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Abstract
This paper analyzes multi-objective fixed-charge solid transportation problem with product blending in intuitionistic fuzzy
environment. The parameters of multi-objective fixed-charge solid transportation problem may not be defined precisely
because of globalization of the market and other unmanageable factors. So, we often hesitate in prediction of market demand
and other parameters connected with transporting systems in a period. Based on these facts, the parameters of the formulated
model are chosen as triangular intuitionistic fuzzy number. New ranking method is used to convert intuitionistic fuzzy multi-
objective fixed-charge solid transportation problem with product blending to a deterministic form. New intuitionistic fuzzy
technique for order preference by similarity to ideal solution (TOPSIS) is initiated to derive Pareto-optimal solution from the
proposed model. Furthermore, we solve the formulated model using intuitionistic fuzzy programming; and a comparison is
drawn between the obtained solutions extracted from the approaches. Finally, a practical (industrial) problem is incorporated
to illustrate the applicability and feasibility of the proposed study. Conclusions with future research based on the paper are
described at last.

Keywords Fixed-charge solid transportation problem · Product blending · Multi-objective optimization ·
Intuitionistic fuzzy programming · Ranking method · Intuitionistic fuzzy TOPSIS

1 Introduction

Product blending is an ordinary event in many industries
such as petroleum, chemical and process industries which
involve blending raw materials with various attributes and
concentration levels into required homogeneous intervening
or final products. One of the important goals in blending for
raw materials is to minimize the transportation shipping cost
for a particular product that meets the demand at the des-
tination of the final product and satisfying pre-determined
requirements for such type of product.

Researchers have studied the product blending in some
industries such as oil refining, chemical and others. A very
few number of papers has been published on fixed-charge
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transportation problem with product blending. Papageor-
giou et al. [31] first presented the fixed-charge transporta-
tion problem with product blending. Of late, Kundu et
al. [18] solved a solid transportation model with product
blending under rough environment.

Transportation problem (TP) is one of the important
network problems in decision making problems. In classi-
cal TP, the product is shipped from various source points
(i.e., factories) to different demand points (i.e., ware-
houses) in such a way that total transportation cost is min-
imized. Fixed-charge transportation problem (FCTP) is the
generalized version of the classical TP. Generally, in TP, it
is considered that the shipping cost is directly proportional
to unit quantity of transported product. Many real-life situa-
tions happen where an additional cost namely, fixed-charge
is taken into account to the transportation cost in each route
for shipping the product from sources to destinations. For
those cases, TP turns into FCTP, it was first initiated by
Hirsch and Dantzig [13]. The fixed-charge may be due to
costs of renting a vehicle, toll tax, permit fees etc.

The solid transportation problem (STP) is an expanded
version of the TP, was first proposed by Haley [11]. It deals
with three types of constraints namely, supply constraints,
demand constraints, and conveyance constraints whereas
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TP considers two types of constraints such as supply and
demand constraints. In STP, a homogeneous product is
shipped from a source to a destination by several trans-
portation modes, called conveyances, such as cargo fights,
ships, goods trains, trucks, etc. The fixed-charge solid trans-
portation problem (FCSTP) is a modified structure of STP
in which a fixed-charge is added for an open route from a
source to a destination by a specified transportation mode.
A FCSTP reduces into a FCTP when the number of con-
veyances is exactly one.

In FCSTP, several objective functions are normally
considered due to various aspects of decision maker as
well as real-life situations for an industrial problem.
Furthermore, FCSTP with multi-objective optimization is
another influential trend worthy of study. In comparison
with single objective FCSTP, it is more reasonable and
practical in terms of actual applications. As for example, the
objective functions which are minimized may be the total
(variable and fixed) cost, the delivery time of transportation,
the deterioration rate of goods during transportation, etc.
Again, in real-life situations, the multi-objective functions
of FCSTP generally conflicting and non-commensurable
in nature. Due to this argument, FCSTP can be further
modified by adopting the multi-objective functions into
FCSTP. This modified version is called multi-objective
fixed-charge solid transportation problem (MFCSTP).

In real-life transporting system, the liquid products (i.e.,
petroleum, gasoline, chemical product, etc.) are shipped
from several sources with different quality levels by
various transportation modes, and the products are received
at several demand points with different quality levels.
Moreover, each demand point has required the minimum
quality level of the particular product. For this case, the
different quality of the product is transported from different
sources to several destinations by various transportation
modes in such a way that the product taken at each
destination can be blended together to satisfy the required
quality of the product to the destination. To tackle this
type of industrial problem, we incorporate a blending
constraint in our proposed MFCSTP; and hence this
type of industrial problem is called multi-objective fixed-
charge solid transportation problem with product blending
(MFSTPB).

Many researchers have chosen multi-objective TP/FCTP/
STP/FCSTP in various uncertain environments. A few of
them is summarized as: Midya and Roy [27] analyzed fixed-
charge multi-objective (multi-index) stochastic transporta-
tion problem using fuzzy programming approach. Sengupta
et al. [38] solved solid transportation problem considering
carbon emission in gamma type-2 defuzzification environ-
ment. Maity et al. [24] discussed multi-objective transporta-
tion problem with cost reliability in uncertain environments.
Das et al. [8] analyzed breakable multi-item multi-stage

solid transportation problem under budget with Gaussian
type-2 fuzzy parameters. Maity and Roy [23] solved multi-
objective transportation problem with nonlinear cost and
multi-choice demand. Mahapatra et al. [22] formulated
multi-objective stochastic transportation problem involving
log-normal. Roy et al. [36] tackled conic scalarization for
solving multi-objective transportation problem under multi-
choice environment with interval goal. Rani et al. [32]
solved multi-objective non-linear programming problem in
intuitionistic fuzzy environment.

Literature survey revealed that few papers have appeared
on FCTP/STP with product blending as a constraint
but, they acquired FCTP/STP with product blending by
considering single objective function with crisp or rough
data. Till now, none of them are not treated MFSTPB whose
parameters are intuitionistic fuzzy number.

Generally, in a MFSTPB problem (planning), the availa-
ble data such as transportation cost, fixed-charge, transport-
ing time, deterioration rate of goods, availabilities, demands,
the capacity of conveyances to transport the products from
sources to destinations are not defined precisely. Due to var-
ious aspects, like lack of input information, fluctuating of
financial market, bad statistical analysis, weather and road
conditions, etc. the parameters of MFSTPB are uncertainty
in nature. To tackle the uncertain parameters in FCTP/STP,
researchers have studied fuzzy, random, rough, etc. envi-
ronments. A few of them are described as follows. Zhang
et al. [47] included an algorithm to solve a fixed-charge
solid transportation problem under uncertain environments.
Jimenez and Verdegay [16] studied STP under two types
of uncertain environments which are interval-number and
fuzzy-number, and they solved it. Zavardehi et al. [46] pre-
sented a fuzzy fixed-charge solid transportation problem
and solved it by meta-heuristics. Roy and Maity [36] for-
mulated minimizing cost and time through single objective
function in multi-choice interval valued transportation prob-
lem. Roy et al. [34] solved multi-objective two-stage grey
transportation problem using utility function with goals.
Midya and Roy [28] studied fixed-charge transportation
problem using interval programming. Recently, Roy et al.
[37] formulated multi-objective fixed-charge transportation
problem under rough and random rough environments.

Furthermore, to tackle hesitancy in decision making
problem, researchers have used the concept of hesitant fuzzy
set such as Zhou et al. [48] designed a prospect theory-
based group decision approach considering consensus for
portfolio selection with hesitant fuzzy information. Tian
et al. [40] examined sequential funding the venture projector
with a prospect consensus process in probabilistic hesitant
fuzzy preference information. Liao et al. [20] introduced
hesitant fuzzy linguistic preference utility set and its
application in selection of fire rescue plans. Moreover,
Capuano et al. [6] studied fuzzy group decision making with
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incomplete information guided by social influence. Hao
et al. [12] presented a dynamic weight determination
approach based on the intuitionistic fuzzy bayesian network
and its application to emergency decision making.

The intuitionistic fuzzy set was initiated by Atanassov
[4] which is the generalization of fuzzy set [45]. The main
advantage of intuitionistic fuzzy set is that it is characterized
by membership function as well as non-membership func-
tion in such a way that the sum of both values fall between
zero and one. Whereas, fuzzy set is characterized by mem-
bership function. So, the intuitionsitic fuzzy set is highly
useful to deal with ill-known quantities. For this reason,
an intuitionistic fuzzy number is used to express an ill-
known quantity. In daily life transporting systems, available
information about the parameters are frequently vague or
uncertain in nature due to several factors. In this situation,
the decision maker (DM) of a company takes an opinion
from experts for the parameters. Usually, possible values of
the parameters are given by the experts in almost interval
value, linguistic term and others. For example, transport-
ing time of a route is “around 11 hour”, the supply of a
factory is “in 26-28 barrel/day”, etc. In this situation, DM
cannot predict the value about the parameters exactly and
thus hesitancy character arises in decision making process.
Such type of cases where data set is not only uncertainty in
nature but also hesitancy character which can be represented
by intuitionistic fuzzy number. Therefore, the membership
values cannot be evaluated exactly according to DM satis-
faction. Due to the reasons, the parameters in the proposed
model are treated as intuitionistic fuzzy number instead of
fuzzy number. If we consider the parameters of MFSTPB
in an intuitionistic fuzzy number then the information about
the degree of acceptance and degree of non-acceptance of
the parameters are to be specified which is more realistic
in practical applications. To realize the fact, we describe an
example as follows:

Example 1.1 Assume D “demand of ethanol blended
petrol” of a specific province in India approximately
changes in nearly 25 barrel/day. The approximate value of
D is expressed using any value between 24 to 26 barrel/day
by taking different degrees of membership and any value
between 23 to 27 barrel/day by choosing different degrees
non-membership functions. In a nutshell, the optimistic
value of D is 24 to 26 barrel/day with membership
degree 1 and the pessimistic value of D is 23 to 27
barrel/day with non-membership degree 1. This implies
that the demand of ethanol blended petrol per day can be
treated by a triangular intuitionistic fuzzy number ˜D =
〈(24, 25, 26), (23, 25, 27)〉.

In this regard, the parameters of MFSTPB are taken
as intuitionistic fuzzy numbers. Generally, two kinds of

intuitionistic fuzzy number such as triangular intuitionistic
fuzzy number and trapezoidal intuitionistic fuzzy number
are used to deal with uncertainty. But for defuzzification,
computational complexity of triangular intuitionistic fuzzy
number is less than trapezoidal intuitionistic fuzzy number.
Because of that, triangular intuitionistic fuzzy number is
considered in the study. To the best of the knowledge,
proposed study (i.e., MFSTPB in intuitionistic fuzzy
environment) is the first contribution to formulate and to
solve the MFSTPB model. The main achievements of our
designed work are summarized as follows:

• Intuitionistic fuzzy MFSTPB is designed.
• The parameters of MFSTPB are assumed as triangular

intuitionistic fuzzy number.
• New ranking index is introduced for defuzzification of

an intuitionistic triangular fuzzy number; and to convert
intuitionistic fuzzy MFSTPB into a deterministic form.

• Intuitionistic fuzzy TOPSIS approach is proposed
to obtain Pareto-optimal solution from deterministic
MFSTPB.

• Deterministic MFSTPB is also solved by intuitionistic
fuzzy programming.

• A comparative study is shown between the Pareto-
optimal solutions extracted from the approaches.

• Investigate the solution procedures between the pro-
posed approach and the existing methods.

• An industrial problem is included to illustrate the
MFSTPB in intuitionistic fuzzy environment.

The outline of the paper is set out as follows. In Section 2,
basic knowledge of intuitionistic fuzzy number with arith-
metic are presented; and new procedure to defuzzification
of an intuitionistic triangular fuzzy number are also dis-
cussed. Notations and assumptions are put in Section 3.
Mathematical model of intuitionistic fuzzy MFSTPB and its
deterministic form are depicted in Section 4. In Section 5,
defects of the existing methods are pointed. In Section 6, the
solution procedures of the formulated model are described.
In Section 7, an application example with real-life data
on MFSTPB is included; and results and discussion are
reflected in Section 8. Finally, conclusions and future
research directions are provided in Section 9.

2 Preliminaries

Here, we include some basic definitions of intuitionistic
fuzzy set and intuitionistic fuzzy number.

Definition 2.1 [4] Let X be a nonempty set. An intuitionis-
tic fuzzy set ˜C in X is chosen as ˜C = {〈x, μ

˜C(x), ν
˜C(x) :

x ∈ X〉},where μ
˜C(x) : X → [0, 1] and ν

˜C(x) : X →
[0, 1] such that 0 ≤ μ

˜C(x) + ν
˜C(x) ≤ 1. The numbers
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μ
˜C(x), ν

˜C(x) ∈ [0, 1] consider the membership degree and
non-membership degree of x to ˜C respectively. Each intu-
itionistic fuzzy subset ˜C in X, the condition 0 ≤ π

˜C(x) ≤ 1
satisfies, where π

˜C(x) = 1 − μ
˜C(x) − ν

˜C(x), is called
hesitancy degree of x to ˜C.

Definition 2.2 [10] An intuitionistic fuzzy number ˜D =
{〈x, μ

˜D(x), ν
˜D(x)〉} in the set of real numbers R, its

membership and non-membership functions are described
mathematically as:

μ
˜D(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, for x < a1,

f
˜D(x), for a1 ≤ x ≤ a2,

1, for x = a2,

g
˜D(x), for a2 ≤ x ≤ a3,

0, for x > a3,

&,

ν
˜D(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1, for x < a′
1,

φ
˜D(x), for a′

1 ≤ x ≤ a2,

0, for x = a2,

ψ
˜D(x), for a2 ≤ x ≤ a′

3,

1, for x > a′
3,

where 0 ≤ μ
˜D(x) + ν

˜D(x) ≤ 1; and a1, a2, a3, a
′
1, a

′
3 are

real numbers such that a′
1 ≤ a1 ≤ a2 ≤ a3 ≤ a′

3,and four
functions f

˜D(x), g
˜D(x), φ

˜D(x), ψ
˜D(x) : R → [0, 1] are

treated the legs of membership functions μ
˜D(x) and non-

membership functions ν
˜D(x) respectively. The functions

f
˜D(x) and ψ

˜D(x) are non-decreasing continuous; and the
functions g

˜D(x) and φ
˜D(x) are non-increasing continuous

functions.

Definition 2.3 [30] A triangular intuitionistic fuzzy number
˜A is noted as ˜A = 〈(a1, a2, a3), (a′

1, a2, a
′
3)〉, a′

1 ≤ a1 ≤
a2 ≤ a3 ≤ a′

3 in the set of real numbers R, whose pictorial
representation is shown in Fig. 1. Its membership and non-
membership functions are denoted as μ

˜A(x) and ν
˜A(x)

respectively, and they are defined as below:

μ
˜A(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, for x < a1,
x−a1
a2−a1

, for a1 ≤ x ≤ a2,

1, for x = a2,
a3−x
a3−a2

, for a2 ≤ x ≤ a3,

0, for x > a3.

&,

ν
˜A(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1, for x < a′
1,

a2−x

a2−a′
1
, for a′

1 ≤ x ≤ a2,

0, for x = a2,
x−a2
a′
3−a2

, for a2 ≤ x ≤ a′
3,

1, for x > a′
3.

Algebraic Operations on intuitionistic fuzzy numbers Let
˜A = 〈(a1, a2, a3), (a′

1, a2, a
′
3)〉 and ˜B = 〈(b1, b2, b3),

(b′
1, b2, b

′
3)〉 be two triangular intuitionistic fuzzy numbers

and ρ be a positive scalar. Then

• ˜A + ˜B = 〈(a1 + b1, a2 + b2, a3 + b3), (a
′
1 + b′

1, a2 +
b2, a

′
3 + b′

3)〉;
• ρ ˜A = 〈(ρa1, ρa2, ρa3, ), (ρa′

1, ρa2, ρa′
3)〉 if ρ ≥ 0;

• ρ ˜A = 〈(ρa3, ρa2, ρa1), (ρa′
3, ρa2, ρa′

1)〉 if ρ < 0;
• ˜A − ˜B = 〈(a1 − b3, a2 − b2, a3 − b1), (a

′
1 − b′

3, a2 −
b2, a

′
3 − b′

1)〉;
• ˜A · ˜B = 〈(a1b1, a2b2, a3b3), (a′

1b
′
1, a2b2, a

′
3b

′
3)〉.

2.1 Defuzzified value of an intuitionistic fuzzy
number

In this subsection, we incorporate a definition to extract the
defuzzified value or the ranking index (i.e., deterministic
value) of a triangular intuitionistic fuzzy number. Literature
survey elicits that several methods exist for defuzzification
of an intuitionistic fuzzy number, but the centroid method
is widely practiced among them. The centroid method of a
fuzzy number c̃ in its geometric center is provided by the
formula [29]:

M(c̃) =
∫

x
xζ(x)dx

∫

x
ζ(x)dx

(A∗),

where ζ(x) is the membership function of a fuzzy number
c̃. Based on the formula (A∗), we write the definition as
follows:

Definition 2.4 Let ˜A = 〈(a1, a2, a3), (a′
1, a2, a

′
3)〉 be a

triangular intuitionistic fuzzy number in the set of real
numbers, R. Then its ranking index is denoted byR(˜A) and
is prescribed as follows:

R(˜A) = [λR∗(μ
˜A(x)) + (1 − λ)R∗(ν˜A(x))],

Fig. 1 The graph of a triangular intuitionistic fuzzy number
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where λ ∈ (0, 1) is a parameter,R∗(μ
˜A(x)) andR∗(ν˜A(x))

can be defined as follows:

R∗(μ
˜A(x)) =

[∫ a3

a1

xμ
˜A(x)dx

]/[∫ a3

a1

μ
˜A(x)

]

dx

=
[∫ a2

a1

x(x − a1)

a2 − a1
dx+

∫ a3

a2

x(a3 − x)

a3 − a2
dx

]/

[∫ a2

a1

x − a1

a2 − a1
dx +

∫ a3

a2

a3 − x

a3 − a2
dx

]

=
[

(a3 − a1)(a3 + a2 + a1)

6

]/[

a3 − a1

2

]

= a1 + a2 + a3

3
,

and

R∗(ν˜A(x)) =
[

∫ a′
3

a′
1

xν
˜A(x)dx

]/[

∫ a′
3

a′
1

ν
˜A(x)

]

dx

=
[

∫ a2

a′
1

x(a2 − x)

a2 − a′
1

dx+
∫ a′

3

a2

x(x − a2)

a′
3 − a2

dx

]

/

[

∫ a2

a′
1

a2 − x

a2 − a′
1
dx +

∫ a′
3

a2

x − a2

a′
3 − a2

dx

]

=
[

(a′
3 − a′

1)(2a
′
3 − a2 + 2a′

1)

6

] /[

a′
3 − a′

1

2

]

= 2a′
1 − a2 + 2a′

3

3
.

Hence the ranking index of a triangular intuitionistic fuzzy
number ˜A = 〈(a1, a2, a3), (a′

1, a2, a
′
3)〉 is

R(˜A) =
[

λ
a1 + a2 + a3

3
+ (1 − λ)

2a′
1 − a2 + 2a′

3

3

]

.

Remark 2.1 If λ = 1
2 , then the ranking index of a triangular

intuitionistic fuzzy number ˜A = 〈(a1, a2, a3), (a′
1, a2, a

′
3)〉

is calculated as:

R(˜A) = 2a′
1 + a1 + a3 + 2a′

3

6
.

Theorem 2.1 Let ˜A and ˜B be any two triangular intuition-
istic fuzzy numbers and c and d be any real numbers. Then

R[c˜A + d˜B] = cR[˜A] + dR[˜B].

Proof Let ˜A = 〈(a1, a2, a3), (a′
1, a2, a

′
3)〉 and ˜B =

〈(b1, b2, b3), (b′
1, b2, b

′
3)〉 be two triangular intuitionistic

fuzzy numbers. Assuming that c and d are positive real
numbers. Using the algebraic operation of two triangular
intuitionistic fuzzy numbers, we have

c˜A + d˜B = 〈(ca1 + db1, ca2 + db2, ca3 + db3),

(ca′
1 + db′

1, ca2 + db2, ca
′
3 + db′

3)〉,

is a triangular intuitionistic fuzzy number. From Definition
2.4, the ranking index of c˜A + d˜B is given by

R(c˜A + d˜B)

=
[

λ
ca1 + db1 + ca2 + db2 + ca3 + db3

3

+(1 − λ)
2ca′

1 + 2db′
1 − ca2 − db2 + 2ca′

3 + 2db′
3

3

]

= c

[

λ
a1 + a2 + a3

3
+ (1 − λ)

2a′
1 − a2 + 2a′

3

3

]

+d

[

λ
b1 + b2 + b3

3
+ (1 − λ)

2b′
1 − b2 + 2b′

3

3

]

= cR[˜A] + dR[˜B].
This evinces the proof of the theorem.

3 Notations and assumptions

The following notations and assumptions are put for
designing the paper.

Notations:

m : number of sources,
n : number of destinations,
p : number of conveyances (i.e., various transporta-

tion modes),
xijk : unit amount of the product to be transported from

ith source to j th destination by kth conveyance,
η(xijk) : binary variable takes the value “1” if the source i

is used, and “0” otherwise,
c̃ijk : intuitionistic fuzzy transportation (variable) cost

for unit quantity of the product from ith source
to j th destination by kth conveyance,

˜fijk : intuitionistic fuzzy fixed cost associated with ith

source to j th destination by kth conveyance,
˜tijk : intuitionistic fuzzy time of transportation of the

product from ith source to j th destination by kth

conveyance,
˜dijk : intuitionistic fuzzy deterioration rate of goods of

the product from ith source to j th destination by
kth conveyance,

ãi : intuitionistic fuzzy availability of the product at
ith source,

˜bj : intuitionistic fuzzy demand of the product at j th

destination,
ẽk : total intuitionistic fuzzy capacity of the product

which can be carried by kth conveyance,
˜ZK : objective function in intuitionistic fuzzy nature

(K = 1, 2, 3),
ZK : objective function in deterministic form, where

ZK = R[˜ZK ] (K = 1, 2, 3),

3528 S. K. Roy and S. Midya



qi : nominal quality (i.e., clarity) of the product
which is available from source i,

qmin
j : least quality of the product needs at destination

j .

Assumptions:

1. ãi > 0,˜bj > 0, ∀i, j .
2. Each chosen triangular intuitionistic fuzzy variable is

positive in all of its components.

4Mathematical model

In this intended study, we take three objective functions
in which the first objective function assumes the total
transportation cost (the variable cost and the fixed cost), the
second objective function considers the transporting time
and the last one refers to the deterioration rate of goods;
all of the three goals are to be minimized. The second
objective function is taken to maximize the customers’
satisfaction level; in fact, to measure it, we treat the total
transportation time. So, with respect to maximizing the
customers’ satisfaction level, the value of the objective
function should be minimized. There arem factories (supply
points), n customers (demand points) and p conveyances
(different transportation modes such as trucks, air freight,
goods trains, ships, etc.). Each of the m factories can
transport to any of the n customers by the p conveyances
at a transporting cost of cijk per unit commodity and a
fixed cost of fijk . The problem is to calculate the amount
xijk , for any i, j, k of the product conveyed from ith source
to j th destination by kth transportation mode, in such a
way that the overall value of three objective functions
are to be minimized. In several practical situations such
as gasoline, petroleum and others industries, blending of
raw materials with different attributes and purities into
analogous intermediate or final products is a common topic.
Blending raw materials give an organization/company for
the chance to perceive more cost savings, while meeting
demand for an array to the end of the products and fulfilling
pre-decided quality requirements for such kind of product.
The intrinsic flexibility of the blending activity can be
utilized to optimize the allotment and transportation of
raw materials to production facilities. So, in MFSTPB an
additional proportionality requirement on the quality of
the product is adopted. The additional constraints (4.4) in
Model 1 is indicated as linear blending constraints. The
average quality of all products received at destination j is as
follows:

∑m
i=1

∑p

k=1 qixijk
∑m

i=1
∑p

k=1 xijk

, j = 1, 2, . . . , n.

We assume the least quality (i.e., clarity) of the product
at destination j is qmin

j . So, the constraints on the quality
requirement of the product can be defined as:

∑m
i=1

∑p

k=1 qixijk
∑m

i=1
∑p

k=1 xijk

≥ qmin
j , j = 1, 2, . . . , n,

i.e.,
m

∑

i=1

p
∑

k=1

(

qi − qmin
j

)

xijk ≥ 0, j = 1, 2, . . . , n.

Thus, the proposed problem including blending constraints
can be formulated as follows:

Model 1

minimize ˜Z1 =
m

∑

i=1

n
∑

j=1

p
∑

k=1

[

c̃ijkxijk + ˜fijkη(xijk)
]

,(4.1)

minimize ˜Z2 =
m

∑

i=1

n
∑

j=1

p
∑

k=1

[

˜tijkη(xijk)
]

, (4.2)

minimize ˜Z3 =
m

∑

i=1

n
∑

j=1

p
∑

k=1

˜dijkxijk (4.3)

subject to
m

∑

i=1

p
∑

k=1

(

qi − qmin
j

)

xijk

≥ 0(j = 1, 2, . . . , n), (4.4)
n

∑

j=1

p
∑

k=1

xijk ≤ ãi (i = 1, 2, . . . , m), (4.5)

m
∑

i=1

p
∑

k=1

xijk ≥ ˜bj (j = 1, 2, . . . , n), (4.6)

m
∑

i=1

n
∑

j=1

xijk ≤ ẽk(k = 1, 2, . . . , p), (4.7)

η(xijk) =
{

0 if xijk = 0,
1 if xijk > 0,

(4.8)

xijk ≥ 0, (i = 1, 2, . . . , m; j = 1, 2, . . . ,

n; k = 1, 2, . . . , p). (4.9)

The feasibility condition of Model 1 is chosen as follows:

m
∑

i=1

ãi ≥
n

∑

j=1

˜bj , and
p

∑

k=1

ẽk ≥
n

∑

j=1

˜bj .

4.1 Deterministic model

Intuitionistic fuzzy MFSTPB model cannot be tackled
directly due to the presence of intuitionistic fuzzy number.
So, we include the ranking index to transform Model 1 into
a deterministic MFSTPB model (i.e., Model 2) by using
Theorem 2.1 (which is stated in Section 2.1).
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Model 2

minimize R(˜Z1) =
m

∑

i=1

n
∑

j=1

p
∑

k=1
[

R(̃cijk)xijk + R( ˜fijk)η(xijk)
]

, (4.10)

minimize R(˜Z2) =
m

∑

i=1

n
∑

j=1

p
∑

k=1

[

R(˜tijk)η(xijk)
]

, (4.11)

minimize R(˜Z3) =
m

∑

i=1

n
∑

j=1

p
∑

k=1

R(˜dijk)xijk (4.12)

subject to
m

∑

i=1

p
∑

k=1

(

qi − qmin
j

)

xijk

≥ 0(j = 1, 2, . . . , n), (4.13)
n

∑

j=1

p
∑

k=1

xijk ≤ R(̃ai)(i = 1, 2, . . . , m), (4.14)

m
∑

i=1

p
∑

k=1

xijk ≥ R(˜bj )(j = 1, 2, . . . , n), (4.15)

m
∑

i=1

n
∑

j=1

xijk ≤ R(̃ek)(k = 1, 2, . . . , p), (4.16)

constraints (4.8) and (4.9).

Definition 4.1 A feasible solution x∗ = (x∗
ijk : i = 1, 2,

. . . , m; j = 1, 2, . . . , n; k = 1, 2, . . . , p) is called to be a
Pareto-optimal solution (compromise solution) of Model 2
if there does not contain any feasible solution x = (xijk :
i = 1, 2, . . . , m; j = 1, 2, . . . , n; k = 1, 2, . . . , p) such
that

ZK(x) ≤ ZK(x∗) for K = 1, 2, 3, and

ZK(x) < ZK(x∗) for at least one K .

5 Drawbacks of the existingmethods

From literature survey, it can be observed that sev-
eral researchers have developed to solve multi-objective
TP/STP/FCSTP either in certain or in uncertain environ-
ments. In this section, we mainly extract the defects of the
existing methods which are mentioned below:

• A very few research papers had been published on
TP/STP under intuitionistic fuzzy environment such
as Aggarwal and Gupta [2], Singh and Yadav [39]
where they considered single objective function in their
models. But, our formulated model is designed under
multi-objective environment with an additional cost
as fixed-charge, which is more realistic for real-life
transportation problem.

• Several existing methods are available in literature like
Das and Guha [9], Varghese and Kuriakose [42] to
find the centroid of an intuitionistic fuzzy number.
But these are very complicated than our proposed
approach to deduce the defuzzified value of a triangular
intuitionistic fuzzy number. One can choose the desired
centroid value of a triangular intuitionistic fuzzy
number by using our approach for different values of
λ ∈ (0, 1).

• In existing methods such as Li and Lai [21], Kundu
et al. [17] solved multi-objective TP/STP using fuzzy
programming. But, in fuzzy programming, only the
degree of acceptance is considered for the objective
functions and constraints, and the priorities (i.e.,
preferences) of the objective functions are not taken
into consideration. In this proposed (intuitionistic fuzzy
TOPSIS) approach, we assume the degree of acceptance
and the degree of rejection for the objective functions
and constraints as well as the priorities of the objective
functions.

• Abo-Sinna et al. [1] solved multi-objective non-
linear programming problem by TOPSIS based on
fuzzy programming. But, in TOPSIS based on fuzzy
programming, the degree of rejection is not included to
the objective functions and constraints. In this proposed
approach, we accomodate both features i.e., the degree
of acceptance and the degree of rejection.

• Roy et al. [33] solved multi-objective TP by intuition-
istic fuzzy programming. But, in intuitionistic fuzzy
programming, the priorities of the objective functions
are not incorporated. Also, the tolerances of lower and
upper bounds to the objective functions in the case of
non-membership function are not chosen. In our pro-
posed approach, we overcome the mentioned defects.

• Wahed and Lee [43] solved multi-objective TP
using interactive fuzzy goal programming. Also, other
researchers (like Maity and Roy [25] and others) have
used goal programming to solve TP/STP. But in goal
programming, it is difficult to choose the proper goals
corresponding to the objective functions. If we do not
properly select the target values to the objective func-
tions, then for that case, goal programming will provide
the worst optimal solution. Such cases are not arisen to
obtain the Pareto-optimal solution in intuitionistic fuzzy
TOPSIS approach.

• Zhang et al. [47] considered the parameters of FCSTP
as uncertain variables to deal with indeterminacy phe-
nomenon in transporting systems. They incorporated
uncertain distribution when historical data is not valid
because of unwanted events that has happened. For
example, when natural disaster occurs, it may be bet-
ter to consider uncertain variable as the parameters in
transporting systems. But, it is a special case and would
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not happen in daily life industrial transporting systems.
From this viewpoint, we treat intuitionistic fuzzy num-
ber as the parameters in our proposed study which
efficiently deals with hesitancy character as well uncer-
tainty in practical problems. Thus, intuitionistic fuzzy
number is more reliable to represent uncertainty as well
as hesitancy nature of the parameters in MFSTPB than
uncertain variables.

• Majumder et al. [26] solved multi-objective multi-
item fixed-charge solid transportation problem by using
fuzzy programming, global criterion method and linear
weighted method. In Table 8, we see that the pro-
posed intuitionistic fuzzy TOPSIS is more preferable
than fuzzy programming and global criterion method.
Also, if we want to solve multi-objective mixed opti-
mization problem by linear weighted method, it is
necessary to transfer the objective function into same
type. But for the intuitionistic fuzzy TOPSIS, no such
difficulty arises. In this point of view, it says that
intuitionistic fuzzy TOPSIS is more suitable to obtain
Pareto-optimal solution from multi-objective optimiza-
tion problem.

• To solve decision making problems, researchers such as
Chen and Tsao [7], Boran et al. [5], Wang et al. [44]
have been used TOPSIS approach and extended it. But
in their study, they first ranked the alternatives from the
best to the worst and then selected the best alternative
for the considered decision making problems. Here,
the main aim is to obtain Pareto-optimal solution
from our proposed problem and then we desire to
find the satisfaction and dissatisfaction levels of the
objective functions. In this stand point, intuitionistic
fuzzy TOPSIS approach is proposed to extract a better
Pareto-optimal solution of this study.

6 Solutionmethodology

In order to solve MFSTPB (i.e., Model 2), we consider the
following:

• Intuitionistic Fuzzy Programming (IFP) and
• Intuitionistic fuzzy TOPSIS.

6.1 Intuitionistic fuzzy programming

Angelov [3] first initiated IFP to solve optimization prob-
lems. He found that intuitionistic fuzzy linear programming
always provides an optimal compromise solution. The solu-
tion of MFSTPB (i.e., Model 2) using IFP can be obtained
by the following steps:

Step 1.1: Solve the MFSTPB as a single objective
FCSTPB, using at a time only one objective function

ZK(K = 1, 2, 3) and ignoring the others. The optimal
solution for Kth(K = 1, 2, 3) objective function is
denoted by XK∗.

Step 1.2: Based on the results of Step 1.1, calculate the
corresponding value of each objective function at each
solution derived.

Step 1.3: From Step 1.2, we choose a lower bound
(L

μ
K) and an upper bound (U

μ
K) for membership

function corresponding to each objective function. As the
objective functions are conflicting in nature, so, U

μ
K =

L
μ
K is not possible for any XK∗(K = 1, 2, 3). We

construct the payoff table which is given in Table 1,
from which U

μ
K and L

μ
K are determined in the following

way:

U
μ
K := max

1≤r≤3

{

ZK(Xr∗)
}

,

and L
μ
K := ZK(XK∗);K = 1, 2, 3.

In a similar way, we calculate a lower bound (Lν
K)

and an upper bound (Uν
K) for non-membership function

corresponding to each objective function. We calculate Uν
K

and Lν
K in the following way:

Uν
K := U

μ
K + αK,

and Lν
K := L

μ
K, K = 1, 2, 3.

Where αK is the respective tolerance of lower bound (L
μ
K)

and upper bound (U
μ
K) of each objective function.

Step 1.4: A membership function μK(x) and a non-
membership function νK(x) corresponding to Kth(K =
1, 2, 3) objective function of MFSTPB are defined
as:

μK(x) =

⎧

⎪

⎨

⎪

⎩

1, if ZK ≤ L
μ
K,

U
μ
K−ZK

U
μ
K−L

μ
K

, if L
μ
K ≤ ZK ≤ U

μ
K,

0, if ZK ≥ U
μ
K .

&,

νK(x) =

⎧

⎪

⎨

⎪

⎩

0, if ZK ≤ Lν
K,

ZK−Lν
K

Uν
K−Lν

K
, if Lν

K ≤ ZK ≤ Uν
K,

1, if ZK ≥ Uν
K .

Table 1 Payoff table

Z1 Z2 Z3

X∗
1 Z1(X

1∗) Z2(X
1∗) Z3(X

1∗)
X∗
2 Z1(X

2∗) Z2(X
2∗) Z3(X

2∗)
X∗
3 Z1(X

3∗) Z2(X
3∗) Z3(X

3∗)

Multi-objective fixed-charge solid transportation 3531



Step 1.5: Using max-min operator [49], the intuitionistic
fuzzy linear programming problem can be designed in the
following way:

maximize λ1

minimize η1

subject to λ1 ≤ U
μ
K − ZK

U
μ
K − L

μ
K

(K = 1, 2, 3),

η1 ≥ ZK − Lν
K

Uν
K − Lν

K

(K = 1, 2, 3),

constraints (4.8) and (4.9),

constraints (4.13) − (4.16),

λ1 + η1 ≤ 1,

λ1, η1 ≥ 0.

Here, λ1 = min{μK(x) : K = 1, 2, 3} and η1 =
max{νK(x) : K = 1, 2, 3} are the satisfaction level and
dissatisfaction level of the objective function. This bi-
objective problem can further be simplified to a single
objective programming problem as:

Model 3

maximize (λ1 − η1)

subject to ZK + λ1(U
μ
K − L

μ
K) ≤ U

μ
K(K = 1, 2, 3),

ZK − η1(U
ν
K − Lν

K) ≤ Lν
K(K = 1, 2, 3),

constraints (4.8) and (4.9),

constraints (4.13) − (4.16),

λ1 + η1 ≤ 1,

λ1, η1 ≥ 0.

Step 1.6: From Model 3, finally we derive the Pareto-
optimal solution of our proposed MFSTPB.

Theorem 6.1 If x∗ = (x∗
ijk : i = 1, 2, . . . , m; j =

1, 2, . . . , n; k = 1, 2, . . . , p) is an optimal solution of
Model 3, then it is also a Pareto-optimal (non-dominated)
solution of Model 2.

Proof Let x∗ is not a Pareto-optimal (non-dominated)
solution of Model 2. Therefore, from Definition 4.1, it can
be considered that there exists at least one x such

ZK(x) ≤ ZK(x∗) for K = 1, 2, 3, and

ZK(x) < ZK(x∗) for at least one K .

Since the membership function μK(x) strictly decreases
with respect to the corresponding objective function ZK

in [0, 1] and the non-membership function νK(x) strictly
increases with respect to the corresponding objective
functionZK in [0, 1], so we have μK(x) ≥ μK(x∗)∀K, and
μK(x) > μK(x∗) for at least one K . Also, νK(x) ≤
νK(x∗)∀K, and νK(x) < νK(x∗) for at least one K .

Hence, (λ1 − η1) = min {μK(x), νK(x)} ≥
min{μK(x∗), νK(x∗)}= (λ∗

1−η∗
1) which contradicts the fact

that x∗ an optimal solution of Model 3, where λ∗
1 and η∗

1 are
the values of λ1 and η1 at x∗ respectively. This completes
the proof of the theorem.

6.2 Intuitionistic fuzzy TOPSIS

Hwang and Yoon [14] initiated TOPSIS for deriving
Pareto-optimal solutions to multi-attribute decision making
problems. It is based on the idea that the chosen alterna-
tives should have the shortest distance from the Positive
Ideal Solution (PIS) and the farthest distance from the
Negative Ideal Solution (NIS). Classical TOPSIS has been
competently used for solving many selection/ranking prob-
lems. It basically focuses on three kinds of decisions: (i)

find the rank of all alternatives, (ii) the alternatives are
ranked from the best to the worst, (iii) select the best
alternative. Generally, TOPSIS is used to reduce a given
multi-objective optimization problem into a bi-objective
optimization problem. Abo-Sinna et al. [1] applied TOPSIS
method to solve a multi-objective large-scale nonlinear
programming problem with a block-angular structure. Later
on, Li [19] developed a TOPSIS-based nonlinear-
programming methodology for multi-attribute decision
making problems. Many researchers acquainted with
TOPSIS approach for decision making problem such as
Izadikhah [15], Vahdani et al. [41] and others. They inves-
tigated the ranking order of the criteria. But we propose
intuitionistic fuzzy TOPSIS approach to obtain the Pareto-
optimal solution for Model 2 and we also calculate the
optimal values of the objective functions. The main advan-
tages of proposed approach are that it generates a better
Pareto-optimal solution and it also gives the satisfaction
and dissatisfaction levels of the objective functions. More-
over, it is easy to apply (i.e., less computational burden)
for solving MFSTPB and similar type of decision making
problems.

Definition 6.1 If a multi-objective optimization problem
is reduced to a bi-objective problem by TOPSIS approach,
then the reduced problem is called a TOPSIS-based bi-
objective optimization problem.

We extend the concept of TOPSIS approach by incor-
porating intuitionistic fuzzy programming with TOPSIS
in our proposed study. It is a hybridization to obtain the
Pareto-optimal solution of MFSTPB (i.e., Model 2). In our
proposed approach, first, we formulate TOPSIS-based bi-
objective problem of MFSTPB. Thereafter, the bi-objective
problem is solved by introducing membership function and
non-membership function of intuitionistic fuzzy program-
ming to represent the satisfaction level (i.e., maximizing
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the degree of membership) and dissatisfaction level (i.e.,
minimizing the degree of non-membership) of the objective
functions. The developed TOPSIS approach is described by
the following steps:

Step 2.1: Determine the individual minimum and maxi-
mum values of all the objective functions for MFSTPB
(i.e., Model 2).

Step 2.2: Identify PIS (Z+) and NIS (Z−) for Model 2,
which are defined as follows:

Z+ = (Z+
1 , Z+

2 , Z+
3 ),

Z− = (Z−
1 , Z−

2 , Z−
3 ),

where for every K (i.e., K = 1, 2, 3), we express Z+
K and

Z−
K which are as:

{

Z+
K = minZK, subject to constraints (4.8) and (4.9), (4.13) − (4.16),

Z−
K = maxZK, subject to constraints (4.8) and (4.9), (4.13) − (4.16).

We note that the range of the objective functions in
MFSTPB with Z+

K < Z−
K can be estimated by Z−

K −
Z+

K(K = 1, 2, 3). The concepts of PIS and NIS are depicted
in Fig. 2.

Step 2.3: Using PIS and NIS, we calculate the distance
function from PIS

(

i.e., dP IS
u (x)

)

and the distance func-
tion from NIS

(

i.e., dNIS
u (x)

)

as follows:

dPIS
u (x) =

[

3
∑

K=1

[

WK

ZK(x) − Z+
K

Z−
K − Z+

K

]u]
1
u

, (6.17)

dNIS
u (x) =

[

3
∑

K=1

[

WK

Z−
K − ZK(x)

Z−
K − Z+

K

]u]
1
u

, (6.18)

3
∑

K=1

WK = 1, WK ≥ 0, K = 1, 2, 3.

The parameters WK(K = 1, 2, 3) in (6.17) and (6.18)
denote the weights of the objective functions. Here, we con-
sider the priorities by weights, and they areW1 = 0.3, W2 =
0.4, W3 = 0.3 for three objective functions, respectively,
of Model 2. The indices u(= 1, 2, . . . ,∞) is employed to

Fig. 2 The graphical representation of PIS (Z+) and NIS (Z−)

control the Pareto-optimal solution in TOPSIS. In general,
u = 1, u = 2, andu = ∞ are widely used to deal with
multi-objective optimization problem. Different values of
u refer to different distances, e.g., u = 1 indicates to the
Manhattan distance (the farthest distance in the geometrical
sense), u = 2 represents to the Euclidean distance (the least
distance in the geometrical sense), and u = ∞ refers to the
Tchebycheff distance (the shortest distance in the numerical
sense). Other distances are used less because they have no
concrete meaning in practice.

Step 2.4: Set u = 2 into the (6.17) and (6.18). To obtain
Pareto-optimal solution, Model 2 transforms into the
following bi-objective problem.

minimize dPIS
2 (x),

maximize dNIS
2 (x)

subject to constraints (4.8) and (4.9),

constraints (4.13) − (4.16).

Step 2.5: Calculate the individual values to minimize
dPIS
2 (x) and to maximize dNIS

2 (x) subject to the
constraints (4.8) and (4.9), and (4.13)-(4.16). Now, we
construct the payoff table of ideal solutions (shown in
Table 2) as:

For convenience, we introduce notation as: (dPIS
2 )∗ =

dPIS
2 (xPIS), (dNIS

2 )∗ = dNIS
2 (xNIS), (dPIS

2 )
′ = dPIS

2
(xNIS), (dNIS

2 )
′ = dNIS

2 (xPIS).

Step 2.6: Based on the preference concept, we formulate
the membership functions μ1(x) and μ2(x), and non-
membership functions ν1(x) and ν2(x) for two objective

Table 2 Payoff table of ideal solutions

dPIS
2 (x) dNIS

2 (x)

xPIS (dPIS
2 )∗ (dNIS

2 )
′

xNIS (dPIS
2 )

′
(dNIS

2 )∗
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functions respectively from Step 2.5. They are defined
respectively as follows:

μ1(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if dPIS
2 (x) ≤ (dPIS

2 )∗,
(dPIS

2 )
′−dPIS

2 (x)

(dPIS
2 )

′−(dPIS
2 )∗ , if (dPIS

2 )∗ ≤ dPIS
2 (x) ≤ (dPIS

2 )
′
,

0, if (dPIS
2 )

′ ≤ dPIS
2 (x),

and

μ2(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if (dNIS
2 )∗ ≤ dNIS

2 (x),

dNIS
2 (x)−(dNIS

2 )
′

(dNIS
2 )∗−(dNIS

2 )
′ , if (dNIS

2 )
′ ≤ dNIS

2 (x) ≤ (dNIS
2 )∗,

0, if dNIS
2 (x) ≤ (dNIS

2 )
′
,

ν1(x)=

⎧

⎪

⎨

⎪

⎩

0, if dPIS
2 (x)≤(dPIS

2 )∗,
dPIS
2 (x)−(dPIS

2 )∗

(dPIS
2 )

′ +β1−(dPIS
2 )∗ , if (dPIS

2 )∗ ≤dPIS
2 (x)≤(dPIS

2 )
′ +β1,

1, if (dPIS
2 )

′ +β1≤dPIS
2 (x),

and

ν2(x)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if (dNIS
2 )∗ ≤dNIS

2 (x),
(dNIS

2 )∗−dNIS
2 (x)

(dNIS
2 )∗−

(

(dNIS
2 )

′ −β2

) , if (dNIS
2 )

′ −β2≤dNIS
2 (x)≤(dPIS

2 )∗,

1, if dNIS
2 (x)≤(dNIS

2 )
′ −β2,

where β1 and β2 are the respective tolerances of lower
bound and upper bound corresponding to the objective
functions.

Step 2.7: Using the max-min operator, the intuitionistic
fuzzy linear programming of the bi-objective problem in
Step 2.4 can be written in the following way:

Model 4

maximize (λ2 − η2)

subject to μ1(x) ≥ λ2, μ2(x) ≥ λ2,

ν1(x) ≤ η2, ν2(x) ≤ η2,

constraints (4.8) and (4.9),

constraints (4.13) − (4.16),

λ2 + η2 ≤ 1,

λ2, η2 ≥ 0.

Here, λ2 = min{μ1(x), μ2(x)} and η2 = max{ν1(x), ν2(x)}
are the satisfaction level and dissatisfaction level for the
criteria of the minimum distance from the PIS and the
maximum distance from the NIS of Model 2.

Step 2.8: From Step 2.7, we finally obtain the Pareto-
optimal solution of our proposed MFSTPB (i.e.,
Model 2).

Theorem 6.2 If an optimal solution of Model 4 exists, then
it is a Pareto-optimal solution of Model 2.

The proof is similar to Theorem 6.1.

7 Application example based on real-life
data

A reputed oil production company in India (namely, IOC
Ltd.) produces ethanol blended petrol (EBP) product.

Table 3 Transportation cost
and fixed-charge (̃cijk, ˜fijk) Factory-Destination Conveyance (k = 1) Conveyance (k = 2)

1-1 〈(5, 7, 9), (4, 7, 10)〉, 〈(7, 9, 11), (6, 9, 12)〉,
〈(15, 16, 17), (14, 16, 18)〉 〈(17, 18, 19), (16, 18, 20)〉

1-2 〈(4, 6, 8), (3, 6, 9)〉, 〈(5, 7, 9), (4, 7, 10)〉,
〈(12, 13, 14), (11, 13, 15)〉 〈(14, 15, 16), (13, 15, 17)〉

1-3 〈(7, 8, 9), (6, 8, 10)〉, 〈(9, 10, 11), (8, 10, 12)〉,
〈(11, 12, 14), (10, 12, 15)〉 〈(12, 13, 15), (11, 13, 16)〉

2-1 〈(6, 8, 10), (5, 8, 11)〉, 〈(8, 10, 12), (7, 10, 13)〉,
〈(17,18,19),(16,18,20)〉 〈(19, 20, 21), (18, 20, 22)〉

2-2 〈(10, 11, 12), (9, 11, 13)〉, 〈(11, 12, 13), (10, 12, 14)〉,
〈(18, 19, 20), (17, 19, 21)〉 〈(20, 21, 22), (19, 21, 23)〉

2-3 〈(5, 6, 7), (4, 6, 8)〉, 〈(10, 11, 12), (9, 11, 13)〉,
〈(15, 16, 18), (14, 16, 19)〉 〈(16, 17, 19), (15, 17, 20)〉

3-1 〈(5, 6, 7), (4, 6, 8)〉, 〈(7, 8, 9), (6, 8, 10)〉,
〈(16,17,18),(15,17,19)〉 〈(19, 20, 22), (18, 20, 23)〉

3-2 〈(9, 10, 11), (8, 10, 12)〉, 〈(11, 12, 13), (10, 12, 14)〉,
〈(14, 15, 16), (13, 15, 17)〉 〈(17, 18, 19), (16, 18, 20)〉

3-3 〈(10, 11, 12), (9, 11, 14)〉, 〈(11, 12, 13), (10, 12, 15)〉,
〈(19, 20, 21), (18, 20, 22)〉 〈(21, 22, 23), (20, 22, 24)〉
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Table 4 Transporting time and
deterioration rate (˜tijk, ˜dijk) Factory-Destination Conveyance (k = 1) Conveyance (k = 2)

1-1 〈(8, 9, 10), (7, 9, 11)〉, 〈(10, 11, 12), (9, 11, 13)〉,
〈(1.25, 2, 2.5), (1, 2, 3)〉 〈(1.5, 2.5, 3), (1.25, 2.5, 3.5)〉

1-2 〈(7, 8, 9), (6, 8, 10)〉, 〈(10, 11, 12), (9, 11, 13)〉,
〈(1.5, 2.5, 3), (1, 2.5, 3.5)〉 〈(2, 3, 3.5), (1.5, 3, 4)〉

1-3 〈(6, 8, 9), (5, 8, 10)〉, 〈(8, 10, 11), (7, 10, 12)〉,
〈(1, 2, 2), (0.9, 2, 3.5)〉 〈(2, 2.5, 3.5), (1.5, 2.5, 4.5)〉

2-1 〈(6, 7, 8), (5, 7, 9)〉, 〈(8, 9, 10), (7, 9, 11)〉,
〈(0.9,1.5,2),(0.8,1.5,2.5)〉 〈(1, 2, 2.5), (0.9, 2, 3)〉

2-2 〈(6, 7, 8), (5, 7, 9)〉, 〈(8, 9, 10), (7, 9, 11)〉,
〈(1.25, 2.5, 3.5), (1, 2.5, 4)〉 〈(1.5, 3, 4), (1, 3, 4.5)〉

2-3 〈(7, 9, 10), (6, 9, 11)〉, 〈(10, 12, 13), (9, 12, 14)〉,
〈(2, 3, 3.5), (1.5, 3, 4)〉 〈(2.5, 3.5, 4), (2, 3.5, 4.5)〉

3-1 〈(9, 10, 11), (8, 10, 12)〉, 〈(12, 13, 14), (11, 13, 15)〉,
〈(0.95,2,2.5),(0.9,2,3)〉 〈(1.75, 2.5, 3), (1.5, 2.5, 3.75)〉

3-2 〈(5, 6, 7), (4, 6, 8)〉, 〈(7, 8, 9), (6, 8, 10)〉,
〈(1, 2.5, 3), (0.9, 2.5, 3.5)〉 〈(2, 2.75, 3.5), (1.5, 2.75, 5)〉

3-3 〈(6, 8, 10), (5, 8, 11)〉, 〈(8, 10, 12), (7, 10, 13)〉,
〈(1.25, 2.5, 3), (1, 2.5, 4)〉 〈(1.75, 3, 3.5), (1.25, 3, 4.5)〉

The company has three plants (m = 3) at Barauni (in
Bihar), Haldia (in West Bengal), Paradip (in Odisha) and
three distribution centers (n = 3) situated at Kolkata,
Jamshedpur, Patna in the country. The company transports
EBP from plants to demand points through tankers by
two types of conveyances (p = 2) namely, highways
and railways. Decision maker (DM) desires that the total
transporting cost (variable cost per unit and fixed cost),
total transporting time to transport EBP from plants to
distribution centers and deterioration rate of EBP are to
be minimized. In this real-life problem fixed-charge is
considered in two ways. For highway transportation the
oil company would pay a certain amount of toll charge
to National Highway Authority of India for different

Table 5 Crisp form of c̃ijk, ˜fijk,˜tijk, ˜dijk

Factory-Destination Conveyance (k = 1) Conveyance (k = 2)

1-1 7, 16, 9, 1.96 9, 18, 11, 2.33

1-2 6, 13, 8, 2.25 7, 15, 11, 2.75

1-3 8, 12.5, 7.5, 2.13 10, 9.5, 11.5, 2.29

2-1 8, 18, 7, 1.58 10, 20, 9, 1.88

2-2 11, 19, 7, 2.46 12, 21, 9, 2.75

2-3 9, 16.5, 8.5, 2.75 11, 17.5, 11.5, 3.25

3-1 6, 17, 10, 1.88 8, 20.5, 13, 2.54

3-2 10, 15, 6, 2.13 12, 18, 8, 3.08

3-3 11.33, 20, 8, 2.38 12.33, 22, 10, 2.79

types of tankers to move EBP and maintenance cost of
tankers is also included. For railways transportation the
oil company would pay a certain amount to Indian Rail
Authority for booking train tankers. Furthermore, DM
decides to find a Pareto-optimal solution to the problem
in which the values of the objective functions are to
be minimized. The relative importance of three objective
functions are considered as the weight factors which are
specified by DM. The transportation cost in rupees per
barrel, fixed-charge in rupees for an open route, time in
hour and deterioration rate in litre are considered. Data for
transportation cost and fixed-charge are shown in Table 3
and for transporting time and deterioration rate of EBP
are listed in Table 4. Table 6 presents the supply and
demand parameters; and Table 7 shows the capacity of
conveyance. Also, each plant consists the formal quality

Table 6 Supply (̃ai ) and demand (˜bj ) and their deterministic value
(

R(̃ai ),R(˜bj )
)

ãi ,˜bj R(̃ai ),R(˜bj )

i = 1, j = 1 〈(29, 30, 31), (28, 30, 32)〉, 30, 25

〈(24, 25, 26), (23, 25, 27)〉
i = 2, j = 2 〈(25, 26, 27), (24, 26, 28)〉, 26, 28

〈(27, 28, 29), (26, 28, 30)〉
i = 3, j = 3 〈(32, 33, 34), (31, 33, 35)〉, 33, 28.33

〈(26, 28, 30), (25, 28, 32)〉
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Table 7 Capacity of kth conveyance (̃ek) and its deterministic value
(R[̃ek])

ẽk R[̃ek]

k = 1 〈(42, 44, 46), (41, 44, 47)〉 44

k = 2 〈(38, 39, 40), (37, 39, 42)〉 39.33

(i.e., purity) of the produced EBP which are q1 = 0.85
(i.e., 85% clarity of the product), q2 = 0.90, q3 = 0.80
and the least quality of the produced EPB needs at each
distribution center which are qmin

1 = 0.90, qmin
2 = 0.80,

qmin
3 = 0.85.
Using Definition 2.4 and Remark 2.1 which are stated in

Section 2.1 for ranking index of the triangular intuitionistic
fuzzy number, Tables 3 and 4 reduce in Table 5.
Also, intuitionistic fuzzy supply, demand and capacity of
conveyance parameters are converted to their deterministic
form by using the proposed ranking index.

8 Results and discussion

Here, we derive the Pareto-optimal solutions of the equiva-
lent deterministic Model 2 using two approaches which are
as follows:

Intuitionistic fuzzy programming Utilizing the crisp data of
each intuitionistic triangular fuzzy numbers from Tables 5, 6
and 7 in Model 2, applying the solution procedure described
in Section 6.1 and using LINGO iterative scheme, we
obtain the Pareto-optimal solution by intuitionistic fuzzy
programming which is shown in Table 8.

Intuitionistic fuzzy TOPSIS Considering the crisp data of
each intuitionistic triangular fuzzy number from Tables 5, 6
and 8 in Model 2, utilizing the solution procedure delineated
in Section 6.2 and using LINGO iterative scheme, we derive
the subsequent Pareto-optimal solution by intuitionistic
fuzzy TOPSIS which is displayed in Table 8.

Table 8 The Pareto-optimal
solutions of proposed MFSTPB Name of the method Optimal values of Levels of satisfaction

the objective functions & dissatisfaction

Z1, Z2, Z3

Li & Lai [21] Fuzzy Prog. 883.17, 58.5, 180.28 λ1=0.58

Majumder et al. [26]

Global criterion 862.11, 51, 176.49

Intuitionistic Fuzzy Prog. 869.67, 50, 178.17 λ1=0.58, η1=0.21

Intuitionistic fuzzy TOPSIS 852.66, 40, 176.80 λ2 = 0.54, η3 = 0.23

In Table 8, we put the results of our proposed model
(i.e., Model 2) which are derived from existing methods
such as fuzzy programming (Li and Lai [21]), global cri-
terion method (Majumder et al. [26]), Intuitionistic fuzzy
programming and our proposed approach respectively.
From Table 8, we conclude that the Pareto-optimal solu-
tion for MFSTPB, extracted from proposed intuitionis-
tic fuzzy TOPSIS is more preferable than intuitionistic
fuzzy programming, fuzzy programming and global cri-
terion method. The optimal values of the objective func-
tions (Z1, Z2andZ3) are calculated from intuitionistic fuzzy
TOPSIS are better than intuitionistic fuzzy programming
and fuzzy programming proposed by Li & Lai [21]. Fur-
thermore, as the optimal values of the objective functions
(Z1andZ2) are obtained from proposed approach are min-
imum than global criterion method [26], so we conclude
that suggested intuitionistic fuzzy TOPSIS is better than
global criterion method. It is observed from obtaining
Pareto-optimal solution of suggested MFSTPB that the
factories satisfied with a minimum quality level of the
product at distribution centers. From the above discus-
sion, the advantage of the proposed intuitionistic fuzzy
TOPSIS approach can be described as: (i) It provides a
better Pareto-optimal solution than the mentioned exist-
ing methods. (ii) It transfers multiple objective functions
into two conflicting objective functions. (iii) It represents
the satisfaction and dissatisfaction levels of the objective
functions. (iv) It generates different Pareto-optimal solu-
tions for different weights setting. Also using different
distance functions for 1 ≤ u < ∞, in intuitionistic fuzzy
TOPSIS, DM can obtain different Pareto-optimal solutions.
Thereafter, DM may find the different Pareto-optimal solu-
tions by setting the different weights corresponding to the
priority of the objective functions in intuitionistic fuzzy
TOPSIS method. In this regard, we conclude that the pro-
posed approach can be easily applicable to get better Pareto-
optimal solution from different types of TP/STP than the
mentioned existing methods. However, one of the limita-
tions of the intuitionistic fuzzy TOPSIS is that the weights
should be setting properly; otherwise, the optimal solutions
may not be satisfied to all the objective functions.
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9 Conclusions and future research scopes

For the first time in research, we have designed a multi-
objective fixed-charge solid transportation problem with
product blending under intuitionistic fuzzy environment.
New ranking index based on the centroid value of a tri-
angular intuitionistic fuzzy number has been defined and
applied to reduce intuitionistic fuzzy MFSTPB to determin-
istic form.We have introduced triangular intuitionistic fuzzy
number as parameter in our proposed model to tackle the
imprecise data in real-life transporting system. The distin-
guish feature of the suggested model is that it has been
considered the multi-objective functions in FCSTP with
product blending as an additional constraint.

To solve deterministic MFSTPB, we have proposed intu-
itionistic fuzzy TOPSIS approach which is the hybridization
of TOPSIS with intuitionistic fuzzy programming. One of
the important features of the proposed approach is the
satisfaction and dissatisfaction levels of the objective func-
tions. The different Pareto-optimal solutions have been
achieved from the proposed approach when we vary the
weight coefficients to the objective functions. Intuitionistic
fuzzy programming has been applied to resolve the sug-
gested deterministic model. A comparative study has been
made among the Pareto-optimal solutions extracted from
the approaches including existing methods. Finally, from
the applied viewpoint, we can conclude that our proposed
model and approach both are highly significant in real-life
situations.

In future scope of researches, the contents of this study
can be extended a new direction to investigate fixed-
charge solid transportation problem with product blending
in two fold uncertain (intuitionistic-rough) environment.
The present problem can be applied to multi-itemMFSTPB.
One may solve the different types of multi-objective
transportation problems and decision making problems by
using proposed intuitionistic fuzzy TOPSIS approach to
obtain better results.
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