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Abstract

This research proposes an improved particle filter tracking algorithm based on SGA (the adaptive genetic algorithm supervised
by population convergence). In order to improve the robustness and efficiency of the particle filter tracker in various tracking
scenarios, this study proposes an adaptive feature selection strategy based on Harris corner detection, SIFT features and colour
features. In addition, the tracking frame scale of the traditional target tracking algorithm is fixed in the tracking process, which
leads to many problems such as more invalid features and lower positioning accuracy. To solve these problems, this study
proposes an adaptive tracking frame scale adjustment model based on the spatial position of particles. Furthermore, considering
that the scale adaptive model cannot accurately reflect the target rotation deformation, this paper proposes an adaptive tracking
frame scale and direction adjustment model based on the covariance descriptors to accurately track the rotation of the target and
further reduce the invalid features of the rectangle frame. The extensive empirical evaluations on the benchmark dataset
(OTB2015) and VOT2016 dataset demonstrate that the proposed method is very promising for the various challenging scenarios.

Keywords Computer vision technology - Particle filter - Target tracking - Fusion feature

1 Introduction

Target tracking has been applied in many cutting-edge tech-
nologies, such as intelligent traffic supervision, automatic
driving, human-computer interaction, crime inspection, weap-
on guidance and other fields. Visual target tracking is a chal-
lenging and valuable study [1-3]; however, it still needs to
deal with the following major challenges: 1) a variety of in-
terference factors including low resolution, in-plane rotation,
out-of-plane rotation, scale variation, occlusion, deformation,
motion blur, fast motion and out-of-view; 2) improvements to
the efficiency, accuracy and stability of its tracking perfor-
mance [4]. This study therefore focuses on addressing the
above problems.

In recent years, a great deal of research has been carried out
to address these issues. Ref. [5] proposed a mean shift tracking
algorithm using 3D colour histograms. This method
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overcomes the influence of low illumination and the interac-
tion of similar targets. But it fails to track when the external
illumination changes drastically. Ref. [6] proposed a tracking
method that uses foreground probability and the histogram of
the candidate model in weight to increase the weights of the
foreground while suppressing background interference. This
method is adapted to changes of background and external
illumination. However, it fails to track when the target is oc-
cluded or moving fast.

Considering that visual objects often exhibit random be-
haviour, and target tracking is therefore a nonlinear state esti-
mation problem, particle filters are widely used in visual target
tracking because of their great advantages in solving the non-
linear state estimation problem [7, 8]. However, particle filter
algorithms still suffer from particle degeneracy and problems
with sample impoverishment. Furthermore, their accuracy, ef-
ficiency and stability need to be improved when solving com-
plex nonlinear problems [9—11]. For example, Ref. [12]
brought forward a labelled particle filter tracking algorithm
which describes each image patch with a binary label and
can handle real-time fast moving object tracking with less time
cost while maintaining high tracking accuracy. However, it
fails to track the interaction of similar targets on complicated
and variable backgrounds. Ref. [13] presented a tracking
method based on mean shift and particle filter (MSPF) which
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move particles to local peaks in the likelihood by incorporat-
ing the mean shift optimization into particle filtering. This
method improves the estimated position of the particle by
the mean shift algorithm, which makes the candidate regions
of the particles much closer to the true target position. This
algorithm has good real-time performance and can handle
occlusions and the interaction of similar targets. However, in
a low illumination environment, MSPF has a high probability
of tracking failure. The tracking efficiency of MSPF also
needs to be improved. Ref. [14] proposed an improved parti-
cle filter based on PSO (PSO-PF). The algorithm significantly
improved the efficiency of the particle filter using the PSO’s
excellent iteration ability. It was applied to lane detection and
human motion tracking respectively, and achieved good track-
ing results. However, PSO-PF did not solve the problem of
sample impoverishment, so the calculation accuracy and sta-
bility of the algorithm are low.

In conclusion, most of the traditional tracking algorithms
are well suited for certain specific tracking scenarios but lack
general adaptability to a variety of scenarios. What’s more, in
the traditional target tracking algorithm, the size of the target
tracking box is determined by the initial size of the target, and
the size of the tracking box is fixed in the whole tracking
process. But in the actual situation, the size of the target area
in the video image is not constant. If the target size becomes
larger and beyond the initial size, it will lead to loss of target
features, resulting in reduced target location accuracy, and
increase the probability of target loss in the tracking process.
If the target size becomes smaller than the initial size, the
tracking frame will be mixed with excessive background im-
ages and useless features. To solve this problem, Ref. [30]
proposed a scale adaptive kernel correlation filter tracker.
Ref. [31] proposed the DSST method with adaptive multi-
scale correlation filters using HOG features to handle the scale
variation of target objects. However, both of Ref. [30] and
Ref. [31] suffer from the defect of low computational efficien-
cy and need to improve their robustness of various complex
interference. Meanwhile, the traditional tracking algorithm
can’t effectively adapt to deformation and scale changes of
the target, and thus results in many problems such as useless
features in the tracking box, inaccuracy of target location and
higher probability of target loss.

1.1 Motivation

Traditional trackers still suffer from lack of accuracy, efficien-
cy and robustness due to issues mentioned above. Thus the
main task of this paper is to solve the drawbacks of traditional
trackers and improve the robustness and efficiency of the par-
ticle filter tracker in various tracking scenarios. We identify
three key factors for solving these issues: sample diversity,
target features and frame adjustment model.

Sample diversity: When image blur or serious occlusion
happens, the candidates of the target becomes unreliable and
the tracking process ends with false recognition. Therefore, it
is necessary to enrich sample diversity in the tracking process
to deal with the problem of insufficient validity of candidates
under corresponding circumstances.

Target features: Some trackers use a single feature, which
can achieve better tracking results for specific scenarios, but
lack of adaptability for multiple scenarios. Some trackers
adopt fusion features, but their real-time performance is poor
because of heavy computation.

Frame adjustment model: If the scale of tracking frame can
not be adjusted adaptively according to the scale variation of
the target, the tracking frame will be mixed with too many
invalid features, which will seriously affect the accuracy of
target location and lead to an increase in computation.

1.2 Contributions

This paper proposes a scale adaptive particle filter tracker
based on SGA (Adaptive genetic algorithm supervised by
population convergence) and feature integration. After the re-
sampling progress of PF, the individuals are ranked according
to their fitness values and the particles with lower fitness are
eliminated and replaced with the same number of particles
with higher fitness. Then, genetic operations supervised by
population convergence are introduced to PF to enrich its
sample diversity and the accuracy. Meanwhile, this paper pro-
poses the HSIFT feature selecting strategy based on the fusion
of Harris, SIFT and colour features to improve the tracker’s
efficiency, accuracy and robustness against multiple tracking
interference. Furthermore, this paper proposes a scale adaptive
adjustment model of a rectangular box based on the space
position of the particles to better adapt to scale changes of
the target. Considering that the scale adaptive adjustment
model of the rectangular tracking box cannot accurately re-
flect the rotation deformation of the target, this paper proposes
the scale and direction adaptive adjustment model of an ellip-
tical tracking box based on the covariance descriptor.

The main innovations and contributions of this paper are as
follows:

(1) In traditional genetic algorithm, the probability of cross-
over and mutation are fixed and can not be adjusted
properly with the evolution of samples. In this paper, a
genetic operating method supervised by population con-
vergence is proposed and applied to the resampling pro-
cess of particle filter. This adaptive genetic algorithm
supervised by population convergence (SGA for short)
can greatly improve the sample diversity of our tracker.

(2) Traditionally, the feature selected by traditional tracking
algorithms is for specific tracking scenarios, or the cal-
culation of fusion features is too complex. This problem
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greatly weakens the tracking speed, stability or adapt-
ability of traditional tracking algorithms. In this paper,
we propose the HSIFT feature extraction method, which
performs SIFT operation (scale invariant feature trans-
form) on the features obtained from Harris corner detec-
tion. It can select effective target features intelligently
based on the degree of similarity between candidate
models and target models. The experimental results
prove that our tracker based on HSIFT fusion tracking
strategy saves tracking time, improves the tracking effi-
ciency and enhances the robustness of the algorithm on
the premise of ensuring tracking accuracy and stability.
HSIFT feature selection method overcomes the disad-
vantages of traditional tracking algorithms, such as their
inflexible tracking form, and the lack of robustness
against multiple tracking interference.

(3) The tracking frames of traditional trackers are fixed or
the trackers can not adapt to the real-time change of the
scale of the target. Therefore, a scale adaptive adjustment
model based on the spatial position of the particles and
an adaptive adjustment model of scale and direction in
elliptical tracking box are proposed for the adaptive ad-
justment of the tracking frame. They can adjust the track-
ing frame in real time according to the change of target
scale or direction of movement. Experiments show these
two models can better capture and describe the target
scale change or rotation deformation. And they can cap-
ture the real area of the target more accurately and help
reduce the interference of the invalid feature in the can-
didate region.

2 Particle filter based on SGA

As mentioned in the introduction, particle filters are widely
used in visual target tracking because of their great advantages
in solving the nonlinear state estimation problem. However PF
still suffer from particle degeneracy and problems with sample
impoverishment. In this paper, a genetic operating method
supervised by population convergence (SGA for short) is pro-
posed and applied to the resampling process of particle filter to
help improve its sample diversity. Then the PF algorithm
based on SGA genetic method (SGAPF for short) is devel-
oped for our tracker.

2.1 Adaptive genetic algorithm supervised
by population convergence (SGA)

The purpose of this section is to solve the problem of particle
degradation and sample dilution in particle filter by SGA ge-
netic operation. Our strategy is to filter out particles with
weights below the average weight, and then randomly
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replicate a corresponding number of particles from the
retained particles for the eliminated particles. This method
can improve the sample validity, but the sample dilution prob-
lem of traditional particle filter algorithm is still unsolved.
Therefore, in order to further solve the problem of sample
dilution, we do not simply replicate the effective particles to
fill the obsolete particles, but do SGA genetic operation on the
randomly selected effective particles and then replicate them
into the new population.

Definition 1 The average fitness of individuals, which refers to
particles in particle filter, is set as f; (t in f; means the current
moment). fr,.x represents the optimal individual fitness (fitness
function corresponds to the weight function of particles) and f
represents the average fitness value of all particles with fitness
greater than f;. The degree of population convergence is de-
fined as 2 =f,,.« - /- Then the formula for calculating the SGA
crossover and mutation probability is:

{Pc:]/(1+eXp(k1gV))+1'5 (1)
P, =-1/(1 + exp(~kogV)) + 1

where k; and &, are positive constants, and 2 is non-negative.
As aresult, the range of the crossover probability P, is [0.5,1],
while the range of the mutation probability P, is [0,0.5]. In the
traditional algorithm, control parameters such as the crossover
and mutation probabilities are independent of the population
evolution process, and thus this fixed parameter control mech-
anism can lead to premature convergence [15, 16]. In the
proposed algorithm, however, the crossover probability P,
and mutation probability P,, are adjusted automatically ac-
cording to the degree of population convergence 2.

Genetic operator The crossover and mutation of the SGA
proposed in this paper are based on arithmetic crossover and
non-uniform mutation, as expressed in Egs. (2) and (3), re-
spectively:

x;+1 = a-x;—l— (l—a)-xg (2)
¥,y = ol + (1)

k —
xf+1 _ {Xt +f(t,mt )Jt{),p < 05 xfe[lt,mt]

k£ (¢, m~1,), p=0.5 ’ (3)
f(t) :y-(l—p“"”)b)E(O,y),peU(O, 1)

where « and p are random numbers with the value range (0,1);
x;", x[’ and x* represent particles that intersect at time t; x! 41 and
x],, represent new particles generated by crossover operation
at time (t+ 1); x* 11 Tepresent new particles generated by non-
uniform mutation operation at time (t+ 1); T is the maximum
number of iterations; parameter b determines the non-
uniformity of the mutation operation; and f() is an adaptive

mutation operator that can adaptively adjust the step size. f()
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is used to search potential regions in the whole domain, but in
the later stages of iteration only a small neighbouring area of
the current solution is searched so as to ensure the accurate
positioning and locking of the optimal solution.

2.2 SGAPF algorithm

The calculation accuracy and optimization ability of SGA are
better than the traditional GA algorithm, and this paper pre-
sents the SGAPF algorithm. Specifically, after the resampling
progress of PF, the individuals are ranked according to their
fitness values, and the particles with lower fitness are elimi-
nated and replaced with the same number of particles with
higher fitness. Then, the SGA arithmetic crossover and non-
uniform mutation are introduced to enrich the sample diversity
and the accuracy of PF.

(1) Sample initialization

Set S as the sample number and T as the maximum number
of'iterations. Randomly generate S samples xf) i=1,2,,9).

(2) Important density sampling [17]

a) Calculation of important density function

xi~q(Xy,) = p(xibxi )P (- i) (4)

b) Particle weight update

iy .

= Wil

c) Particle probability density update

plxilyr,) =

It

wié (xrxﬁ) (6)

1
where ¢ refers to the Dirac function. Firstly, according to Eq.
(4), S particles are randomly generated, and the particle weight

and probability density are then updated according to Egs. (5)
and (6).

(3) Determination of the degree of particle degeneracy

1
Nep = ———

(wi)?

(7)

Tt

N4 represents the degree of particle degradation. If N4 is
greater than the threshold NV, the particle degradation is not obvi-
ous and we can move directly to Step 5. Otherwise, there may be

serious sample degradation and resampling must be carried out on
the current particle set before updating the particle position.

(4) Resampling

All weighted particle weights are reset to w! = 1/8.
(5) Adaptive genetic operation

Eliminate individuals with lower fitness and replace them
with the same number of individuals with higher fitness.
Then, introduce the SGA genetic operation to enrich sample
diversity and the accuracy of PF.
(6) Output results

It is necessary to determine whether to stop the iteration
according to the iterative termination conditions. If not, then

return to Step 2); otherwise, terminate the iteration and output
the results as follows:

S L.
5= 3 i (8)

3 Target tracking algorithm based on SGAPF

When image blur or serious occlusion happens, the candidates
of the target becomes unreliable and the tracking process ends
with false recognition. Therefore, it is necessary to enrich
sample diversity in the tracking process to deal with the prob-
lem of insufficient validity of candidates under corresponding
circumstances. Based on Section 2, we introduce the SGA
genetic method into our tracker to enrich the sample diversity
and ensure the validity of candidates. In this part, the SGAPF
tracker is introduced in detail from the following aspects:
mathematical model of target state, target model, similarity
measure, updating of particle weight and target model as well
as target location.

3.1 Mathematical model of target state

The mathematical model of the target state is as follows:

X, = 1+ Bu +Cf
T 0 0 T2/2 0 /2 0
0 1 0 0 T 0
A= =
00 17T /2 ¢ 0 T2
0 0 0 1 0 T
9)
where X, = [x,, x;, Vi y;} is the coordinate of the motion state

at time 7, x and y are the position coordinates; x and y’ are the
velocities in the X and Yaxis directions respectively [18, 19];
A is the state transition matrix; 7'is the sampling period; B and
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C are input matrixes; and u,-; = [u;‘_l, uf_l] ! is the accelera-
tion vector input at time (#-1) (if #,=0, then this is a CV
model). f;— | is white Gaussian noise at time ¢, and the expres-
sion for this is given in Eq. (10) [20]:

x g 1T
ft—l = [ft—l’f)t/—l] EN(07Q) (10)
0= diag(ci, af)

The target observation model is

Y, = h(Xt) + Vi,

h(X,) = [”net]r

re =[x} + )2, (11)

f, = arctan (&>
Xt

In Eq. (11), Y, =[r, 0,]" represents the distance and phase
information of the target, and v, is white Gaussian noise,
which can be expressed as in Eq. (12):

. T
v = [V/,W/] eN(0,R) (12)
R= diag(af, ag)
Target tracking involves estimating the real state of a target
using the state model (9) and observation model (11).

3.2 Target model and candidate model

The region of the target in the previous video image is called
the target area, and the most likely region of the target in the
next frame is called the candidate region. The target and ob-
servation models of the system are used to express the char-
acteristic probability density function of the eigenvalues in the
target and candidate regions, respectively. The specific expres-
sions of the target model and candidate model are given in
Egs. (13) and (14) [21]:

Xi—

ENER

(13)

q(xo) = Cé"(’

Xi

) =cs i (14)

i=1

S LR

where S refers to the number of feature points, x, is the centre
of the target region, x; is the i-th feature point, y represents the
centre of the candidate region, r is the bandwidth of the kernel
function, C is the normalized constant of the characteristic
probability density, and k(x) is the outer contour function of
kernel function K and is used to assign a greater weight to the
feature point that is closer to the centre of the target model.
The feature index interval mapping function b and Dirac func-
tion J are used to determine whether the feature points belong
to the u-th feature index intervals (if it belongs to the interval
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u, then 6 = 1; otherwise, 6 =0). The formula of k(x) and C are
as follows:

k(x) = % (1-x?) (15)
e gx(FT) 0

3.3 Similarity measure

The process of visual object tracking involves selecting the
candidate region which is most similar to the target region of
the previous image from all candidate regions of the current
frame image. The similarity is measured using the similarity
function. In this paper, the Bhattacharyya coefficient is chosen
as the similarity function, as shown below [22];

P0)=p(p (), 4(x0)) = il VP0)aG)

u=

(17)

where p(y) and ¢(x,) are the candidate model and the target
model respectively. The larger the similarity p(y), the greater
the degree of matching of the candidate model and the target
model.

3.4 Updating of particle weight and target model

The fitness function of the particle is the probability density
function of the measurement, expressed as

Pk = oo (- L2

where o is the standard deviation of Gaussian density. We can
then update the particle weights on the basis of the fitness
function:

(18)

(19)

where wf) = 1/8 refers to the initial weight, and S is the sam-
ple capacity. The normalized particle weight is expressed as:

w; = wi_ip(y,|x))
i .S .
W, =wi/ YW, (20)

i=1

The average weight of all particles in the current frame is
defined as follows:

Me

w;/S (21)

W =
i=1

The average value of the characteristic probability density
of the optimal candidate region in the current frame image is
calculated using a normalized particle weight:
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i

) =T W xp,y) (22)

Tt-

1

To better integrate the current frame’s optimal candidate
model and the existing target model information, this scheme
updates the target model according to p,(y), ¢, 1(x) and w;:

0,¥) = x p,0) + (177 ) 4,1 (x (23)

where p,(y) refers to the average probability density of the
optimal candidate region in the current frame, ¢, ;(x) is the
target model of the previous frame, and W; represents the av-
erage weight of all particles in the current frame.

3.5 Target localization and sample updating

The position of the target is determined by the weighted sum-
mation of the position of all particles, given by:
S
Xe = Y Wy, (24)
i=1

After the target is located, the extent of particle degradation
is determined by:

(W) < Na (25)

M

Ne.z‘le/_

i=1

where N, represents the number of effective particles and N,
is the threshold.

If the number of effective particles is smaller than the thresh-
old value, resampling is performed, and the weighted sample set

{x§|w£}f:l is mapped to a sample set with equal weight
{xi|1/N }f:]' Otherwise, the SGA optimization is carried out
immediately to form a new population in the next cycle.

4 HSSGAPF target tracking method

The most commonly used features of the traditional target track-
ing algorithm are the colour, corner, edge, contour and texture of
the object. There are different effective features that can be used
when encountering similar targets, complex background, target
occlusion and so on. But the traditional tracking algorithm can
not adapt to the complex tracking situation because of the single
form of feature extraction and target tracking.

In this paper, we propose the HSSGAPF target tracking
method: 1) First, a feature extraction method (called HSIFT)
is proposed, which combines Harris corner detection and
SIFT (scale invariant feature transform). 2) Then the SGAPF
target tracking algorithm based on HSIFT (HSSGAPF for
short) is obtained. Based on the decision of feature similarity
between the candidate template and target template, the
HSSGAPF algorithm can select appropriate features

according to the actual situation and complete intelligent
switching in tracking mode.

4.1 Harris corner detection

Harris is a classic angular point detection algorithm which
measures local variation by shifting in various orientations.
It has a good performance on stability and robustness, so it
has been widely used in the field of image processing. The
following images show a Harris corner detection experiment.

As shown in Fig. 1, there are six images. The first one is the
original image, the second is the Harris corner detection result
of the original picture, and the remaining four images show
the experiment results corresponding to the situations in which
the original one is enlarged, narrowed, rotated 20 degrees and
rotated 130 degrees. Compared with pictures 2, 5 and 6, we
can see that the number of effective feature points and the
matching locations are almost the same, regardless of the
small rotation or large rotation of the image, which means that
Harris has good rotation invariance. Compared with pictures 2,
3 and 4, when the scale of image is reduced or enlarged, the
number and locations of the feature points are different from
the original ones, which indicates that Harris does not have
scale invariance.

4.2 SIFT descriptors

SIFT (Scale Invariant Feature Transform) is a theory that can
generate feature points that are invariant to location, scale,
rotation or translation of the images. [23]. Figure 2 shows a
SIFT feature descriptor extraction experiment:

As shown in Fig. 2, from left to right, there are six images. The
first is the original image, the second is the SIFT feature extraction
result of the original picture, and the remaining four show the
experiment results corresponding to the situations in which the
original one is enlarged, narrowed, rotated 20 degrees and rotated
130 degrees. Compared with pictures 2, 3 and 4, when the scale of
the image is reduced or enlarged, the number and the location of
feature points are the same as those of the original picture, which
indicates that the SIFT feature has scale invariance. Compared
with pictures 2, 5 and 6, we can see that the number of effective
feature points and the matching locations are slightly different
from those of the original image, which means that the anti-
rotating interference ability of SIFT is slightly lower.

4.3 Harris corner features with SIFT descriptors (HSIFT
features for short)

In general, the Harris corner detection algorithm has the charac-
teristics of fast feature extraction and high stability, and has rota-
tion invariance, but does not have scale invariance. The SIFT
algorithm has scale invariance, but its feature extraction is more
complex and computations are large, so its search speed is slower,
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Fig. 1 Harris corner detection experiment

and its real-time performance is not suitable for complex target
tracking scenarios. Considering the advantages and disadvantages
of the two feature processing methods, this paper proposes the
HSIFT feature extraction method, which performs SIFT operation
(scale invariant feature transform) on the features obtained from
Harris corner detection.

Specifically, we detect the feature points extracted from the
Harris corner detection, then assign the main direction accord-
ing to the SIFT algorithm, generate the feature vector descrip-
tors, and establish the HSIFT operator model. This can not
only greatly reduce the time required to extract feature points,
but also enhance the robustness of the feature descriptors to
image rotation, scale change, illumination condition change
and so on.

Meanwhile, the proposed HSIFT feature is fused with col-
our feature by fuzzy control method to increase the feature
recognition ability of the tracker. The similarity measure after
the fusion of HSIFT features and colour features is defined as:

P ) = apys(v) + (1=)pc(v) (26)

where pys(y) and pc(y) respectively represent the HSIFT and
colour feature similarity. « is the weight parameter and has
been assumed to be a fixed value in much of the literature, but
it does not match the actual situation. Considering that the
colour features and HSIFT features have different focuses in
various kinds of practical situations, this paper uses a fuzzy
control method to select the parameters. In this paper, the
fuzzy logic rules are chosen to give higher weight values to
the reliable features and give smaller weights to the unreliable

Fig. 2 SIFT feature descriptor extraction experiment
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ones, as shown in Table 1.

Fuzzy logic consists of fuzzification, fuzzy rule base, fuzzy
inference, and defuzzification. The control rule of parameter «
in Table 1 is a strategy based on the fuzzy logic rule to make the
fusion feature more realistic. In this paper, the fuzzy logic is de-
signed based on fuzzy rule. Fuzzy logic inputs are the similarity of
HSIFT and colour feature in the current frame. The feature simi-
larity weight « is calculated by Eq.(26). The fuzzy sets of
pusand p(y)are {0.2, 0.4, 0.6, 0.8, 1} and « is {0.1, 0.2, 0.3,
0.4,0.5,0.6,0.7,0.8, 0.9}. According to the fuzzy rules shown in
Table 1, we give smaller weight to unreliable features and larger
weight to reliable features. When the similarity value of HSIFT
and colour are equal, « takes an intermediate value of 0.5. In fact,
the similarity value of HSIFT and color features is not constant.
The weights based on logic rules designed in this paper can be
adjusted in real time according to similarity value, which makes
the fusion feature more effective and realistic.

The fuzzy weight selection strategy: When the similarity mea-
sure value of colour features and HSIFT features are equal, set o
0.5. Otherwise, the row and column positions of A in Table 1 are
determined by p(y) and pgs(v), respectively. Specifically, the
row position of « takes the row of the upper limit of the interval
where p(y) is located; similarly, the column position of « takes
the column of the upper limit of the interval where pys(y) is
located. For example, set pc(y) as 0.31 and pys(y) as 0.72. Then
0.31 is in the interval (0.2,0.4) while 0.72 is in the interval
(0.7,0.8). So the row position of v should be 0.4 while the column
position of « should be 0.8, and the value of fuzzy weight «
should be 0.7. (Fig. 3)

The flow chart of our tracker is as follows:
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Table 1 Fuzzy control of «

PHs 0.2 0.4 0.6 0.8 1.0
o

Pc

0.2 0.5 0.6 0.7 0.8 0.9
0.4 0.4 0.5 0.6 0.7 0.8
0.6 0.3 0.4 0.5 0.6 0.7
0.8 0.2 0.3 0.4 0.5 0.6
1.0 0.1 0.2 0.3 0.4 0.5

5 The adaptive adjustment model
of the tracking frame

In the traditional target tracking algorithm, the size of the
target tracking frame is determined by the initial size of the
target, and is fixed throughout the tracking process. Actually,
the size of the target area in the video is not invariable. If the
target size is larger than the initial size, it will have the effect
that the tracking frame can only extract some of the target
features, resulting in reduced target location precision and an
increased rate of tracking failure. If the target is smaller than
the initial size, the tracking frame will include excessive back-
ground images and useless features, which will again result in
reduced target location precision and an increased rate of
tracking failure. In summary, it is necessary to realize the
adaptive adjustment of the tracking box.

5.1 Scale adaptive adjustment model of rectangular
tracking box

When the target size changes, the average distance D between
the target’s central position and particles in the target area will
change with the target size and D is positively correlated with
the target size, which means D increases with the increase of
the target size and D decreases with the decrease of the target
size. Accordingly, the size of the tracking box can be adap-
tively adjusted with D.

d=— 3\ ) + )
_Mi; XX, Vi
do = 3 \f (e > (27)
T X—X; w > wr
1 M 2
d:— —)).
y M;;l (.yyl)

As shown in Eq. (27), set the central position of the target
area as (X, y), then the position of the i-th particle is (x;, y;), and
the normalized weight of the i-th particle is wi(i =1,2, ...,
M). M is the number of particles whose weight is larger than
the threshold w7 (w7 is set to 0.6 times the average particle

weight in this paper). Based on the particle space location, the
adaptive adjustment model of the tracking frame is:

{ hx,t = th,H 'ga'dt/dtl + ﬂ'dxﬁt/dx,tfl) (28)

hy,t = Ny r-1° Oé'dt/dz—l + ﬂ'dy,t/dy,tfl)

where « and [3 are weighting coefficients. In the paper, « and
{3 are 0.25 and 0.75 respectively. According to the size of the
former frame and the d ratio of the former frame and the
present frame, the size of the present tracking frame, h, can
be obtained by Eq. (28).

5.2 Adaptive adjustment model of scale and direction
in elliptical tracking box

The adaptive adjustment model of the rectangular tracking
box mainly considers the change of the target in horizontal
and vertical directions. But it cannot adapt to the change of
angle of the target’s direction of movement. When the target
rotation angle is large, the rectangular tracking box will be
mixed with much redundant background interference.
Therefore, the accurate tracking of rotation deformation
should also be fully considered. In this paper, the covariance
descriptors are applied to the proposed HSSGAPF tracking
algorithm and are applied to the face and head tracking fields.

(1) Elliptical tracking box

Set a and b to be half the axis length of the elliptical track-
ing frame. The standard elliptic parametric equation is
expressed as follows:

{x =400 10, 2m) (29)

y = bsing

After rotating the € angle of the coordinate system, the
nonstandard elliptic parametric equation is obtained as fol-
lows:

" = xcos0-ysind
{X X y (30)

y/ = ycosB + xsinf
With the combination of Eq. (29) and Eq. (30), the non-

standard elliptic parametric equation obtained after the coor-
dinate system rotates through the 6 angle can be expressed as:

, (31)

X = acoscosd - bsingsin
v = bsinpcosd + acosypsin®

For any point in the nonstandard ellipse, it can be regarded
as an ellipse similar to the ellipse in the same centre, so the
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parameter equation of the whole elliptic region contained in
the nonstandard ellipse can be expressed as:

xg = (@cospcosO—bsingsind )r
v, = (bsingpcosd + acospsind)r
r€[0, 1], p€l0, 27)

(32)

(2) Covariance descriptor

The size of the target image / is set to W x H. Set f as the
vector of fusion feature that combines the d types of the image
L fix, v)=¢(, d, x, y), where f () is a mapping function of
colour, texture, edge and other features and d is the number of
features. Set R as the image area of the nonstandard elliptic
tracking box. Let (xq, o) be the central coordinate of R. Let a
and b be the length of the long and short half axes of the ellipse
region R, respectively. The expression of the covariance de-
scriptor Cr of R is as follows:

z[f(x7y)_ll'LR] [f(xvy)_lu‘R]T
WxH
x=xp+ acosgpcos@-bsingpsin@) rs

Cr =
(33)

¥ =, + (bsinpcosd + acospsind)r

where py represents the mean value of the feature vectors.

@ Springer

(3) The distance measure of covariance descriptors

The covariance descriptor is a vector on the Riemann man-
ifold, and the similarity between the elements is measured by
the distance from the Riemann manifold. The distance d(Cg;,
Cpr>) of the two covariance descriptors on the Riemann man-
ifold can be obtained from the d x d covariance matrix Cg;
and Cg>:

d(Cr,Cro) = \/ f In?\;(Cg1, Cr2) (34)

i=1

where \(Cr1, Cg») is the generalized eigenvalue which sat-
isfies the condition of Crix = ACgox.

In the particle filter tracking algorithm based on the covari-
ance descriptor, the expression of the particle’s observation
probability function (fitness function) is as follows:

1 exp (d(CRI ; CR2)>
\/2—7—_'(‘0' 20'2

where o is the scale coordinate of the DOG (difference-of-
Gaussian) space.

px) = (35)

(4) The elliptical Gaussian difference operator
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The standard Gaussian kernel function: Moo = iwl_,
D(x,7,0) = L(x,,ko)~L(x.y,0) s
L(x,7,k7) = G(x,7, k7) @I (x,) (36) | Mo =2 (42)
G(X,y, 0) = 1/27T02'€_(x-+yz)/202 M iyw
01 — iWi

For the elliptical tracking box, the standard Gaussian kernel
function G(x, y, o) in Eq. (36) should be replaced by the ellip-
tical Gaussian kernel function G(x, y, 0, o, 05).

exp (-3 ba1z @.0nn| )

2mo,0p

G(an’ae»Ua,Ub) = (37)

The matrix 271(6, 04 0p) 1s obtained with the direction
angle 6 of the long axis of the ellipse, the long half axis scale
0,, and the short half axis scale o

271 (0,04,00) =
cos® sin |[ o> 0 ][ cos® —sind (38)
—sin® cosO || 0 o || sin® cosO

Similarly, the standard differential Gaussian function D(x,
y, 0) in Eq. (36) should be replaced by the elliptical differential
Gaussian function D(x, y, 0, 0, 03):

D(x7y7 97Ua70b) =

DoG(x,1,, 74, 0)@I(x,) (39)
DoG(x,y,0,0,,04) = (40)
[G(xayv 0,ko,, kUb)_G(xayv 0,04, Ub)}

where DoG(x, y, 0, 0,, 0) is the regular elliptical Gaussian
difference operator.

(5) Adaptive adjustment of the scale and direction of the
elliptical tracking box

The adaptive adjustment of the elliptical tracking box con-
sists of four parts: the calculation of the centre position of the
ellipse, the calculation of the feature scale, the calculation of
the scale of the long half axis and the short half axis of the
elliptical tracking box, as well as the calculation of the direc-
tion angle of the elliptical long axis.

a) Computing centre position:

The central position of the elliptical centre of the t time
(frame T) (x,, ., ), ) is determined by the zero order moment
and the first moment of the target region image I(x, y):

My My

— Ve = 41
Moo Yer Moo ( )

Xet =

The expressions of zero order moment My, first order My,
and M, are as follows:

where w; is the weight of the i-th particle.
b) Calculating the feature scale of ellipse:

The relationship between the feature scale o, the long half
axis o, ,and the short half axiso, , at time t are as follows:

07 = 01401p
Ora = V20, (43)
Otbh = 0, t/ \/z

The value range of @ 1S [0/, min» 07, max]> 07, min A0d 07, max are
calculated as follows:

{ Omin = v/ Moo/2

44
/7&1 -y (44)

Omax —

where 7, | and r, , are half of the width and height of the
kernel function window at time t. In the range of a values
[0+, min» O, max)> the scale is increased from the minimum scale
0. min t0 the maximum scale o, max, and the interval of each
increment is 1.
D(x, y, 0) is carried out at an extreme point (xo, yo, o) for
Taylor expansion:
oD’ 1 ;0D

D(x7y70) :D(x07y070)+—X+_ A2

oX 27 oX? (43)

Calculate the value of the Gaussian difference function
D((x,y, o) according to Formula (45) before each scale in-
crease. The optimal feature scale a for the T frame corre-
sponds to the scale that maximizes the value of D/(x, y, 0):

o; = argmax Dy(x, y, o;) (46)

c) Calculating the long and short half axis of the ellipse
tracking box:

Obtain the feature scale o, by (45) and (46). Then calculate
the long and short half axis of the ellipse tracking box with Eq.
(43).

d) Calculation of the inclination angle of the long half axis of
the ellipse tracking box:
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The value range of the inclination angle 6, at time t is
determined by the inclination angle of the (t-1) moment 6,
12 [8,-1—10", 6,1 +107]. Let the inclination angle increase
from (0, ; — 10") to (8, + 10") with the interval of 1°. The
Gaussian difference function D(x, y, 0, o, ., 0; p) is calculat-
ed in terms of Formulas (39) and (40) before each increment.
The optimal inclination angle of the long ellipse axis of the
ellipse in frame T corresponds to the inclination angle that
maximizes the value of D((x,y, 0,, 0, ,, 0/, 5), and the expres-
sion of 6, is as follows:

0, = argmeath(x,y, etyo'z,ay Ut,b) (47)

5.3 Experimental analysis between the adaptive
tracking models

In order to compare the actual tracking effect of the elliptical
adaptive tracking model and rectangular adaptive tracking
model, we choose the following four cases of a face tracking
experiment: face rotation in the vertical plane, face rotation in
the horizontal plane, complete occlusion and similar interfer-
ence. The contrast is shown in Figs. 4, 5, 6 and 7.

Tracking effect analysis and performance evaluation: From
Figs. 4 to 7, we can see that both the elliptical adaptive track-
ing model and the rectangular adaptive tracking model can
achieve stable tracking of face targets in various situations,
such as occlusion, similarity interference, scaling and defor-
mation of targets, rotation deformation and so on. However,
compared to the rectangular adaptive tracking model, the el-
liptical adaptive tracking model can not only adapt to the scale
changes of the target and achieve adaptive adjustment of the
tracking box scale, but can also adapt to the rotation of the
target and adaptively adjust the inclination angle of the track-
ing box. Therefore, it can better capture and describe the target
scale change and rotation deformation. The elliptical adaptive
tracking model enables the tracking box to capture the real
area of the target more accurately and reduces the interference
of the invalid feature in the candidate region. So it is better to
use the elliptical adaptive tracking model when rotational de-
formation occurs.

6 Experimental analysis

For experimental validation, we use the tracking benchmark
dataset (OTB2015) [32]. We compare our tracker with eight
state-of-the-art trackers including the C-COT [24],
SRDCFdecon [25], MUSTer [26], BACF [27] and LMCF
[28], Staple [29], SAMF [30], DSST [31]. To better evaluate
and analyze the strength and weakness of the tracking ap-
proaches, we evaluate the trackers with 11 attributes based
on different challenging factors including low resolution, in-
plane rotation, out-of-plane rotation, scale variation, occlu-
sion, deformation, motion blur, fast motion and out-of-view.

6.1 Qualitative comparisons

In qualitative comparisons, eight challenging sequences are
selected to evaluate our tracker intuitively. The results are in
Fig. 8, and nine different colors indicate different trackers. The
trackers are qualitatively compared in the following aspects:

1. Illumination variation: Taking the video of “Car2” for an
example, when the illumination changes dramatically, all
trackers can successfully track the target. However, only
our tracking box stay fit with the target all the time.

2. Fast motion: For the target in “Biker”, the motion of the
target is very fast. C-COT, Ours, SRDCFdecon, BACF,
MUSTer and Staple can always track the target correctly,
but the others lose the target easily.

3. Motion blur: Taking the video of “Ironman” for an exam-
ple, the motion of the target causes the blur of the target
region. The SAMF, DSST, SAMF and Staple fail to track
the head of Ironman when serious motion blur happens,
while Ours, C-COT, MUSTer and SRDCFdecon can track
the target from beginning to the end.

4. Deformation: For the target in “Dancer”, target deforma-
tion occurs. C-COT, Ours, SRDCFdecon and Staple lose
less part of the target than the others. Meanwhile only our
tracker can always track most part of the target.

5. Background clutters: In “Footballl”, the tracking drift
arises in DSST, SAMEF, LMCEF, Struck and MUSTer when
a background similar to the target appears in the tracking
region, such as #59 and #70.

Fig. 4 Tracking effect of human face rotation in the vertical plane
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Fig. 5 Tracking effect of human face rotation in the horizontal plane

6.

Low resolution: For targets of low resolution, such as

“Freeman4”, the feature of the target is too small to ex-

tract. Due to the Harris-SIFT feature extracting strategy,

our tracker captures more available features and performs
more robust than the others.

7. Scale variation: In “Singerl”, due to the application of
SIFT feature, our tracker can adapt better to the scale
variation of the target, while serious tracking drifting ap-
pears in MUSTer, SAMF, BACF and DSST.

8. Rotation: It is divided into in-plane and out-of-plane rota-
tion. Both rotations are in “Skater” in which C-COT and
ours track the target consistently and the sizes of the
bounding boxes match the target well.

9. Ocllusion: In “Skating2”, it indicates the full or partial

occlusion of the target by the other target. Only ours, C-

COT and SRDCFdecon can track the target immediately

and accurately from beginning to the end.

6.2 Quantitative comparisons

To evaluate our tracker comprehensively and reliably, we choose
success rate and precision rate to carry out quantitative analysis.

1. Success rate: Given a threshold ¢, the tracker is con-
sidered to succeed if and only if the overlap rate « is
greater than #). The success rate is defined as the per-
centage of the successful frames, and the larger value
indicates a better performance of the tracker.

2. Precision: Precision shows the ratio of frames whose
CLE (center location error) is within a given thresh-
old, and the larger value indicates a better perfor-
mance of the tracker.

In our experiments, we quantitatively compare the trackers
from two aspects: the overall performance and the attribute-
based performance for OTB2015 [32].

6.2.1 Overall performance for 51 sequences

For evaluating our tracker’s overall performance for OTB2015
[32], we plot the success plots and the precision plots of the
above 9 trackers. The success plot shows the success rates at a
varied overlap threshold ¢ in the interval [0,1], and the precision
plot shows the precisions at a varied CLE threshold from 0 to 50
pixels. The overall performance comparisons of the trackers are
shown in Fig. 9:

The above experimental data illustrate that our tracker outper-
forms these state-of-art trackers and achieves satisfactory tracking
results in different challenging scenarios.

6.2.2 Attribute-based performance for 51 sequences

To further analyse the performance of our tracker under differ-
ent tracking conditions, we evaluate the above nine trackers on
11 attributes, which are defined in [32]. The success plots and
precision plots on different attributes are shown in Figs. 10 and
11, respectively.

Among the 11 attributes, no matter in the success plot or in the
precision plot, our tracker ranks first in the six attributes, the top
two in the eight attributes and the top three in all attributes. It can be
obtained from these attribute-based data that our tracker achieves a
good performance in most attributions. But our tracker cannot
perform as well as C-COT and SRDCFdecon on several attributes,
such as occlusion in the success plots and out-of-plane rotation in
the precision plots. These problems may be the next research areas
for improving our tracker.

Fig. 6 Tracking effect of human face under severe occlusion
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Fig. 7 Tracking effect of human face with similar target interference

6.3 Tracking speed of tracker experimental platform, our tracker achieves a practical tracking

speed of an average of 83 frame per second (FPS). Table 2 shows
We implemented our tracker in MATLAB onamachine equipped ~ the tracking speed of the above 9 trackers. All the data are pub-
with Intel Core i-7-6700 @3.40GHz and 64 GB RAM. On our  lished by the authors in their papers. The “-” indicates that the

Fig. 8 Qualitative comparisons of 9 trackers (denoted in different colors) on nine challenging sequences (from top to bottom are Car2, Biker, Ironman,
Dancer, Footballl, Freeman4, Singerl, Skater and Skating2)
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Fig. 9 The success plots and precision plots of OPE for the trackers: (a) success plots and (b) precision plots

author does not give the tracking speed explicitly. From Table 2, (1) Firstly, the particle filter algorithm has the advantages of
we can see that LMCF has the highest tracking speed, and our low hardware dependence and high computational effi-

tracker achieves a faster speed than the other 5 trackers. ciency, and it is recognized that the particle filter frame-
The reasons why the proposed method is faster than other work is suitable for solving non-linear problems such as
methods are analyzed as follows: target tracking.

Success plots of OPE-illumination variation(25)
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Fig. 10 The success plots of OPE for the trackers on different attributes
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Fig. 11 The precision plots of OPE for the trackers on different attributes

(2) Secondly, a lot of tracking methods, including particle
filter, face the problem of sample impoverishment. This
weakens the searching ability of the trackers a great ex-
tent, and affects the improvement of computing efficien-
cy of them. While the proposed adaptive genetic algo-
rithm supervised by population convergence (SGA for
short) can greatly improve the sample diversity of our
tracker.

(3) Traditionally, the feature selected by traditional
tracking algorithms is for specific tracking scenarios,

or the calculation of fusion features is too complex.
This issue greatly weakens the tracking speed, sta-
bility or adaptability of traditional tracking algo-
rithms. In this paper, we propose the HSIFT feature
extraction method, which performs SIFT operation
(scale invariant feature transform) on the features
obtained from Harris corner detection. It can select
effective target features intelligently based on the
degree of similarity between candidate models and
target models. The HSIFT feature selection method

Location error threshold

greatly improves the efficiency, accuracy and robust-
ness of our tracker.

(4) The adaptive adjustment model of tracking frame pro-
posed in this paper effectively weakens the influence of
invalid background and invalid feature interference on
our tracker, and helps to improve its efficiency of feature

extraction and target tracking.

6.4 Statistical comparison

In order to further prove the robustness and stability of the pro-
posed algorithm, a statistical comparison of the above nine
trackers is performed using the VOT2016 dataset [33] (To make
a more comprehensive comparison, this section adds three other
algorithms, ECO [1], TCNN [34] and SSAT [33], which are out-
standing in VOT2016 dataset.). Specifically, on the basis of
VOT2016 dataset, the trackers are statistically compared.

In Table 3 we compare our approach, in terms of average
overlap (EAO for short), accuracy (Acc. for short),

Table 2 The tracking speed
comparison for the 9 trackers Tracker ~ C- Ours
COT

SRDCFdecon ~MUSTer BACF LMCF

Staple SAMF  DSST

FPS - 83@ 3

- 35 85D  80® 7 24
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Table 3  Statistical comparison

Trackers ECO Ours C-COT TCNN SSAT SRDCF MUSTer BACF LMCF Staple SAMF DSST
EAO 03740 0295 0331®@ 03253 0321@ 0.247 0.258 0236 0212 0.295 0.186  0.181
Acc. 0.5406 0.542@ 0.539 0.554® 05770 0.535 0.526 0.529  0.538 0.544®  0.507  0.533

R Fail. 0202 0.253@ 0.238@ 0268@ 02915 0419 0.438 0.513 0453 0.378 0.587  0.704
EFO 45305 12.55@  0.507 1.049 0.475 1.990 2312 3.152 5.021@ 11.140)  4.099 12.7470D

robustness(R. for short, failure rate) and speed (in EFO units),
with the top-ranked trackers in VOT2016 challenge. We can
see that our tracker ranks fifth in EAQ, fourth in ACC., third in
R. and second in EFO.

Among the top five trackers in the challenge, there is a
small difference in their EAO, R.Fail. and Acc. score.
Specifically, the EAO score of our method is 26.4% less
than the best EAO score, the accuracy score of our meth-
od is 6.5% less than the best accuracy score, and the R.
Fail. of ours is 25.3% larger than the least failure rate. As
for EFO scores, our tracker achieves a significant perfor-
mance improvement over the other four trackers. The
first-ranked performer, ECO, is based on correlation filter
tracking framework and provides an EFO score of 4.530.
Our approach achieves an almost 3-fold speed up in EFO
compared to ECO.

In a word, compared with the state-of-the-art tracking
trackers, our tracker has no obvious weaknesses and per-
forms well in all four aspects of statistical comparison. On
the basis of guaranteeing the accuracy and robustness of
the algorithm, our tracker is particularly outstanding in
EFO performance.

7 Conclusion

This paper presented a robust visual tracker based on the
framework of Particle Filters (PF). We proposed an adap-
tive genetic algorithm supervised by the degree of pop-
ulation convergence to enrich the sample diversity and
the accuracy of PF. Then the powerful features including
Harris corner detection, SIFT and colour features are
fused together to further boost the overall performance
for PF tracker based on SGA. Moreover, we proposed
two kinds of models for the adaptive adjustment of the
tracking frame, which can better capture and describe the
target scale change and rotation deformation and help
reduce the interference of the invalid feature in the can-
didate region of our tracker. Extensive experimental re-
sults on the benchmark dataset (OTB2015) and
VOT2016 dataset demonstrate the effectiveness and

robustness of our tracker against the state-of-the-art
tracking methods.
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