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Abstract
This paper focuses on the design of a recurrent Takagi-Sugeno-Kang interval type-2 fuzzy neural network RTSKIT2FNN
for mobile robot trajectory tracking problem. The RTSKIT2FNN is incorporating the recurrent frame of internal-feedback
loops into interval type-2 fuzzy neural network which uses simple interval type-2 fuzzy sets in the antecedent part and
the Takagi-Sugeno-Kang (TSK) type in the consequent part of the fuzzy rule. The antecedent part forms a local internal
feedback loop by feeding the membership function of each node in the fuzzification layer to itself. Initially, the rule base
in the RTSKIT2FNN is empty, after that, all rules are generated by online structure learning, and all the parameters of the
RTSKIT2FNN are updated online using gradient descent algorithm with varied learning rates VLR. Through experimental
results, we demonstrate the effectiveness of the proposed RTSKIT2FNN for mobile robot control.

Keywords Mobile robot · Trajectory tracking · Structure and parameter learning · Varied learning rates VLR ·
Recurrent type-2 fuzzy neural network · RTSKIT2FNN

1 Introduction

In recent years, mobile robots are extensively used in
industry and for tasks in dangerous and harsh environments,
such as space exploration, military, rescue in the event
of natural disasters, and nuclear areas, etc. the ability
to track a planned path and perform tasks in these
environments autonomously is still among the main
challenges facing researchers in the intelligent mobile
robot’s field. Significant recent studies have been focused
on trajectory tracking control. Most of the proposed control
strategies are using the kinematic model which produces a
reference velocity based on position errors [1–5].

Recently, many studies have been done on the artifi-
cial intelligence application in mobile robot control such
as fuzzy logic (FLC) and neural network (NN). The Fuzzy
control (FLC) uses linguistic information based on human
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expertise, as a result, the FLC has several advantages such
as stability, robustness, no models are required (free model),
using expert knowledge and the IF-THEN rules algorithm
[6, 7]. Thus, the FLC has attracted more attention in mobile
robot control research. In [8], Castillo et al. designed a
dynamic fuzzy logic controller for mobile robot trajectory
tracking with membership functions optimization using Ant
Colony algorithm. In [9], Huq et al. proposed a behaviour-
modulation technique which combined the state-based for-
malism of discrete event system (DES) with the determin-
istic fuzzy decision making. In [10], Hou et al. proposed
adaptive control via fuzzy approach and backstepping for
mobile robot control. In [11], Bencherif and Chouireb pre-
sented a sensors data fusion based on the fuzzy logic tech-
nique for navigation of wheeled mobile robot in an unknown
environment. In [7], Hagras. presented a control archi-
tecture using type-2 FLC for mobile robot navigation in
dynamical unknown environments.

Previous studies achieved the main control objectives and
thus have a huge impact on mobile robot control. But on
the other hand, the fuzzy logic needs a human expertise
knowledge information (there is no learning ability) and
Fuzzy rule derivation is often difficult [12]. Recently,
much research is interested in the development and
applications neural network (NN) for control and system
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identification. In [13], Bencherif and Chouireb proposed
a new training method for a neural network which is
based on a combination between Levenberg-Marquardt
optimisation method and iterated Kalman Filter for mobile
robot trajectory tracking control. In [14], Yacine et al.
presented the design of a kinematic controller for wheeled
mobile robot trajectory tracking based on an adaptive
neural network (ADALINE). In [15], Li et al. proposed
an incorporating Neural-Dynamic optimisation based on
predictive model control approach for mobile robot tracking
control. In [16], Shojaei et al. presented mobile robots
formation trajectory tracking control of type (m, s) by using
neural adaptive feedback.

More recently, there has been much research that dis-
cusses incorporating the behaviours of fuzzy logic (FLSs)
and neural networks (NNs). The fuzzy neural networks
(FNNs) get their learning ability from NNs, and their infer-
ence technology from fuzzy systems, FNNs are an effective
tool for mobile robot control. FNNs include, the adaptive
network based fuzzy inference system (ANFIS) [17, 18]
with a fixed structure and all parameters are tuned with a
backpropagation or a hybrid learning algorithms and use for
the consequent part the Takagi-Sugeno-Kang (TSK) type.
The self-constructing neural fuzzy inference network (SON-
FIN) [19] uses the Mamdani type for the consequent part.
The recurrent FNN (RFNN) [20, 21] takes the form of self-
feedback connections used as internal memories and are
done by returning the output of each membership function
(MF) back as an input.

Moreover, all of the aforementioned FNNs and RFNN
are based on type-1 fuzzy sets. In recent years, type-2 fuzzy
logic systems (FLSs) have drawn much attention in many
studies, the type-2 fuzzy logic introduced by Zedah in [22].
The use of type-2 fuzzy sets in nonlinear dynamic systems
that are exposed to a variety of internal and external per-
turbations shows that type-2 methods have more potential
than type-1 methods. However, the theory of type-2 FLS
is more complicated than type-1 FLS theory. The interval
type-2 fuzzy sets have been proposed in [23] to remove
complexity and improve the type-2 fuzzy sets theory. The
interval type-2 FNN has attracted a great attention in [12,
24–33], and proposed a learning process for an interval
type-2 FNN system with uncertain means Gaussian mem-
bership functions. In [24], Abiyev and Kaynak described
the design of IT2FNN using gradient descent learning
algorithm for identification and control of time varying
systems. In [25, 26], the authors proposed a self-learning
IT2FNN with a fixed structure using sliding mode (SM)
theory for parameters learning . In [27], Lin et al. used
IT2FNN with adaptive control law for motion control.
Castro et al. [28] proposed a hybrid learning algorithm for
IT2FNN. In [12, 29], the authors proposed a self-evolving
interval type-2 FNN (SEIT2FNN)uses interval type-2 fuzzy

sets with type-2 Gaussian MFs uncertain means in the
antecedent parts and Takagi-Sugeno-Kang (TSK) fuzzy
sets in the consequent parts. Also, it uses the structure
learning process to self-structure evolving for the IT2FNN
and parameter learning to tuned the antecedent parameters
using gradient descent algorithm. The consequent param-
eters are learned by using a rule-ordered Kalman filter. In
[30], Juang et al. proposed a RSEIT2FNN for Dynamic
nonlinear Systems, the antecedent part of RSEIT2FNN
forms a local internal feedback connections loop by feed-
ing the firing strength of each rule back to itself. In
[31], Lin et al. applied a functional-link network (FLN)
to the self-evolving IT2FNN for identification and control
time-varying plants. In [32], Lin et al. designed a self-
organisation T2FNN using gradient descent for parameters
learning and the particle swarm optimization (PSO) method
to find the optimal learning rates, applied for antilock
braking systems. In [33], Lin, Y et al. proposed a simplified
interval type-2 fuzzy neural networks with design factors qr

and ql are learned to set the upper and lower values to avoid
using K-M iterative method to find L and R points.

The motivation of this paper is to construct a self evolv-
ing recurrent TSK interval type 2 FNN for mobile robot
trajectory tracking. A self evolving algorithm gives the abil-
ity to achieve the suitable structure of RTSKIT2FNN during
the online learning, and the varied learning rates algorithm
VLR is used to find the optimal learning rates of the gra-
dient descent algorithm and to guarantee a good stability
convergence of the control system which is proved using the
discrete Lyapunov function. The major contributions of the
proposed control are summarized as:

(1) Successful apply a recurrent frame into interval type-
2 FNN structure by using internal-feedback loops in
the antecedent part are formed by feeding the interval
output of each membership function back to itself.

(2) A type-reduction process in the RTSKIT2FNN is
performed by fixing the design factors ql and qr to
reduce the computational time.

(3) The online structure and parameters learning algo-
rithms are used to ameliorate the learning perfor-
mances of the RTSKIT2FNN-VLR. Initially, the rule
base in the RTSKIT2FNN is empty, and all rules are
generated online by the structure learning algorithm.
Concurrently to structure learning all the consequent
and the antecedent parameters of the RTSKIT2FNN
are learned by gradient descent algorithm.

(4) The design of the varied learning rates algorithm VLR
to adjust the learning rates of the gradient descent
algorithm to guarantee the robustness and the stability
convergence of the system.

(5) In addition, experimental results were conducted
to verify the proposed control RTSKIT2FNN-VLR

3882



A recurrent TSK interval type-2 fuzzy neural networks control with online structure and parameter learning...

performances by a comprehensive comparison with
type-1 FNN and RFNN and other type 2 IFNN’s.

The rest of this paper is organized as follows.
Section 2 introduces the Kinematics model of the mobile
robot. Section 3 presents the RTSKIT2FNN structure. In
Section 4, the online structure and parameter learning for
RTSKIT2FNN are described in detail. Section 5 presents the
experimental results, and Section 6 contains the conclusion.

2 Kinematics model

The unicycle mobile robot kinematics model is the basis
of many types of nonholonomic Wheeled Mobile Robots
WMRs. For this reason, it has attracted much theoretical
attention of researchers.

Unicycle WMRs have usually two driving wheels, one
mounted on each side of their center, and a free rolling
wheel for carrying the mechanical structure. These two
wheels have the same radius r and separated by 2R and
are driven by two electrical actuators for the motion and
orientation, and the free rolling wheel is a self-adjusted sup-
porting wheel. It is assumed that this mobile robot is made
up of a rigid frame and non-deformable wheels, and they
are moving in a horizontal 2D plane with the global coor-
dinate frame (O, X, Y). The configuration is represented by
vector coordinates: q = [x, y, θ ], that is, the position coor-
dinates of the point q the centre of the WMR in the fixed
coordinate frame OXY, and its orientation angle as shown
in Fig. 1. The linear velocity of the wheels represented by v
and the angular velocity of the mobile robot is w. The kine-
matics model (or equation of motion) of the mobile robot is
then given by:
⎛
⎝

ẋ

ẏ

θ̇

⎞
⎠ =

⎛
⎝

v cos(θ)

v sin(θ)

w

⎞
⎠ (1)

Fig. 1 Model description of a unicycle robot

To consider a trajectory tracking problem, a reference
trajectory should be generated. The reference trajectory is:
⎛
⎝

ẋr

ẏr

θ̇r

⎞
⎠ =

⎛
⎝

vr cos(θr)

vr sin(θr)

wr

⎞
⎠ (2)

The error coordinates represented by the world coordinates
are:

qr − q =
⎛
⎝

xr − x

yr − y

θr − θ

⎞
⎠ (3)

In the view of moving coordinates, the error coordinates are
transformed into:
⎛
⎝

xe

ye

θe

⎞
⎠ =

⎛
⎝

cos (θ) sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

⎞
⎠

⎛
⎝

xr − x

yr − y

θr − θ

⎞
⎠ (4)

3 Recurrent TSK interval type-2 fuzzy neural
networks description

This section introduces the structure of a RTSKIT2FNN.
This multi-input single-output (MISO) system consists of
n inputs and one output. Figure 2 shows the proposed six-
layered network which realizes an interval type-2 fuzzy
neural network using Takagi-Sugeno-Kang (TSK) type for
the consequent part. The basic functions of each layer are
described as follows.

Layer 1 (Input layer): Each node in this layer represents
an input variable xj , j = 1, ..., n and there are no weights
to be modified in this layer.

Layer 2 (Fuzzification Layer or membership function
layer): each node in the membership layer performs a
recurrent interval type-2 MF to execute the fuzzification
operation.

The input of the membership layer can be represented by:

ri
j (t) = xj (t) + μ

A
i
j

(t − 1)αi
j (5)

Where t denotes the number of iterations, α
j
i represents the

weight of the self-feedback loop,μ
A

i
j

(t − 1) represents the

output signal of layer 2 in the time (t-1) and is defined with
Gaussian membership functions as

neti(r
i
j ) = −1

2

(
ri
j − mi

j

σ i
j

)2

(6)

μ
A

i
j

= exp(neti(r
i
j ))

≡ N(mi
j , σ

i
j , r

i
j ), m

i
j ∈

[
mi

j1, m
i
j2

]
(7)
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Fig. 2 Structure of the RTSKIT2FNN

Each MF of the premise part can be represented as a
bounded interval in terms of upper MF, μi

j , and a lower

MF,μi
j

, where

μi
j (r

i
j ) =

⎧⎪⎨
⎪⎩

N(mi
j1, σ

i
j , r

i
j ), r

i
j < mi

j1

1, mi
j1 ≤ ri

i ≤ mi
j2

N(mi
j2, σ

i
j , r

i
j ), r

i
j > mi

j2

(8)

And

μi

j
(ri

j ) =
⎧⎨
⎩

N(mi
j1, σ

i
j , r

i
j ), r

i
i ≤ mi

j1+mi
j2

2

N(mi
j2, σ

i
j , r

i
j ), r

i
j >

mi
j1+mi

j2
2

(9)

And thus, the output of this layer can be represented as an
interval [μi

j , μ
i
j
] as shown in Fig. 3 .

Layer 3 (Firing Layer): In this layer, there are M nodes
each node represents one fuzzy rule, and it computes the
firing strength using the values that it receives from layer
2 and an algebraic product operator adopted in fuzzy
meet operations, to generate the spatial firing strength F i ,
and is computed as follows

f i =
n∏

j=1

μi

j
, f

i =
n∏

j=1

μi
j and F i = [f i; f

i] (10)

Layer 4 (Consequent Layer): In this layer, each node
represents a TSK-type consequent node, for each rule
node in layer 3 there is a corresponding consequent node
in layer 4. The output is an interval type-1 set and can be
represented as [wi

l , w
i
r ] where l and r indices represent

the left and right limits respectively, the node output can
be expressed as

[wi
l , w

i
r ] = [ci

0−si
0, c

i
0+si

0]+
n∑

j=1

[ci
j −si

j , c
i
j +si

j ]xj (11)

that is

wi
l =

n∑
j=0

ci
j xj −

n∑
j=0

∣∣xj

∣∣ si
j (12)

and

wi
r =

n∑
j=0

ci
j xj +

n∑
j=0

∣∣xj

∣∣ si
j (13)

where x0 ≡ 1.

Layer 5 (Output Processing Layer): Each node in this
layer computes an interval output [yl, yr ] by using the
output from layer 4 and the firing strength Fi from
layer 3, and the design factors [ql, qr ] proposed in [33]
to adjust the upper and lower values without using the
Karnik-Mendel iterative method. In this paper, ql and qr

are non-adjustable values and set to 0.5. The outputs of
this layer can be computed by

yl = (1 − ql)
∑M

i=1 f iwi
l + ql

∑M
i=1 f

i
wi

l∑M
i=1 f i + f

i
(14)

Fig. 3 Interval type-2 fuzzy set of Gaussian shape
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And

yr = (1 − qr)
∑M

i=1 f
i
wi

r + qr

∑M
i=1 f iwi

r∑M
i=1 f i + f

i
(15)

Layer 6 (output layer): The node in this layer computes
the output variable of the RTSKIT2FNN using a sum
operation of the output interval of layer 5 yl and yr . In
this paper the output of this layer is given by

y = yl + yr

2
(16)

4 Online learning algorithm

This section presents the two-phase learning scheme
algorithm for RTSKIT2FNN. The objective of the first
phase is structure learning that discusses how to construct
the RTSKIT2FNN rules. The learning starts with empty
rule-base in the RTSKIT2FNN and all fuzzy rules are
evolved by an online structure learning scheme. The second
phase is the parameter learning phase that uses a gradient
descent algorithm with varied learning rates for online
parameters learning.

4.1 Structure learning

The structure learning used the rule firing strength variation
as a criterion for rule generation, this idea was used for
type-1 fuzzy rule generation in [19], and developed to type-
2 fuzzy rule generation [12, 33] by using the interval firing
strength F i in (10), the structure learning of the proposed
RTSKIT2FNN is introduced as follows.

For the first incoming data point −→
x is used to generate

the first fuzzy rule with mean, width, centre and the weight
of the self-feedback loop of recurrent interval type 2 fuzzy
set as

[m1
j1, m

1
j2] = [xj − �x, xj + �x],
σ 1

j = σf ixed and α1
j = αf ixed (17)

where σf ixed is a predefined threshold, �x indicates the
width of the uncertain mean region. If �x is too small, then
the type-2 fuzzy set approximates a type-1 fuzzy set and if
�x is too large, then a type-2 fuzzy set will cover most of
the input domain. In this paper �x and σf ixed are set to 0.1
and 0.3 respectively and αf ixed is set to 0.1.

For each subsequent of incoming data −→
x , we compute

the firing strengths interval in (10) then we compute the
mean or centre value of firing strength for each rule i
denoted as

f i
c = f̄ i + f i

2
(18)

f i
c the spatial firing strength centre is a rule generation

criterion to generate a new rule based on a predetermined
threshold fth . For each new incoming data,

I = arg max
1≤i≤M(t)

f i
c (19)

With M(t) is the number of generated rules at time t. If f I
c ≤

fth , then new fuzzy rules will be generated M(t+1)=M(t)+1;
this condition means that the data point does not match well
from any existing rules, so the new fuzzy rule evolved. The
uncertain means, width and centre of type 2 fuzzy set related
to the new fuzzy rule are defined in the same manner as the
first rule

[mM(t)+1
j1 , m

M(t)+1
j2 ] = [xj −�x, xj +�x] , α

M(t)+1
j = 0.1

(20)

and

σ
M(t)+1
j = β

∣∣∣∣∣xj − mI
j1 + mI

j2

2

∣∣∣∣∣ (21)

where β > 0 determines the overlap degree between
fuzzy sets. Equation (21) denotes that the width is equal to
Euclidean distance between the average centres of the new
fuzzy set and fuzzy set I. The high overlapping between
fuzzy sets is obtained when β is too large, and there is no
overlapping if β is too small. In this paper is set to 0.5; this
indicates that the width is equal to the half distance between
fuzzy sets

The initial consequent parameters c1
j with j = 1, .., n

in the first rule are set to very small values 0.05, and s1
j

are defined as the initial output interval range are set to
very small values 0.002. For the new generated rules the
consequent parameters are assigned to the same values as
the first rules

c1
j = c

M(t+1)
j = 0.05 j = 1, . . . n (22)

s1
j = s

M(t+1)
j = 0.002 (23)

The structure learning and fuzzy rules generation algorithm
as follows:
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Parameters of each evolved rules are modified by the
parameter-learning algorithm introduced in the next section.

4.2 Parameter learning

Parameter learning is performed concurrently with the struc-
ture learning process. Parameter Learning tunes all param-
eters for each fuzzy rule, including the current fuzzy rule
and that was newly generated. To describe the parameter
learning, we define the objective function as

E = 1

2
(yd (t + 1) − y (t + 1))2 (24)

where yd(t + 1) is the desired output and y(t + 1) is the
output of RTSKIT2FNN. The updated parameters based
on gradient descent algorithm are given by the following
equations:

mi
j1 (t + 1) = mi

j1 (t) − ηm1

∂E

∂mi
j1

(25)

mi
j2 (t + 1) = mi

j2 (t) − ηm2

∂E

∂mi
j2

(26)

σ i
j (t + 1) = σ i

j (t) − ησ

∂E

∂σ i
j

(27)

αi
j (t + 1) = αi

j (t) − ηα

∂E

∂αi
j

(28)

ci
j (t + 1) = ci

j (t) − ηc

∂E

∂ci
j

(29)

si
j (t + 1) = si

j (t) − ηs

∂E

∂si
j

(30)

where ηm1, ηm2, ησ , ηα, ηc, ηs are the learning rates ,j =
1, ., n and i = 1, , M , n and M are the number of inputs
and rules respectively . The derivation of the premise part in
(25)–(28) can be expressed by the following:

∂E

∂mi
j1

= (y − yd) ×
((

∂yl

∂f̄ i
+ ∂yr

∂f̄ i

)
∂f̄ i

∂mi
j1

+
(

∂yl

∂f i
+ ∂yr

∂f i

)
∂f i

∂mi
j1

)
(31)

∂E

∂mi
j2

= (y − yd) ×
((

∂yl

∂f̄ i
+ ∂yr

∂f̄ i

)
∂f̄ i

∂mi
j2

+
(

∂yl

∂f i
+ ∂yr

∂f i

)
∂f i

∂mi
j2

)
(32)

∂E

∂σ i
j

= (y − yd) ×
((

∂yl

∂f̄ i
+ ∂yr

∂f̄ i

)
∂f̄ i

∂σ i
j

+
(

∂yl

∂f i
+ ∂yr

∂f i

)
∂f i

∂σ i
j

)
(33)

∂E

∂αi
j

= (y − yd) ×
((

∂yl

∂f̄ i
+ ∂yr

∂f̄ i

)
∂f̄ i

∂αi
j

+
(

∂yl

∂f i
+ ∂yr

∂f i

)
∂f i

∂αi
j

)
(34)

The derivation of ∂y
∂f

can be expressed by the following
equations :

∂yl

∂f̄ i
= (1 − ql)wl − yl∑

f̄ i + f i
(35)

∂yl

∂f i
= qlwl − yl∑

f̄ i + f i
(36)
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∂yr

∂f̄ i
= qrwr − yr∑

f̄ i + f i
(37)

∂yr

∂f i
= (1 − qr)wr − yr∑

f̄ i + f i
(38)

Now, we calculate the derivatives of firing functions with
respect to the premise parameters

∂f̄ i

∂mi
j1

= ∂f̄ i

∂μi
j

∂μi
j

∂mi
j1

=
⎧⎨
⎩

f̄ i × ri
j −mi

j1

(σ i
j )2 , ri

j < mi
j1

0 otherwise

(39)

∂f i

∂mi
j1

= ∂f i

∂μi
j

∂μi
j

∂mi
j1

=
⎧⎨
⎩

f i × ri
j −mi

j1

(σ i
j )2 , ri

j >
mi

j1+mi
j2

2

0 otherwise

(40)

∂f̄ i

∂mi
j2

= ∂f̄ i

∂μi
j

∂μi
j

∂mi
j2

=
⎧⎨
⎩

f̄ i × ri
j −mi

j2

(σ i
j )2 , ri

j > mi
j2

0 otherwise

(41)

∂f i

∂mi
j2

= ∂f i

∂μi
j

∂μi
j

∂mi
j2

=
⎧⎨
⎩

f i × ri
j −mi

j2

(σ i
j )2 , ri

j ≤ mi
j1+mi

j2
2

0 otherwise

(42)

∂f̄ i

∂σ i
j

= ∂f̄ i

∂μi
j

∂μi
j

∂σ i
j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f̄ i × (ri
j −mi

j1)
2

(σ i
j )3 , ri

j < mi
j1

f̄ i × (ri
j −mi

j2)
2

(σ i
j )3 , ri

j < mi
j2

0 otherwise

(43)

∂f i

∂σ i
j

= ∂f i

∂μi
j

∂μi
j

∂σ i
j

=

⎧⎪⎨
⎪⎩

f i × (ri
j −mi

j2)
2

(σ i
j )3 , ri

j ≤ mi
j1+mi

j2
2

f i × (ri
j −mi

j1)
2

(σ i
j )3 , ri

j >
mi

j1+mi
j2

2

(44)

∂f̄ i

∂αi
j

= ∂f̄ i

∂μi
j

∂μi
j

∂αi
j

= ∂f̄ i

∂μi
j

(
∂μi

j

∂ri
j

∂ri
j

∂αi
j

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f̄ i × ri
j −mi

j1

(σ i
j )2 × μi

j (t − 1), ri
j < mi

j1

f̄ i × ri
j −mi

j2

(σ i
j )2 × μi

j (t − 1), ri
j < mi

j2

0 otherwise

(45)

∂f i

∂αi
j

= ∂f i

∂μi
j

∂μi
j

∂αi
j

= ∂f i

∂μi
j

(
∂μi

j

∂ri
j

∂ri
j

∂αi
j

)

=

⎧⎪⎨
⎪⎩

f i × ri
j −mi

j2

(σ i
j )2 × μi

j
(t − 1), ri

j ≤ mi
j1+mi

j2
2

f i × ri
j −mi

j1

(σ i
j )2 × μi

j
(t − 1), ri

j >
mi

j1+mi
j2

2

(46)

Then the derivation of consequent parameter in (29–30) can
be expressed by the following:

∂E

∂ci
j

= (y − yd)×
((

∂y

∂yl

∂yl

∂wi
l

∂wi
l

∂ci
j

)
+

(
∂y

∂yr

∂yr

∂wi
r

∂wi
r

∂ci
j

))

= (y − yd)×
⎛
⎝ (1 − ql)f

i + qlf
i

2
∑M

i=1 f i + f
i

xj

+ (1 − qr)f
i + qrf

i

2
∑M

i=1 f i + f
i

xj

⎞
⎠

= (y − yd)×
⎛
⎝ xj

2
∑M

i=1 f i + f
i

⎞
⎠ (1−ql + qr)f

i

+(1−qr + ql)f
i

(47)

∂E

∂si
j

= (y − yd) ×
((

∂y

∂yl

∂yl

∂wi
l

∂wi
l

∂si
j

)
+

(
∂y

∂yr

∂yr

∂wi
r

∂wi
r

∂si
j

))

= (y − yd) ×
⎛
⎝ (1 − qr)f

i + qrf
i

2
∑M

i=1 f i + f
i

∣∣xj
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− (1 − ql)f
i + qlf

i

2
∑M

i=1 f i + f
i

∣∣xj

∣∣
⎞
⎠

= (y − yd) ×
⎛
⎝

∣∣xj

∣∣
2

∑M
i=1 f i + f

i

⎞
⎠ (1 − qr − ql)f

i

−(1 − ql − qr)f
i (48)

The structure of the global online learning process is
presented in the flowchart Fig. 4.

4.3 Convergence analysis

In this section, we propose the varied learning rates of
parameter learning to assure the convergence of the tracking
errors based on the analysis of a discrete-type Lyapunov
function. Consider the objective function in (24) as the
discrete Lyapunov function.

The derivative of the proposed discrete Lyapunov
function can be written as

�E (t) = E (t + 1) − E (t) (49)

The linearized model of (49) can be calculated via (25)–(30)
as follow
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Fig. 4 Flowchart of the online
learning of the RTSKIT2FNN

E (t + 1) = E (t) + �E (t)

≈ E (t) −
n∑

j=1

ηm1

(
∂E

∂mi
j1

)2

+ ηm2

(
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∂mi
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)2
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(
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j

)2
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(
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j
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(
∂E
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j

)2

(50)

Then E(t + 1) can be expressed as

E (t + 1) =
⎛
⎝1

6
E (t) − ηm1

n∑
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)2
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⎠
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⎝ 1

6
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⎠
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⎛
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E (t) − ηα

n∑
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(
∂E
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j

)2
⎞
⎠ (51)

where ηm1, ηm2, ησ , ηα, ηc, ηs are the learning rates param-
eters. The derivatives of the objective function in (51) are

calculated in parameter learning Section 4.2. The learning-
rate parameters of the RTSKIT2FNN are designed as

ηm1 = E (t)

6

[
∑n

j=1

(
∂E

∂mi
j1

)2

+ ε

] (52)

ηm2 = E(t)

6

[
∑n

j=1

(
∂E

∂mi
j2

)2

+ ε

] (53)

ησ = E (t)

6

[
∑n

j=1

(
∂E

∂σ i
j

)2

+ ε

] (54)

ηα = E (t)

6

[
∑n

j=1

(
∂E

∂αi
j

)2

+ ε

] (55)

ηc = E(t)

6

[
∑n

j=1

(
∂E

∂ci
j

)2

+ ε

] (56)

ηs = E(t)

6

[
∑n

j=1

(
∂E

∂si
j

)2

+ ε

] (57)

where ε is positive constant, then (51) can be rewritten as

E (t + 1) ≈ ε
(
ηm1 + ηm2 + ησ + ηc + ηs + ηα

)
(58)

Applying the learning rates values from (52–57) into the
(58) we have

E(t+1)<
E(t)

6
+E(t)

6
+E(t)

6
+E(t)

6
+E(t)

6
+E(t)

6
= E(t)

(59)
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Fig. 5 RTSKIT2FNN control
scheme for a unicycle wheeled
mobile robot

From (59), we can guarantee that the error represented
in (24) will converge to zero with varied learning rates
designed in (52)–(57). Moreover, the mobile robot with the
proposed RTSKIT2FNN control system has the ability to
track the reference path stably.

5 Experimental results

5.1 Robot description and control architecture

Herein, we present experimental results to validate the con-
trol performance of the proposed RTSKIT2FNN with online
structure and parameter learning for stable path tracking of
mobile robots. In this paper, a Pioneer 3-DX mobile robot
is used as an example to verify the effectiveness of the pro-
posed trajectory tracking control scheme shown in Fig. 5.

Pioneer 3-DX mobile robot is shown in Fig. 6. The plat-
form is assembled with motors featuring 500-tick encoders,
19 cm wheels, tough aluminum body, 8 forward-facing
ultrasonic (sonar) sensors, 1, 2 or 3 hot-swappable batteries,
and a complete software development kit. The base Pioneer
3-DX platform can reach speeds of 1.6 meters per sec-
ond. The Pioneer 3-DX robot is an all-purpose base, used
for research and applications involving mapping, telepor-
tation, localization, monitoring, reconnaissance, and other
behaviors.

5.2 Results

For RTSKIT2FNN’s, the used parameters are chosen as
follows. The RTSKIT2FNN for linear velocity has two
inputs (xe, ẋe) and one output v, the spatial firing strength
threshold is set to fth = 0.6. The RTSKIT2FNN for angular

Fig. 6 Experimental test with
Pioneer 3-DX mobile robot
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Fig. 7 Tracking response of a mobile robot with RTSKIT2FNN
controllers for Lemniscate trajectory with initial position X0 =
[0;−0.3;π ]

velocity has two inputs (ye, θe) and one output w, the
spatial firing strength threshold is fth = 0.3. For the fixed
learning rates FLR are set to ηv = 0.5 for linear velocity
and ηw = 0.01 for the angular velocity. For the varied
learning rates VLR the positive constant ε is set to 0.01 and
0.00001 for the linear and angular velocities respectively.
The objective functions for parameters learning of the two
RTSKIT2FNN’s are chosen as follows

Ev = 1

2
(vr (t + 1) − v (t + 1))2 (60)

Ew = 1

2
(wr (t + 1) − w (t + 1))2 (61)

The sampling time (ts) is 0.01s. In order to exhibit the supe-
riority of the proposed RTSKIT2FNN control system, seven

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x(m)

y
(
m

)

reference trajectory

real trajectory with RTSKIT2FNN−VLR

Fig. 8 Tracking response of a mobile robot with RTSKIT2FNN con-
trollers for Sinusoidal trajectory with initial position X0 =[0; 0.1;π/4]

Fig. 9 The position coordinates for lemniscate trajectory

different network structures including ANFIS [17], RFNN
[34], IT2FNN [24], IT2FNN-SM [26], SOT2FNN-PSO
[32], SEFT2FNN [31] and SIT2FNN in [33] are considered.
The SIT2FNN, SEFT2FNN and SOT2FNN-PSO are also
examined with the same structure and learning parameters
in RTSKIT2FNN with FLR. As a performance criterion, we
evaluate the root mean square error (RMSE)

RMSE =
√√√√1

n

n∑
i=1

(X(i) − Xr(i))
2 (62)

Fig. 10 Tracking errors
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Table 1 Comparison results between FLR and VLR

RMSE x RMSE y RMSE θ

Fixed learning Fig. 7 0.0638 0.062386 0.24733

Rates (FLR) Fig. 8 0.067332 0.049423 0.10764

Varied learning Fig. 7 0.040172 0.030544 0.15698

Rates (VLR) Fig. 8 0.04199 0.043071 0.10414

Experimental results are shown in Figs. 7, 8, 9, 10, and
Tables 1, 2, 3 and 4. Figures 7 and 8 show the reference
paths Lemniscate and sinusoidal respectively with the real
tracked path of the mobile robot using RTSKIT2FNN with
varied learning rates (VLR), the dashed red line is the refer-
ence trajectory; the solid blue line is the trajectory followed
by the mobile robot with RTSKIT2FNN-VLR. Figure 9
presents the position coordinates x, y and θ of the mobile
robot with reference coordinates for the Lemniscate tra-
jectory, the tracking errors xe, ye and θe are shown in the
Fig. 10. From these figures, we can see that, the effective-
ness of the proposed control scheme using RTSKIT2FNN
-VLR for mobile robot trajectory tracking with stable speed
and high accuracy.

Table 1 studies the RTSKIT2FNN performances with
varied and fixed learning rates for two cases of trajectories.
The performances are evaluated using the RMSE of
the position (x, y) and the orientation θ . The obtained
results show that the RTSKIT2FNN with VLR has better
performances than RTSKIT2FNN with FLR. The table
shows the difficulty to ensure the good convergence and
tracking stability during the online learning by using fixed
learning rates (FLR) because the choice of fixed learning
rate values is not necessarily appropriate to all of the cases
and conditions of tracking control in real time and it may
cause in some cases the divergence of the system. On the
other hand, the varied learning rates VLR guaranteed the
stability, robustness and the good parameters adaptation
of the RTSKIT2FNN during the online learning, this
VLR property changes the learning rates according to the
objective function represented in (60) and (61) to guarantee
the convergence of tracking errors.

Table 2 Influence of fthv on the performance of RTSKIT2FNN with
fthw = 0.3

fthv 0.4 0.5 0.6 0.7

Rule v 1 7 7 8

Number w 14 16 14 14

RMSE x 0.059431 0.059272 0.040172 0.059509

RMSE RMSE y 0.038592 0.037613 0.030544 0.0390385

RMSE θ 0.22255 0.23153 0.15698 0.22031

Table 3 Influence of fthw on the performance of RTSKIT2FNN with
fthv = 0.6

fthw 0.1 0.2 0.3 0.4

Rule v 7 9 7 7

Number w 4 8 14 19

RMSE x 0.059337 0.059193 0.040172 0.059762

RMSE RMSE y 0.03968 0.040383 0.030544 0.034122

RMSE θ 0.21419 0.21594 0.15698 0.23828

Additionally, Tables 2 and 3 show the influence of firing
strength thresholds fthv and fthw for linear and angular
velocity respectively on the performance of RTSKIT2FNN.
Table 2 represents the influence of fthv with a fixed fthw

and the opposite in Table 3. We notice that larger values of
fthv or fthw generate larger numbers of rules and improve
the performance of RTSKIT2FNN in general. However,
when the value of fthv or fthw is too large, the performance
saturates for reason that the online learning process achieved
the local minimum, and also the number of rules change
according to the learning algorithm types VLR and FLR as
shown in Table 4 for the same network. From the two tables
the small RMS errors are obtained when fthv = 0.6 and
fthw = 0.3.

Table 4 compares the RMSE values and generated
rules number for other related networks ; we can note
that the T2FNN networks have the smaller RMSE com-
pared to T1FNN which is represented by two structures
ANFIS and RFNN. This note shows the high superior-
ity of T2FNN structure for the mobile robot trajectory
tracking. The T2FNN is divided into two types in terms
of learning principle: static and evolving. For the static
type we have two algorithms IT2FNN-SM that uses slid-
ing mode for learning and IT2FNN which uses the gradient
descent. For the evolving learning type we have SOT2FNN-
PSO, SEFT2FNN, SIT2FNN, RTSKIT2FNN-FLR, and
RTSKIT2FNN-VLR. We can note that the IT2FNN-
SM has the smaller RMSE than IT2FNN with gradient
descent algorithm, and we can note also that the evolv-
ing algorithms have lower RMSE than the static algo-
rithms; this demonstrates the superiority of the evolv-
ing algorithms. For the evolving algorithms, the proposed
RTSKIT2FNN-VLR has the smaller RMSE compared to
the other evolving algorithms. This result shows the high
superiority and the effectiveness of the proposed algo-
rithm, we can also note that RTSKIT2FNN-VLR and
SEFT2FNN have the largest number of generated rules
and the lower RMSE this demonstrates, the relationship
between the generated rule and the effectiveness of the
evolving algorithms.
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Table 4 Comparison results of
networks RMSE Networks Learning principle Rule number RMSE x RMSE y RMSE θ

v w

ANFIS [17] static – – 0.1313 0.0760 0.323

RFNN [34] static – – 0.1270 0.0697 0.337

IT2FNN-SM [26] static – – 0.0805 0.0713 0.2853

IT2FNN [24] static – – 0.0878 0.0811 0.2866

SOT2FNN-PSO [32] evolving 4 2 0.0743 0.0639 0.265

SEFT2FNN [31] evolving 6 5 0.0618 0.0607 0.228

SIT2FNN [33] evolving 4 3 0.0789 0.0662 0.273

RTSKIT2FNN-FLR evolving 5 4 0.0638 0.0623 0.2473

RTSKIT2FNN-VLR evolving 7 14 0.0401 0.0305 0.1569

6 Conclusion

This paper proposed a recurrent TSK Interval Type-2 Fuzzy
Neural Networks with online structure and parameters
learning control scheme for path tracking of mobile robots.
The proposed RTSKIT2FNN has successfully incorporated
the recurrent frame of internal-feedback loops into the
interval Type-2 Fuzzy Neural Networks. The online learning
of RTSKIT2FNN, there is no need to determine an initial
network structure for the reason that the structure learning
algorithm enables the network to evolve online and generate
the required network structure and rules based on the
rule firing strength. The structure learning is performed
concurrently with parameter learning using the proposed
gradient descent algorithm with varied learning rates (VLR)
to tune all parameters of the RTSKIT2FNN, the learning
convergence and the stability of the control system are
proved using the discrete-type Lyapunov function. The
experimental results have shown the obvious superiority of
the proposed control method for mobile robot trajectory
tracking compared to the other control methods.
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