
Using convolutional neural networks for character verification
on integrated circuit components of printed circuit boards

Chun-Hui Lin1
& Shyh-Hau Wang1,2

& Cheng-Jian Lin3

Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Manufacturers of printed circuit boards (PCBs) typically use automated optical inspection (AOI) machines to test their PCBs.
However, AOI machines employ conventional image-processing methods. If the integrated circuit (IC) components are not
identical to the golden samples, then the AOI machine registers those IC components as flaws. Conventional image-processing
methods cause misjudgments and increase the cost of manual reviews. Character-verification and image-classification systems
are proposed in this paper for detecting misplaced, missing, and reversed-polarity parts. The regions of IC components can be
identified on PCBs by using the contour border-detection method. Through the proposed convolutional neural network (CNN)
structure and refinement mechanism, the characters can be successfully recognized. The image-classification systemwas applied
only to images with blurry characters. Different CNN learning structures were used in both systems, and the refinement
mechanism was used in both systems to improve the results. The proposed character-verification and image-classification
methods achieved 98.84% and 99.48% passing rates, and the amount of required training time was less than that of other
methods, demonstrating the proposed methods’ greater effectiveness.

Keywords Printed circuit board . Convolutional neural networks . Component testing . Contour detection . Deep learning

1 Introduction

With developments in computer technology, communication,
and ecommerce, printed circuit board (PCB) requirements
have become increasingly strict. Additionally, surface-mount
technology has exhibited steady progress. To increase the
quality and stability of PCBs, some problems must be ad-
dressed, such as the misplacement, loss, and reversed polarity
of PCB parts.

Automated optical inspection (AOI) machines are com-
monly used by manufacturers. Workers must spend time es-
tablishing each parameter, including light colors, light angles,
image lighting, and the image contrast ratios, prior to testing.
Pattern matching is then used to compare the testing images

with the golden samples. Unstable image quality may result in
workers being required to retest the images, thus increasing
companies’ labor costs.

These problems can be solved using two methods: the
match method and character verification method. Match
methods, such as that developed by Cho et al. [1], use a
pattern-matching algorithm to compare the input images with
the standard images to identify the misplaced parts of the
PCB. The images are then converted through discrete wavelet
transformations to boost accuracy and stability. This pattern-
matching method was employed by Crispin et al. [2].
However, they used a genetic algorithm to expedite the iden-
tification process of the PCB. The pattern-matching method
demonstrates excellent performance and accuracy but is easily
affected by image lighting, component deviation, and noise.

The primary aim of character verification is to verify laser
or ink jet words on integrated circuit (IC) components while
checking for missing and misplaced parts. Lee et al. [3] pro-
posed feature extraction through Gabor filter composition,
direction gradient, wavelet coefficient, and difference in edge
spacing. After feature extraction, the AdaBoost is used for
classification. The stroke width transform was proposed by
Epshtein et al. [4]. The contour border-detection algorithm
and direction gradient are also used in this method. After

* Cheng-Jian Lin
cjlin@ncut.edu.tw

1 Department of Computer Science & Information Engineering,
National Cheng Kung University, Tainan 701, Taiwan

2 Intelligent Manufacturing Research Center, National Cheng Kung
University, Tainan 701, Taiwan

3 Department of Computer Science & Information Engineering,
National Chin-Yi University of Technology, Taichung 411, Taiwan

https://doi.org/10.1007/s10489-019-01486-5
Applied Intelligence (2019) 49:4022–4032

Published online: 21 May 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-019-01486-5&domain=pdf
http://orcid.org/0000-0002-8709-2715
mailto:cjlin@ncut.edu.tw

defining the stroke width, the connection method and
predefined threshold are used to divide the character areas.

For character verification, Nava et al. [5] extracted the fea-
tures through PCA and then classified the characters by using
the conditional probability of the Bayesian function. Neullens
et al. [6] evaluated the performance of various methods of
optical character recognition (OCR) and proposed preprocess-
ing steps for improving performance and stability.

Deep neural networks (DNNs) are considered a basic tool
for extracting features from training data, and studies on char-
acter detection and verification have increasingly used DNN.
For example, to solve the problem of small characters, which
are difficult to detect, the feature enhancement network was
proposed by Zhang et al. [7]. Furthermore, Zhang et al. [7]
designed the adaptive position-sensitive region-of-interest
pooling layer to improve accuracy. Shi et al. [8] implemented
a character-verification system in an end-to-end network.
First, features were extracted using a convolutional neural
network (CNN). Next, the map-to-sequence method was used
to transform these features into feature vectors. Finally, a re-
current neural network (RNN) and connectionist temporal
classification method were used to verify the words.

The object-detection method using deep learning with
graphic processing unit hardware [9, 10] exhibits adequate
performance in many tasks; however, the considerable time
required for training renders this detection method inefficient.

The major contributions of this study are described as
follows:

& A character-verification system with deep learning is pro-
posed to recognize IC components in images with clear
characters.

& An image-classification system is also proposed to classi-
fy the images without characters or those with blurry char-
acters by CNN structure.

& A novel refinement mechanism is used in both systems. It
refines the CNN output score and increases the accuracy
for detecting misplaced, missing, and reversed-polarity
parts.

& The experiments are implemented in both systems in this
study. The experimental results indicate that the proposed
method exhibited a superior passing rate and less training
time compared to the other methods.

The remainder of the paper is organized as follows.
Section 2 introduces the proposed methods of this study.
Details on the character-verification method and the image-
classification method are described in Sections 3 and 4.
Section 5 presents the experimental results, and Section 6 of-
fers conclusions for this study.

Fig. 1 (a) Clear-character IC
component (b) Blurry-character
IC component

Start

Input Image

IC component image

Classification

IC component part

number and direction

Verification

database

system

Is it NG pieces? PASS

Missing

Parts

Wrong

Parts

Wrong

Polarity

NO

Yes

End

NG

Fig. 3 Structure of the image-classification system

Start

Input IC Image

Text contour

border detection

Text

recognition

IC component

marking and

direction

Verification

database

system

Is it NG pieces? PASS

Missing

Parts

Wrong

Parts

Wrong

Polarity

NO

Yes

End

NG

Fig. 2 Structure of the character-verification system

C. H. Lin et al4023

2 Proposed methods

The images requiring testing were captured from the PCB by
using high-magnification camera lenses through the AOI ma-
chine, and then the region of interest was analyzed to deter-
mine the IC position. The images might therefore contain
some noise, such as uneven light, skewed angles, or a low
degree of contrast. Two types of images were examined: those
with clear characters, such as in Fig. 1(a), and those with
blurry characters, as in Fig. 1(b).

Two systems, a character-verification system and an
image-classification system, are proposed in this study. The
primary goals of these systems are to achieve high accuracy
and performance and decrease the number of manual-
adjustment parameters. Figure 2 displays the structure of the
character-verification system that is used to examine the clear-
character IC component indicated in Fig. 1(a).

Figure 3 Structure of the image-classification system that is
used in the blurry-character IC component presented in Fig.
1(b).

3 Deep learning for character verification

3.1 Contour border detection

Contour border detection is the preprocessing of the character-
verification system. First, the images were converted into
grayscale after being input into the system. Next, Gaussian
smoothing was used to remove noise from the images, and
Otsu [11] was used to automatically reduce noises and change
the grayscale images into binary images. The border-
following algorithm developed by Suzuki [12] was used to
extract the characters that did not belong in the background.
The border-following algorithm is used to derive chain codes
from the border between a connected 1-pixel component and
0-pixel (background) component. The 8-connectivity is de-
fined to search the white border but not the inside of the
character. Figure 4 reveals that the detected rectangle frame
was the area of the character.

3.2 CNN structure of character verification

The LeNet-5, consists of two sets of convolutional and aver-
age pooling layers, and two fully-connected layers, is a
straightforward and well-known architecture for character rec-
ognition. In this study, the CNN structure which is modified
from LeNet is provided in Table 1. To meet the manufacturer
requirements, including those for training speed and the accu-
racy, the sizes of the grayscale images were set to 1 × 28 × 28.
The 64 and 128 5 × 5 convolution kernels were the best pa-
rameter set which were used in the first and second

Fig. 4 Contour detection

Table 1 CNN structure

Input Size 1*28*28

Convolution1 Kernel Size: 5, Pad:2, Stride:1, Output:64

Activation1 Type: ReLU

Pooling1 Kernel Size: 2, Stride:2, Type: MAX

Convolution2 Kernel Size: 5, Pad:2, Stride:1, Output:128

Activation2 Type: ReLU

Pooling2 Kernel Size: 5, Stride:2, Type: MAX

Fully connected3 Output:300, Dropout:0.5

Activation3 Type: ReLU

Fully connected4 Output:120, Softmax

Fig. 5 (a) Original image (b)
After contour detection

Using convolutional neural networks for character verification on integrated circuit components of printed... 4024

convolution layers to extract the features after training and
testing experiments. The padding was required to remain the
same size after convolution. The rectified linear unit (ReLU)
activation function was used to strengthen the feature expres-
sion, and pooling was used to reduce the size of the feature
images. Flattening was employed to connect the feature im-
ages to the fully connected layer, and the dropout was set to
0.5 during training; abandoning 50% of the neurons could
prevent overfitting.

Equation (1) demonstrates the use of the probability distri-
bution P of c types through softmax to acquire the maximum

probability type [22], the final result Y, as presented in Eq. (2).

pi ¼
ezi

∑c
j¼1e

z j
ð1Þ

Y ¼ argc∈ 1;C½ �max p cjXð Þð Þ ð2Þ

where pi is the result of softmax, zj is the output before
softmax, c is the number of types, and e is the exponential.

3.3 Refinement mechanism of character verification

After being trained by the CNN structure, the characters, num-
bers, IC logos, symbols, and angles can be successfully and
roughly recognized. However, the image quality might spo-
radically become unstable. Contour detection can solve prob-
lems associated with the system being unable to recognize a
character. Perceiving multiple characters as one character is
one such problem. Figure 5 provides an example of three
characters being detected as one character because of noise
or a lack of light. Another problem is blurry or fractured char-
acters. Light and low print quality cause the characters to be
separated into multiple regions, as demonstrated in Fig. 6.

The refinement mechanism for contour detection is intro-
duced as follows, with three cases presented for solving the
two aforementioned problems.

& Character connection

To prevent the system from recognizingmultiple characters
as one, the opening operation in mathematical morphology
was used. The procedure is displayed in Fig. 7.

Fig. 6 (a) Original image (b)
After contour detection

Start

Input contour

information

Morphological

If times of

Morphological ==N?

Is it separated?

Reclassification

by CNN

If CNN output>T

Separate contour

End

Yes

If contour >average

word width? No

Yes

No

No

No

Yes

Yes

Fig. 7 Procedure for character connection

Fig. 8 (a) Vertical fracture (b)
Horizontal fracture

C. H. Lin et al4025

First, the areas of all contour regions, referred to as the
word width, were calculated. Next, for the opening operation
to the contour region, words with a width greater than the
average word width were identified. The opening operation
was then tested N times until the system split the contour
region. The number N was set to 5 in the experiments.
Finally, the region was recognized again by the CNN. An
output score greater than the threshold T indicated that the
character had been accurately divided; otherwise, the word
had been inaccurately split.

The two directions of fractured characters are illustrated in
Fig. 8.

& Vertical character fracture

Themechanism of vertical character fracture is presented in
Fig. 9. In the contour region, the string projects downward,
and if any overlap occurs, then they are combined and then
again recognized by the CNN. An output score greater than
the threshold T indicates that the character was successfully
connected.

& Horizontal character fracture

The flowchart of horizontal character fracture is displayed
in Fig. 10. First, the angle of the string is determined. Next, the
distance (word space) of each contour is calculated and the
contour regions that are smaller than the average word space
are combined. Finally, the region is recognized again by the
CNN. An output score greater than the threshold T indicates
that the character was successfully connected.

In this study, the proposed adaptive threshold T was set by
using training data. The lowest score of all the output scores from
the character-verification model was set as threshold T.

In order to compare with adaptive threshold T, the real
scores from CNN are needed therefore the softmax which
regularizes the output scores from 0 to 1 was removed in the
testing phase [22]. Eq. 3 demonstrates the output type without
softmax.

zi ¼ pooling ReLU W⨂Xþ bð Þð Þ; i∈ 1;C½ � ð3Þ
where X is the input image, W is the weight after training, b is
the bias, ⨂ is the convolution operation, ReLU(·) is the non-
linear activation function, pooling(·) is the pooling operation,
and zi is C types of outputs without softmax.

4 Deep learning for image classification

Figure 1 (b) displays the blurry-character or no-character IC
component images used in this mechanism. The proposed
image-classificationmethod involves using the CNN structure
to detect images and to determine the direction of the IC com-
ponent and the item number that the IC component belongs to.

4.1 CNN structure of image classification

The CNN structure of image classification was revised from
AlexNet. A champion of ImageNet Large Scale Visual
Recognition Challenge in 2012 with five convolution layers
and three fully-connected layers, however, in this study, less
layers than AlexNet were used. Only four feature-expression
layers were designed in the structure, and then three fully
connected layers were connected. To prevent overfitting, the
dropout was set at 0.3 and 0.5 for the first two fully connected

Start
Input contour

information

If

Contour < average

word space?

No

Yes
Combined

contour

Reclassification

by CNN

Combine

contour
End

Yes

If CNN output>T

No

Fig. 10 Procedure of horizontal
character fracture

Start
Input contour

information

If

contour overlap

Vertically?

Combine

contour

Reclassification

by CNN
Combine contourEnd

No

No

Yes

Yes
If CNN output>T

Fig. 9 Procedure of vertical
character fracture

Using convolutional neural networks for character verification on integrated circuit components of printed... 4026

layers in the training phase. Six classes were then output from
a probability distribution using softmax. The structure of
image-classification is presented in Table 2. In this study, we
try to increase the number of layer. The results of image clas-
sification cannot be significantly improved and requires a lon-
ger training time.

4.2 Refinement mechanism of image classification

After training, the IC component images were input in CNN
structure and the Top-1 predicted answer was selected as its
class; the IC part number and its angle could then be deter-
mined. Consequently, misplaced parts and polarities could be
identified by the system. However, if the probability distribu-
tion of the output closely corresponded to all classes, then the
image class was difficult for the CNN to predict.

To address the above-mentioned problem, in the testing phase,
the softmax was removed and the system recorded all of the
scores from the training data of different image classes. The
lowest score was set as the threshold of its class. Therefore, the
input image achieving a score that is lower than the thresholdwas
considered abnormal (misplaced or missing parts).

5 Experimental results

To verify the efficiency of the proposed method, real IC com-
ponents were used in the experiments. The system was evalu-
ated to determine whether it could identify all of the strings and
angles from the IC components, and a standard pass rate was
used. If characters were not appropriately compared with the
database, then they were classified as a misplaced component.
If no character was detected, then it was regarded as a missing
part. If the system verified the characters correctly but the angle
was incorrect, then it was classified as being the wrong polarity.

For image classification, the system was evaluated to de-
termine whether it could display the number and the right
angle of the IC component, and a standard passing rate was
used. Testing was conducted using the deep-learning tools
Caffe and NVIDIA Digits, as well as using a learning envi-
ronment with a single GTX 1080 Ti.

Table 2 Structure of IC component image classification

Input Size 3*250*250

Convolution1 Kernel Size: 7, Pad:3, Stride:1, Output:48

Activation1 Type: ReLU

Pooling1 Kernel Size: 2, Stride:2, Type: MAX

Convolution2 Kernel Size: 5, Pad:2, Stride:1, Output:96

Activation2 Type: ReLU

Pooling2 Kernel Size: 3, Stride:2, Type: MAX

Convolution3 Kernel Size: 5, Pad:2, Stride:1, Output:96

Activation3 Type: ReLU

Pooling3 Kernel Size: 5, Stride:2, Type: MAX

Convolution4 Kernel Size: 3, Pad:2, Stride:1, Output:128

Activation4 Type: ReLU

Pooling4 Kernel Size: 5, Stride:2, Type: MAX

Fully connected3 Output:250, Dropout:0.5

Activation3 Type: ReLU

Fully connected3 Output:150, Dropout:0.5

Activation3 Type: ReLU

Fully connected4 Output:24, Softmax

Fig. 11 Learning graph of character verification

Table 3 Training parameters of character verification

Training Epochs Batch Size Optimizer Type Base Learning Rate

30 300 Adam [13] 0.0001

Table 4 Character verification without CNN output score refinement

ICNumber Misjudged
Images

Passing
Rate (%)

Average
Execution
Speed (ms)

IC001 63 94.81 69

IC002 35 97.52 81

IC003 28 97.77 92

IC004 4 99.76 62

IC005 953 52.28 67

IC006 905 54.50 59

IC007 807 59.45 57

IC008 1050 47.32 61

IC009 780 37.60 72

IC010 661 46.30 74

Average 529 69.73 69

C. H. Lin et al4027

5.1 Character verification on IC components

5.1.1 Training process of character verification

In the training process, each character was constructed in a
different image type according to its angles (0, 90, 180, or 270

degrees). Characters that looked the same from different an-
gles (for example, B8^ looks the same at 0 degrees and 180
degrees) were removed from the type lists. Therefore, 600
characters and 120 types were used in the training data.
Each type used approximately 100 characters for the testing
data. Table 3 lists the training parameters. Figure 11 presents
the learning process and system converge in 10 epochs; the
amount of time required to train the data was only 3 min.

5.1.2 Experimental results of character verification

IC001 to IC010 were used in the character-verification exper-
iments. All types of IC components were approximately 1500
images. The images contained approximately 20 characters
and symbols. CNN contour border detection was used in this
experiment. Table 4 demonstrates that without adding the re-
finement mechanism, the average misjudged image was 529
photos and the passing rate was only 69.73%. Compare with
Table 5, the refinement mechanism is added, the passing rate
increases substantially and reached 98.84%. Even the average
execution time was longer than before, and it still fits manu-
facturers’ standards.

Table 6 presents a passing rate comparison of the proposed
method with the other methods, Shi et al. [8], SSD [9], YOLO
[14] and conventional AOI machine, under same conditions.
The high complexity of Shi et al. [8] and SSD [9] required
more time to train their deep learning networks. The conven-
tional AOI machine also needed more training time because
the parameters of all IC components were manually adjusted.
YOLO [14] shows short average execution speed, however
many characters missed detection which causes YOLO [14] to
have a lower passing rate than the proposed method. The
proposed method required less time for training, and it is gen-
eralizable because it does not involve the development of new
training data, as is the case in other methods.

Fig. 12 displays examples of success from using the pro-
posed method. The left side presents the results of contour

Table 5 Character verification with CNN output score refinement

ICNumber Misjudged
Images

Passing
Rate (%)

Average
Execution
Speed (ms)

IC001 10 99.18 245

IC002 8 99.43 271

IC003 25 98.01 341

IC004 4 99.76 238

IC005 24 98.80 236

IC006 23 98.84 217

IC007 23 98.84 222

IC008 32 98.39 220

IC009 18 98.56 251

IC010 17 98.61 266

Average 18 98.84 250

Table 6 Results of different methods

Method Passing
Rate (%)

Average Execution
Speed (ms)

Training Time

Shi et al. [8] 63.41 176 3~4 h

SSD [9] 71.68 110 5~6 h

YOLO [14] 86 35 3 h

AOI Machine 79.3 60 1~2 h

Proposed Method 98.84 250 3 mins

Fig. 12 Examples of success

Using convolutional neural networks for character verification on integrated circuit components of printed... 4028

border detection, and the right side displays the degrees and
the strings, which are separated by a comma.

Figure 13 displays some misjudged examples, most of
which were caused by blurry characters, noise, or failure of
the score to reach the threshold. For example, the dots were
not detected in Fig. 13 (a) and (b), the number B4^ was veri-
fied as BA^ in Fig. 13 (b), the number B8^ was identified as
BB^ in Fig. 13 (c), and the score failed to reach the threshold in
Fig. 13 (d), indicating that the character fracture was not con-
nected, as was the case with the character BH.^

5.2 Image classification on IC components

5.2.1 Training process of image classification

Six classes of IC images, numbered IC011 to IC016, were
used in the experiment. Each class of image was classified
in four directions. Each class had approximately 700 images.
First, the black pixels were padded to ensure that the images
remained the same size. The images were then adjusted to
250 × 250 for training. In total, 10% of the training data was
used as the testing data. Table 7 lists the parameters used in
training, and the learning graph is displayed in Fig. 14. The
total training time was 45 min.

5.2.2 Experimental results of image classification

Table 8 lists the passing rates of six classes of IC images. The
average passing rate was 99.48%, and the average execution
time for each IC image was 23.2 ms.

Many deep learning approaches present good performance
in image classification such as VGGNet [15], GoogLeNet

[16], AlexNet [17], and ResNet [18]. In very recent algo-
rithms, a new pooling technique that combines two consecu-
tive convolutional layers as a pooling operation, was proposed
by Liu et al. [19]. It used convolutional layers from aDCNN at
first then applied the pretrained CNN on densely sampled
image regions and treated the fully-connected activations of
each image region as a convolutional layer’s feature activa-
tions. Then, another convolutional layer was trained on top of
that as the pooling guidance convolutional layer. To improve
recognition accuracy and decrease the parameters needed in
CNN, Zhang et al. proposed the hybrid model CNN-GRNN
[20], which extracted features using CNN then classified im-
ages with GRNN which has only one variable and no need to
iterate. Another more discriminative feature coding network is
designed by Chen et al. called LSO-VLADNet [21].
Expanding the NetVLAD model, an end-to-end feature cod-
ing network, LSO-VLADNet, is able to be jointly trained with
a deep convolutional neural network for visual recognition. In
addition, the feature coding method is the core component of
this framework, which links feature extraction and feature
pooling, and greatly influences the image classification
performance.

Fig. 13 Examples of
misjudgment

Fig. 14 Learning graph of classification on IC component images

Table 7 Classification parameters of IC component images

Training Epochs Batch Size Optimizer Type Base Learning Rate

50 64 Adam [13] 0.0005

C. H. Lin et al4029

The evaluation indexes consist of the passing rate and the
training time. Figure 15 presents the passing rates of various
methods using the same training data and testing data for
comparison. The epoch was set to 50, and the optimizer type
was set to Adam [13].

According to the experimental results in Fig. 15, the
passing rate of the proposed method is better than those
of other methods, except the ResNet [18] and CNN-
GRNN [20]. Even if ResNet [18] shows the highest pass-
ing rate in all the methods, its training time reveals ob-
vious differences as shown in Table 9. Also, in Table 10,
the execution speed and loading time per image show
efficient advantages of the proposed method. CNN-
GRNN also reveals better passing rate than the proposed
method, however, CNN and GRNN networks both need
to be trained. This causes the training procedure to

be more complex and have a longer training time.
CNN-GRNN might cause tedious work if employed by
a manufacturer. Therefore, the proposed method not only
reduces the amount of required time but also is accessi-
ble and flexible for manufacturers.

Fig. 15 Passing rate comparison
of various methods

Table 8 Passing rate of IC
component image classification IC Number Misjudged Images Passing Rate (%) Average Execution

Speed (ms)

IC011 9 99.46 25

IC012 5 99.67 21

IC013 15 99.14 25

IC014 7 99.63 23

IC015 6 99.56 26

IC016 11 99.41 19

Average 8.83 99.48 23.2

Table 9 Training time
comparison of various methods Methods Proposed

Method
VGGNet
[15]

GoogLeNet
[16]

Alexnet
[17]

ResNet
[18]

CNN-GRNN
[20]

Training Time 45 min 2hr10min 1h3min 53 min 4hr30min 1 hr

Table 10 Execution speed and loading time comparison of ResNet and
proposed method

Execution Speed
(Frames/s)

Loading Time
(ms/image)

ResNet [18] 7.19 139

Proposed Method 35.71 28

Using convolutional neural networks for character verification on integrated circuit components of printed... 4030

6 Conclusions

The proposed deep-learning methods were used in PCB test-
ing, which involved character verification on IC components
and classification on IC component images. IC component
character verification employed contour border detection with
CNN and then used the refining output score from CNN to
increase accuracy. IC component image classification
employed a different CNN structure and same refinement
mechanism to increase accuracy.

According to the experimental results, the passing rates of
both methods reached 98.84% and 99.48%, and the times
required for training were less than those of other methods.
Both methods met manufacturer requirements and have been
implemented on the production lines. In future works,the pro-
gram will automatically test an image again after it has been
misjudged. The program will be embedded in machines to
shorten processing time after fetching massive images from
cameras.

References

1. Cho HJ, Park TH (2008) Template matching method for SMD in-
spection using discrete wavelet transform. Proc SICE Annual
Conference: 3198–3201

2. Crispin AJ, Rankov V (2007) Automated inspection of PCB compo-
nents using a genetic algorithm template-matching approach. Int J
Adv Manuf Technol 35(3–4):293–300

3. Lee JJ, Lee PH, Lee SW, Yuille A, Koch C (2011) AdaBoost for text
detection in natural scene. International Conference on Document
Analysis and Recognition: 429–434

4. Epshtein B, Ofek E,Wexler Y (2010) Detecting text in natural scenes
with stroke width transform. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition: 2963–2970

5. Nava CF, Gonzalez FF (2015) OCR for unreadable damaged char-
acters on PCBs using principal component analysis and bayesian
discriminant functions. Proceedings international conference on
computational science and computational intelligence (CSCI 2015):
535–538

6. Li W, Neullens S, Breier M, Bosling M, Pretz T, Merhof D (2014)
Text recognition for information retrieval in images of printed circuit
boards. Annual conference of the IEEE industrial electronics society
(IECON 2014): 3487–3493

7. Zhang S, Liu Y, Jin L, Luo C (2017) Feature enhancement network: a
refined scene text detector. Association for the Advancement of arti-
ficial intelligence (AAAI 2018): 2612–2619

8. Shi B, Bai X, Yao C (2017) An end-to-end trainable neural network
for image-based sequence recognition and its application to scene
text recognition. IEEE Trans Pattern Anal Mach Intell 39(11):
2298–2304

9. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC
(2016) SSD: single shot multibox detector. European conference on
computer vision (ECCV2016): 21–37

10. LiaoM, Shi B, Bai X, Wang X, LiuW (2017) Textboxes: a fast text
detector with a single deep neural network. Association for the
Advancement of artificial intelligence (AAAI 2017): 4161–4167

11. Otsu N (1979) A threshold selection method from gray-level histo-
grams. IEEE Trans Syst Man Cybern 9(1):62–66

12. Suzuki S, Be K (1985) Topological structural analysis of digitized
binary images by border following. Comput Vision, Graph Image
Process 30(1):32–46

13. Kingma DP, Ba J (2014) Adam:a method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980

14. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look
once: unified, real-time object detection. Proc IEEE Conf Comput
Vision and Pattern Recogn, Las Vegas, Nevada, USA: 779–788

15. Simonyan K, Zisserman A (2014) Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:
1409.1556

16. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan
D, Vanhoucke V, Rabinovich A (2015) Going deeper with convo-
lutions. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition: 7–12

17. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifica-
tion with deep convolutional neural networks. Proc 25th Int Conf
Neural Inform Process Syst 1:1097–1105

18. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. Proceedings of the IEEE conference on comput-
er vision and pattern recognition, Las Vegas, Nevada, USA: 770–
778

19. Liu L, Shen C, Hengel AVD (2017) Cross-convolutional-layer
pooling for image recognition. IEEE Trans Pattern Anal Mach
Intell 39(11):2305–2313

20. Zhang J, Shao K, Luo X (2018) Small sample image recognition
using improved convolutional neural network. J Vis Commun
Image Represent 55:640–647

21. Chen B, Li J, Wei G, Ma B (2018) A novel localized and second
order feature coding network for image recognition. Pattern Recogn
76:339–348

22. Chen PH, Si S, Kumar S, Li Y, Hsieh C (2018) Learning to screen
for fast Softmax inference on large vocabulary neural networks.
arXiv preprint arXiv: 1810.12406

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Chun-Hui Lin received the M.S.
degree in Computer Science from
the University of Texas at Dallas,
Texas USA, in 2017. Currently,
she i s a Ph .D. s tuden t in
C o m p u t e r S c i e n c e a n d
Information Engineering at
N a t i o n a l C h e n g K u n g
University, Tainan, Taiwan. Her
research interests are image pro-
cessing, intelligent control and
machine/deep learning.

C. H. Lin et al4031

Shyh-Hau Wang received B.S.
degree in biomedical engineering
from Chung Yuan Christian
University (CYCU), Chung Li,
Taiwan, in 1986; M.S. degrees in
biomedical engineering and elec-
trical engineering from Drexel
University, Philadelphia, PA, in
1992; and Ph.D. degree in bioen-
gineering from The Pennsylvania
S t a t e Un i v e r s i t y (P SU) ,
University Park, PA, in 1997. He
worked as research associate at
the Department of Biomedical
Engineering, University of

Virginia, in 1997 and then as postdoctoral fellow at the NIH Ultrasound
Transducer Resource Center, PSU, in 1998. Subsequently, Dr. Wang
served for the Department of Biomedical Engineering, CYCU, as assis-
tant professor (1998), associate professor (2001), and professor (2006).
Since 2009, he joined the Department of Computer Science and
Information Engineering & Institute of Medical Informatics at National
Cheng Kung University, Tainan, Taiwan. His research interests are in the
areas of biomedical ultrasound imaging, ultrasound tissue/material char-
acterization, signal/image processing, medical instrumentation and infor-
matics, and machine/deep learning.

Cheng-Jian Lin received the
Ph.D. degree in electrical and
control engineering from the
National Chiao-Tung University,
Ta iwan , R .O.C. , in 1996 .
Currently, he is a Lifetime
Distinguished Professor of
C o m p u t e r S c i e n c e a n d
I n f o rma t i on Eng i n e e r i n g
Department, National Chin-Yi
Univers i ty of Technology,
Taichung County, Taiwan,
R.O.C. His current research inter-
ests are computational intelli-
gence, intelligent transportation

system, intelligent control, image processing, and mobile robotic control.

Using convolutional neural networks for character verification on integrated circuit components of printed... 4032

	Using convolutional neural networks for character verification on integrated circuit components of printed circuit boards
	Abstract
	Introduction
	Proposed methods
	Deep learning for character verification
	Contour border detection
	CNN structure of character verification
	Refinement mechanism of character verification

	Deep learning for image classification
	CNN structure of image classification
	Refinement mechanism of image classification

	Experimental results
	Character verification on IC components
	Training process of character verification
	Experimental results of character verification

	Image classification on IC components
	Training process of image classification
	Experimental results of image classification

	Conclusions
	References

