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Abstract
Matrix factorization as a popular technique for collaborative filtering in recommendation systems computes the latent factors
for users and items by decomposing a user-item rating matrix. Most matrix factorization methods including probabilistic
matrix factorization that projects (parameterized) users and items probabilistic matrices to maximize their inner product
suffer from data sparsity and result in poor latent representations of users and items. To alleviate these problems, we
propose a novel deep generative model, namely Neural Variational Matrix Factorization, that incorporates side information
(features) of both users and items to capture better latent representations of them for more effective collaborative-filtering
recommendation. Our model consists of two end-to-end variational autoencoder neural networks, namely user neural
network and item neural network respectively, that are capable of learning complex nonlinear distributed representations of
users and items through our proposed variational inference. We present a Stochastic Gradient Variational Bayes estimator to
estimate the intractable posterior distributions of latent factors of users and items and parameters of our model, and derive
the variational evidence lower bounds of the model. Experiments conducted on three publicly available datasets show that
our model significantly outperforms the state-of-the-art methods on recommendation accuracy measured by Hit Ratio and
Normalized Discounted Cumulative Gain respectively.
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1 Introduction

Recommendation systems (RS) are of paramount impor-
tance in social networks and e-commerce platforms. RS
aims at inferring users’ preferences over items by utilizing
their previous interactions. Traditional methods for RS can
be categorized into two classes [1]: content-based and col-
laborative filtering (CF). Content-based methods make use
of the features of users and items and recommend items
that are similar to the items that the users have liked before.
CF methods utilize previous rating information obtained
from users with similar interest to recommend items to
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the users, and have been widely used in RS due to their
impressive performance.. Matrix factorization (MF) is one
of the most successful and popular CF approaches that first
infers users’ and items’ latent factors from a user-item rating
matrix and then recommends items to users who share sim-
ilar latent factors to the items [2]. Most matrix factorization
methods including probabilistic matrix factorization (PMF)
that projects (parameterized) users and items probabilistic
matrices to maximize their inner product suffer from the
problems of poor latent representations of users and items
and data sparsity.

To overcome these problems, we propose a novel
deep generative model, namely Neural Variational Matrix
Factorization (NVMF), that incorporates side information
(features) of both users and items to capture better latent
representations of them for more effective collaborative-
filtering recommendation. Our NVMF infers the posterior
distribution (Bayesian estimation) of the latent factors
of users and items through two end-to-end variational
autoencoder neural networks, namely “user neural network”
and “item neural network”, consisting of a generative
network (i.e., decoder) and a inference network (i.e.,
encoder) respectively,
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to model the generative process of user’s latent factor and
item’s latent factor. The main contributions of this paper are:

• We propose a novel deep generative model, namely
neural variational matrix factorization (NVMF), that
incorporates side information via a novel deep gener-
ative process to capture more subtle relations between
latent factors and side information. To the best of our
knowledge, this is the first work which combines deep
generative model with matrix factorization for collabo-
rative filtering.

• To effectively infer NVMF, we propose an inference
algorithm applying Stochastic Gradient Variational
Bayes estimation on user and item neural networks to
approximately compute parameter of our NVMF and
infer latent factors of users and items, which improves
the solution quality by following traditional inference
methods that optimizes the variational parameters one
by one. We derive the variational evidence lower
bounds for our proposed model.

• We extensively conduct experiments and performance
evaluation. The experiment results show that our
proposed NVMF method outperforms major state-of-
the-art CF methods on recommendation accuracy.

The paper is organized as follows: Section 2 introduces
related work; Section 3 gives preliminaries and problem
statement; Section 4 describes the deep generative process
of our user and item neural networks; Section 5 presents
the inference process for estimating the posterior probability
distributions of latent variables of users and items;
Section 6 shows the results of experiments and performance
evaluation. Section 7 concludes the paper. A conference
version containing some preliminary results has been
accepted by PAKDD 2019 [35].

2 Related work

On matrix factorization (MF) for collaborative filtering
(CF), a series of improved methods have been proposed,
including non-negative matrix factorization (NNMF) [3],
max-margin matrix factorization [4] and, most remarkably,
probabilistic matrix factorization (PMF) [5] that projects
(parameterized) users and items probabilistic matrices to
maximize their inner product. To overcome the data sparsity
problem suffered by these methods, hybrid methods that
enjoy the advantages of different categories of CF methods
have been proposed. Some hybrid methods [6–10] take
the advantages of both content-based and PMF methods,
and incorporate side information, such as demographics
of a user, type of an item, etc., into PMF. Regardless of
their better performance compared to the PMF, we find
that most of hybrid methods apply Gaussian or Poisson

distributions to model the generative process of users’
ratings and may result in learning poor representations of
users and items from complex data. Furthermore, most of
these hybrid methods also incorporate side information via
a linear regression way which hinders themselves from
capturing the complex relations between latent factors and
side information.

On the other hand, deep learning has achieved state-of-art
results in various fields such as natural language processing
[11], computer vision [12] and speech recognition [13,
14] due to its powerful ability of representation. Thus,
some researchers have applied deep learning to the task
of CF. Deep collaborative Filtering (DCF) [15] is a
general deep architecture for hybrid CF by integrating PMF
with deep neural networks. Wang et al. [16] proposed
collaborative deep learning (CDL) to integrate stacked
denoising autoencoder (SDAE) into probabilistic matrix
factorization which get state-of-the-art result over real world
datasets. In order to solve the matrix sparsity and cold start
problems, Collaborative Filtering Neural network (CFN)
[17] incorporates the side information to mitigate sparsity
and cold start problems. Recently, Dong et al. [18] proposed
the additional stacked denoising autoencoder (aSDAE). The
aSDAE combines autoencoder with matrix factorization and
incorporates side information into each layer of the neural
network, which makes itself able to obtain the best possible
result. However, these deep learning-based methods are
all deterministic and unable to capture the uncertainties
of the latent representations of users and items. For these
models, using very deep stacked neural network makes
the models themselves too deep to train and are easy to
overfit the data. Thus, how to learn effective and robust
latent representations of users and items needs to be further
investigated.

Recently, the deep generative model [19–21] has
attracted significant research efforts since it has both non-
linearity of neural network, and can obtain more subtle
latent representations of users and items due to its Bayesian
nature. Li et al. [22] proposed Collaborative Variational
Autoencoder (CVAE), which utilizes VAE to extract latent
item information and incorporates it into matrix factoriza-
tion. Liang et al. [23] proposed the VAE-CF model to the
CF task. Chen et al. proposed a collective VAE [24] which
incorporates side information into VAE-CF. However, these
VAE-based methods do not consider side information of
both users and items. They simply use the same Gaus-
sian priors for all users and items, which is unrealistic for
most cases and could lead to poor latent representation
and suffer from the Posterior-collapse problem [25] of VAE.

In this paper, we solve the above problems by proposing a
new CF method of neural-network based variational matrix
factorization that models the relationship of latent factor and
side information by a novel deep generative process so as
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to alleviate the data sparsity problem and effectively learn
latent representations. In addition, our proposed method
as a variant of variational autoencoder for MF differs
from the existing neural network based hybrid methods
by taking the neural network as a complete Bayesian
probabilistic framework to combine the advantages of both
deep learning and probabilistic matrix factorization for the
purpose of capturing more subtle latent representations and
the uncertainties of latent representations.

3 Preliminaries

We first introduce Probabilistic Matrix Factorization and
then give our problem definition.

3.1 Probabilistic matrix factorization

Our proposed neural variational matrix factorization method
is built on the well-know probabilistic matrix factorization
(PMF) [26] that can be viewed as parameterized projection
of two given probabilistic matrices such that their inner
product is maximized. The goal of PMF is to find two low-
rank latent factor matricesU and V to approximate the user-
item feedback matrix:R ≈ U�V . PMF gives a probabilistic
framework to learn the latent factor matrices by assuming a
linear model with Gaussian observation noise and Gaussian
priors on the latent factors (see Fig. 1 left) to minimize the
sum-of-squared-errors between observed feedback matrix
R and the inner product of latent factors (U , V ) with two
quadratic regularization terms from the object function (3).
Specifically, PMF considers the conditional distribution of
the observed rating matrix R given latent factors U and V ,
and the prior distribution of U and V as follows:

p(R|U , V , α) =
M∏

i=1

N∏

j=1

[
N (Rij |ui

�vj , α−1)
]Iij

, (1)

p(U |α1) =
M∏

i=1

N (ui |0, α−1
1 I ), p(V |α2) =

N∏

j=1

N (vj |0, α−1
2 I ), (2)

whereN (·, ·) represents a Gaussian distribution with means
and precision, and Iij represents user i has rated on item
j is not empty entities in R. α, α1, α2 are parameters
for precisions in the corresponding Gaussian distributions.
PMF is learned by finding (Maximizing a posterior) MAP
estimation. Maxing the posterior distribution is equivalent
to minimizing the following loss function:

argmin
U ,V

L(U , V ) = 1

2

M∑

i=1

N∑

j=1

Iij (Rij − ui
�vj )2

+λ1

2

M∑

i=1

‖ui‖2F + λ2

2

N∑

j=1

∥∥vj

∥∥2
F

, (3)

where ‖·‖F denotes the Frobenius norm, λ1 = α1/α and
λ2 = α2/α. Some improved methods based on PMF have
been proposed such as Bayesian matrix factorization [8,
9] and Hierarchical Bayesian Matrix factorization [7] to
incorporate side information into PMF and learn the full
posterior of latent factors U and V . However, these
model incorporate side information via a linear regression
ways which hinders them to capture subtle and non-linear
relations between latent factors of users and items between
their side information. The variational parameters in these
models [7–9] are also too many to store or optimize
local variational parameters. To address the drawbacks
above, in the following section (Section 4), we propose
a neural variational matrix factorization (NVMF) that
integrates side information into probabilistic MF via a
deep generative model and propose a Stochastic Gradient
Variational Bayes [19] inference algorithm for our NVMF to
avoid the optimization of the every variational parameters.

3.2 Problem definition and notations

The problem we address in this paper is to infer the posterior
latent factors of users and items and predict the missing
value in user-item feedback matrix R given R, F and G via
probabilistic matrix factorization. Accordingly, our neural-
network based neural variational matrix factorization,

Fig. 1 Graphical models of
Probabilistic Matrix
Factorization (left) and our
model NVMF (right), where
shaded nodes are observed
variables
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NVMF, is essentially a function � that satisfies the
following:

R, F , G
�−→ U , V , (4)

where R is a feedback matrix such as rating matrix with
M and N being the total number of users and items,
respectively, F ∈ R

P×M and G ∈ R
Q×N are the side

information matrix of all users and items, respectively, with
P and Q being the dimensions of each user’s and item’s
side information, respectively; U = [u1, ...uM ] ∈ R

D×M

and V = [v1, ...vN ] ∈ R
D×N are the two rank matrices

serving for users and items, respectively, with D denoting
the dimensions of latent factor space..

There are two types of feedback matrix which are
explicit feedback (R ∈ R

M×N ) and implicit feedback
(R ∈ {0, 1}M×N ). Like recent recommendation methods
[22, 27], we focus on implicit feedback in our paper
as this is a more challenging situation. For convenient
discussion, we represent each user i’s rating scores
including the missing/unobserved ones over all items as
su
i = [Ri1, ..., RiN ] ∈ R

N×1, where Rij is an element in
R. Similarly, we represent each item j ’s rating scores from
all users including those who do not provide rating for j

as sv
j = [R1j , ..., RMj ] ∈ R

M×1. We call su
i and sv

j as the
collaborative information of user i and item j, respectively.
Obviously, our task is to infer each user’s and item’s latent
factors, ui and vj through R, F and G. Then we can use ui

and vj to predict the missing Rij .
Like most probabilistic models [7, 9, 10], our model

requires three steps of implementation: 1) Define a
generative model to describe the generative process of the
observed variables (R); (2) infer the posterior of the latent
variables (U and V ) conditioned on the observed variables;
3) use the inferred posterior to predict the missing value
in R. Note that, unlike traditional MF methods [2] which
gets the point vector of latent factors, the Bayesian matrix
factorization mentioned above and our model is to infer the
full posterior distributions of latent factors and then uses the
inferred posteriors to predict missing value.

Table 1 is a list of mathematical symbols used in the
paper:

4 The generative process

The generative process of the probabilistic graphic model of
our NVMF is shown in Fig. 1 (right). Unlike other matrix
factorization models (Fig. 1 (left)) that directly utilize the
rating value Rij in user-item matrix R to infer the latent
factors users and items, our NVMF model considers a more
general situation that the i-th user latent factor ui can be
jointly inferred by both user’s rating history on all items su

i

(the collaborative information of user i ) and user’s features

Table 1 Glossary

Symbol Description

R user-item rating (feedback) matrix

U user latent factor matrix

V item latent factor matrix

F user feature matrix

G item feature matrix

Rij the element in the i-th row and j -th column of R

su
i the collaborative information of user i

sv
j the collaborative information of item j

ai the latent vector for su
i

bi the latent vector for f i

cj the latent vector for sv
j

dj the latent vector for gj

f i the feature of user i

gj the feature of item j

A the matrix serving for all latent vectors ai

B the matrix serving for all latent vectors bi

C the matrix serving for all latent vectors cj

D the matrix serving for all latent vectors dj

Z the set of all latent variables

O the set of all observed varibles

ui the latent factor of user i

vj the latent factor of item j

θ , α and γ the parameters of the user network

τ , β and ψ the parameters of the item network

f i . Similarly, the j -th item latent factor vj can be jointly
inferred by both users’ rating history on the item sv

j (the
collaborative information of item j ) and its own features
gj . Under this consideration, we first model the features of
users and items through latent variable model. Although we
do not know the real distributions of user features and item
features, we know that any distribution can be generated
by mapping the standard Gaussian through a sufficiently
complicated function [28].

Thus for user i, given a standard Gaussian latent variable
bi assigned to the user, his features f i are generated from its
latent variable bi through a neural network, which is called
“user generative network” (see Fig. 2), and are governed by
the parameter θ in the network such that we have:

bi ∼ N (0, IKb
), f i ∼ pθ(f i |bi ), (5)

where IKb
is the covariance matrix, Kb is the dimension

of bi , and the specific form of the probability of generating
f i given bi , pθ(f i |bi ), depends on the type of data.
For instance, if f i is binary vector, pθ(f i |bi ) can be a
multivariate Bernoulli distribution Ber(Fθ (bi )) with Fθ(·)
being the highly no-linear function parameterized by the
parameter θ in the neural networks. Similarly, for item j ,
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Fig. 2 The architecture of NVMF: user network (left) and item network (right) infer latent factors for users and items, shaded rectangles are
observed vectors

its features gj are modeled to be generated from a standard
Gaussian latent variable dj through another generative
network, which is called “item generative network” (see
Fig. 2), and are governed by a parameter τ in the network
such that we have:

dj ∼ N (0, IKd
), gj ∼ pτ (gj |dj ), (6)

where IKd
is the covariance matrix and Kd is the dimension

of dj . Traditional PMF assumes the prior distributions of
user latent factor ui and item latent factor vj are standard
Gaussian distributions and predict rating only through
collaborative information such as the user-item feedback
matrix. In our model, to further enhance the performance,
besides the collaborative information, we believe the user’s
features f i can also positively contribute to the inference of
his latent factor ui . Similarly, for better inferring the j -th
item’s latent factor vj , we also fully utilize user’s features
gj . Unlike most MF methods [7, 8, 29] that incorporate
side information via linear regression, in order to get more
subtle latent relations, we consider the conditional prior
p(ui |f i ) and p(vj |gj ) are Gaussian distributions such that
we have p(ui |f i ) = N (μu(f i ), �u(f i )) and p(vj |gj ) =
N (μv(gj ), �v(gj )), where

μu(f i ) = Fμu(f i ), �u(f i ) = diag(exp(Fδu(f i ))), (7)

μv(gj ) = Gμv (gj ), �v(gj ) = diag(exp(Gδv (gj ))), (8)

where Fμu(·), Fδu(·), are the two highly non-linear functions
parameterized by μu and δu in the neural network, i.e., the
user prior network, serving for all users, and Gμv(·) and
Gδv (·) are the two non-linear ones parameterized by μv and
δv in another neural network, i.e., the item prior network,
serving for all items, respectively. For simplicity, note that
we set γ = {μu, δu} andψ = {μv, δv}. For the collaborative
information of user i (su

i ), we assign a standard Gaussian
latent variable ai to it and believe user latent factor ui can
potentially affect user collaborative information. Then we

consider su
i is generated from both a standard Gaussian

latent variable ai and user latent factor ui , and is governed
by the parameter α in the generative network (see Fig. 2 and
the caption in the figure) such that we have:

ai ∼ N (0, IKa ), su
i ∼ pα(su

i |ai , ui ), (9)

where IKa is the covariance matrix and Ka is the dimension
of ai . Similarly, the j -th item’s collaborative information,
sv
j , is generated from its standard Gaussian latent variable cj

and item latent factor vj , and is governed by the parameter
β in the generative network such that we have:

cj ∼ N (0, IKc), sv
j ∼ pβ(sv

j |cj , vj ), (10)

where IKc is the covariance matrix and Kc is the dimension
of cj . Similar to the form of the probability distribution,
pθ(f i |bi ), in (5), the specific forms of the probability
distributions in (6), (9) and (10) depend on the type of
data. The rating Rij is drawn from the Gaussian distribution
whose mean is the inner product of the user i and item j

latent factor representations such that we have:

p(Rij |ui , vj ) = N (u�
i vj , C

−1
ij ). (11)

where C−1
ij is the precision of Gaussian distribution, and

similar to the collaborative topic modeling [27], Cij serves
as a confidence parameter for rating Rij , which is defined
as:

Cij =
{

ϕ1 if Rij �= 0,
ϕ2 if Rij = 0,

(12)

where ϕ1 and ϕ2 are the parameters satisfying ϕ1 > ϕ2 > 0,
the basic reason behind which is that if Rij = 0 it means the
user i is not interested in the item j or the user i is unaware
of it. Figure 1 shows the graph model corresponding to the
generative process defined above (i.e., (11), (10), (9), (8),
(7), (6) and (5)). Based on the generative process, the joint
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probability of all observation and the latent variables can be
written as follows:

p(R, F , G,Z; θ , α, γ , τ , β, ψ) =
M∏

i=1

N∏

j=1

p(ai )p(bi )pθ (f i |bi )pγ (ui |fi)pα(su
i |ai , ui )︸ ︷︷ ︸

for users

·

p(cj )p(dj )pτ (gj |dj )pψ (vj |gj )pβ(sv
j |cj , vj )︸ ︷︷ ︸

for items

p(Rij |ui , vj ), (13)

Thus the marginal distribution of all observed variables
(R, F and G) is:

p(R, F , G; θ , α, γ , τ , β, ψ) =
∫ M∏

i=1

N∏

j=1

p(ai )p(bi )pθ (f i |bi )pγ (ui |fi)pα(su
i |ai , ui )︸ ︷︷ ︸

for users

·

p(cj )p(dj )pτ (gj |dj )pψ (vj |gj )pβ(sv
j |cj , vj )︸ ︷︷ ︸

for items

p(Rij |ui , vj )dZ, (14)

where Z = {U , V , A, B, C, D} is the set of all latent
variables in (15) that need to be inferred, and Zij ={
ui , vj , ai , bi , cj , dj

}
.

5 The inference process

We now show how to infer the posterior distributions over
the latent variables Z and parameters (θ , α, γ , τ , β, ψ)

to maximize the marginal distribution in (16), optimize
parameters, and predict rating of R.

5.1 Estimation of latent variables and parameters

Based on the generative process defined in last section, the
joint probability of all observation and the latent variables
can be written as follows:

p(R, F , G,Z; θ , α, γ , τ , β, ψ) =
M∏

i=1

N∏

j=1

p(ai )p(bi )pθ (f i |bi )pγ (ui |fi)pα(su
i |ai , ui )︸ ︷︷ ︸

user part

·

p(cj )p(dj )pτ (gj |dj )pψ (vj |gj )pβ(sv
j |cj , vj )︸ ︷︷ ︸

item part

p(Rij |ui , vj )︸ ︷︷ ︸
PMF part

, (15)

From (15), we can view our NVMF as three parts, i.e., the
user part, the item part and the PMF part. The user part
and item part mainly model the inner relations between
side information and latent factors in users and items,
respectively. The PMF part models the across interactions
between latent factors of users and items. Based on the joint
distribution of all variables (15), the marginal distribution of
all observed variables (R, F and G) is:

p(R,F ,G; θ ,α, γ , τ ,β,ψ) =
∫ M∏

i=1

N∏

j=1

p(ai )p(bi )pθ

× (f i |bi )pγ (ui |fi)pα(su
i |ai ,ui ) ·

p(cj )p(dj )pτ (gj |dj )pψ (vj |gj )pβ (sv
j |cj , vj )p(Rij |ui , vj )dZ, (16)

where Z = {U , V , A, B, C, D} is the set of all latent
variables in (15) that need to be inferred, and Zij ={
ui , vj , ai , bi , cj , dj

}
. We focus on inferring the posterior

distributions of the latent variables (U and V ) in Z and
find parameters (θ , α, γ , τ , β, ψ) to maximize the marginal
distribution of observed variables (R, F and G) in (16).

However, it is difficult to infer latent variables in Z by
using traditional mean-field approximation since we do not
have any conjugate probability distribution in our model
which requires by the traditional mean-field approach [30]
and the integral in marginal distribution of observed
variables (R, G and F ) in (16) is also intractable. Inspired
by VAE [19], we use Stochastic Gradient Variational Bayes
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(SGVB) estimator to estimate posteriors of the latent
variables related to user (ai , bi , ui) and latent variables
related to item (cj , dj , vj ) by introducing two inference
networks, i.e., the user inference network and the item
inference network (see Fig. 2), parameterized by φ and λ,
respectively.

To do this, we first decompose the variational distribution
q of latent variables in Z into two categories of variational
distributions used in the two networks in our NVMF model
— user inference network and item inference network
(see Fig. 2), qφ and qλ, by assuming the conditional
independence:

q(Zij |Xi ,Yj , Rij ) = qφ(ui |Xi )qφ(ai |Xi )qφ(bi |Xi )︸ ︷︷ ︸
for users

· qλ(vj |Yj )qλ(cj |Yj )qλ(dj |Yj )︸ ︷︷ ︸
for items

, (17)

where Xi = (su
i , f i ) represents the set of user observed

variables, and Yj = (sv
j , gj ) represents the set of item

observed variables.
Like VAE [19], the variational distributions are chosen

to be a Gaussian distribution N (μ, �), whose mean μ and
covariance matrix� are the output of the inference network.
Thus, in our NVMF, for latent variables related to the i-th
user, we set:

qφ(ui |Xi ) = N (μφui
(Xi ), diag(exp(δφui

(Xi )))), (18)

qφ(ai |Xi ) = N (μφai
(Xi ), diag(exp(δφai

(Xi )))), (19)

qφ(bi |Xi ) = N (μφbi
(Xi ), diag(exp(δφbi

(Xi )))), (20)

where the subscripts of μ and δ indicate the parameters in
our user inference network corresponding to ui , ai and bi ,
respectively. Similarly, for j -th item:

qλ(vj |Yj ) = N (μλvj
(Yj ), diag(exp(δλvj

(Yj )))), (21)

qλ(cj |Yj ) = N (μλcj
(Yj ), diag(exp(δλcj

(Yj )))), (22)

qλ(dj |Yj ) = N (μλdj
(Yj ), diag(exp(δλdj

(Yj )))), (23)

where the subscripts of μ and δ indicate the parameters
in item inference network corresponding to vj , cj and dj ,
respectively.

Thus, the tractable standard evidence lower bound
(ELBO) of variational distribution q(Zij |Xi ,Yj , Rij ) for
the inference can be computed as follows:

L(q) = Eq [logp(O,Z) − log q(Z|O)]

=
M∑

i=1

N∑

j=1

(Li (qφ) + Lj (qλ) + Eq [logp(Rij |ui , vj )]), (24)

where O = (F , G,R) is a set of all observed variables. qφ

and qλ are user term and item term in (17), respectively. For
user i and item j , we have:

Li (qφ) = L(φ, α, θ, γ ;Xi ) = Eqφ(ai ,ui |Xi )[logpα(su
i |ai ,ui )]

+Eqφ(bi |Xi )[logpθ (f i |bi )] − KL(qφ(ai |Xi )||p(ai )) (25)

−KL(qφ(bi |Xi )||p(bi )) − ω1 KL(qφ(ui |Xi )||pγ (ui |f i )),

Lj (qλ) = L(λ, β, τ, ψ;Yj ) = Eqλ(cj ,vj |Yj )[logpβ(sv
j |cj , vj )]

+Eqλ(dj |Yj )[logpτ (gj |dj )] − KL(qλ(cj |Yj )||p(cj )) (26)

−KL(qλ(dj |Yj )||p(dj )) − ω2 KL(qλ(vj |Yj )||pψ(vj |gj )),

where in the standard ELBO, the free parameters ω1 and
ω2 are 1, and KL(qφ(ui |Xi ) ||pγ (ui |f i )) is the Kullback-
Leibler divergence between the approximate posterior
distribution qφ(ui |Xi ) and the prior pγ (ui |f i ). The
variational distribution qφ(ui |Xi ) acts as an approximation
to the true posterior p(ui |O) when maximizing (25).
Similarly, qλ(vj |Yj ) acts as an approximation to the
true posterior p(vj |O) when maximizing (26). And like
discussed in VAE [19], maximizing the ELBO also means
maximizing the marginal distribution of observed variables
(O).

Inspired by β-VAE and the previous work [23, 31],
we use two free trade-off parameters ω1 and ω2 for the
last terms in (25) and (26), respectively, in the ELBO to
control the KL regularization instead of directly applying
ω1 = ω2 = 1 (other KL terms in (25) and (26) do
not need to apply the trade-off parameters as they are not
related to our final latent factors ui and vj ). Since we
assume the posteriors of all latent variables in Z are all
Gaussian distribution, the KL terms in (25) and (26) have
analytical forms. However, for the expectations terms in
(25) and (26), we can not compute them analytically. To
handle this problem, we use Monte Carlo method [20] to
approximate the expectations by drawing samples from the
posterior distribution of latent variables Z . By using the
reparameterization trick [20], the ELBO for user network is
given:

L (φ, α, θ, γ ;Xi ) ≈ 1

K

K∑

k=1

(logpα(su
i |ak

i , u
k
i ) + logpθ (f i |bk

i )) (27)

−KL(qφ(ai |Xi )||p(ai )) − KL(qφ(bi |Xi )||p(bi ))

−ω1 KL(qφ(ui |Xi )||pγ (ui |f i )),

where K is the size of the samplings, ak
i = μa + δa 	

εk
a, b

k
i = μb +δb 	εk

b, u
k
i = μu +δu 	εk

u, 	 is an element-
wise multiplication and εk

a, ε
k
b, ε

k
u are samples drawn from

standard multivariate normal distribution N (0, I ). The
superscript k denotes the k-th sample. The ELBO for item
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network, L(λ, β, τ, ψ;Yj ), can be derived similarly, and
thus we omit it here.

5.2 Optimizing parameters

Since minimizing the objection function is equivalent to
maximizing the log likelihood of the observed data. Based
on L(φ, α, θ, γ ;Xi ) in (28) and L(λ, β, τ, ψ;Yj ), the
objective function is:

L = −
M∑

i=1

N∑

j=1

(L(φ, α, θ, γ ;Xi ) + L(λ, β, τ, ψ;Yj )

+Cij

2
Eqφ(ui |Xi )qλ(vj |Yj )[(Rij − u�

i vj )
2]), (28)

where the expectation term is given by:

Eqφ(ui |Xi )qλ(vj |Yj )[(Rij − u�
i vj )

2] = R2
ij − 2RijE[ui ]�E[vj ]

+tr((E[vj ]E[vj ]� + �v)�u) + E[ui ]�(E[vj ]E[vj ]� + �v)E[ui ], (29)

where tr(·) denotes the trace of a matrix. Since NVMF is
a fully end-to-end neural network, the whole parameters of
the model are the weight matrix of entire network, we can
use back-propagation algorithm to optimize the weights of
the user network and the item network.

5.3 Prediction of ratings

After the training is converged, we can get the posterior
distributions of ui and vj through the user and item

inference networks, respectively. So the prediction Rij can
be made by:

E[Rij |O] = E[ui |O]�E[vj |O]. (30)

Specifically, given a user, an item and the correspond-
ing observed collaborative information and the features,
su
i , f i , s

v
j and gj , our NVMF makes the rating prediction

for the user on the item, Rij , as Rij = E[Rij |O] with
E[ui |O] = μφui

(Xi ) (see (18)) and E[vj |O] = μφvj
(Yj )

(see (21)), respectively. For ranking prediction, we rank a
list of items based on these prediction ratings.

5.4 Discussion

The computational complexity of training NVMF in each
iteration is O(2(N + P)L + PL + 2(M + Q)L + Q · L +
J · L2 + D2), where J is the total number of layers in user
and item networks, L is the average dimensions of these
layers, O(2(N + P)L), O(PL), O(2(M + Q)L), O(QL),
O(J · L2) and O(D2) are the complexities of the encoder
input layer and the decoder output layer in the user network,
the input layer in the user prior network, the encoder input
layer and the decoder output layer in the item network, the
input layer in the item prior network, all the latent layers in
NVMF, and the matrix factorization, respectively. Thus, the
complexity of proposed NVMF is at the same level as the
previous recommendation methods [15, 16].

6 Performance evaluation

We first give our experimental environment settings and
then present the results of performance evaluation of
experiments.

6.1 Experimental setting

6.1.1 Dataset

We use three benchmark datasets in our experiments
which are commonly used to previous recommendation
algorithms.

• MovieLens-100K1 (ML-100K) : Similar to [15, 18],
we extract the features of users and movies provided by
the dataset to construct our side information matrices F

andG respectively. The user’s feature contains user’s id,
age, gender, occupation and zipcode, corresponding to
the movie’s feature contains movie’s title, release data
and 18 categories of movie genre.

1https://grouplens.org/datasets/movielens/100k/
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• MovieLens-1M2 (ML-1M): Similar to ML-100K, we
can get side information of users and items.

• Bookcrossing3: For this dataset, we also extract the
features of users and book provided by the dataset. We
encoded the user and book feature into binary vector of
length 30 and 30 respectively. Since we will evaluate
our model performance on implicit feedback. Thus,
following to [15, 18], we interpret three datasets above
as implicit feedback.

6.1.2 Baselines and experimental settings

For implicit feedback, as demonstrated in [16, 22], the
hybrid collaborative filtering model incorporating side
information outperforms the other method without side
information. So the most baselines we choose are hybrid
models. The baselines we use to compare our proposed
method are listed as follows:

1) CMF [32]: This model is a MF model which decom-
poses the user-item matrix R, user’s side information
matrix F , and item’s side information matrix G to get
the consistent latent factor of user and item.

2) CDL [16]: This model is a hierarchical Bayesian model
for joint learning of stacked denoising autoencoder and
collaborative filtering.

3) CVAE [22]: This model is a Bayesian probabilistic
model which unifies item feature and collaborative
filtering through stochastic deep learning and proba-
bilistic model.

4) aSDAE [18]: This model is a deep learning model
which can integrate the side information into matrix
factorization via additional stack denoising autoen-
coder.

5) NeuMF [33]: This model is a state-of-the-art collabo-
rative filtering method for implicit feedback.

Since the implicit feedback matrix R ∈ {0, 1}M×N ,
we set pθ(f i |bi ) and pθ(gj |cj ) as multivariate Bernoulli
distribution. We set ω1, ω2 and the learning rate η to 0.05,
0.05 and 0.0001. The value of ϕ1, ϕ2 and λw are set to 1,
0.01 and 0.0001, respectively. The dimensions Ka , Kb, Kc,
Kd are all chosen to be 20. The inference and generative
networks are both two-layer network architectures and the
last layer of generative network is a softmax layer. Similar
to explicit feedback, the prior network of user and item are
both set to one layer. We also set the dimensions of use and
item latent factor D as 30. We use 80% ratings of dataset
to train each method, 10% as validation, and the remaining
10% for testing. We repeat this procedure five times and
report the average performance.

2https://grouplens.org/datasets/movielens/1m/
3https://grouplens.org/datasets/book-crossing/

6.1.3 Evaluation metrics

For evaluation, we use the Hit Ratio (HR) [34] and the
Normalized Discounted Cumulative Gain (NDCG) [33] as
our evaluation as metrics. For each user, we sort the top-K
items based on the predicted ratings.

HR@K = #hits@K

|GT| , NDCG@K = Zk

K∑

i=1

2reli − 1

log2(i + 1)
, (31)

where GT denotes the Ground Truth in test list set, reli is the
graded relevance value of the item at position i and Zk is the
normalization. For top-K recommendation, reli ∈ {0, 1}.
We report the average recall scores over all users in our
experimental analysis.

6.2 Results and analysis

We now show the results of performance comparisons
between our proposed model NVMF and baselines on
different experimental settings.

6.2.1 Performance comparison with baselines

Table 2 shows the experiment result that compare CMF,
CDL, CVAE, aSDAE and NeuMF using three datasets. As
we can see, our proposed methods NVMF significantly
outperform the compared methods in all cases on both
ML-100K, ML-1M and BookCrossing datasets. Compared
with other methods that have a deep learning structure,
CMF achieves the worst performance. This demonstrates
the deep learning structure can learn more subtle and
complex representation than the tradition MF method. We
also observe that although CDL and CVAE both have a
deep learning structure, CVAE achieves better performance
than CDL. This is because CDL is based on denoising
autoencoder which can be seen as point estimation, however
CVAE is fully deep probabilistic model which make it
hard to overfit the data. From Table 2, we observe the
strongest baseline in our experiment is aSDAE which
outperforms the other baselines. Although aSDAE is not a
probabilistic model, it incorporates user’s side information
(user’s features) into matrix factorization which CDL and
CVAE does not. By incorporating both user’s feature and
item’s feature and applying deep generative model, our
model NVMF outperform all the baselines. Specifically,
the average improvements of NVMF over the state-of-the-
art method. Compared to other datasets, our model has the
greatest performance improvement on Bookcrossing which
is most sparse matrix among three datasets. This shows
NVMF can more effectively alleviate the sparsity problem
on implicit feedback than aSDAE.
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Table 2 Recommendation performance comparison between our NVMF and baselines

Datasets Metrics CMF CDL CVAE aSDAE NeuMF NVMF(ours)

ML-100K HR@5 0.4121 0.4564 0.4721 0.4981 0.4942 0.5083

NDCG@5 0.2124 0.2991 0.3012 0.3156 0.3351 0.3417

HR@10 0.5587 0.6123 0.6421 0.6871 0.6692 0.6982

NDCG@10 0.3387 0.3654 0.3871 0.4231 0.4103 0.4358

ML-1M HR@5 0.4237 0.5011 0.5141 0.5411 0.5211 0.5681

NDCG@5 0.2578 0.3362 0.3621 0.4124 0.4011 0.4325

HR@10 0.5921 0.6557 0.6874 0.7321 0.7202 0.7412

NDCG@10 0.3328 0.3547 0.3864 0.4121 0.4025 0.4205

Bookcrossing HR@5 0.1565 0.1714 0.1921 0.2234 0.2123 0.2354

NDCG@5 0.0523 0.0717 0.0921 0.1121 0.1024 0.1244

HR@10 0.2347 0.2654 0.2876 0.3097 0.3012 0.3142

NDCG@10 0.1024 0.1451 0.1612 0.1911 0.1876 0.2087

Fig. 3 Performance comparison between NVMF and the baselines by varying latent dimension D on three datasets

Fig. 4 The NDCG@5 for NVMF by varying ω1 and ω2 on three datasets
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Table 3 Recommendation performance comparison with different percentages of training dat on ML-100K

Datasets Percentages Metrics CMF CDL CVAE aSDAE NeuMF NVMF(ours)

ML-100K 30% HR@5 0.2125 0.2367 0.2431 0.2679 0.2565 0.2768

NDCG@5 0.0834 0.1012 0.1123 0.1335 0.1231 0.1621

50% HR@5 0.3132 0. 3421 0.3517 0.3865 0.3721 0.3921

NDCG@5 0.1452 0.1617 0.1762 0.1891 0.1832 0.2076

80% HR@5 0.4121 0.4564 0.4721 0.4981 0.4942 0.5083

NDCG@5 0.2124 0.2991 0.3012 0.3156 0.3351 0.3417

6.2.2 Performance comparison on different model
configurations

Figure 3 shows performance comparison in term of different
dimension D. We can observe that larger dimension leads
to better performance. According to Fig. 3 , our NVMF
outperforms other baselines on different dimensions. We
also can find our NVMF achieve best performance when
D=40 on ML100K and ML100M datasets, D=50 on
BookCrossing. Figure 4 shows the contours of NDCG@5
for NVMF on three datasets. When the parameters equals
1, i.e ω1 = 1 and ω2 = 1, it means we directly optimize
the standard ELBO -which has a degraded performance and
this confirmed in Fig. 4b. When we decrease ω1 to 0.1
at fixed ω2, we find NVMF’s performance improves(small
ω1 implies we want condense more user’s collaborative
information into user’s latent factor). Similar observation
can be made for varying ω2 at fixed ω1. Moreover, It
can be observed that there is a region of values of ω1

and ω2 (near (0.1,0.1)), around which NVMF provides
the best performance in terms of recall. Altogether, Fig. 4
shows treating ω1 and ω2 as trade-off parameters can
yields significant improvement in performance of the
recommendation.

6.3 Performance comparison on different sparsity
conditions

To further evaluate our proposed NVMF on different
sparsity conditions, we train each compared baseline
method with different percentages (30%, 50%, 80%) of
feedbacks on ML-100K datasets. Note that we do not
conduct the experiment on ML-1M and BoorCrossing
Datasets, since they are already very sparse ( 95.8%
and 99.9% sparsity respectively). Table 3 shows the
results. From Table 3, we can find: 1) Our proposed
model outperforms all baselines on all sparsity conditions,
which demonstrates our model can effectively handle the
data sparsity problem. 2) The models which incorporate
both uses’ and items’ side information (i.e., NVMF and
aSDAE) outperform others (i.e., CDL and CVAE), which
demonstrates again that incorporating both users’ and

items’ side information can effectively handle data sparsity
problem. 3) Our model NVMF outperforms many baselines
(i.e., aSDAE and NeuMF) at extreme sparsity condition
(30%) by a large margin.

7 Conclusion

In this paper, we study the problem of how to learn
subtle and complex latent factors from the feedback
matrix with side information for collaborative filtering in
recommendation systems. We propose a neural variational
matrix factorization model NVMF which is a novel
deep generative model to learn the latent factors of users
and items. NVMF possesses the merits of both deep
learning and probabilistic generative models. It can learn
more subtle and complex representations than traditional
probabilistic matrix factorization, and is more robust than
other deep neural network models such as autoencoder
(AE) and denoising autoencoder (DAE). In addition,
NVMF incorporates the features of users and items into
matrix factorization through a novel generative process,
which enables it to effectively handle the data sparsity
and cold start problems. We present a complete end-to-
end network architecture so that back-propagation can be
applied for efficient parameter estimation, and a Stochastic
Gradient Variational Bayes (SGVB) estimator to infer latent
factors and parameters in our model. We also derive a
variational lower bound to show the quality guarantee
of the model. Experiments conducted on explicit and
implicit (user-item rating) feedbacks have demonstrated
our model’s effectiveness in learning the latent factors and
its outperformance on recommendation accuracy over the
state-of-the-art methods for recommendation.

The complete architecture of model generation and
parameter inference makes the proposed model easy to be
extended to handle other types of data such as images and
videos.
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