shows supervised and
semi-supervised models, databases, and accuracy of the

model. From Table 20, Uddin [30] have supervised classi-
fiers as LDP+HMM and LDP-PCA+HMM used for facial
emotion recognition, which achieved accuracy are 82.91%
and 87.50% respectively. Yu [14] has used SVM+PCA
supervised classifier for facial emotion recognition achieved
75.50% accuracy. Saeed [15] has applied a supervised SVM
classifier for facial emotion recognition that achieved 83%
accuracy. Wan [16] applied a supervised SVM classifier
for facial emotion recognition that achieved 80% accuracy.
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Table 15 The 10-fold validation result of Fear mouth in both multi-classifier and normalization

Norm One vs One Kernel 10-fold Acc(%) Pre Rec F1-sco Err.rte Time (s)

(Acc(%), Cost(c1, c2) Gamma(γ ) Time(s)

One vs One Max & Min Fea vs Hap Lin 74.47 0.5,0.5 − 33.22 71.14 0.07 0.6 0.12 0.4 1.14

Fea vs Ang Lin 66.67 0.5,1 − 26.3 61.54 0.34 0.58 0.43 0.42 0.65

Fea vs Dis Lin 68.75 0.5,0.5 − 25.68 59.22 0.18 0.57 0.28 0.43 0.62

Fea vs Sad Lin 71.43 0.5,0.5 − 27.75 65.52 0.23 0.63 0.33 0.38 0.71

Fea vs Sur Lin 90.91 1.5,1 − 30.9 80.39 0.89 0.72 0.8 0.28 1.1

Fea vs Hap Poly 78.72 3.5,2 3.5 40.5 70.47 0 0 0 0 2.48

Fea vs Ang Poly 72.73 2,2.5 2 28.93 62.5 0.55 0.56 0.55 0.44 1.76

Fea vs Dis Poly 68.75 0.5,1 3 27.65 59.22 0.41 0.53 0.46 0.47 0.78

Fea vs Sad Poly 74.29 1,1 1 29.5 65.52 0.32 0.58 0.41 0.42 5.13

Fea vs Sur Poly 90.91 3,1.5 3 30.49 74.51 0.52 0.82 0.64 0.18 1.88

Fea vs Hap RBF 68.09 2.5,0.5 3.5 43.72 70.47 0 0 0 0 6.95

Fea vs Ang RBF 54.55 1.5,0.5 3.5 33.17 42.31 1 0.42 0.59 0.58 4.51

Fea vs Dis RBF 53.13 1.5,0.5 3.5 31.75 57.28 0 0 0 0 5.1

Fea vs Sad RBF 57.14 1.5,0.5 3.5 33.61 62.07 0 0 0 0 7.38

Fea vs Sur RBF 54.55 1.5,0.5 3.5 34.53 83.33 0.95 0.74 0.83 0.26 1.27

Z-norm Fea vs Hap Lin 78.26 0.5,1.5 − 31.08 73.83 0.14 0.86 0.24 0.14 1.05

Fea vs Ang Lin 75.76 0.5,1.5 − 31.71 62.5 0.48 0.57 0.52 0.43 1

Fea vs Dis Lin 68.75 0.5,1 − 25.05 58.25 0.18 0.53 0.27 0.47 0.58

Fea vs Sad Lin 74.29 2,1 − 26.99 62.07 0 0 0 0 0.88

Fea vs Sur Lin 90.55 1.5,0.5 − 33.7 75 1 0.64 0.78 0.36 1.25

Fea vs Hap Poly 84.78 2.5,2.5 2.5 37.98 70.47 0 0 0 0 2.49

Fea vs Ang Poly 75.76 2,1.5 2 28.77 44.23 0.98 0.43 0.6 0.57 2.18

Fea vs Dis Poly 68.75 0.5,1 1.5 26.96 60.19 0.3 0.57 0.39 0.43 0.79

Fea vs Sad Poly 80 0.5,2 0.5 29.78 68.97 0.43 0.63 0.51 0.37 0.96

Fea vs Sur Poly 90.55 2.5,1.5 2.5 27.88 83 0.91 0.75 0.82 0.25 1.22

Fea vs Hap RBF 67.39 2.5,0.5 3.5 41.44 70.47 0 0 0 0 15.1

Fea vs Ang RBF 54.55 1.5,0.5 3.5 32.74 64.42 0.48 0.6 0.53 0.4 3.2

Fea vs Dis RBF 53.13 1.5,0.5 3.5 32.67 57.28 0 0 0 0 2.55

Fea vs Sad RBF 57.14 1.5,0.5 3.5 35.03 62.93 0.02 1 0.04 0 4.06

Fea vs Sur RBF 51.61 1.5,0.5 3.5 32.4 83 0.95 0.74 0.83 0.26 1.65

One vs All Max & Min Fea vs All Lin 88.33 0.5,2 − 57.73 80.1 0.45 0.27 0.34 0.73 4.49

Fea vs All Poly 12.5 0.5,0.5 3.5 105.8 82.37 0.34 0.27 0.3 0.73 0.97

Fea vs All RBF 89.33 1,1 3.5 69.47 86.68 0.6 0.44 0.53 0.56 10.6

Z-norm Fea vs All Lin 88.14 2.5,1 − 63.61 80.1 0.41 0.25 0.31 0.75 2.29

Fea vs All Poly 12.71 0.5,0.5 3.5 114.7 83.12 0.22 0.24 0.23 0.76 30.9

Fea vs All RBF* 90.14 0.5,1 2.5 83.18 90.43 0.76 0.53 0.63 0.47 16.8

Mohammadian [17] used a supervised SVM classifier for
facial emotion recognition which achieved 83.90% accu-
racy. Ren [18] applied the Fuzzy+SVM for facial emotion
recognition that achieved an 81.4% accuracy. Jiang [19]
used a SRC classifier for facial emotion recognition which
achieved an 80% accuracy. Papachristou [20] applied an
SSL classifier for facial emotion recognition with 71.14%
(CK, CK+) and 71.84% (BU) accuracy. Nikitidis [21] used

a MMPP classifier for facial emotion recognition with
80.9% accuracy. Owusu [1] has used SVM of facial emotion
system was attained 97.57% (JAFFE), 92.33% (Yale) accu-
racy. Patil [2] has developed Patch-LDSMTNN for Facial
emotion system of accuracy are 98.33% (JAFFE), 99.27%
(CMU-AMP), 98.14% (ORL), 98.44% (Yale), 98.49% (CK)
was achieved. Siddiqi [3] has developed robust facial emo-
tion system with help HMM 95% (You tube images)
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Table 16 The 10-fold validation result of Anger eyebrow in both multi-classifier and normalization

Norm One vs One Kernel 10-fold Acc(%) Pre Rec F1-sco Err.rte Time (s)

(Acc(%), Cost(c1, c2) Gamma(γ ) Time(s)

One vs One Max & Min Ang vs Hap Lin 88 1,0.5 − 43.57 82.18 0.66 0.82 0.73 0.18 1.39

Ang vs Fea Lin 63.89 1,0.5 − 35.72 54.24 1 0.54 0.7 0.46 1.67

Ang vs Dis Lin 93.94 2,0.5 − 45.08 73.39 0.91 0.72 0.8 0.28 1.59

Ang vs Sad Lin 92.31 2.5,0.5 − 32.65 83.21 0.7 0.94 0.8 0.06 1.2

Ang vs Sur Lin 94.12 3.5,0.5 − 39.31 85.95 0.95 0.81 0.88 0.19 1.31

Ang vs Hap Poly 88 0.5,3 0.5 56.07 81.03 0.83 0.71 0.76 0.29 2.08

Ang vs Fea Poly 69.44 1.5,1.5 1.5 35.1 54.24 1 0.54 0.7 0.46 3.39

Ang vs Dis Poly 93.94 2,2 3 31.82 68.81 0.61 0.81 0.7 0.19 1.78

Ang vs Sad Poly 89.74 0.5,3.5 0.5 34.04 81.68 0.66 0.95 0.78 0.05 1.15

Ang vs Sur Poly 94.12 0.5,1 3.5 41.33 83.47 0.98 0.77 0.86 0.23 1.39

Ang vs Hap RBF 64 2,0.5 3.5 59.51 83.33 0.61 0.91 0.73 0.09 3.82

Ang vs Fea RBF 50 0.5,0.5 3.5 40.19 54.24 0.36 0.64 0.46 0.36 1.27

Ang vs Dis RBF 54.55 1.5,0.5 3.5 33.87 74.31 0.94 0.71 0.81 0.29 1.29

Ang vs Sad RBF 53.85 2.5,2 3.5 36.1 83.21 0.7 0.94 0.8 0.06 1.81

Ang vs Sur RBF 52.94 1.5,3.5 2 48.89 86.78 0.97 0.82 0.89 0.18 1.94

Z-norm Ang vs Hap Lin 90 1,0.5 − 39.89 79.89 0.48 0.94 0.64 0.06 1.17

Ang vs Fea Lin 52.78 1.5,0.5 − 29.53 54.24 1 0.54 0.7 0.46 0.77

Ang vs Dis Lin 90.91 0.5,0.5 − 29.68 70.64 0.64 0.82 0.72 0.18 0.7

Ang vs Sad Lin 92.31 2.5,0.5 − 33.67 53.44 0.05 1 0.09 0 1.3

Ang vs Sur Lin 97.06 2.5,1 − 30.83 69.42 1 0.63 0.78 0.37 1.34

Ang vs Hap Poly 94 1,1 2.5 44.57 69.54 0.17 1 0.29 0 2.07

Ang vs Fea Poly 61.11 0.5,1.5 0.5 29.96 55.93 1 0.55 0.71 0.45 0.87

Ang vs Dis Poly 81.82 2.5,1 2.5 29.84 69.72 0.94 0.67 0.78 0.33 1.31

Ang vs Sad Poly 97.44 1,1.5 1 34.41 84.73 0.69 1 0.81 0 1.22

Ang vs Sur Poly 94.12 0.5,1 1 28.35 72.73 1 0.66 0.8 0.34 1.04

Ang vs Hap RBF 64 2,0.5 3.5 43.63 64.94 0.05 1 0.09 0 2.7

Ang vs Fea RBF 50 0.5,0.5 3.5 34.48 40.68 0.52 0.46 0.49 0.54 0.98

Ang vs Dis RBF 54.55 1.5,0.5 3.5 31.97 57.8 0.3 0.95 0.45 0.05 1.38

Ang vs Sad RBF 53.85 1.5,0.5 3.5 37.04 52.67 0.03 1 0.06 0 1.37

Ang vs Sur RBF 52.94 2,2 3 32.86 63.64 1 0.59 0.74 0.41 1.29

One vs All Max & Min Ang vs All Lin 86.67 0.5,1.5 − 68.42 84.38 0.22 0.54 0.31 0.46 12.2

Ang vs All Poly 15 0.5,0.5 3.5 113.9 83.38 0.16 0.45 0.23 0.55 19.4

Ang vs All RBF 90 0.5,1 0.5 81.49 86.65 0.53 0.6 0.67 0.4 16.7

Z-norm Ang vs All Lin 87.5 0.5,0.5 − 67.74 80.1 0.41 0.25 0.31 0.75 9.01

Ang vs All Poly 15 0.5,0.5 3.5 118.2 83.38 0.19 0.46 0.27 0.54 27.2

Ang vs All RBF* 93.17 0.5,2 0.5 80.07 91.69 0.77 0.73 0.75 0.36 16.5

accuracy was achieved. Cohen [27] have a three semi super-
vised classifier for facial emotion that achieved accuracy
are Navies Bayes (69.10 ± 1.44%), Tree-Augmented Naive
Bayes classifier (69.30 ± 1.44%), and Stochastic search
(74.80 ± 1.36%). Rifai [28] has semi-supervised classifier
is CC-NET+CDA+SVM, which achieved 85% accuracy of

facial emotion recognition. Jihang [29] achieved 82.68%
and 87.71% accuracy using Transfer Learning Adaptive
Boosting semi-supervised learning for facial emotions.
From Table 20, [1], [2],[3], it is inferrred that it has a higher
accuaracy than our proposed model, but the drawback is
differences in types of datasets. Our proposed FERs model
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Table 17 The 10-fold validation result of Disgust eyelids in both multi-classifier and normalization

Norm One vs One Kernel 10-fold Acc(%) Pre Rec F1-sco Err.rte Time (s)

(Acc(%), Cost(c1, c2) Gamma(γ ) Time(s)

One vs One Max & Min Dis vs Hap Lin 79.59 0.5,0.5 − 59.74 74.1 0.97 0.59 0.73 0.41 2.24

Dis vs Ang Lin 85.71 0.5,0.5 − 34.04 75.41 0.98 0.67 0.8 0.33 1.5

Dis vs Fea Lin 88.24 1,0.5 − 29.68 81.13 0.98 0.76 0.86 0.24 1.25

Dis vs Sad Lin 83.78 0.5,0.5 − 46.16 71.76 0.97 0.62 0.76 0.38 3.57

Dis vs Sur Lin 90.91 0.5,0.5 − 30.41 83.62 1 0.76 0.86 0.24 0.82

Dis vs Hap Poly 85.71 0.5,1.5 0.5 103.6 59.04 1 0.47 0.64 0.53 2.54

Dis vs Ang Poly 91.89 1.5,2.5 2 32.73 78.69 0.95 0.71 0.81 0.29 1.55

Dis vs Fea Poly 79.41 2.5,1 2.5 31.17 81.13 0.98 0.76 0.86 0.24 1.39

Dis vs Sad Poly 87.18 1.5,1 1.5 64.19 74.05 0.8 0.69 0.74 0.31 4.08

Dis vs Sur Poly 84.85 3,1 3.5 35.09 91.38 0.97 0.88 0.92 0.12 3.41

Dis vs Hap RBF 64.71 2,0.5 3.5 81.76 71.69 0.28 0.81 0.42 0.19 3.23

Dis vs Ang RBF 51.43 0.5,0.5 3.5 34.51 80.33 0.95 0.73 0.83 0.27 1.15

Dis vs Fea RBF 56.25 1.5,0.5 3.5 32.58 79.25 0.98 0.74 0.84 0.26 1.33

Dis vs Sad RBF 53.85 1.5,0.5 3.5 50.71 73.28 0.9 0.65 0.76 0.35 2.14

Dis vs Sur RBF 54.55 2,0.5 2 44.25 88.79 0.98 0.83 0.9 0.17 2.36

Z-norm Dis vs Hap Lin 84.31 0.5,2.5 − 38.59 76.36 0.46 0.79 0.58 0.21 1.05

Dis vs Ang Lin 86.49 2,3 − 44.17 77.69 0.81 0.75 0.78 0.25 1.63

Dis vs Fea Lin 82.35 0.5,1.5 − 39.19 71.43 0.98 0.67 0.79 0.33 1.13

Dis vs Sad Lin 89.74 2.5,1 − 42.05 70.77 0.66 0.68 0.67 0.32 1.87

Dis vs Sur Lin 91.43 3.5,0.5 − 43.87 59.72 0.51 1 0.67 0 1.34

Dis vs Hap Poly 85.71 2.5,1.5 2.5 103.7 70.91 0.2 0.92 0.33 0.08 4.64

Dis vs Ang Poly 86.49 2.5,1 3.5 29.64 75.21 0.51 0.97 0.67 0.03 1.28

Dis vs Fea Poly 87.5 3,2 3 33.84 73.33 0.71 0.79 0.75 0.21 1.77

Dis vs Sad Poly 84.62 1.5,2.5 1.5 62.94 68.46 0.81 0.62 0.7 0.38 3.68

Dis vs Sur Poly 91.14 2.5,1 3.5 47.17 86.11 0.85 0.98 0.91 0.02 2.6

Dis vs Hap RBF 64.71 2.5,0.5 3.5 84.84 73.33 0.66 0.62 0.64 0.38 10.3

Dis vs Ang RBF 51.43 0.5,0.5 3 44.85 76.86 0.75 0.77 0.76 0.23 1.61

Dis vs Fea RBF 56.25 3.5,0.5 3.5 55.27 72.38 1 0.67 0.8 0.33 6.03

Dis vs Sad RBF 53.85 1.5,0.5 3.5 67.94 68.46 0.83 0.61 0.71 0.39 4.93

Dis vs Sur RBF 54.55 2,0.5 2 52.85 93.06 0.93 0.98 0.96 0.02 3.87

One vs All Max & Min Dis vs All Lin 87.5 0.5,0.5 − 78.47 87.53 0.52 0.6 0.55 0.4 9.02

Dis vs All Poly 15.25 0.5,0.5 3.5 206.1 87.03 0.22 0.72 0.33 0.28 17.3

Dis vs All RBF 90 3,1 3 154.2 81.75 0.66 0.42 0.52 0.58 21.5

Z-norm Dis vs All Lin 89.92 1,0.5 − 56.19 85.5 0.02 1 0.03 0 10.8

Dis vs All Poly 21.69 0.5,0.5 3.5 83.67 77.5 0.71 0.37 0.48 0.63 1.36

Dis vs All RBF* 91.6 0.5,1 0.5 66.52 91.5 0.78 0.69 0.73 0.31 13.7

are used video datasets of facial emotions not in images.
Most of the existing model are used images datasets and
few model are used videos are highlited in Table 20. From
Table 20, our proposed model has high accuracy and high
performance than the state of arts of FER system. Our pro-
posed model has attained the good performance for facial
emotions using semi-supervised lerning from the video
sequence compared to other existing model. In this work,

compared to other models for a semi-supervised classifier
for facial emotion, TWSVM achieved a higher accuracy and
better performance than Cohen [27], Rifai [28] and Jihang
[29].

In this work, the research produces an overall computa-
tion time of 2.05± 0.43 sec(hold out) and 15.08 ± 4.08
sec(10-fold) in training and testing phases of basic six emo-
tion classification. However Dapgony’s [42] work shows the
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Table 18 The 10-fold validation result of Sad mouth in both multi-classifier and normalization

Norm One vs One Kernel 10-fold Acc(%) Pre Rec F1-sco Err.rte Time (s)

(Acc(%), Cost(c1, c2) Gamma(γ ) Time(s)

One vs One Max & Min Sad vs Hap Lin 82.69 0.5,0.5 − 39.14 70.06 0.29 0.91 0.44 0.09 1.07

Sad vs Ang Lin 81.58 1,1 − 38.38 69.7 0.71 0.73 0.72 0.27 1.31

Sad vs Fea Lin 82.86 3.5,1.5 − 30.17 62.07 1 0.62 0.77 0.38 2.03

Sad vs Dis Lin 78.38 0.5,0.5 − 30.12 56.49 0.25 0.86 0.39 0.14 0.72

Sad vs Sur Lin 94.44 1,3 − 31.99 82.03 0.99 0.76 0.86 0.24 1.05

Sad vs Hap Poly 84.62 2,2.5 2 43.39 70.06 0.31 0.88 0.45 0.12 2.63

Sad vs Ang Poly 86.84 1,2 1 32.12 62.88 0.99 0.6 0.74 0.4 1.23

Sad vs Fea Poly 88.57 0.5,1.5 3 30.93 76.72 0.97 0.74 0.84 0.26 0.97

Sad vs Dis Poly 81.08 0.5,2 0.5 31.18 69.47 0.6 0.8 0.68 0.2 1.12

Sad vs Sur Poly 94.44 2.5,1 2.5 31.52 79.69 0.99 0.74 0.85 0.26 1.4

Sad vs Hap RBF 61.54 2,0.5 3.5 47.04 66.67 0.18 1 0.31 0 3.6

Sad vs Ang RBF 52.63 1.5,0.5 3.5 34.84 60.61 0.99 0.58 0.73 0.42 1.97

Sad vs Fea RBF 57.14 1.5,0.5 3.5 33.86 84.48 0.92 0.85 0.88 0.15 1.45

Sad vs Dis RBF 54.05 2,0.5 3.5 34.24 54.96 1 0.55 0.71 0.45 4.13

Sad vs Sur RBF 55.56 2.5,3 3.5 34.95 80.47 0.99 0.75 0.85 0.25 1.61

Z-norm Sad vs Hap Lin 86.54 0.5,1 − 37.43 73.45 0.56 0.73 0.63 0.27 0.97

Sad vs Ang Lin 84.21 1.5,1.5 − 30.36 59.85 0.97 0.58 0.73 0.42 1.27

Sad vs Fea Lin 88.57 2.5,1 − 29.3 65.52 0.47 0.94 0.63 0.06 1.65

Sad vs Dis Lin 83.78 2.5,3 − 29.05 54.96 1 0.55 0.71 0.45 2.08

Sad vs Sur Lin 100 0.5,0.5 − 30.72 73.44 0.97 0.69 0.8 0.31 0.79

Sad vs Hap Poly 88.46 1.5,1 1.5 42.42 79.1 0.9 0.68 0.78 0.32 2.43

Sad vs Ang Poly 86.84 2,1 2 31.51 59.85 0.97 0.58 0.73 0.42 2.28

Sad vs Fea Poly 97.14 1.5,1.5 1.5 29.92 82.76 0.83 0.88 0.86 0.12 1.3

Sad vs Dis Poly 83.78 2.5,2 3 30.75 56.49 0.97 0.56 0.71 0.44 2.73

Sad vs Sur Poly 97.22 0.5,1 3.5 29.95 83.59 0.83 0.87 0.85 0.13 1.12

Sad vs Hap RBF 61.54 2,0.5 3.5 49.1 77.4 0.53 0.86 0.66 0.14 3.2

Sad vs Ang RBF 52.63 1.5,0.5 3.5 37.44 72.73 0.58 0.88 0.7 0.13 1.83

Sad vs Fea RBF 57.14 1.5,0.5 3.5 36.5 78.45 0.9 0.78 0.84 0.22 1.5

Sad vs Dis RBF 54.05 2,0.5 2 35.04 79.39 0.88 0.78 0.82 0.22 2.31

Sad vs Sur RBF 55.56 2,3.5 2 36.04 84.38 0.96 0.8 0.87 0.2 1.8

One vs All Max & Min Sad vs All Lin 89.83 0.5,0.5 − 71.5 85.13 0.22 0.84 0.35 0.16 17.6

Sad vs All Poly 16.95 0.5,0.5 3.5 100.5 89.4 0.43 0.97 0.59 0.03 20.2

Sad vs All RBF 89.83 0.5,1.5 0.5 89.34 89.6 0.44 0.97 0.61 0.03 18.6

Z-norm Sad vs All Lin 89.83 0.5,3 − 79.7 84.6 0.21 0.79 0.33 0.33 17.6

Sad vs All Poly 16.95 0.5,0.5 3.5 104.2 90.2 0.57 0.84 0.67 0.16 15.4

Sad vs All RBF* 90.68 0.5,1 1.5 75.57 91.7 0.65 0.85 0.74 0.15 13.4

(*)-highlighted as the higher performance achieved in FERs

computation time of 11.75±7.5 sec and Guo’s [43] work
shows a computation time of 3.0±0.25 sec for training
and testing phase of emotional classifier. Patil’s [2] system
shows the computation time of 4 sec. This shows the com-
putational time is reduced in our model when compared to
the other models are shown in the Table 21 . From the exper-
iments result, the 10-fold cross validation found above 90%

accuracy of all basic six facial emotions and the hold out
cross validation found that Disgust and Sad has less than
90% accuracy when compared to other emotions (Surprise,
Happy, Fear, and Anger). This may be improved by local
normalized data with cross-validation applied in the mini-
mal feature vector of TWSVM classifier. The optimal model
can be achieved by validating the above experiment with
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Table 19 The overall performance of proposed model (RBF-‘One vs All’-Z-norm)

Validation parameters Overall performance-holdout Overall performance-10 fold

Accuracy(%) 92.05 ± 3.79% 93.42 ± 3.25%(10-fold), 92.56 ± 3.02%(test data)

Precision 0.75 ± 0.18 0.76 ± 0.11(test data)

Recall 0.68 ± 0.25 0.73 ± 0.22(test data)

Error.rate 0.32 ± 0.25 0.27 ± 0.22(test data)

F1-score 0.68 ± 0.25 0.76 ± 0.22(test data)

Computation time(sec) 2.05 ± 0.43 s 15.08 ± 4.08 s (10-fold+test data)

Table 20 Comparison of proposed model and state of the arts of facial emotion

Learning Model Classifier Database Type Overall. Accuracy(%)

Supervised Owusu [1] SVM JAFFE,Yale Images 97.57%,92.33%

Patil [2] NN JAFFE, CMU-
AMP, ORL,
Yale, CK

Images 98.33%, 99.27%, 98.14%, 98.44%,
98.49%

Siddiqi [3] HMM Youtube Images 95%

Uddin [13] HMM(RGB)
FER

Videos 82.91%

HMM(RGB) 87.50%

Yu [14] SVM+PCA JAFFE,CK,GWI Images 75.50%

Saeed [15] SVM CK+,BU-4DFE Images and
videos

83%

Wan [16] SVM CK Images 80%

Mohammadian [17] SVM+HMM CK+ Images 83.90%

Ren [18] Fuzzy+SVM BU3DFE Videos 81.4%

Jiang [19] SRC CK+,JAFFE Images 80%

Papachristou [20] SSL CK,CK+,BU Images and
videos

71.14%,71.84%

Nikitidis [21] MMPP CK,CK+ Images 80.9%

Semi-supervised Cohen [27] NB CK,CK+ Images 69.10%±1.44

TANB 69.30%±1.44

SSS 74.80%±1.36

Rifai [28] CDA+SVM Toronto Face Images 85/%±0.47

Jiang [29] TLAB RaFD, BHU Videos 83.68%,87.71%

Proposed model TWSVM Cross
Database (CK,
CK+, MMI
Oulu,MAHNOB,
Realtime)

Videos 92.05±3.79%, 93.42 ± 3.25%(10-fold),
92.56 ± 3.02%(test data)∗

Table 21 Comparison of the
execution time of proposed and
existing models

Model Overall comp.time (sec)

Dapgony [42] 11.75 ± 7.5

Guo [43] 3.0 ± 0.25

Patil [2] 4

*Proposed model 2.05± 0.43(hold out),15.08 ± 4.08 s(10-fold+test) ∗
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(k-fold, leave-one-out and bootstrapping with grid search)
minimal feature vectors of TWSVM classifier.

5 Conclusion

This paper proposes the classification of facial emotion
with minimal facial features of geometric deformable
nodes with a semi-supervised classifier. In this system, it
is demonstrated that those minimal feature vectors with
a semi supervised classifier has high accuracy and less
computation time. In this paper, the hold-out validation
and 10-fold cross validation of a fused global normalized
minimal feature vector is applied in Multi TWSVM to
determine the validation parameters of the proposed system.
From the comparison of validation parameters, using RBF
kernel (‘One vs All’) with Z-normalization have achieved
high accuracy of all facial emotions compared to other
kernels with normalization. From the proposed model, good
performance and accuracy are achieved with the comparison
of proposed and existing models, which achieves a better
performance than the existing model. This work can be
extended for micro and subtle expression as well. This
work can go much deeper by applying different cross-
validation, local normalized features and feature selection
optimization. This work can go in real time application of
Human Computer Interactions.
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