
https://doi.org/10.1007/s10489-019-01446-z

Closed-loop push recovery for inexpensive humanoid robots

Amirhossein Hosseinmemar1 · Jacky Baltes2 · John Anderson1 ·Meng Cheng Lau1 · Chi Fung Lun1 · ZiangWang1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Active balancing in autonomous humanoid robots is a challenging task due to the complexity of combining a walking
gait with dynamic balancing, vision and high-level behaviors. Humans not only walk successfully over even and uneven
terrain, but can recover from the interaction of external forces such as impacts with obstacles and active pushes. While push
recovery has been demonstrated successfully in, expensive robots, it is more challenging with robots that are inexpensive,
with limited power in actuators and less accurate sensing. This work describes a closed-loop feedback control method that
uses an accelerometer and gyroscope to allow an inexpensive humanoid robot to actively balance while walking and recover
from pushes. Three common balancing strategies: center of pressure, centroidal moment pivot, and step-out, for biped robots
are studied. An experiment is performed to test three hand-tuned closed-loop feedback control configurations; using only
the gyroscope, only the accelerometer, and a combination of both sensors to recover from pushes. Each of the sensors is
discretized into four discrete domains in order to categorize pushes with different strengths. Experimental results show that
the combination of gyroscope and accelerometer outperforms the other methods with 100% recovery from a light push and
70% recovery from a strong push. The proposed closed-loop feedback control is examined in both simulation and real-world.

Keywords Push recovery · Humanoid robot · Autonomous active balancing · Centroidal moment pivot · Stepping

1 Introduction

Robots have been used for decades, but moving from factory
floors to the everyday lives of humans is a challenging task.
Traditional wheeled robots are more stable and balanced
than humanoid robots [1]. Also, they can avoid obstacles
easily and generate a new path [2]. However, humanoid
robots are closer to a human’s body shape, and as a
result they can potentially function better in environments
structured for humans, such as offices and homes. One of
the main difficulties with humanoid robots is balancing:
falls occur easily, even when walking on flat surfaces [3].
A typical humanoid robot has two arms, two legs, a head
and a torso and it locomotes on its two legs. However, there
are semi-humanoid robots, such as Robovie [4] and PR2 [5]

� Amirhossein Hosseinmemar
memar@cs.umanitoba.ca

1 Autonomous Agents Laboratory, Department of Computer
Science, University of Manitoba, Winnipeg, Manitoba
R3T 2N2, Canada

2 Department of Electrical Engineering, National Taiwan
Normal University, Taipei, Taiwan

that have two arms and a head but are not able to walk like
a human, instead using wheels to locomote.

Most adult humans not only walk well on both
flat and uneven surfaces, they also recover successfully
from external forces introduced while walking, such as
low-impact obstacle collisions or small pushes in any
dimension. Push recovery in robotics involves dealing with
these external forces: negotiating and recovering from an
abnormal status to a normal situation when either walking
or standing [6, 7].

The majority of basic walking algorithms are designed
to walk on flat surfaces at a predefined static angle to the
ground and with feet parallel to it, and do not account
for external forces [8]. While a number of push recovery
approaches have been implemented in humanoid robots,
these are generally intended to operate on platforms that
are currently very expensive: in the hundreds of thousands
or even millions of dollars (e.g. Atlas [9]). Such platforms
have very powerful servos, allowing significant force to
be used to correct aberrations, strong power supplies (e.g.
hydraulic), highly precise machining, and very refined,
rich sensors. In our work, we deal with sophisticated
problems in artificial intelligence and robotics using much
less expensive equipment. Working with less expensive
equipment means that all elements of software, from vision
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to control, must be much more robust. For example, push
recovery on an inexpensive robot must be achieved with
lower torque servos, less precise machining, and limited
sensing and computation. Limb and servo damage are also
much more likely with inexpensive robots and must be taken
into account.

This paper describes work on push recovery implemented
on an autonomous humanoid robot meeting adult-size
standards for the FIRA HuroCup robotics competition
[10]: Polaris, a 95 cm tall humanoid based on readily-
available Robotis Dynamixel servos. Polaris uses an inertial
measurement unit (IMU) as an input sensor for balancing,
incorporating both a gyroscope and accelerometer. We
present a closed-loop control method that allows Polaris to
actively balance while walking as well as to recover from
pushes. To evaluate this approach, we isolate the means of
perception to examine the effect on this control method.
We tested this approach using three sensor configurations
for feedback: using only the gyroscope, using only the
accelerometer, and finally using a combination of both
sensors. These mechanisms were all used to recover from
pushes in the form of a suspended 2 kg mass released
from varying distances. This approach has also been
demonstrated successfully in the field, resulting in several
competition awards including a first place award in the
RoboCup 2016 and 2018 humanoid technical challenge for
push recovery. It has also been embedded as a part of our
robotics code in award-winning FIRA HuroCup entries in
2016, 2017 and 2018.

The remainder of this paper is as follows: Section 2
describes background on push recovery and related work.
Section 3 describes the hardware employed and the closed-
loop control method for push recovery. Section 4 describes
the evaluation of this work through experimental testing. We
then discuss the results and directions for future research.

2 Related work

There are two common models that are used for walking
in humanoid robots, either on their own or in combination
with other methods. One of these is the Linear Inverted
Pendulum model [11, 12], used in robots such as [13].
This method is one of the simplest biped locomotion
strategies that used in human kinetic to describe the
change in potential energy and kinematic. The inverted
pendulum motion model provides predictable trajectories
of the Center Of Mass (COM) of the body. The other is
Zero Moment Point (ZMP) [14, 15]. Humanoid robots such
as ASIMO [16], HRP-2 [17], HUBO [18] generate their
trajectory based on the ZMP method, and they are indeed
the leading humanoid robots in walking. ZMP takes both
static and dynamic forces into consideration. There are two

main components for the ZMP walking control method,
1) a walking pattern generator 2) stabilization around it.
Therefore, the walking trajectories cannot be predictable,
unlike the linear inverted pendulum method. This method
is more costly in terms of computational power in compare
to linear inverted Pendulum model. These humanoids walk
very stably, and their walk is reliable on predefined or flat
surfaces. However, this method is not practical when it
comes to collisions or any other type of disturbance and
would lead to a fall in almost all such cases [19]. Balancing
in a humanoid robot involves maintaining the robot’s center
of mass (COM) within the support polygon provided by the
robot’s feet in its current pose. This is illustrated for Polaris
in Fig. 1. Any push or other external force moving the
COM outside this support polygon will cause a fall. Such a
situation may happen for two main reasons. The first is that
of applying direct external forces such as pushing the robot’s
chest, causing the robot to fall. Such a push may come
from any direction. The second reason would be stepping on
uneven terrain, including bumping into obstacles. To solve
the stability issue of the robot, the Center of Pressure (COP)
[20] needs to be in the support polygon region. One of
the practical ways to address this problem is predicting the
footstep from capturing walking motions [21] and using a
gait generator such as capture steps [19]. By adjusting the
footsteps in the x or y plane, or both, the area of the support
polygon can be made large enough to balance the robot.

Push recovery refers to negotiating and recovering from
an abnormal status to a normal situation either in walking
or standing [6, 7]; this would happen when the robot
is subjected to a large disturbance from external forces.
These forces apply to the robot for a short period, and
they destabilise the walking rhythm and cause the robot
to fall over. Generating a smooth and stable walking path
in an uneven terrain that could be an unknown surface
with obstacles is a very complex task: The robot needs to
learn and generate footsteps based on the environment and
external forces.

Over decades many solutions have been introduced to
solve the balancing problem of humanoid robots when
they are subjected to considerable disturbance, external
forces and walking on uneven terrain. Among them the
three common strategies are [6]: 1) Centre of Pressure, 2)
Balancing Centroidal Moment Pivot, and 3) Step-out and
capture step.

Center of Pressure (COP): This approach usually is based on
controlling ankles on both feet, and it is also known as the
Ankle strategy [6]. This method is often used when there
is a small disturbance and by just shifting the centre of
pressure to relocate the COM between the support polygon.
Figure 2a demonstrates COP. In this figure, L is the height,
Fx the applied force to the body in the x direction, Fz is the
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Fig. 1 Polaris (right) and model
showing center of mass (red ball
at ground level) during normal
walking gait. (Color figure
online)

ground force. The arrow next to the xCoM is the adjustment
that is applied to the ankle’s degree for shifting the COM
backward.

Centroidal Moment Pivot: Figure 2b shows this strategy,
also know as the hip strategy [6]. This can be used for small
and medium disturbances, and is thus an improvement over
COP. In this method, the hip servos play a significant role
in recovering from the push. In Fig. 2b, θ is the angle that
the hip servo will change from the position before the force
is applied. The change in the hip servo helps to absorb most
of the external force and balance the COM. Since CMP can
also modify the ankle position in the opposite direction of
the external force, it subsumes COP. For example, Iverach-
Brereton [22] worked on active balancing of a kid-size
humanoid robot for his master’s thesis. His primary research
focus was on balancing a kid size robot on a Bongo-
board. He used three different control algorithms that
derived from the cart-and-pole inverted pendulum problem:
PID control, fuzzy logic and Always-on Artificial Neural
Networks. He used two different approaches for applying
these algorithms. The first approach that he used is Do the
Shake that the robot reacts to any external forces and it
didn’t produce any new trajectories other than the recovery.
The second approach was called Let’s Sway that the robot
created a new path to promote the dynamics stability. The
robot were able to recover its balance by adjusting the ankle
and hip joint to relocate the COM in the frontal plane.
Iverach-Brereton et al. [23] used a very similar approach
to balance a small alpine skiing humanoid robot (DaRWin),
actively on the snow. The approach was based on Do the
Shake that was previously discussed.

Step-out: Is the last practical strategy that can handle
small, medium, and large disturbances in many cases. This

strategy is also known as capture step [6]. This involves
taking another step to relocate the COM within the support
polygon area. Figure 3 illustrates these three balancing
strategies, with the COM shown as a light blue circle, the
COP shown as a red circle, and a brown arrow indicating the
external force. The yellow arrow indicates one dimension of
the support polygon.

The step-out strategy can be divided into 3 main
categories. First is the control interface that is the high-
level layer, and it uses the Omni-walk (omnidirectional) to
send the feet or joints in a particular location on XYZ axis.
V denotes the velocity vector, and it is ∈ R

3 in the three
sagittal, lateral and rotational directions. The frequency is

(a) COP (b) CMP

Fig. 2 Centre of pressure and Centroidal Moment Pivot [6]
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Fig. 3 COP, CMP, and Step-out,
using a model of Polaris (after
[6])

indicated by�∗, and the desired step parameters are denoted
by S∗ and:

S∗ = (S∗
x , S∗

y , S∗
z ) ∈ R

2 × [−π, π ] (1)

S∗
x and S∗

y refer to the sagittal and lateral Cartesian
coordinates of the footstep respectively, and the S∗

z is the
rotation of the feet. The second is the foot placement control.
The inputs of this stage are the desired step parameters �∗
and S∗. However, apart from the desired step parameters the
forward kinematics and COM of the robot play a significant
role in here. The distances in x and y plane calculated, and
a 4D COM created that is:

COMstate = (x, ẋ, y, ẏ) (2)

x and y denote the location of sagittal and lateral COM
areas respectively and ẋ and ẏ denote sagittal and lateral
velocity of the COM. The last is the Motion Generator
and in this stage, the trajectory for the next step will be
generated. The step length S that was given to the second
stage (foot placement control) has the direct impact on the
swing amplitude. Additionally, the walking gait frequency
� that discussed in the second phase decides how fast the
stride will be executed.

There have been various implementations within each
of these three balancing strategies. For example, Toyota’s
running robot (130 cm high, 50 kg) generates a new
trajectory after a push based on the position of its COM
and the support foot, and successfully recovers from pushes
against the chest during hopping and running [24]. MABEL
[25] also demonstrated the ability to stabilise the walk after
a push by generating a new trajectory. However, the former
is a highly expensive robot that would not compare to the

comparatively low-torque servos in Polaris, and the latter is
a planar bipedal robot mounted on a boom of radius 2.25 m,
and so can only walk around in a circle.

Yun et al. [26] introduced a momentum-based stepping
controller that tested an adult-sized humanoid robot in
a simulation called Locomote, a software package based
on Webots. In their solution, the simulator checks the
maximum threshold of the angles as well as the torque for
each joint of the two legs. If one of its joints passed their
threshold, its step trigger function will be called and it will
take a step for fall prevention.

Lee et al. [27] presented another stepping approach
that was specially for non-stationary and non-continuous
grounds, also in a simulation. Their solution was very
costly because of calculating COP, COM, and the linear
and angular momentum of the robot in real time. Since this
approach is non-continuous, it cannot be applied to a normal
walking gait.

Hofmann [28] studied humanoid robot balance control.
He argued that taking a step for recovering from an external
push is the solution for recovering from a large disturbances
by moving the COP. Missura et al. [19] also studied push
recovery for a simulated humanoid robot that uses capture
steps for recovering. In their approach, the simulated robot
calculates a desired ZMP location for every step with
respect to the COM.

Many of these and other related works are examined
only in simulation, or in restricted settings such as walking
in a circle while suspended from a pivoting boom. Those
that are physically implemented tend to require highly
expensive platforms. Our approach is intended to function
for small, medium and strong size pushes on an inexpensive
platform, which can only rely on lower-torque servos, low
computational power, less precise body machining, and less
accurate sensors.
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3 Approach

Our approach consists of a closed-loop control mechanism
implemented on an autonomous humanoid robot. We begin
with an overview of the hardware of Polaris, the humanoid
robot used to evaluate this work, and then describe the
control design and implementation.

3.1 Hardware

Polaris is a 95 cm humanoid robot with 20 degrees of
freedom (DOF), weighing 7.5 kilograms. Polaris makes
use of comparatively inexpensive ($200-$500) Dynamixel
servos from Robotis. All the servos use the TTL serial
communication protocol with three pins that share one line
for sending and receiving data. Each hip can rotate in the
sagittal, frontal, and transversal planes. There are 6 MX-106
servos in each leg (Hip transversal, Hip sagittal, Hip frontal,
Knee sagittal, Ankle frontal, and Ankle sagittal). The two
arms rotate in the sagittal and frontal planes, and each arm
has 3 MX-64 servos (Shoulder sagittal, Shoulder frontal,
and Elbow sagittal). The neck is made up of 2 MX-28 servos
and rotates in the sagittal and transversal planes, moving an
attached webcam. Figure 4 demonstrates these three types
of servo motors.

We employed a USB2Dynamixel [30] board from
Robotis that uses a USB port to control the servo motors
through Polaris’s computer. All Polaris’s servo motors
use TTL (3 pins) network connection to communicate
with the other servo motors or the computer. Figure 5
shows the USB2Dynamixel device and Fig. 6 illustrates its
connection’s diagram.

Sensory information is processed and servo adjustments
driven by a QutePC-3000 mini-PC, with a 1.1Ghz Celeron
dual core processor. Sensors for balance consist of a single-
chip InvenSense MPU-6050 IMU containing a 3-axis (x, y,
z) accelerometer and a 3-axis (x, y, z) gyroscope. The MPU-
6050 is connected to the mini-PC using an Arduino Nano
micro-controller board.

3.2 Closed-loop control: using CMP

A closed-loop control system is a control system that
uses one or more feedback loops. A humanoid robot
using a closed-loop control system can receive feedback
from its sensors (vision, inertia) describing changes to the
environment (targets, pushes, uneven terrain) and correct its
trajectory to adapt to these changes. A closed-loop control
system is more computationally expensive compared to an
open-loop control system due to the enormous amount of
sensory data being processed by the controller. However,
it is a more robust control system because of this sensory
feedback.

Polaris uses a walking engine based on the linear inverted
pendulum model [12, 32], which generates appropriate
robot motions based on a description provided by the
inverse kinematics of the robot, i.e. sets motion vectors for
all servos over time. Our closed-loop control mechanism
sets inputs to the walking engine, allowing it in turn to
adjust the robot’s COM, dynamically altering this as the
environment changes. As stated in Section 3.1, we use
the sensory feedback from the MPU-6050’s gyroscope
and accelerometer as the inputs to measure the control
output. The walking engine will adapt the robot’s trajectory
(control output) as necessary to deal with changes in the
environment, from varying terrain to external forces.

We describe our control approach through three stages
illustrated in Fig. 7, showing a sample push recovery using
this approach. In Stage 1, the robot is pushed by hand at
a point in its walking gait on a concrete floor, and must
recognize that it is in a falling state. Stage 2 represents a
brief window in which the robot can calculate a reaction
to the push by calculating control changes based on the
angular velocity and the linear velocity of the robot’s torso.
Stage 3 illustrates recovery, where these control changes
alter parameters in the robot’s walking engine, and these
in turn adjust servos accordingly to prevent the robot from
falling.

In Stage 1, the closed-loop controller takes as input
values from the gyroscope and/or accelerometer, and from
these must detect a falling state. In practice this can be
computationally expensive because of the range of potential
values. To allow a fast response, we discretize values.
The control methodology categorizes angular velocity in
50degree/s intervals, allowing a definition of constant
values for light, medium and strong pushes. This interval
was chosen based on three, 5-minute robot walk tests to
find the maximum angular velocity that Polaris encounters
while using different walking parameters for each test. We
similarly experimented with linear velocity thresholds by
hitting the robot with a weight approximately a quarter
of its body weight, and defined light, medium, and strong
pushes as linear velocities of 0.9 m/s, 1.2 m/s and 1.4 m/s,
respectively.

Our closed-loop control collects 1000 gyroscope and
accelerometer readings per second from the IMU, and
uses these to continually check if the robot is in a falling
state. Based on the three thresholds for linear and angular
velocities, the robot can very quickly determine whether it
is in a stable state (0 m/s > linear velocity ≤ 0.2 m/s,
with this range necessary to deal with sensor noise), or
when it is in a falling state by exceeding angular velocities
or linear velocity thresholds for light, medium, or strong
pushes.

Figure 8 demonstrates the IMU reading of linear velocity
and its discretization. The maximum value of linear
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Fig. 4 The three different types
of servo motors used in Polaris
[29]

(a) MX-28 (b) MX-64 (c) MX-106

Fig. 5 USB2Dynamixel
connection diagram [31]

Fig. 6 USB2Dynamixel connection diagram [31]

Fig. 7 Push, Reaction, and
Recovery (using CMP)

(a) Stage1 (b) Stage2 (c) Stage3
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Fig. 8 Discretization of IMU
reading for linear acceleration.
The Green region is the sensor
noise area that is ignored. The
Yellow region is a light push.
The Purple region is a medium
push. The Pink region is a strong
push

acceleration was collected every 10 milliseconds over a
duration of five seconds during Polaris’ walking gait.

In the brief window between when a falling state is
recognized and when the fall would be irreversible (Stage
2), the robot must make appropriate response. Knowing
which threshold (light, medium, or strong push) has been
exceeded allows for a quick response look-up. Our control
approach implements CMP active balancing (Section 2),
which incorporates COM if only the ankles are moved, and
similarly discretizes potential responses to support a fast
reaction.

For testing the accuracy of this control system, we
employed a new set of tools: Robot Operating System (ROS)
[33] and Gazebo [34]. ROS is a set of software libraries
and tools that helps to develop a robot software. Gazebo
is a physics enabled, high quality graphics simulation that
is compatible with ROS. We had designed a 3-dimensional
model of Polaris in Gazebo that has the same weight and

height to the real-world. Figure 9 demonstrates this 3d
model in Gazebo simulation during a jumping test.

As it was stated previously, Polaris is able to measure
acceleration and velocity in real-world. To simulate
the outside world in the simulation accordingly, we
implemented the gyroscope and accelerometer in Gazebo
to read the feedback and use it in our closed-loop control
system. For reading the sensory feedback in real-time in
ROS and Gazebo, we used Rviz [35], and adapted our code
to this ROS package.

Action Discretization: Our closed-loop controller produces
nine outputs that are used to alter parameters in the
robot’s walking engine through modifying hip and/or ankle
positions, and are illustrated in Table 1. Step-x is the step
length on the x-axis of the robot frame (forward-backward).
Step-y is the step length on the y-axis of the robot frame
(left-right). Step-height is the foot height from the ground

Fig. 9 Polaris is doing a jumping test in Gazebo for testing the accuracy of our control loop system
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Table 1 Walking engine parameters and value ranges

Walking engine parameters Threshold

Minimum Maximum

Step-x −5 cm back +5 cm front

Step-y −5 cm right +5 cm left

Step-height 1 cm 8 cm

x-offset −5 cm back +5 cm front

y-offset +4 cm +8 cm

z-offset 34 cm 44 cm

Step-pace 125,000 μs 500,000 μs

Hip-pitch −15◦ tilt back +15◦ tilt front
Ankle-pitch −10◦ tilt back +10◦ tilt front

of each step. The x-offset is the offset distance of the feet
from the origin/centre of the robot (centre point of the torso)
on the x-axis. y-offset is the offset distance on the y-axis
from the centre of the torso to each foot. z-offset is related
to the height of the robot, i.e. standing fully vs. at a crouch.
Step-pace is the robot’s speed in terms of the time it takes
to take a single step (not a full walking cycle). The final
two parameters are hip-pitch and ankle-pitch for the lateral
motion at the hip and ankles, respectively.

Each of these walking engine parameters has minimum
and maximum values, also indicated in Fig. 1. Any setting
acts as an offset value for the current robot pose. For
example, if the robot’s torso is leaning too much to the front,
the robot will fall over. To encounter this problem, hip-pitch
can be tuned to adjust the torso’s lateral motion to prevent
the robot from falling.

All nine of these responses have particular values based
on the strength and direction of the push that has been
recognized. Values can be zero, indicating no change. For

example, a light push on the right side results in detecting a
fall to the left, and modifies the step-y value by 2 cm and the
step-pace value by 0.5 per second, leaving all other values
unchanged. These values and their mapping to discretized
angular and linear velocities (fall states) have been tuned
over several years of robotics competitions as well as testing
the robot specifically under push recovery conditions. These
have proven themselves in the field to be a very fast method
of adapting control to changing conditions (e.g. carpet vs.
solid surfaces) in addition to push recovery.

Once the appropriate response has been mapped, the
parameters to the walking engine are changed (Stage 3),
and servos are collectively altered in the time window that
remains to correct for the disturbance. Central to all of this
is making Stage 2 as short as possible, leaving time for the
servos to be adjusted to recover from the fall.

Domain Discretization: Based on the strength and direction
of the push, we have discretized the states of the robot
into 14 states that can be mapped with a look-up table.
Figure 10 shows all the 14 states. For every direction {front,
right, left and back} there are four distinct discrete states
plus two common discrete states. These states are: 1) Stable
state: the robot is stable in this state, and this is one of
the common discrete states 2) Light push state: ω, which
represents angular velocity, is ≤ θl , where θl denotes the
maximum ω that a 2 kg object suspended from a 1 meter
rope causes after being released from a 30 cm distance.
3) Medium push state: ω is ≤ θm, where θm denotes the
maximum ω that a 2 kg object causes after being released
from a 40 cm distance. 4) Strong push state: ω, is ≤ θs ,
where θs denotes the maximum ω that a 2 kg object causes
after being released from a 50 cm distance. 5) Fall state: the
robot could not recover successfully and fell. This state is
the other common discrete state.

Fig. 10 Discretization of the
robot states
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Fig. 11 Push, Reaction, and
Recovery (using step-out
strategy, sequence starts from
left)

3.3 Closed-loop control: using step-out

Even though Polaris was able to recover from many differ-
ent light and medium pushes from different directions and
on different surfaces (e.g. concrete and carpet), Polaris was
not able to recover from a strong push (Fig. 10). To give
the robot the ability to recover from even stronger external
forces, we implemented a step-out strategy to the robot’s
push recovery module. By taking extra steps, the robot can
handle the external pushes more easily and less pressure
will be applied to the servo motors. Therefore, the walking
engine was modified to take an individual step (half of a
cycle) for faster reactions to the external disturbances. This
means the robot can take only one step that could be a right or
left step, not a stride. We implemented the step-out in such
a way that every step has its own walking engine parameters
as it is shown in Table 1. Based on the different walking
situations, these parameters can be altered. Our step-out
approach is an extension of the CMP model [3] that was
discussed in Section 3.2. Similar to our CMP model, that
has three stages (Stage1, Stage2, and Stage3) Fig. 7, our

step-out closed-loop control model also follow the exact
structure.

Figure 11 demonstrates a successful push recovery by
taking extra steps. The 2 kg weight was released from a
50 centimeter distance, causing a push when hitting the
robot. For this experiment, to examine the robustness of our
closed-loop control, we test the robot on a different floor.
Artificial turf is one of the most difficult surfaces for the
robot in terms of recovery. The turf’s surface is very soft
and usually its height is between 2-3 cm, based on our
competition experiences. Walking on such a surface alone,
makes the robot unstable. Moreover, applying pushes from
different directions to the robot with an external object,
easily causes a fall. In Fig. 11, during Stage 1 (Push), Polaris
reads the value of falling state from its sensory feedback
value from gyroscope and accelerometer. Then in Stage 2
(Reaction), Polaris maps the sensory feedback values to
the discretized table, and it measures the strength of the
force. Finally, in Stage 3 (Recovery), Polaris updates its
walking engine parameters to counter the applied push and
it recovers successfully.
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Fig. 12 Humanoid robot with
double support contact. The
green circles show masses for
each individual link. The red
gradient cylinder represents a 2
kg mass that is swinging toward
the robot, which will create a
disturbance upon impact

4 Evaluation

To evaluate our approach quantitatively, we set up an
experiment to control the push force applied to the robot,
based on the 2015 RoboCup push recovery technical
challenge [36]. This is illustrated abstractly in Fig. 12,
showing the robot in the double support phase of a walking
gait (i.e., both feet on the ground). The red cylinder
represents a 2 kg mass (more than a quarter of Polaris’
body weight) that is connected to a 1 meter rope . The
container is pulled back to a given distance and released
naturally, resulting in the mass hitting the robot at torso

height, introducing an external force that can be varied
depending on the distance at which the mass is released.

For this experiment, the robot was positioned on artificial
turf for all trials, with a piece of foam mounted on the
robot to protect the electronics from impact. The experiment
tested the closed-loop control method using 90 trials divided
into three subsets: 30 trials using only the gyroscope as
input to the control mechanism, 30 trials using only the
accelerometer, and 30 trials using both of these sensors.
In each of these divisions, the 2 kg mass was released
from a 30 cm distance from the robot (light push) in 10
trials, from a 40 cm distance (medium push) in 10 trials,

Fig. 13 Polaris recovering from
a push on artificial turf

(a) stage 1 (b) stage 2 (c) stage 3
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Table 2 Results of trials for
gyroscope-only (Gyro),
accelerometer-only (Acc) and
both of these sensors together
(Gyro+Acc)

MPU-6050 sensors Gyro Acc Gyro+Acc

Distance, cm 30 40 50 30 40 50 30 40 50

Trials

1 1 0 0 1 0 1 1 0

1 1 0 1 0 1 1 1 1

0 1 0 1 0 0 1 0 1

1 0 0 1 0 0 1 1 1

1 1 0 0 0 0 1 1 1

1 0 0 1 0 0 1 1 1

1 1 0 1 1 0 1 1 0

1 1 0 1 1 0 1 1 1

1 1 0 1 1 0 1 1 0

1 0 0 0 0 0 1 1 1

Successful attempts 9 7 0 7 4 1 10 9 7

and from a 50 cm distance (strong push) in 10 trials.
Figure 13 illustrates Polaris during the course of one of these
trials.

4.1 Results

The results of all trials are shown in Table 2. Each case in
which the robot successfully recovered from the impact is
labeled with a 1, and each case in which the robot did not
successfully recover is labeled with a 0.

These results are summarized in Fig. 14. Our closed-
loop (with threshold) control mechanism is able to recover
from majority of pushes (>70%) at the low impact level
(30 cm swing) irrespective of the sensor type employed. At
the medium impact level (40 cm swing), there is a more
distinct difference between use of a gyroscope vs. use of
an accelerometer, only 40% of the impacts are recoverable
compared to the gyroscope. At the strong impact level (50

cm swing), the gyroscope is of no help, but a small number
of pushes can be recovered using the accelerometer. The
strongest success by far is using both sensors together,
resulting in the strongest push recovery at all impact levels
(30 cm = 100%, 40 cm = 90%, 50 cm = 70%). As pushes
become stronger, there is a shorter window for the robot to
respond and greater servo alterations to be made. Ultimately,
neither sensor on its own can recognize a fall early enough
to allow a response to a strong push, while fusing both
sensors allows this in most cases.

5 Discussion and future work

Despite the great results that we obtained from our
experiment as well as different international robotics
competitions, there are some limitations with our proposed
method.

Fig. 14 Summary of successful
recovery by distance of mass
and type of sensor
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The robot’s walking engine configures (Table 1) are set
based on the human operator’s experiences. If a very small
factor in the robot’s environment changes, it is very difficult
to find a set of appropriate walking engine parameters
for making the robot actively balanced. One of interesting
future work to overcome this limit is to employ machine
learning techniques. Reinforcement learning (RL) and Deep
Reinforcement learning (DRL) are two possible approaches
to achieve this goal.

Whenever the surface that the robot is standing on
changes (for example, changing the concrete floor to
artificial turf), the robot should have a prior knowledge
about it. This way it uses the predefined configuration for
that specific surface. As a future work, the robot can learn
(using machine learning) different walking trajectories on
different surfaces. This learning process should be done
in a simulation environment (to avoid damaging the servo
motors). After the process of learning is finished, the
robot can choose actions on different surfaces based on its
previous experiences, unlike, knowing it in advance by the
human operator.

We are currently working on a step-out method of push
recovery, using reinforcement learning and deep reinforce-
ment learning to automatically generate sensor and reaction
discretizations like those used in this work. This will allow
the robot to recover from even stronger pushes while min-
imizing the set of servo motions, to both react quickly
and limit wear on servos. We will be using the results
described here as a baseline comparison for that work.

6 Conclusion

In this paper, we have described the design, implementation,
and evaluation of a closed-loop control approach for push
recovery on an inexpensive 20-DOF humanoid robot. In
addition to the results shown here, this work has also
been demonstrated in the field with strong success. This
mechanism for push recovery was our basis for entering
the RoboCup Humanoid league technical challenge for
push recovery (this event varies by year and normally has
more than one challenge with scores totalled). We won
this challenge in 2016 and 2018, came second in 2015,
and the highest results in the push recovery component in
2017 [37]. The described control loop system also won
a best paper award out of 146 accepted publications at
the IEA-AIE 2018 conference. Recovery from unexpected
impacts is an important part of many physical activities,
and this approach also forms a core within our entries to
other robotic sporting events such as the 2016 and 2017
FIRA HuroCup. These field evaluations are very important,
since each of these events requires robots to work in a
range of tasks under novel locations with very limited time

for developers to recover from anything unexpected. Such
conditions can be expected to be much more challenging
than laboratory environments [38]. These events must also
go hand in hand with quantitative evaluations however, since
while challenging, it is difficult to isolate the performance
of one feature in a competitive setting (e.g. howmuch a push
recovery methodology on its own affects playing soccer).
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