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Abstract
In twin support vector regression (TSVR), one can notice that the samples are having the same importance even they are laying
above the up-bound and below the down-bound on the estimation function for regression problem. Instead of giving the same
emphasis to the samples, a novel approach Asymmetric ν-twin support vector regression (Asy-ν-TSVR) is suggested in this
context where samples are having different influences with the estimation function based on samples distribution. Inspired by this
concept, in this paper, we propose a new approach as improved regularization based Lagrangian asymmetric ν-twin support
vector regression using pinball loss function (LAsy-ν-TSVR) which is more effective and efficient to deal with the outliers and
noise. The solution is obtained by solving the simple linearly convergent approach which reduces the computational complexity
of the proposed LAsy-ν-TSVR. Also, the structural risk minimization principle is implemented to make the problem strongly
convex and more stable by adding the regularization term in their objective functions. The superiority of proposed LAsy-ν-TSVR
is justified by performing the various numerical experiments on artificial generated datasets with symmetric and heteroscedastic
structure noise as well as standard real-world datasets. The results of LAsy-ν-TSVR compares with support vector regression
(SVR), TSVR, TSVR with Huber loss (HN-TSVR) and Asy-ν-TSVR, regularization on Lagrangian TSVR (RLTSVR) for the
linear and Gaussian kernel which clearly demonstrates the efficacy and efficiency of the proposed algorithm LAsy-ν-TSVR.

Keywords Support vector regression . Twin support vector regression . Huber loss function . Asymmetric-ν-TSVR . Pinball loss
function . Heteroscedastic noise structure

1 Introduction

In the machine learning computational world, support vector
machine (SVM) is a very popular and safe algorithm for bi-
nary classification [1]. Later, it is extended for regression
problem also that is known as support vector regression
(SVR) [2]. According to statistical learning theory, SVM fol-
lows the structural risk minimization (SRM) principle that
solves a single large size quadratic programming problem
(QPP) to get the optimal solution. SRM principle is basically
for model selections which broadly explains the details of

capacity control of model and maintain balance between VC
dimension of function and empirical error.

SVM for regression is globally accepted due to superior
forecasting performance in many research fields such as pre-
dict the popularity of online video [3], productiveness of
higher education system [4], energy utilization in heat equal-
ization [5], software enhancement effort [6], electric load [7],
velocity of wind [8], flow of river [9], snow depth [10], neutral
profiles from laser induced fluorescence data [11] and stock
price [12]. The disadvantage of SVM is high training cost i.e.
O(m3). So many significant improvements have been done by
the researchers to lessen the training cost and complexity of
SVM such as ν-SVR [13], SVMTorch [14], Bayesian SVR
[15], geometric approach to SVR [16], active set SVR [17],
heuristic training for SVR [18], smooth ε-SVR [19], fuzzy
weighted support vector regression with fuzzy partition [20]
etc.

A remarkable enhancement has been done in standard
SVM by Jayadeva et al. [21] to propose a novel approach
termed as twin support vector machine (TWSVM) which
finds two non-parallel hyperplanes that are nearer to one of
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the class either positive or negative and also sustains unit
difference between each other. In comparison to SVM,
TWSVM has shown good generalization ability and lesser
computation time. Motivated by the concept of TWSVM, a
non-parallel twin support vector regression (TSVR) is pro-
posed by Peng [22] in which two unknown optimal regression
such as ε−insensitive down- and up- bound functions are de-
termined. TSVR has better prediction performance and accel-
erated training speed over the SVR [22]. Many other variants
of TSVR have been suggested such as reduced TSVR [23]
which applied the concept of rectangle kernels to obtain sig-
nificant improvement in learning time on TSVR, weighted
TSVR [24] reduces the problem of overfitting by assigned
different penalties to each sample. Twin least square SVR
[25] takes the concept of TSVR and least square SVR [26]
to improve the prediction performance with training speed.
Linearly convergent based Lagrangian TSVR [27] has been
proposed to improve the generalization performance and
learning speed. Unconstrained based Lagrangian TSVR [28]
has been suggested to reduce the complexity of model and
improve the learning speed via solving the unconstrained min-
imization problems. Niu et al. [29] has combined the TSVR
with Huber loss function (HN-TSVR) for handling the
Gaussian noise. Tanveer & Shubham [30] has proposed a
new algorithm termed as regularization on Lagrangian twin
support vector regression (RLTSVR) which solves the regres-
sion problem very effectively. There are many variants of
SVM exists in the literature based on pinball loss function
for the classification problems like Huang has applied pin ball
loss function in SVM and suggested an approach as pin-SVM
[31] to handle the noisy data; Huang et al. [32] has proposed
sequential minimization optimization for SVMwith truncated
pinball loss along with its sparse version that enhances the
generalization efficiency of pin-SVM; Pin-M3HM [33] has
improved the twin hyper-sphere SVM (THSVM) [34] using
pin ball loss that avoids noise and error in very effective man-
ner; Xu et al. [35] has proposed a new approach TWSVMwith
pin ball loss that indulge with quantile distance which is per-
formed well for noisy data and related to this for more study,
see [36–44]. It actually gives the active research direction in
forward way.

One can notice that very few literatures are available on
SVR with pinball loss function for the regression problems.
In spite of considering ε-insensitive loss function, Huang has
proposed a novel approach termed as asymmetric ν-tube sup-
port vector regression (Asy-ν-SVR) [45] based on ν-SVR
with pinball loss function to divide the outliers asymmetrically
over above and below of the tube and improved the computa-
tional complexity. Similarly, one can observe that we have
assigned same penalties to every point above the up-bound
and below the down-bound in TSVR. But each sample may
not give same effect in order to determine the regression func-
tion. So, asymmetric ν-twin support vector regression (Asy-ν-

TSVR) [35] has been suggested to give different effects on the
regression function by using the pin-ball loss function.
Motivated by the above studies, we propose a new approach
as improved regularization based Lagrangian asymmetric ν-
twin support vector regression (LAsy-ν-TSVR) using pinball
loss function in this paper where the end regression function is
determined by solving the linearly convergent iterative ap-
proach unlike solve the QPPs in case of SVR, TSVR, HN-
TSVR and Asy-ν-TSVR. This approach reduces the compu-
tational cost of the model. Another advantage of our proposed
LAsy-ν-TSVR is that it follows the SRM principle which
yields the existence of global solution and improves the gen-
eralization ability. The characteristics of proposed LAsy-ν-
TSVR are as follows:

& To make the problem strongly convex and find the unique
global solution, 2-norm of vector of slack variables is in-
cluded in the objective functions of proposed LAsy-ν-
TSVR.

& Regularization terms are added in the objective functions
of LAsy-ν-TSVR to implement the SRM principle which
makes the model well pose.

& The solution of proposed LAsy-ν-TSVR is obtained by
using the linearly convergent iterative schemes which im-
prove the computational cost.

Further, to check the effectiveness and applicability of pro-
posed LAsy-ν-TSVR, numerical experiments are conducted
on artificial generated datasets having symmetric and asym-
metric structure of noise and also on real-world benchmark
datasets. The experimental results of proposed LAsy-ν-TSVR
are compared with SVR, TSVR, HN-TSVR, Asy-ν-TSVR
and RLTSVR in this paper.

This paper is organised as follows. Section 2 outlines brief-
ly about SVR, TSVR, HN-TSVR, Asy-ν-TSVR and
RLTSVR. The formulation of proposed LAsy-ν-TSVR is de-
scribed in Section 3. In Section 4, the numerical experiments
are performed on artificially generated and real-world datasets
in detail. At last, conclusion and future work is presented in
Section 5.

2 Background

In this paper, consider the training data as xi; yið Þf gmi¼1 where
ith -input data sample is shown as xi = (xi1, ..., xin) ∈ Rn and yi ∈
R is the observed outcome of corresponding input sample. Let
consider A is am × nmatrix in whichm is the number of input
samples and n is the number of attributes in such a way that
A = (x1, ..., xm)

t ∈ Rm × n and y= (y1, ..., ym)
t ∈ Rm. The 2-norm

of a vector xwill be represented by ‖x‖. The plus function x+ is
given by max{0, xi} for i = 1, ..., m.
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2.1 Support vector regression (SVR)

In the linear regression [2], the main aim is to find the optimal
linear regression estimating function of the form as

f xð Þ ¼ wtxþ b

where, w ∈ Rn, b ∈ R.
The formulation of linear SVR as constrainedminimization

problem [46] is given as

min
1

2
wk k2 þ C etξ1 þ etξ2ð Þ

subject to

y− Awþ beð Þ≤εeþ ξ1i; ξ1i≥0
Awþ beð Þ−y≤εeþ ξ2i; ξ2i≥0for i ¼ 1; :::;m

ð1Þ

where, the vectors of slack variables ξ1 ≥ (ξ11, ..., ξ1m)t and
ξ2 ≥ (ξ21, ..., ξ2m)t; C > 0, ε > 0 are the input parameters and
e ∈ Rm is the vector of one’s.

Now i n t r o du c e t h e Lag r a ng i a n mu l t i p l i e r s
α1 = (α11, ..., α1m)

t,β1 = (β11, ..., β1m)
t and further apply the

Karush–Kuhn–Tucker (KKT) conditions, the dual QPP of
(1) is given as:

min
1

2
∑
m

i; j¼1
α1i−β1ið Þ xtix j

� �
α1 j−β1 j

� �

þ ε ∑
m

i¼1
α1i þ β1ið Þ− ∑

m

i¼1
yi α1i−β1ið Þ

subject to

∑
m

i¼1
et α1i−β1ið Þ ¼ 0; 0≤α1;β1≤Ce: ð2Þ

The decision function f(.) will be obtained from (2) [46] for
any test data x ∈ Rn as

f xð Þ ¼ ∑
m

i¼1
α1i−β1ið Þ xtxið Þ þ b

For nonlinear SVR, we assume the nonlinear function of
the given form as.

f(x) =wtϕ(x) + b
where,ϕ(.) is a nonlinear mapping which consider the input

space into feature space in the high dimension. The formula-
tion of nonlinear constrained QPP [2, 46] is considered as

min
1

2
wk k2 þ C etξ1 þ etξ2ð Þ

subject to

y− φ xið Þwþ beð Þ≤εeþ ξ1i; ξ1i≥0
φ xið Þwþ beð Þ−y≤εeþ ξ2i; ξ2i≥0for i ¼ 1; :::;m

ð3Þ

Now, the dual QPP of the primal problem (3) is determined
by using the Lagrangian multipliersα1, β1 and further apply
the KKT conditions. We get

min
1

2
∑
m

i; j¼1
α1i−β1ið Þk xi; x j

� �
α1 j−β1 j

� �

þ ε ∑
m

i¼1
α1i þ β1ið Þ− ∑

m

i¼1
yi α1i−β1ið Þ

subject to

∑
m

i¼1
et α1i−β1ið Þ ¼ 0; 0≤α1;β1≤Ce: ð4Þ

where, the kernel function k(xi, xj) = ϕ(xi)
tϕ(xj). The decision

function f(.) will be obtained [46] for any test data x ∈ Rn from
(4) as

f xð Þ ¼ ∑
m

i¼1
α1i−β1ið Þk x; xið Þ þ b

2.2 Twin support vector regression (TSVR)

Twin support vector regression (TSVR) [22] is an effective
approach which is influenced from TWSVM [21] to predict
the two nonparallel ε-insensitive down-bound function f 1 xð Þ
¼ wt

1xþ b1 and ε-insensitive up-bound function
f 2 xð Þ ¼ wt

2xþ b2. Here, w1, w2 ∈ Rn and b1, b2 ∈ R are un-
knowns. In linear TSVR, the regression functions are deter-
mined by solving the following QPPs in such a way:

min
1

2
y−ε1e− Aw1 þ b1eð Þk k2 þ C1etξ1

subject to

y− Aw1 þ b1eð Þ≥ε1e−ξ1; ξ1≥0 ð5Þ
and

min
1

2
yþ ε2e− Aw2 þ b2eð Þk k2 þ C2etξ2

subject to

Aw2 þ b2eð Þ−y≥ε2e−ξ2; ξ2≥0 ð6Þ
where, input parameters are C1, C2 > 0 and ε1, ε2 > 0; the
vectors of slack variables are ξ1 and ξ2.

Now introduce the Lagrangian multipliers in the above
problems (5) and (6) is shown as

L w1; b1; ξ1;α1;β1ð Þ ¼ 1

2
y−eε1− Aw1 þ eb1ð Þð Þk k2

þ C1etξ1−αt
1 y− Aw1 þ eb1ð Þ−eε1 þ ξ1ð Þ−βt

1ξ1
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and

L w2; b2; ξ2;α2;β2ð Þ ¼ 1

2
yþ ε2e− Aw2 þ eb2ð Þð Þk k2

þ C2etξ2−α
t
2 Aw2 þ eb2ð Þ−y−eε2 þ ξ2ð Þ−βt

2ξ2

where, α1 = (α11, ...,α1m)
t, α2 = (α21, ...,α2m)

t are the vec-
tors of Lagrangian multipliers. After, we get the Wolfe dual
QPPs of the above primal problems by using the KKT condi-
tions as

max−
1

2
αt
1S StSð Þ−1Stα1

þ y−ε1eð ÞtS StSð Þ−1Stα1− y−ε1eð Þtα1

subject to

0≤α1≤C1e ð7Þ
and

max−
1

2
αt
2S StSð Þ−1Stα2 þ yþ ε2eð ÞtS StSð Þ−1Stα2

þ yþ ε2eð Þtα2

subject to

0≤α2≤C2e ð8Þ
where, S = [A e] is the augmented matrix.

After solving the above pair of dual QPPs (7) and (8) for α1

and α2, one can derive the values as:

w1

b1

� �
¼ StSð Þ−1St y−ε1e−α1ð Þ

and

w2

b2

� �
¼ StSð Þ−1St yþ ε2eþ α2ð Þ

Then, the final estimated regression function is obtained as

f xð Þ ¼ 1

2
f 1 xð Þ þ f 2 xð Þð Þ ð9Þ

In nonlinear case of TSVR, the kernel generating regres-
sion functions f1(x) =K(xt, At)w1 + b1 and f2(x) =K(xt, At)w2 +
b2 are determined by the following QPPs as

min
1

2
y−ε1e− K A;Atð Þw1 þ b1eð Þk k2 þ C1etξ1

subject to

y− K A;Atð Þw1 þ b1eð Þ≥ε1e−ξ1; ξ1≥0 ð10Þ

and

min
1

2
yþ ε2e− K A;Atð Þw2 þ b2eð Þk k2 þ C2etξ2

subject to

K A;Atð Þw2 þ b2eð Þ−y≥ε2e−ξ2; ξ2≥0 ð11Þ

Similarly as the linear TSVR, we get the dual QPP from the
Eqs. (10) and (11)

max−
1

2
αt
1T TtTð Þ−1Ttα1

þ y−ε1eð ÞtT T tTð Þ−1Ttα1− y−ε1eð Þtα1

subject to

0≤α1≤C1e ð12Þ
and

max−
1

2
αt
2T TtTð Þ−1Ttα2 þ yþ ε2eð ÞtT T tTð Þ−1Ttα2

þ yþ ε2eð Þtα2

subject to

0≤α2≤C2e ð13Þ

where, T ¼ K A;Atð Þ e
� �

is the augmented matrix; α1 and
α2 are Lagrangian multipliers.

One can derive the values of w1, w2, b1, b2 from the Eqs.
(12) and (13) as follows:

w1

b1

� �
¼ TtT þ σIð Þ−1Tt y−eε1−α1ð Þ

and

w2

b2

� �
¼ TtT þ σIð Þ−1Tt yþ eε2 þ α2ð Þ

One can notice that σI is added as extra term in the matrix
(TtT)−1 to make the matrix positive definite, where σ > 0 is the
small real positive value. Finally, end regression function is
obtained from (9).

2.3 Twin support vector regression with Huber loss
(HN-TSVR)

TSVR [22] is based on ε-insensitive loss function but fail to
deal for data having Gaussian noise. Motivated by the work of
[47, 48], TSVR with Huber loss function (HN-TSVR) [29]
has been suggested in order to improve the generalization
ability by suppress a variety of noise and outliers. Here,
Huber loss function is given by
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c xð Þ ¼
x2

2
; if x≤ε

εjxj− ε2

2
; otherwise

:

8><
>:

The nonlinear HN-TSVR QPPs are as follows:

min
1

2
y−eε1− K A;Atð Þw1 þ eb1ð Þk k2

þ C1 ∑
i∈U1

1

2
ξ21i þ ε ∑

i∈U 2

ξ1i−
1

2
ε

� 	� 	

subject to

y− K A;Atð Þw1 þ eb1ð Þ≥eε1−ξ1; ξ1≥0 ð14Þ
where, U1 = {i| 0 ≤ ξ1i < ε}, U2 = {i| ξ1i ≥ ε}.and

min
1

2
yþ eε2− K A;Atð Þw2 þ eb2ð Þk k2

þ C2 ∑
i∈V1

1

2
ξ22i þ ε ∑

i∈V2

ξ2i−
1

2
ε

� 	� 	

subject to

K A;Atð Þw2 þ eb2ð Þ−y≥eε2−ξ2; ξ2≥0 ð15Þ

where, V1 = {i| 0 ≤ ξ2i < ε}, V2 = {i| ξ2i ≥ ε};ξ1 = (ξ11, ...ξ1m)
t

and ξ2 = (ξ21, ...ξ2m)
t are the slack variables; C1, C2 > 0, ε1,

ε2 > 0 are parameters.
By applying the Lagrange’s multipliers α1 = (α11, ...,α1m)

t,
α2 = (α21, ...,α2m)

t, the dual formulation of problem (14) and
(15) are determined as

min
1

2
α1

tS StSð Þ−1Stα1− y−ε1eð ÞtS StSð Þ−1Stα1

þ y−ε1eð Þtα1 þ 1

2C1
α1

tα1

subject to:

0≤α1≤C1ε1e ð16Þ

and

min
1

2
α2

tS StSð Þ−1Stα2

þ yþ ε2eð ÞtS StSð Þ−1Stα2− yþ ε2eð Þtα2 þ 1

2C2
α2

tα2

subject to:

0≤α2≤C2ε2e ð17Þ

where, S ¼ K A;Atð Þ e
� �

:

The value of corresponding w1, w2, b1, b2 are

w1

b1

� �
¼ StSð Þ−1St y−eε1−α1ð Þ

w2

b2

� �
¼ StSð Þ−1St yþ eε2−α2ð Þ

Finally, the end regression function can be obtained as sim-
ilar to (9).

2.4 Asymmetric ν-twin support vector regression
(Asy-ν-TSVR)

Asymmetric v-twin support vector regression with pinball loss
function (Asy-ν-TSVR) [35] has been proposed in order to
pursue the asymmetric tube where the different penalties are
assigned to the above the up-bound and below the down-
bound. Asy-ν-TSVR is highly influenced from Huang et al.
[45] whereε-insensitive loss is replaced by pinball loss [40]
where points having the different penalties based on their dif-
ferent position. Here, pinball loss function is defined as:

Lpε xð Þ ¼

1

2p
x−εð Þ; x≥ε;

0; −ε < x < ε;
1

2 1−pð Þ −x−εð Þ; x≤−ε;

8>>><
>>>:

ð18Þ

where p is the asymmetric penalty parameter. One can be
degraded into ε-insensitive loss by choosing the value p =
0.5..

In linear Asy-ν-TSVR case, two nonparallel ε1-insensitive
down-bound f 1 xð Þ ¼ wt

1xþ b1 and up-bound f 2 xð Þ ¼ wt
2x

þb2 functions are generated by solving the pair of QPPs in
the following manner:

min
1

2
y− Aw1 þ b1eð Þk k2 þ C1ν1ε1 þ 1

m
C1etξ1

subject to

y− Aw1 þ b1eð Þ≥−ε1e−2 1−pð Þξ1; ξ1≥0; ε1≥0 ð19Þ
and

min
1

2
y− Aw2 þ b2eð Þk k2 þ C2ν2ε2 þ 1

m
C2etξ2

subject to

Aw2 þ b2eð Þ−y≥−ε2e−2pξ2; ξ2≥0; ε2≥0 ð20Þ
where, ξ1, ξ2 are the slack variables; C1, C2 > 0; ε1, ε2 > 0, ν1,
ν2 are the input parameters.

Apply Lagrangian multipliers α1, α2 > 0 ∈ Rm and KKT
conditions, we get the dual QPP of Asy-ν-TSVR from the
Eqs. (19) and (20)

3610 U. Gupta et al.



min
1

2
αt
1S StSð Þ−1Stα1−ytS StSð Þ−1Stα1 þ ytα1

subject to

0≤α1≤
C1e

2 1−pð Þm ; etα1≤C1ν1 ð21Þ

and

min
1

2
αt
2S StSð Þ−1Stα2 þ ytS StSð Þ−1Stα2−ytα2

subject to

0≤α2≤
C2e
2pm

; etα2≤C2ν2 ð22Þ

where, S ¼ A e½ �.
After solving the Eqs. (21) and (22), one can compute the

values of w1, w2, b1, b2 in the following manner:

w1

b1

� �
¼ StSð Þ−1St y−α1ð Þ

and

w2

b2

� �
¼ StSð Þ−1St yþ α2ð Þ

Finally, the end regression function is obtained as similar to
(9).

In the nonlinear case, kernel generating regression func-
tions are f1(x) = K(xt, At)w1 + b1 and f2(x) = K(xt, At)w2 + b2
by solving the pair of QPPs in such a way:

min
1

2
y−


K A;Atð Þw1 þ b1e

��� ���2 þ C1ν1ε1 þ 1

m
C1etξ1

subject to

y− K A;Atð Þw1 þ b1eð Þ≥−ε1e−2 1−pð Þξ1; ξ1≥0; ε1≥0 ð23Þ
and

min
1

2
y−


K A;Atð Þw2 þ b2e

��� ���2 þ C2ν2ε2 þ 1

m
C2etξ2

subject to

K A;Atð Þw2 þ b2eð Þ−y≥−ε2e−2pξ2; ξ2≥0; ε2≥0 ð24Þ

Apply Lagrangian multipliers α1, α2and KKT necessary
conditions, the dual formation of (23) and (24) can be derived
as follows:

min
1

2
αt
1T TtTð Þ−1Ttα1−ytT T tTð Þ−1Ttα1 þ ytα1

subject to

0≤α1≤
C1e

2 1−pð Þm ; etα1≤C1ν1 ð25Þ

and

min
1

2
αt
2T TtTð Þ−1Ttα2 þ ytT T tTð Þ−1Ttα2−ytα2

subject to

0≤α2≤
C2e
2pm

; etα2≤C2ν2 ð26Þ

where, T ¼ K A;Atð Þ e
� �

.
After solving the Eqs. (27) and (28) for α1 and α2, we can

obtain the augmented vectors as

w1

b1

� �
¼ TtTð Þ−1Tt y−α1ð Þ

and

w2

b2

� �
¼ TtTð Þ−1Tt yþ α2ð Þ

Finally, the end regression estimation function is given as
similar to the linear case for any test samplex ∈ Rn.

2.5 A regularization on Lagrangian twin support
vector regression (RLTSVR)

By considering the principle of structural risk minimization
instead of usual empirical risk in ε-TSVR, recently Tanveer &
Shubham [30] proposed a new algorithm termed as regulari-
zation on Lagrangian twin support vector regression
(RLTSVR) whose solution is obtained by simple linearly con-
vergent iterative approach. The two nonparallel functions
f1(x) = K(xt, At)w1 + b1 and f2(x) = K(xt, At)w2 + b2 are deter-
mined by using the following constrained minimization prob-
lems:

min
C3

2
wt
1w1 þ b21

� �þ 1

2
y−


K


A;At

�
w1 þ eb1

���� ���2
þ 1

2
C1ξ1

tξ1

subject to

y− K A;Atð Þw1 þ eb1ð Þ≥eε1−ξ1 ð27Þ
and

min
C4

2
wt
2w2 þ b22

� �þ 1

2
y−


K


A;At

�
w2 þ eb2

���� ���2
þ 1

2
C2ξ2

tξ2

An improved regularization based Lagrangian asymmetric ν-twin support vector regression using pinball loss... 3611



subject to

K A;Atð Þw2 þ eb2ð Þ−y≥eε2−ξ2 ð28Þ
where, input parameters are C1, C2, C3, C4 > 0 and ε1, ε2 > 0;
ξ1, ξ2 are slack variables.

Now i n t r o du c e t h e Lag r a ng i a n mu l t i p l i e r s
α1 = (α11, ...,α1m)

t and α2 = (α21, ...,α2m)
t, the dual form of

the QPP of (27) and (28) can be written as:

min
α1 ≥0

1

2
αt
1

I
C1

þ S StS þ C3Ið Þ−1St
� 	

α1− ytS StS þ C3Ið Þ−1St− yþ eε1ð Þt

 �

α1

ð29Þ

and

min
α2 ≥0

1

2
αt
2

I
C2

þ S StS þ C4Ið Þ−1St
� 	

α2− y−eε2ð Þt−ytS StS þ C4Ið Þ−1St

 �

α2

ð30Þ

where, S ¼ K A;Atð Þ e
� �

is the augmented matrix.
After solving the above pair of dual QPPs (29) and (30) for

α1 and α2, one can derive the values as:

w1

b1

� �
¼ StS þ C3Ið Þ−1St y−α1ð Þ

and

w2

b2

� �
¼ StS þ C4Ið Þ−1St yþ α2ð Þ

Finally, the end regression function is obtained as similar to
(9). For more details, one can see [30].

3 Proposed improved regularization based
Lagrangian asymmetric ν-twin support vector
regression using pinball loss (LAsy-ν-TSVR)

Recently, Xu et al., [35] has suggested a novel approach
termed as asymmetric ν-twin support vector regression using
pinball loss function to handle the asymmetric noise and out-
liers in challenging real-world problems. In order to further
improvement of generalization ability and reduction of com-
putation cost, we propose another approach termed as im-
proved regularization based Lagrangian asymmetric ν-twin
support vector regression using pinball loss function
(LAsy-ν-TSVR) whose solution is obtained by solving the
linearly convergent iterative method in place of solving
QPPs. To formulate our proposed LAsy-ν-TSVR formulation,
we replace the 1-norm of vector of slack variables ξ1 and ξ2,
by the square of the vector of slack variables in 2-norm which

Table 1 Different user define parameters used in numerical experiment

Parameters Range Models

ε { 0.1, 0.01} SVR, RLTSVR

{ 0.1, 0.3, 0.5, 0.7, 0.9 } TSVR, HN-TSVR

ε1, ε2 { 0.1, 0.3, 0.5, 0.7, 0.9 } HN-TSVR

C {10−5, ..., 105} SVR

C1 =C2, C3 =C4 {10−5, 10−3, 10−1, 101, 103, 105} TSVR, HN-TSVR, Asy-ν-TSVR, RLTSVR, Proposed LAsy-ν-TSVR

ν1 = ν2 { 0.1, 0.3, 0.5, 0.7, 0.9 } Asy-ν-TSVR

{ 0.01 } Proposed LAsy-ν-TSVR

p { 0.2, 0.4, 0.45, 0.5, 0.55, 0.6, 0.8 } Asy-ν-TSVR, Proposed LAsy-ν-TSVR

μ {2−5, ..., 25} SVR, TSVR, HN-TSVR, Asy-ν-TSVR, RLTSVR Proposed LAsy-ν-TSVR

Table 2 Functions used for generating artificial datasets

Function name Function definition Domain of definition Noise type

Function 1
f x1; x2; x3; x4; x5ð Þ ¼ 0:79þ 1:27x1x2 þ 1:56x1x4þ
3:42x2x5 þ 2:06x3x4x5 þΩ

xi ∈ [0, 1], i ∈ {1,2,3,4,5} Type A:Ω ∈U(−0.2, 0.2)
Function 2 Type B: Ω ∈N(0, 0.22)
Function 3

f x1; x2ð Þ ¼ 1:9½1:35þ ex1 sin 13 x1−0:6ð Þ2

 �

þe3 x2−0:5ð ÞÞsin 4π x2−0:9ð Þ2

 �

� þΩ
x1, x2 ∈U(0, 1) Type A:Ω ∈U(−0.2, 0.2)

Function 4 Type B: Ω ∈N(0, 0.22)
Function 5 f xð Þ ¼ jx−1j

4 þ jsin π 1þ x−1
4

� �� �j þ 1þΩ x ∈U(−10, 10) Type A:Ω ∈U(−0.2, 0.2)
Function 6 Type B: Ω ∈N(0, 0.22)
Function 7 f xð Þ ¼ sin xð Þ

x such that yi ¼ f xið Þ þ 0:5− jxi j
8π


 �
Ωi xi ∈U(−4π, 4π), i = 1, 2, … , 200 Type A: Ω ∈U (−1, 1)

Function 8 Type B: Ω ∈N(0, 0.52)
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makes the problem strongly convex and yields the existence
of global unique solution. In order to follow the SRM princi-
ple unlike in case of TSVR and Asy-ν-TSVR, the regulariza-

tion terms C3
2 w1k k2 þ b21

 �

and C4
2 w2k k2 þ b22

 �

are also

added in the objective functions of (19) and (20) respectively
that improves the stability in the dual formulations as well as
makes the model well-posed. In the formulations of linear
proposed LAsy-ν-TSVR, the regression functions f 1 xð Þ ¼ wt

1

xþ b1 and f 2 xð Þ ¼ wt
2xþ b2 are obtained by solving the

modified QPPs as

min
C3

2
w1k k2 þ b21


 �
þ 1

2
y− Aw1 þ eb1ð Þk k2 þ 1

m
C1ξ

t
1ξ1

þ C1ν1ε
2
1

subject to

y− Aw1 þ eb1ð Þ≥−eε1−2 1−pð Þξ1 ð31Þ
and

min
C4

2
w2k k2 þ b22


 �
þ 1

2
y− Aw2 þ eb2ð Þk k2 þ 1

m
C2ξ

t
2ξ2

þ C2ν2ε
2
2

subject to

Aw2 þ eb2ð Þ−y≥−eε2−2pξ2 ð32Þ
where C1, C2, C3, C4 > 0, and ν1, ν2 are input parameters;
ξ1 = (ξ11, ...ξ1m)

t, ξ2 = (ξ21, ...ξ2m)
t are the slack variables.

Here, the non-negative constraints of the slack variables are
dropped in (31) and (32). The Lagrangian functions of (31)
and (32) are obtained by using the Lagrangian multipliers α1,
α2 > 0 ∈ Rm as

L1 ¼ C3

2
w1k k2 þ b21


 �
þ 1

2
y− Aw1 þ eb1ð Þk k2

þ 1

m
C1ξ

t
1ξ1

þ C1ν1ε
2
1−α

t
1 y− Aw1 þ eb1ð Þ þ eε1 þ 2 1−pð Þξ1ð Þ ð33Þ

and

L2 ¼ C4

2
w2k k2 þ b22


 �
þ 1

2
y− Aw2 þ eb2ð Þk k2

þ 1

m
C2ξ

t
2ξ2

þ C2ν2ε
2
2−α

t
2 Aw2 þ eb2ð Þ−yþ eε2 þ 2pξ2ð Þ ð34Þ

Further, apply the KKT conditions in (41), we get

∂L1
∂w1

¼ C3w1−At y− Aw1 þ eb1ð Þð Þ þ Atα1 ¼ 0; ð35Þ
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∂L1
∂b1

¼ C3b1−et y− Aw1 þ eb1ð Þð Þ þ etα1 ¼ 0; ð36Þ

∂L1
∂ξ1

¼ C1

m
ξ1−2 1−pð Þα1 ¼ 0; ð37Þ

∂L1
∂ε1

¼ 2C1ν1ε1−etα1 ¼ 0: ð38Þ

By combining the Eqs. (35) and (36), we get

w1

b1

� �
¼ StS þ C3Ið Þ−1St y−α1ð Þ ð39Þ

where S ¼ A e½ � is an augmented matrix.
By using the Eqs. (33), (36), (37) and (38), the dual QPP of

primal problem (33) is given as

min
1

2
αt
1 S StS þ C3Ið Þ−1St þ 4m 1−pð Þ2

C1
þ eet

2C1ν1

 !

α1− S StS þ C3Ið Þ−1Sty−y

 �t

α1

ð40Þ

Similarly, we get the following dual QPP of the primal
problem (34) as

min
1

2
αt
2 S StS þ C4Ið Þ−1St þ 4mp2

C2
þ eet

2C2ν2

� 	

α2− −S StS þ C4Ið Þ−1Styþ y

 �t

α2

ð41Þ

The values ofα1 andα2 are determined by solving the QPPs
(40) and (41). The end regression function f(.) is determined by
taking the mean of f1(x) and f2(x) for any test sample x ∈ Rn:

f 1 xð Þ ¼ wt
1xþ b1 ¼ xt 1

� �
StS þ C3Ið Þ−1St y−α1ð Þ


 �
ð42Þ

and

f 2 xð Þ ¼ wt
2xþ b2

¼ xt 1
� �

StS þ C4Ið Þ−1St yþ α2ð Þ

 �

: ð43Þ

In the formulation of non-linear LAsy-ν-TSVR, the kernel
generated functions f1(x) = K(xt, At)w1 + b1 and f2(x) =K(xt,
At)w2 + b2 are determined by the following QPPs as

min
C3

2
w1k k2 þ b21


 �
þ 1

2
y−


K


A;At

�
w1 þ eb1

���� ���2
þ 1

m
C1ξ

t
1ξ1 þ C1ν1ε

2
1

subject to

y− K A;Atð Þw1 þ eb1ð Þ≥−eε1−2 1−pð Þξ1 ð44Þ
and

min
C4

2
w2k k2 þ b22


 �
þ 1

2
y−


K


A;At

�
w2 þ eb2

���� ���2
þ 1

m
C2ξ

t
2ξ2 þ C2ν2ε

2
2

subject to

K A;Atð Þw2 þ eb2ð Þ−y≥−eε2−2pξ2 ð45Þ
respectively, where C1, C2, C3, C4 > 0; and ν1, ν2 are input
parameters.

Using the Lagrangian multipliers α1, α2 > 0 ∈ Rm, the
Lagrangian functions of (44) and (45) are given by

L1 ¼ C3

2
w1k k2 þ b21


 �
þ 1

2
y−


K


A;At

�
w1 þ eb1

���� ���2 þ 1

m
C1ξ

t
1ξ1 þ C1ν1ε

2
1

−αt
1 y− K A;Atð Þw1 þ eb1ð Þ þ eε1 þ 2 1−pð Þξ1ð Þ

ð46Þ
and

L2 ¼ C4

2
w2k k2 þ b22


 �
þ 1

2
y−


K


A;At

�
w2 þ eb2

���� ���2 þ 1

m
C2ξ

t
2ξ2 þ C2ν2ε

2
2

−αt
2 K A;Atð Þw2 þ eb2ð Þ−yþ eε2 þ 2pξ2ð Þ

ð47Þ

Further, apply the KKT conditions, the dual QPP of primal
problems (46) & (47) are given as

Table 4 Average ranks of SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR and LAsy-v-TSVR on RMSE values for artificial datasets using linear
kernel

Dataset SVR TSVR HN-TSVR Asy-v-TSVR RLTSVR LAsy-v-TSVR

Function 1 5 4 3 6 1.5 1.5

Function 2 6 3 4 5 1.5 1.5

Function 3 6 4 5 1 3 2

Function 4 3 6 4 5 2 1

Function 5 6 4 3 5 2 1

Function 6 6 4.5 4.5 1 2 3

Function 7 5 1 6 2 3.5 3.5

Function 8 6 1 2 5 3 4

Average rank 5.375 3.4375 3.9375 3.75 2.3125 2.1875
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min
1

2
αt
1 T TtT þ C3Ið Þ−1Tt þ 4m 1−pð Þ2

C1
þ eet

2C1ν1

 !

α1− T TtT þ C3Ið Þ−1Tty−y

 �t

α1

ð48Þ

and

min
1

2
αt
2 T TtT þ C4Ið Þ−1Tt þ 4mp2

C2
þ eet

2C2ν2

� 	

α2− −T TtT þ C4Ið Þ−1Ttyþ y

 �t

α2

ð49Þ

where T ¼ K A;Atð Þ e
� �

is an augmented matrix.
After computing the values of α1 and α2 from (48) and

(49), the final estimation function f(.) is determined for non-
linear kernel by taking the mean of the following non-linear
functions f1(x) and f2(x) as

f 1 xð Þ ¼ K xt;Atð Þ 1
� � w1

b1

� �

¼ K xt;Atð Þ 1
� �

TtT þ C3Ið Þ−1Tt y−α1ð Þ

 �

and

f 2 xð Þ ¼ K xt;Atð Þ 1
� � w2

b2

� �

¼ K xt;Atð Þ 1
� �

TtT þ C4Ið Þ−1Tt yþ α2ð Þ

 �

One can rewrite the problems (48) and (49) in the following
form:

min
0≤α1∈Rm

L1 α1ð Þ ¼ 1

2
αt
1D1α1−rt1α1 ð50Þ

and

min
0≤α2∈Rm

L2 α2ð Þ ¼ 1

2
αt
2D2α2−rt2α2 ð51Þ

respectively, where

D1 ¼ T TtT þ C3Ið Þ−1Tt þ 4m 1−pð Þ2
C1

þ eet
2C1ν1


 �
,

D2 ¼ T TtT þ C4Ið Þ−1Tt þ 4mp2

C2
þ eet

2C2ν2


 �
, r 1 = T (T t T +

C3I)
−1Tty − y and r2 = − T(TtT +C4I)

−1Tty + y.
The KKToptimality conditions [49] is applied on the QPPs

(50) and (51) which lead to the following pair of classical
complementary problems as

0≤ D1α1−r1ð Þ⊥α1≥0 ð52Þ
and

0≤ D2α2−r2ð Þ⊥α2≥0; ð53Þ
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respectively. By using the identity 0 ≤ x ⊥ y ≥ 0 if and only if
x = (x − ψy)+ for any vectors x, y and parameter ψ > 0, the
equivalent pair of problems [50] of (52) and (53) are rewritten
in the following fixed point theorems: for any ψ1, ψ2 > 0, the
relations

D1α1−r1ð Þ ¼ D1α1−ψ1α1−r1ð Þþ ð54Þ

and

D2α2−r2ð Þ ¼ D2α2−ψ2α2−r2ð Þþ: ð55Þ

To solve the above problems (50) and (51), one can pro-
pose the following simple iterative approach in the following
form:

αiþ1
1 ¼ D−1

1 D1α
i
1−ψ1α

i
1−r1

� �
þ þ r1


 �
ð56Þ

and

αiþ1
2 ¼ D−1

2 D2α
i
2−ψ2α

i
2−r2

� �
þ þ r2


 �
ð57Þ

i.e.

αiþ1
1 ¼ T TtT þ C3Ið Þ−1Tt þ 4m 1−pð Þ2

C1
þ eet

2C1ν1

 !−1h
T TtT þ C3Ið Þ−1Tt þ 4m 1−pð Þ2

C1
þ eet

2C1ν1

 !
αi
1

−ψ1α
i
1− T TtT þ C3Ið Þ−1Tty−y

 ��

þ þ T TtT þ C3Ið Þ−1Tty−y
�i ð58Þ

and

αiþ1
2 ¼ T TtT þ C4Ið Þ−1Tt þ 4mp2

C2
þ eet

2C2ν2

� 	−1h
T TtT þ C4Ið Þ−1Tt þ 4mp2

C2
þ eet

2C2ν2

� 	
αi
2

−ψ2α
i
2− −T TtT þ C4Ið Þ−1Ttyþ y

 ��

þ þ −T TtT þ C4Ið Þ−1Ttyþ y

 ��i ð59Þ

Remark 1One may notice that we have to compute the inverse

of the matrices T TtT þ C3Ið Þ−1Tt þ 4m 1−pð Þ2
C1

þ eet
2C1ν1


 �
and

T TtT þ C4Ið Þ−1Tt þ 4mp2

C2
þ eet

2C2ν2


 �
in the above iterative

schemes (58) and (59) to find the solution of our proposed
LAsy-ν-TSVR. Unlike the Asy-ν-TSVR and TSVR, these
matrices are positive definite which can be compute at the
very beginning of the algorithm.

Remark 2Unlike the TSVR and Asy-ν-TSVR, there is not any
required additions of extra term δ I to make the matrix positive
definite where δ is very small positive number and I is the
identity matrix. Our proposed LAsy-ν-TSVR always gives
unique global solution since

T TtT þ C3Ið Þ−1Tt þ 4m 1−pð Þ2
C1

þ eet
2C1ν1


 �
and

T TtT þ C4Ið Þ−1Tt þ 4mp2

C2
þ eet

2C2ν2


 �
both are positive defi-

nite matrices.

Table 6 Average ranks of SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR and LAsy-v-TSVR on RMSE values for artificial datasets using Gaussian
kernel

Dataset SVR TSVR HN-TSVR Asy-v-TSVR RLTSVR LAsy-v-TSVR

Function 1 4 3 5 6 2 1

Function 2 6 5 4 3 1 2

Function 3 6 5 4 3 2 1

Function 4 2 5 4 6 3 1

Function 5 6 2 3 4 5 1

Function 6 6 2 1 4 3 5

Function 7 6 1 4 5 2.5 2.5

Function 8 6 3 2 4 5 1

Average rank 5.25 3.25 3.375 4.375 2.9375 1.8125

3616 U. Gupta et al.



Ta
bl
e
7

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

L
A
sy
-v
-T
S
V
R
w
ith

S
V
R
,T

S
V
R
,H

N
-T
S
V
R
,A

sy
-v
-T
S
V
R
,R

LT
S
V
R
us
in
g
lin

ea
r
ke
rn
el
on

re
al
-w

or
ld

da
ta
se
ts

D
at
as
et

(T
ra
in

si
ze
,T

es
ts
iz
e)

S
V
R
(C
,ε
)

T
im

e
T
SV

R
(C

1
=
C
2
,ε
)

T
im

e
H
N
-T
S
V
R

(C
1
=
C
2
,ε

1
,ε

2
)T
im

e
A
sy
-v
-T
SV

R
(C

1
=
C
2
,ν

1
=
ν 2
,p
)T
im

e
R
LT

S
V
R

(C
1
=
C
2
,C

3
=
C
4
,ε
)
T
im

e
L
A
sy
-v
-T
S
V
R

(C
1
=
C
2
,C

3
=
C
4
,ν

1
=
ν 2
,p
)
T
im

e

C
on
cr
et
eC

S
(2
00
X
9,
83
0X

9)
0.
14
40
4
(1
0^
0,
0.
1)

1.
01
33
5

0.
13
82
8
(1
0^
5,
0.
9)

0.
04
29
2

0.
13
95
6
(1
0^
3,
0.
9,
0.
5)

0.
11
97
4

0.
13
83

(1
0^
5,
0.
9,
0.
6)

0.
05
64
9

0.
14
16
5
(1
0^
1,
10
^
0,
0.
01
)

0.
09
61
9

0.
13
39
5
(1
0^
3,
10
^
3,
0.
8,
0.
01
)

0.
13
39
5

B
os
to
n
(2
00
X
14
,3
06
X
14
)

0.
14
02
1
(1
0^
0,
0.
1)

0.
86
14
2

0.
29
24
3
(1
0^
-1
,0
.1
)

0.
02
77
1

0.
32
80
8
(1
0^
0,
0.
9,
0.
1)

0.
06
50
8

0.
31
91
9
(1
0^
1,
0.
9,
0.
8)

0.
03
80
8

0.
14
80
2
(1
0^
-3
,1
0^

-1
,0
.0
1)

0.
04
84
7

0.
14
80
1
(1
0^
1,
10
^
1,
0.
2,
0.
01
)

0.
14
80
1

A
ut
o-
M
PG

(1
00
X
8,
29
2X

8)
0.
17
16
1
(1
0^
0,
0.
1)

0.
23
86
4

0.
20
65
1
(1
0^
-1
,0
.9
)

0.
01
66
4

0.
19
95
8
(1
0^
0,
0.
1,
0.
1)

0.
01
81
2

0.
20
00
4
(1
0^
1,
0.
3,
0.
8)

0.
01
31

0.
18
88
5
(1
0^
0,
10
^
0,
0.
01
)

0.
09
52
5

0.
19
93
5
(1
0^
1,
10
^
1,
0.
8,
0.
01
)

0.
19
93
5

Pa
rk
in
so
ns

(5
00
X
17
,5
37
5X

17
)

0.
28
36
8
(1
0^
2,
0.
1)

6.
06
14
6

0.
27
98
4
(1
0^
-1
,0
.1
)

0.
28
6

0.
28
23
1
(1
0^
0,
0.
1,
0.
7)

0.
63
06
2

0.
27
99
3
(1
0^
1,
0.
9,
0.
8)

0.
29
56
7

0.
26
22
7
(1
0^
1,
10
^
-1
,0
.0
1)

0.
56
41
7

0.
26
01
2
(1
0^
3,
10
^
3,
0.
2,
0.
01
)

0.
26
01
2

W
in
eq
ua
lit
y

(5
00
X
12
,4
39
8X

12
)

0.
13
07
2
(1
0^
2,
0.
1)

6.
11
04
1

0.
12
96
1
(1
0^
0,
0.
1)

0.
28
93
7

0.
13
12
7
(1
0^
0,
0.
9,
0.
3)

0.
55
14
1

0.
13
17
7
(1
0^
2,
0.
3,
0.
4)

0.
26
63
9

0.
13
02
9
(1
0^
0,
10
^
0,
0.
01
)

0.
59
90
4

0.
13
15
7
(1
0^
1,
10
^
1,
0.
2,
0.
01
)

0.
13
15
7

K
in
90
0
(2
50
X
33
,6
50
X
33
)

0.
09
71

(1
0^
-1
,0
.1
)

1.
64
74
9

0.
09
54
1
(1
0^
0,
0.
1)

0.
06
89
6

0.
09
57
5
(1
0^
1,
0.
9,
0.
9)

0.
31
25
4

0.
09
81
8
(1
0^
3,
0.
1,
0.
8)

0.
08
08
9

0.
09
54
4
(1
0^
1,
10
^
0,
0.
01
)

0.
20
99
9

0.
09
49
7
(1
0^
3,
10
^
3,
0.
2,
0.
01
)

0.
09
49
7

D
em

o
(5
00
X
5,
15
48
X
5)

0.
11
18
4
(1
0^
3,
0.
1)

5.
97
63
7

0.
10
22
6
(1
0^
-1
,0
.9
)

0.
35
41
7

0.
10
18
7
(1
0^
0,
0.
9,
0.
1)

0.
42
96

0.
10
20
5
(1
0^
2,
0.
7,
0.
5)

0.
30
17
6

0.
10
14
9
(1
0^
4,
10
^
0,
0.
01
)

0.
54
82
8

0.
10
17
1
(1
0^
-3
,1
0^

-3
,0
.2
,0
.0
1)

0.
10
17
1

M
g 1

7
(5
00
X
6,
99
5X

6)
0.
10
89
3
(1
0^
3,
0.
1)

5.
67
11
1

0.
10
75

(1
0^
-5
,0
.1
)

0.
25
07
4

0.
10
75

(1
0^
-3
,0
.9
,0
.3
)

0.
37
12
8

0.
10
75
1
(1
0^
1,
0.
1,
0.
2)

0.
30
28
6

0.
10
75

(1
0^
-3
,1
0^

-2
,0
.0
1)

0.
31
59

0.
10
75

(1
0^
-1
,1
0^

-1
,0
.8
,0
.0
1)

0.
10
75

G
oo
gl
e
(2
00
X
6,
55
0X

6)
0.
10
31
7
(1
0^
5,
0.
1)

1.
36
58
4

0.
02
91

(1
0^
-2
,0
.5
)

0.
04
09
7

0.
02
96
1
(1
0^
-1
,0
.9
,0
.1
)

0.
04
38
9

0.
02
92
2
(1
0^
1,
0.
7,
0.
5)

0.
03
94
2

0.
02
95
9
(1
0^
-2
,1
0^

-3
,0
.0
1)

0.
09
67
3

0.
02
96

(1
0^
-1
,1
0^

-1
,0
.2
,0
.0
1)

0.
02
96

IB
M

(2
00
X
6,
55
0X

6)
0.
26
53
4
(1
0^
5,
0.
1)

1.
23
59
9

0.
03
05
4
(1
0^
-2
,0
.9
)

0.
10
23
6

0.
03
05
4
(1
0^
-1
,0
.9
,0
.9
)

0.
09
74
3

0.
03
05
2
(1
0^
1,
0.
7,
0.
6)

0.
02
93
1

0.
03
05

(1
0^
3,
10
^
-5
,0
.0
1)

0.
17
26
9

0.
03
05

(1
0^
-5
,1
0^

-5
,0
.8
,0
.0
1)

0.
03
05

In
te
l(
20
0X

6,
55
0X

6)
0.
08
18
7
(1
0^
3,
0.
1)

0.
88
87
3

0.
03
98
8
(1
0^
0,
0.
9)

0.
05
17
9

0.
03
58
7
(1
0^
0,
0.
9,
0.
1)

0.
33
28
9

0.
03
55
5
(1
0^
1,
0.
1,
0.
45
)

0.
06
31
7

0.
03
61
5
(1
0^
-2
,1
0^

-5
,0
.0
1)

0.
14
20
9

0.
03
61
4
(1
0^
-5
,1
0^

-5
,0
.2
,0
.0
1)

0.
03
61
4

M
ic
ro
so
ft
(2
00
X
6,
55
0X

6)
0.
13
22

(1
0^
4,
0.
1)

1.
14
66
2

0.
03
10
8
(1
0^
-1
,0
.1
)

0.
04
56
8

0.
03
11

(1
0^
0,
0.
1,
0.
1)

0.
05
82
7

0.
03
10
8
(1
0^
1,
0.
5,
0.
45
)

0.
05
25
6

0.
03
11
1
(1
0^
4,
10
^
-3
,0
.0
1)

0.
11
00
7

0.
03
11
1
(1
0^
-5
,1
0^

-5
,0
.8
,0
.0
1)

0.
03
11
1

R
ed
H
at
(2
00
X
6,
55
0X

6)
0.
04
04
6
(1
0^
4,
0.
1)

1.
33
73
8

0.
02
36

(1
0^
-1
,0
.1
)

0.
04
36
3

0.
02
36
1
(1
0^
0,
0.
9,
0.
1)

0.
05
58
3

0.
02
37
8
(1
0^
1,
0.
3,
0.
45
)

0.
05
22
8

0.
02
34
4
(1
0^
5,
10
^
-5
,0
.0
1)

0.
00
74
3

0.
02
34
4
(1
0^
-5
,1
0^

-5
,0
.8
,0
.0
1)

0.
02
34
4

Po
llu

tio
n
(3
0X

16
,3
0X

16
)

0.
19
38
5
(1
0^
4,
0.
1)

0.
02
08
6

0.
25
61
2
(1
0^
-5
,0
.9
)

0.
00
60
6

0.
25
61
2
(1
0^
-5
,0
.1
,0
.1
)

0.
01
00
1

0.
25
61

(1
0^
0,
0.
3,
0.
8)

0.
00
87
9

0.
18
52
7
(1
0^
-1
,1
0^

-1
,0
.0
1)

0.
00
65
2

0.
18
37
3
(1
0^
3,
10
^
3,
0.
2,
0.
01
)

0.
18
37
3

G
as

F
ur
na
ce

(1
50
X
7,
14
3X

7)
0.
07
12

(1
0^
3,
0.
1)

0.
54
05
9

0.
02
98
3
(1
0^
-3
,0
.7
)

0.
02
53
5

0.
02
90
4
(1
0^
1,
0.
9,
0.
3)

0.
13
01
9

0.
02
88
1
(1
0^
1,
0.
1,
0.
2)

0.
02
14
1

0.
02
84
5
(1
0^
0,
10
^
-5
,0
.0
1)

0.
01
39
4

0.
02
84

(1
0^
-1
,1
0^

-1
,0
.2
,0
.0
1)

0.
02
84

Fl
ex
ib
le
ro
bo
ta
rm

(5
00
X
10
,5
19
X
10
)

0.
04
23
6
(1
0^
5,
0.
1)

9.
22
44

0.
01
50
9
(1
0^
0,
0.
7)

0.
47
80
2

0.
01
49

(1
0^
1,
0.
1,
0.
9)

0.
44
74
4

0.
01
49
4
(1
0^
2,
0.
3,
0.
4)

0.
29
43
4

0.
01
47
9
(1
0^
0,
10
^
-4
,0
.0
1)

0.
17
96
9

0.
01
47
9
(1
0^
-1
,1
0^

-1
,0
.2
,0
.0
1)

0.
01
47
9

S&
P5

00
(2
00
X
6,
55
0X

6)
0.
23
35
1
(1
0^
-5
,0
.1
)

1.
23
78
9

0.
02
54
7
(1
0^
-2
,0
.1
)

0.
04
37

0.
02
55
2
(1
0^
-1
,0
.1
,0
.5
)

0.
14
38
8

0.
02
54
5
(1
0^
0,
0.
5,
0.
4)

0.
04
68
3

0.
02
56
5
(1
0^
1,
10
^
-4
,0
.0
1)

0.
10
93
4

0.
02
56
7
(1
0^
-3
,1
0^

-3
,0
.8
,0
.0
1)

0.
02
56
7

Sp
ac
e
G
a
(5
00
X
7,
26
07
X
7)

0.
29
91
9
(1
0^
-1
,0
.1
)

8.
79
78
3

0.
25
95

(1
0^
5,
0.
9)

0.
51
54
2

0.
25
95
2
(1
0^
5,
0.
9,
0.
3)

0.
75
19
6

0.
26
52
8
(1
0^
4,
0.
3,
0.
4)

0.
36
86
8

0.
27
44
4
(1
0^
1,
10
^
1,
0.
01
)

0.
44
42
4

0.
28
10
4
(1
0^
3,
10
^
3,
0.
8,
0.
01
)

0.
28
10
4

T
he

be
st
re
su
lt
is
sh
ow

n
as

bo
ld
fa
ce

An improved regularization based Lagrangian asymmetric ν-twin support vector regression using pinball loss... 3617



Remark 3 For any arbitrary vectors α0
1∈R

m and α0
2∈R

m, the
iterate αi

1∈R
m and αi

2∈R
m of iterative schemes (58) and (59)

converge to the unique solutionα*
1∈R

m andα*
2∈R

m respective-
ly and also satisfying the following conditions as

‖D1α
iþ1
1 −D1α

*
1‖≤‖I−α1D−1

1 ‖‖D1α
i
1−D1α

*
1‖

and

‖D2α
iþ1
2 −D2α

*
2‖≤‖I−α2D−1

2 ‖‖D2α
i
2−D2α

*
2‖:

One can follow the proof of convergence of above from
[50].

4 Numerical experiments

To measure the effectiveness of the proposed LAsy-ν-
TSVR, several numerical experiments have been per-
formed on standard benchmark real-world datasets for
SVR, TSVR, HN-TSVR, Asy-ν-TSVR and RLTSVR. To
conduct these numerical experiments, MATLAB software
version2008b is used. In the formulations of SVR, TSVR,
HN-TSVR, Asy-ν-TSVR, the QPPs are solved by using
the external MOSEK optimization toolbox [51]. The num-
ber of interesting datasets are used in these numerical
experiments such as Pollution, Space Ga [52]; Kin900,
Demo [53]; the inverse dynamics of a Flexible robot

arm [54]; S&P500, IBM, RedHat, Google, Intel,
Microsoft [55]; Concrete CS, Boston, Auto-MPG,
Parkinson, Gas furnace, Winequality from ([56]), Mg17
from [57]. In this paper, we consider both linear and
non-linear case where Gaussian kernel function is taken
in case of non-linear as

K xi; x j
� � ¼ exp −μ xi−x j

�� ��2
 �
; for i; j ¼ 1; :::;m

where, kernel parameter μ > 0.
Here, the user input parameter values are described in

Table 1. Finally, root mean square error (RMSE) is calculated
based on optimal values for measuring the prediction accuracy
by using the following formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
yi−~yi

 �2s

;

where, yi are the observed values, ~yi are the predicted values
respectively and N is the number of test data samples.

4.1 Artificial datasets

In this subsection, we have performed numerical experiments
on 8 artificial generated datasets which are mentioned in
Table 2 with their function definitions. In order to check the
applicability of proposed LAsy-ν-TSVR for outliers and
noise, we added two types of noise level in artificial datasets

Table 8 Average ranks of SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR and LAsy-v-TSVR on RMSE values for real-world datasets using linear
kernel

Dataset SVR TSVR HN-TSVR Asy-v-TSVR RLTSVR LAsy-v-TSVR

ConcreteCS 6 2 4 3 5 1

Boston 1 4 6 5 3 2

Auto-MPG 1 6 4 5 2 3

Parkinsons 6 3 5 4 2 1

Winequality 3 1 4 6 2 5

Kin900 5 2 4 6 3 1

Demo 6 5 3 4 1 2

Mg17 6 3 3 5 1 3

Google 6 1 5 2 3 4

IBM 6 4 5 3 1.5 1.5

Intel 6 5 2 1 4 3

Microsoft 6 1 3 2 4.5 4.5

RedHat 6 3 4 5 1.5 1.5

Pollution 3 6 5 4 2 1

Gas Furnace 6 5 4 3 2 1

Flexible robot arm 6 5 3 4 2 1

S&P500 6 2 3 1 4 5

Space Ga 6 1 2 3 4 5

Average rank 5.05556 3.27778 3.83333 3.66667 2.63889 2.52778
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i.e. symmetric noise and asymmetric noise structure. Function
1 to Function 6 are having symmetric noise to generate artifi-
cial datasets in which variability of noise is proceeded from
symmetric distribution and Function 7 and Function 8 are
using the asymmetric noise such as heteroscedastic noise
structure to generate the artificial dataset i.e. the noise is di-
rectly dependent on the value of input samples. Further, we
use uniform probability distributionΩ ∈U (a, b) with interval
(a, b) for uniform noise and normal distribution Ω ∈N (μ, σ2)
where μ and σ2 are the mean and variance respectively for
Gaussian noise. Here, artificial dataset is generated by using
200 training samples with the additive noise and 500 testing
samples without any addition of noise. To test the efficacy of
proposed LAsy-ν-TSVR along with reported algorithms in
this paper, a comparative analysis of their corresponding pre-
diction errors for all artificial datasets are presented in Table 3
using linear kernel and Table 5 using Gaussian kernel. One
can conclude from Tables 3 and 5 that our proposed LAsy-ν-
TSVR performs better or comparable generalization perfor-
mance in comparison to other methods. Further, Tables 4
and 6 are consisted the average ranks of SVR, TSVR, HN-
TSVR, Asy-ν-TSVR, RLTSVR and LAsy-ν-TSVR based on
RMSE values for artificial datasets using linear and Gaussian
kernel respectively. One can notice that proposed LAsy-ν-
TSVR is having lowest rank among SVR, TSVR, HN-
TSVR, Asy-ν-TSVR and RLTSVR in both linear and nonlin-
ear case which shows the usability and effectiveness of pro-
posed LAsy-ν-TSVR.

To check the performance for symmetric noise struc-
ture, the prediction values are plotted for SVR, TSVR,
HN-TSVR, Asy-ν-TSVR, RLTSVR and LAsy-ν-TSVR
using Gaussian kernel of Function 5 in Fig. 1 with uni-
form noise. Similarly, for Function 6 with Gaussian noise,
we depict the prediction plots in Fig. 2 respectively. It is
easily noticeable that our proposed LAsy-ν-TSVR is hav-
ing better agreement with final target values in compari-
son to SVR, TSVR, HN-TSVR, Asy-ν-TSVR and
RLTSVR for symmetric noise structure having both uni-
form and Gaussian noise.

Further, to test the applicability of proposed LAsy-ν-
TSVR on datasets having asymmetric noise structure i.e.
heteroscedastic noise, the prediction plots are drawn in
Fig. 3 for Function 7 using uniform noise. Similarly, for
Function 8, we depict the prediction plots in Fig. 4 having
Gaussian noise. One can observe from these results that
LAsy-ν-TSVR is more effective to handle the asymmetric
noise structure for both uniform and Gaussian noise.

4.2 Real world datasets

In this paper, we have shown comparative analysis of our
proposed LAsy-ν-TSVR with SVR, TSVR, HN-TSVR,
Asy-ν-TSVR, RLTSVR using real world datasets for lin-
ear and non-linear case that are tabulated in Tables 7 and
9 respectively. One can notice that the prediction accuracy
of proposed LAsy-ν-TSVR is better or equal in 8 out of

Table 10 Average ranks of SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR and LAsy-v-TSVR on RMSE values for real-world datasets using
Gaussian kernel

Dataset SVR TSVR HN-TSVR Asy-v-TSVR RLTSVR LAsy-v-TSVR

ConcreteCS 6 4 3 2 5 1

Boston 1 6 4 5 3 2

Auto-MPG 6 5 4 2 3 1

Parkinsons 6 4 5 3 1 2

Winequality 1 3 6 5 4 2

Kin900 6 5 3.5 3.5 2 1

Demo 3 5 6 4 2 1

Mg17 6 5 4 3 2 1

Google 6 4 3 5 2 1

IBM 6 4 3 5 2 1

Intel 6 3 5 4 2 1

Microsoft 6 5 3 4 1.5 1.5

RedHat 4 5 6 3 1 2

Pollution 1 2 5 3 6 4

Gas Furnace 6 4 3 5 1.5 1.5

Flexible robot arm 6 5 4 3 1 2

S&P500 6 3 4 5 2 1

Space Ga 6 3 4 5 1 2

Average rank 4.88889 4.16667 4.19444 3.86111 2.33333 1.55556
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18 standard benchmark real world datasets for linear ker-
nel and 11 out of 18 standard real world datasets for
Gaussian kernel which justified the applicability and us-
ability. In order to show the performance graphically, we
plot prediction values for Auto-MPG, Gas furnace and
Intel datasets in Figs. 5, 7 and 9 respectively. Similarity,
prediction error of Auto-MPG, Gas furnace and Intel are

shown in Figs. 6, 8 and 10 respectively. One can conclude
from these results that the prediction values of our pro-
posed LAsy-ν-TSVR is very close to target values in
comparison to SVR, TSVR, HN-TSVR, Asy-ν-TSVR,
RLTSVR which justify the existence and usability of our
approach. Further, to justify the performance statistically
of our proposed LAsy-ν-TSVR, the average ranks are

Fig. 1 Accuracy plot over the test set by SVR, TSVR, HN-TSVR,Asy-v-TSVR, RLTSVR and LAsy-v-TSVR using Gaussian kernel for Function 5with
uniform noise

Fig. 2 Accuracy plot over the test set by SVR, TSVR, HN-TSVR,Asy-v-TSVR, RLTSVR and LAsy-v-TSVR using Gaussian kernel for Function 6with
Gaussian noise
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depicted based on RMSE values in Tables 8 and 10 for all
reported methods using both linear and nonlinear kernel
respectively. It is clear form Tables 8 and 10 that proposed
LAsy-ν-TSVR is having lowest rank among all in both
cases.

Now, non-parametric Friedman test is conducted with the
corresponding post hoc test [58] on 6 algorithms and 18

datasets in which it is used to detect differences in ranking
of RMSE across multiple algorithms.

This test is mainly used for one-way repeated measures
analysis of variance by ranks of different algorithms. Let
us consider, all methods are equivalent under null hypoth-
esis, the Friedman statistic is determined for linear cases
from Table 8 as follows.

Fig. 4 Accuracy plot over the test set by SVR, TSVR, HN-TSVR,Asy-v-TSVR, RLTSVR and LAsy-v-TSVR using Gaussian kernel for Function 8with
Gaussian noise

Fig. 3 Accuracy plot over the test set by SVR, TSVR, HN-TSVR,Asy-v-TSVR, RLTSVR and LAsy-v-TSVR using Gaussian kernel for Function 7with
uniform noise
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χ2
F ¼ 12� 18

6� 7
5:0555562 þ 3:277782 þ 3:833332 þ 3:666672 þ 2:638892 þ 2:527782
� �

−
6� 72

4

� 	� �
¼ 22:0873

F F ¼ 17� 22:0873

18� 5−22:0873
¼ 5:5289

According to Fisher–Snedecor F distribution, Friedman ex-
pression FF is distributed with degree of freedom (6 − 1, (6 −
1) ∗ (18 − 1)) = (5, 85) degree of freedom. The critical value of
F(5, 85) is 2.321 for α = 0.05. Since FF > 2.321, we reject the
null hypothesis i.e. all algorithms are not equivalent. Now,

Nemenyi post hoc test is conducted for pair wise comparison
of all methods. This test is applied after Friedman test if it
rejects the null hypothesis, for comparison of pair wise per-
formance. For this, we calculate the critical difference (CD)
with qα = 2.589 as

Fig. 5 Prediction over the testing dataset by SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR and LAsy-v-TSVR on the Auto-MPG dataset. Gaussian
kernel was used

Fig. 6 Prediction error over the testing dataset by SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR and LAsy-v-TSVR on the Auto-MPG dataset.
Gaussian kernel was used
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CD ¼ 2:589

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 7

6� 18

r
¼ 1:6145for θ ¼ 0:10:

where, the value of qα is decided on the basis of number
of concerned algorithms and the value of θ from
Demsar,[58].

The difference of average rank between SVR and proposed
LAsy-ν-TSVR (5.055556 − 2.527778 = 2.527778) which is
greater than CD i.e. (1.6145). This result assures that the

prediction performance of proposed algorithm LAsy-ν-
TSVR is better than SVR. Further, the differences of average
rank of proposed LAsy-ν-TSVR with TSVR, HN-TSVR,
Asy-ν-TSVR and RLTSVR are not more than the CD, so there
is not any significant differences among them.

Secondly, to apply Friedman test in non linear case for
standard real world bench mark datasets on the average ranks
of SVR, TSVR, HN-TSVR, Asy-ν-TSVR, RLTSVR and pro-
posed LAsy-ν-TSVR from Table 10 as follows:

Fig. 8 Prediction error over the testing dataset by SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR and LAsy-v-TSVR on the Gas furnace dataset.
Gaussian kernel was used

Fig. 7 Prediction over the testing dataset by SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR and LAsy-v-TSVR on the Gas furnace dataset. Gaussian
kernel was used
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χ2
F ¼ 12� 18

6� 7
4:888892 þ 4:166672 þ 4:194442 þ 3:861112 þ 2:333332 þ 1:555562
� �

−
6� 72

4

� 	� �
¼ 41:8016

F F ¼ 17� 41:8016

18� 5−41:8016
¼ 14:7438

The critical value of F(5, 85) is 2.321 forα = 0.05. Since
FF > 2.321, we reject the null hypothesis. Now, we perform
the Nemenyi test to compare the methods pair-wise. Here,
critical difference (CD) is 1.6145.

i. The differences between the average rank of SVR and
proposed LAsy-ν-TSVR (4.888889 − 1.555556 =

3.333333) is greater than CD ( 1.6145) thus proposed
LAsy-ν-TSVR is better than SVR.

ii. Further, check the dissimilarity between the proposed
LAsy-ν-TSVR with TSVR, the difference between the
average ranks i.e. (4.166667 − 1.555556 = 2.611111) is
larger than( 1.6145), thus the prediction performance of

Fig. 10 Prediction error over the testing dataset by SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR and LAsy-v-TSVR on the Intel dataset. Gaussian
kernel was used

Fig. 9 Prediction over the testing dataset by SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR and LAsy-v-TSVR on the Intel dataset. Gaussian kernel
was used
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proposed LAsy-ν-TSVR is much effective in comparison
to TSVR.

iii. The average rank difference between HN-TSVR and pro-
posed LAsy-ν-TSVR is (4.194444 − 1.555556 =
2.638889) which is greater than ( 1.6145), it implies that
LAsy-ν-TSVR is better than HN-TSVR.

iv. Since the dissimilarity of average rank between Asy-ν-
TSVR and proposed LAsy-ν-TSVR (3.861111 −
1.555556 = 2.305556) is larger than ( 1.6145) which val-
idates the existence and applicability of proposed algo-
rithm LAsy-ν-TSVR in comparison to Asy-ν-TSVR.

5 Conclusions and future work

In this paper, we propose a new approach as improved regu-
larization based Lagrangian asymmetric ν-twin support vector
regression (LAsy-ν-TSVR) using pinball loss function that
follows the gist of statistical learning theory i.e. SRM princi-
ple effectively. The solution of LAsy-ν-TSVR is determined
by solving the linearly convergent iterative approach unlike
solving the QPPs as used in SVR, TSVR, HN-TSVR and
Asy-ν-TSVR. Thus, no external optimization toolbox is re-
quired in our case. Another advantage of proposed LAsy-ν-
TSVR is that proposed LAsy-ν-TSVR is more effective and
usable to handle both symmetric and asymmetric structure
having two types uniform and Gaussian noise in comparison
to SVR, TSVR, HN-TSVR, Asy-ν-TSVR and RLTSVR. In
order to justify numerically, proposed LAsy-ν-TSVR is tested
and validated on various artificial generated datasets having
symmetric and heteroscedastic structure of uniform and
Gaussian noise. One can conclude that proposed LAsy-ν-
TSVR is much more effective to handle the noise in compar-
ison to SVR, TSVR, HN-TSVR, Asy-ν-TSVR and RLTSVR.
On the basis of experimental results for real world datasets, it
can be stated that proposed LAsy-ν-TSVR are far better than
SVR, TSVR, HN-TSVR, Asy-ν-TSVR and RLTSVR in terms
of generalization ability as well as the faster learning ability
clearly illustrate its efficacy and applicability. In future, one
can apply the heuristic approach to select the optimum param-
eters and another, a sparse model can be proposed based on
asymmetric pinball loss function.
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