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Abstract
With the introduction of emerging technologies cybersecurity has become an inherited and amplified problem. New
technologies bring significant developments but also come with new challenges in the cybersecurity area. The fight against
malicious attacks is an everyday battle for every company. Challenges brought by security breaches can be devastating for a
company and sometimes bring un-survivable circumstances. In this paper, we propose a novel two-stage intelligent intrusion
detection system (IDS) to detect and protect from such malicious attacks. Intrusion Detection Systems are feasible solutions
for cybersecurity problems, but they come with implementation challenges. Anomaly based IDS usually have a high rate of
false positives (FP) and they require considerable computational requirements. The approach proposed in this paper consists
of a two-stage architecture based on machine learning algorithms. In the first stage, the IDS uses K-Means to detect attacks
and the second stage uses supervised learning to classify such attacks and eliminate the number of false positives. The
implementation of this approach results in a computationally efficient IDS able to detect and classify attacks at a 99.97%
accuracy while lowering the number of false positives to 0. The paper also evaluates the performance results and compares
them with other relevant research papers. The performance of this proposed IDS is superior to the current state of the art.

Keywords Intrusion detection systems (IDS) · Cyber-security · Machine learning · Supervised learning

1 Introduction

Emerging technologies, connectivity and innovations have
brought many dependencies in network structures. Increas-
ing connectivity among business applications brings an
immediate consideration for cybersecurity breaches. Such
breaches often impact business operations and usually result
in significant financial losses. Therefore, cybersecurity
challenges are nowadays a business priority [10, 11].

From the other spectrum, artificial intelligence and machine
learning technologies are enabling researches to achieve break-
throughs in many problems. The purpose of this paper is to
leverage some of these technologies in solving cybersecu-
rity problems. To detect attacks, we look and analyze the
transactional data, build models and make predictions out
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of them [10]. Machine leaning algorithms and a Knowledge
Discovery Database (KDD) is used to build a two-stage
intrusion detection system. This data is gathered from
Massachusetts Institute of Technology - Lincoln labs and
simulates a typical US Air Force Local Area Network
(LAN). A set of attacks are injected to the data such as
Denial of Service, Remote Unauthorized access, Local
Unauthorized access and probing [17].

The structure of the paper is organized as follows:
Section 2 talks about intrusion detection systems, Section 4
provides an analysis of the data set and the pre-processing
methodologies. Section 5 gives a description of the IDS
architecture and Section 6 provides performance results.

2 Intrusion detection system

Intrusion Detection System are algorithms that look for
malicious attacks or activity in a network system. They
are categorized into two main categories: anomaly-based
systems and signature-based systems [5, 15, 21].

Anomaly-based systems model the normal behavior of
the system and compare it with the monitored behavior to
create a baseline model [29]. If a certain action differs from
the normal behavior, then the IDS analyzes such action and
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classifies it into a certain anomaly [3]. The main benefits
of such systems is the ability to detect malicious attacks
which were unknown to the system prior and their ability to
operate in a real-time environment. However, due to noise
or other elements in the data, anomaly-based IDS are poised
to have problems with high false positives [5, 12]. Figure 1
shows a generic architecture of an anomaly-based Intrusion
Detection System.

Signature-based systems scan the data for predetermined
and preconfigured attack patterns called probes and sweeps.
These elements are used as a basis for raising an alert when
an attack behavior occurs [17]. Signature-based IDS are
efficient when attack signatures are known in advance but
do not work well when there is no prior knowledge of the
attacks. Therefore, the downside of such systems is the need
to continuously update the database for attack signatures
[3]. In additions, signature-based IDS are not optimal for
attacks with self-modifying behavior.

3 Dataset and adversary model

In order to build, train and test the proposed IDS we use
a Knowledge Discovery dataset. This dataset is one of the

Fig. 1 IDS Architecture

most widely used datasets in the evaluation of Intrusion
Detection Systems. It was built from Massachusetts Institute
of Technology (MIT) and used in the International
Knowledge Discovery and Data Mining Tool Competition
[11].

The actual data was gathered as TCP data dumps
in an environment set up from MIT Lincoln Lab. The
environment simulated a local area network (LAN) of a
US Air Force network. The raw data was gathered in a
seven weeks’ time span and multiple attack were injected
to it [17]. It has around 4,900,000 connections with a size
of about 4 gigabytes. In addition, the lab also collected
two weeks’ worth of testing data with around 2 million
connections.

This dataset provides a general adversary model. The
training data contains labels which identify if a connection
is ”normal” or ”attack” along with the specific attack type.
Every connection is about 100 bytes and is defined as a
sequence of TCP packets from a source IP to a target IP with
a predefined start and end time [17, 20]. According to this
model, the attacker has mounted 22 attacks in the following
categories [17]:

– Unauthorized port scanning, surveillance or other
probing

– Unauthorized access to local root privileges
– Unauthorized access from a remote machine
– Denial of service attacks

To make the problem more realistic, the test data contains
attack connections not found in the training data. The test
dataset is used to measure the intrusion detection systems
performance and contains 17 additional unknown type of
attacks.

4 Data pre-processingmethodologies

After analyzing and performing preliminary experiments
on the dataset described above, a significant amount
of redundancies and similarities were discovered [27].
Therefore, when this data was used “as-is” to build an IDS
model, it resulted with a biased model towards the more
frequent data dumps. The dataset is also too large, and this
makes the initial results to be overfitting. Overfitting causes
the model to perform well on the training set, but not as well
on the test data. These data characteristics made it necessary
to pre-process the data prior to using it for building the IDS
model [16].

In order to build an accurate IDS model, four pre-
processing steps were done to the training data:

First, the variance of feature values was calculated
to measure the spread between features in this dataset.
Features with low variances usually do not provide
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significant Kullback-Leibler divergence during training;
therefore, the objective is to filter them out. Kullback-
Leibler divergence is a measure of the similarity between
probability distributions of two different features.

Table 1 shows all of the initial features in the
dataset, along with their variance values. This process
was calculated using Matlab during the pre-train process
therefore; it does not affect the computational requirements
or the performance in real time.

From Table 1 results we can see that “su attempted”,
“land”, “is host login” and “num outbound cmds” have
considerable low variances, therefore they can be removed
from the training without impacting the knowledge derived
from the model.

Secondly, we calculated and removed correlated features
to avoid overfitting. Correlated features are closely associ-
ated with each other and do not allow the system to infer
distinct knowledge from the data [8]. Correlation coefficient
shows how much the two features are associated with each
other.

After calculating correlation coefficients for each feature
pair, we identify the pairs that are closely correlated. Table 2
shows pairs of features which have a correlation coefficient
higher than 0.9. When the correlation coefficient between
two features is close to 1, then these two features are similar
to each other. Removing closely correlated features helps
with removing bias from the model.

Third, Least Square Regression Error (LSQE) was used
to minimize feature similarity and maximize dimensionality
reduction [23]. (LSQE) or residual variance is the error of
predicting y from y = bx + a while a and b are the regression
coefficients which can be calculated by minimizing e(x, y)2

in (1).
Equation (2), (3) and (4) show the derivation of them,

e(x, y)2 = 1

n

∑
e(x, y)2

i (1)

e(x, y)2 = yi − a − bxi (2)

a = ȳ (3)

b = cov (x, y)

var(x)
(4)

Once a and b are calculated then the mean square error
e(x, y) can be calculated by (5).

e(x, y) = var(x) × (1 − relation(x, y)2) (5)

Equation (5) essentially measures the relationship
between two features x and y. If these features have a linear
relationship then e(x, y) will be 0 and if they don’t have a
relationship then e(x, y) will be equal to var(x).

Table 1 Dataset features
Name Variance Name Variance

time duration: 1.98E+006 guest login: 2.76E-02

type of protocol: 1.57E-001 count nr: 1.65E+04

srv: 2.18E+002 srv nr: 7.93E+03

flg: 1.03+E01 serror: 8.72E-02

source bytes: 2.23E+011 srv serror: 8.90E-02

destination bytes: 4.50E+008 rerror: 1.73E-01
land: 3.10E-004 srv rerror: 1.73E-01

error fragment: 2.03E-002 same srv: 1.70E-01

high urgent: 1.33E-003 df srv: 6.72E-02

warned: 8.61E-001 srv df host: 6.43E-02

nr failed log in: 2.26E-002 destination count: 8.84E+03

log in: 2.47E-001 destination srv count: 1.25E+04

nr compromised: 2.30E-003 destination same srv rate: 1.89E-01

root: 2.43E-003 destination diff srv rate: 4.87E-02
su attempt: 4.44E-004 destination same src port rate: 9.38E-02

nr root: 6.47E+001 destination srv diff host rate: 7.29E-03

nr file new: 4.58E-001 destination serror rate: 7.46E-02

nr shells: 2.30E-003 destination srv serror rate: 7.95E-02

nr access files: 4.60E-003 destination rerror rate: 1.45E-01
nr outbound cmds: 0.00E+000 destination srv rerror rate: 1.61E-01
host login: 4.88E-004
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Table 2 Correlated features
Feature A Feature B Correlation between

A and B

destination srv serror rate: destination serror rate: 0.95
destination srv rerror rate rerror: 0.93
dst srv rerror rate server rerror rate: 0.95
rerror: service: 0.91
nr compromised: nr root 0.99
serror server serror 0.97
server rerror rerror 0.97

Lastly, Maximal Information Compression Index (MICI)
was also used to analyze feature relationships. Denoted by
λ2(x, y) which is calculated using (6).

λ2(x, y) = min(eigv(�)) (6)

where � provides the covariance of x and y while eigv is
the Eigen values vector of that covariance. When MICI is 0,
then the features have linear relation. A higher MICI means
that the relationship does not exist.

After calculating variance, correlation coefficient, LSQE
and MICI, 11 features were removed from the data. These
features did not provide distinct knowledge for the Intrusion
Detection System model. Therefore, the number of features
was reduced from 41 to 30, which is more manageable and
more meaningful for training the model [23].

5 Two stage IDS

After data pre-processing, we design an intelligent, two-
stage, intrusion detection system architecture build upon
machine-learning algorithms. The novelty of this work is the
use of a two stage machine learning approach in the design
of IDS after a four step efficient data pre-processing. This
is done to increase the accuracy and lower the number of
false positives when detecting an attack [12]. The first stage
detects whether there is an attack or not while the second
stage classifies that attack and provides an alert [24]. We
have already published Fig. 2 provides the block diagram
architecture of the proposed IDS.

5.1 First stage: Detect!

The first stage uses a K-Means model to cluster the data and
detect an attack [4, 9]. Clustering in this phase simply clas-
sifies the data into two categories: “attack” connections or
“normal” connections. The design objective for this stage
is to simply detect if there is an attack or not. The algo-
rithm is purposely designed to show bias towards “attack”
connections because at this stage we can afford false posi-
tive attacks but do not want to miss any true positives. To ac-

complish this classification we build two clusters with low
inter cluster similarity and good intra-cluster similarity [9].

K-Means clustering is used in machine learning to
processes n observations into k clusters [19]. This algorithm
looks at the pre-processed data features and places them

Fig. 2 Intrusion detection system architecture
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into clusters. The reason why we choose k-Means in this
stage is due to its computational requirements and the
ability to produce tighter and more controlled clusters
rather then hierarchical ones. In addition k-Means is an
easy to implement and flexible algorithm re-classifying
connections continuously as centroids (cluster centers) are
re-calculated.

To further explain the k-Means algorithm, let’s consider
the following example:

The training set consists of random connections X(1), ...
,X(n). The objective of the algorithm is to separate this in a
few clusters – in our case we want to split it in simply two
clusters (attack and normal). In addition, we also have some
feature vectors for each connection X(i) ∈Rm. K-Means
attempts to predict k centroids (k=2 in this case) and a label
C(i) for each connection X(i) K-Means does the following
steps to determine the predictions for every connection.

1. Initialize cluster centroids m1, m2, . . . mk

2. Repeat under convergence

For every i, set

C(i) = minj || X(i) − − − mj ||2 (7)

For every j, set

mj =
∑m

i=1 1
{
C(i) = j

}
X(i)

∑m
i=1 1

{
C(i) = j

} (8)

The Euclidian distance between the given connection
and the cluster center decides the placement of the
connection between the two clusters. The cluster centroid
is recalculated every time the connection is placed in the
cluster [28]. The algorithm tries to minimize the objective
function. Objective function is donated by E and known as
the squared error function (9).

E = 1

N

K∑

k=1

N∑

n=1

znk‖xn − mk‖2 (9)

where mk is the center of the cluster K , N is the total
number of data points, ‖ . ‖ give the Euclidian norm (L2
norm) of the vector.

Figure 3 provides a visual view of the two data clusters
generated by the K-Means algorithm.

As shown from the figure there are two clusters (with
different colors - red and blue) which are well defined.
Table 3 shows the results of the first stage.

After building the model, the detection accuracy for the
first stage is 96.61%. After detecting attacks in this stage,
then we attempt to classify those attacks in stage two with a
series of machine learning supervised algorithms.

Fig. 3 Visual of the K-Means Clusters

5.2 Second stage: Classify!

In this stage, the objective is to lower the rate of false
positives and improve accuracy. By classifying these attacks
into a certain category, we increase the confidence that
an attack is detected and appropriately classified. The
following algorithms are used to test the IDS performance
regarding classifying the attacks [25]:

5.3 J48

J48 is a decision tree-based algorithm which classifies data.
This algorithm builds decision trees by using information
entropy and is based on C4.5 decision tree [19]. This
algorithm is often referred as a statistical classifier because
it bases its decision tree on labelled input data. When
building the tree, J48 chooses the attributes based on the
information gain, or whichever attribute results in the most
efficient split of the data [22]. The following steps describe
how the algorithm works:

1. Calculate the entropy using (10)

Entropy =
C∑

i=1

−pi ∗ log2(pi) (10)

Table 3 Stage 1 results (Detect)

Clustering True labels Accuracy

Normal 23% 19.61% 96.61%

Attack 77% 80.39%
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Table 4 J48 results

Performance variable Score

# Leaves 711

Tree size 833

Classification Accuracy 99.9512%

True Positives 1.000

False Positives 0.000

F-Measure 0.999

Computational Time for train 48.13 (s)

Computational Time for test packet 4.02e-6 (s)

2. Calculate information gain rate using (11). The gain
is basically the difference of prior entropy (T) and the
entropy of the selected branch (X).

Gain(T , X) = Entropy(T ) − Entropy(X) (11)

3. After calculating the Gain for each candidate attribute,
then the data is split based on the attribute with the
highest information gain.

4. Repeat steps 1-3 until the leaf level [22].

After applying the provided data to the first stage and
using J48 as the second stage, the following performance
results were obtained as shown in Table 4.

The following is the explanation for some of the
performance variables:

- Classification accuracy: % of connections that are
classified correctly

- True positives: proportion of instances predicted posi-
tive that are actually positive

- False positives: proportion of instances predicted
positive but are actually negative

- F-Measure: measure of test’s accuracy

- Computational time for train - time it takes to train the
model

- Computational time for test packet - time it takes to test
a single packet

J48 tree produced the following features with the highest
information:

- server count - number of connections to the same
service in the past two seconds

- same server rate - percentage of connections to the
same service

- destination different server rate - percentage of con-
nections to different services

As observed from the results of Table 2, stage 2 was able to
decrease the number of false positives (FP) to 0 and increase
the accuracy results to 99.9512%. This is a significant
improvement from stage 1 results, which was 96.61%.

Figure 4 visualizes the performance of the J48 algorithm.
The X-axis represents the actual label of the class while the
Y-axis represents the predicted label of the class. Receiver
Operating Characteristic (ROC) curves were not used in
these experiments because the False Positive rate is too low
and the visualization is skewed. Colors of the figure show
the different types of attacks.

Each quadratic dot in the figure represents a classifica-
tion error and since errors are too few in numbers com-
pared with correctly classified records (crosses), we have
emphasized those using squares. The attacks, which are not
classified (detected) in this stage, are scattered around due
to having outlier characteristics. J48 does not perform well
once the feature with the most information gain of an attack
falls into the wrong branch. J48 tree propagates that error
for the rest of the leaves. Some Tree Pruning is used in this
case to minimize such errors.

Fig. 4 J48 classifier errors curve
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After analyzing J48 results, the following can be conclu-
ded about J48:

5.3.1 Advantages

J48 is a fairly easy algorithm to implement and visual-
ize. Since it is based on C4.5, it performs well in discrete
data with more than two classes, which is also one of
the main reasons why J48 is chosen as one of the can-
didate algorithms in stage two. In addition, computational
requirements for decision making are fairly low com-
pered with other algorithms used in this paper. Looking at
the literature survey available, J48 is used commonly in
medical and clinical applications, weather prediction and
banking data.

5.3.2 Disadvantages

When looking at the training computational requirements,
generally J48 takes more time and memory to be trained.
If a J48 decision tree is not able to be configured properly,
it results in a large tree and the algorithm denigrates
pretty easy. If J48 outputs a complex tree it gives a poor
performance and requires high computational power. That
is why, it is recommended to apply tree pruning which
helps with complexity and sometime avoids over-fitting and
other classification errors. J48 and decisions trees in general
have limits when dealing with continuous data, or decisions
which require more than one output per attribute.

5.4 Random forest

Random forest uses an ensemble learning method to com-
bine decision trees, similar to those explained previously.
This algorithm is similar to a technique known as bagging.
Bagging is a machine learning ensemble meta-algorithm
aimed at improving accuracy, reducing variance and avoid-
ing over-fitting. In a single decision tree, the predictions are
sensitive due to certain data characteristics or noise, bag-
ging takes the average performance of multiple trees so it
eliminates such sensitivity and gives a more accurate perfor-
mance. Random Forest improves bagging with a multitude
of decision trees [7]. The mode output among the deci-
sion trees is output of random forest. Table 5 provides the
IDS performance results while using Random Forest in the
second stage.

5.4.1 Advantages

Random Forest does a great job at correctly classifying and
identifying malicious attacks from the data as shown in
Fig. 5 and Table 5. Although the dataset is huge, the results
show that errors are countable and the accuracy is improved

Table 5 Random forest results

Performance variable Score

# of Iterations 100

Classification Accuracy 99.9708%

True Positives 1.000

False Positives 0.000

F-Measure 0.999

Computational Time for train 235.52s

Computational Time for test packet 4.29e-5

to 99.9708%. Based on literature survey, Random Forest
is widely known to be one of the most accurate learning algo-
rithms and that is also the reason why we selected Random
Forest to be one of the algorithm candidates for stage two
[7]. Accurate results received from this algorithm simply
validated the previous claim. Random Forest in the second
stage give us the best accuracy. This accuracy does not den-
igrate even with a large data set or even at times when a
large portion of the pockets are missing. Once trained, this
algorithm can also be re-used in other models with similar
data which is another feature making random forest a pre-
dominant algorithm to be used for classification problems.
Random Forest is commonly used in areas of Medicine,
E-commerce and stock market application.

5.4.2 Disadvantages

A high performance in Random Forest comes also with
an increase in computational cost. Since Random Forest
is another decision tree-based algorithm, the same path of
scattered errors is repeated in Fig. 5. This relates to the same
issues described in J48. Another disadvantage of random
forest is the fact that it is hard to interpret it. In addition
a careful analysis is needed in deciding its configuration
parameters (e.g numbers of trees) according to the data-set
used, otherwise the performance accuracy will suffer.

5.5 Adaptive boosting

Adaptive Boosting is another ensemble of machine learning
algorithms developed by Yoav Freund and Robert Schapiro
[19]. In Adaptive Boosting (AdaBoost) the ensemble is
built in such a way that prediction errors are improved at
every layer. The subsequent models focus on fixing errors
made by prior models. This is similar to regular boosting
algorithms. Adaptive Boosting adds short decision trees in
series until the performance is not subsequently improved
[22]. Performance results for IDS with Adaptive Boosting
are shown in Table 6.

Figure 6 shows the Adaptive Boosting classifier errors
results.
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Fig. 5 Random forest classifier errors curve

Adaptive Boosting performance visualization is some-
how skewed. It is interesting to see that most of the errors
are around unauthorized access from a remote machine type
of attacks. These kinds of attacks are usually associated with
”duration of connection”, ”service requested” and ”number
of failed attempts”. Adaptive Boosting miss-classifies these
due to having a high information gain in the dataset [22].

After looking at AdaBoost performance we can conclude
the following about the algorithm:

5.5.1 Advantages

AdaBoost is not a complicated algorithm to implement.
Generally, the algorithm is known to give a good generaliza-
tion and is used in many classification problems. AdaBoost

Table 6 Adaptive boosting results

Performance variable Score

Classification Accuracy 97.8597%

True Positives 0.979

False Positives 0.005

F-Measure 0.970

Computational Time for train 45.65s

Computational Time for test packet 3.71e-6

is usually not prone to over-fitting due to its ”boosting”
technique. This algorithm is used in many classification
problems and it is known to improve classification errors
through boosting. In our case, AdaBoost does not give the
best performance in terms of accuracy but it does give the
best timing performance, therefore making it one of the
most efficient algorithms for implementation. Its implemen-
tation efficiency and over-fitting avoidance are the reasons
why AdaBoost was selected as the third algorithm candi-
date. There are a few papers which have evaluated the use
of AdaBoost in different applications such as [2, 6]. Some
papers actually consider AdaBoost as one of the best ”off
the shelf” algorithms. [2]. Applications where AdaBoost
has been implemented successfully mainly focus on optical
character recognition, pedestrian detection systems, speech
and facial recognition, etc.

5.5.2 Disadvantages

One of the main disadvantages for AdaBoost is its
sensitivity due to noise in the data-set and potential outliers.
This property is also shown when applied to our data.
When we injected additional unknown attacks or outlier
packages, AdaBoost suffered in their classification. As we
will analyze below, this algorithm is not the most optimal
solution for our problem, this is also often the case for other
complex classification problems.
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Fig. 6 Adaptive Boosting Classifier Errors Curve

5.6 Naı̈ve Bayes

Naı̈ve Bayes is another algorithm selected for use in
the second stage of the intrusion detection system. This
algorithm uses a probabilistic classification and is based
on Bayes theorem. The objective of this algorithm is to
determine the probability of the features happening in every
class and return the highest probable class.

P(A|B) = P(B|A)P (A)

P (B)
(12)

Equation (12) calculates the probability of an event (A)
considering prior probability of conditions (B) that might be
related to event (A).

Table 7 provides the performance results of the IDS with
Naı̈ve Bayes as the algorithm in the second stage.

Figure 7 shows the Naive Bayes classifier results.

Table 7 Naı̈ve Bayes results

Performance variable Score

Classification Accuracy 92.748%

True Positives 0.927

False Positives 0.000

F-Measure 0.949

Computational Time for train 40.69s

Computational Time for test packet 1.48e-6

5.6.1 Advantages

Naive Bayes is primarily based on the conditional inde-
pendence assumption as shown by (12). When the data-set
holds the conditional independence assumption as true, then
the algorithm converges quickly, making it more efficient
than other logistic regression algorithms. In this scenario,
the algorithm can also be trained with less data. One of the
most common applications that uses Naive Bayes is e-mail
spam detection and news categorization. Its ability to infer
based on the independence assumption is also the reason
why we selected Naive Bayes in this paper. This property
makes this algorithm to be suitable with other applications
such as sentiment analysis, digit recognition, etc.

5.6.2 Disadvantages

Similar to Adaptive Boosting, Naive Bayes, in our case has a
problem with unauthorized access type of attacks as well. In
Adaptive Boosting we had a low prediction for such attacks,
while here these attacks are incorrectly classified resulting
in poor accuracy results. These kind of attack features have
a high information gain so it is easy to skew the training
model. Naive Bayes’ classifies those features true in many
cases due to these features being true for other attacks as
well [1]. The accuracy performance for Naive Bayes is
the lowest among the the algorithms, suggesting that the
independence assumption is not a strong characteristic of
our the attacks found in our data. This means that Naive
Bayes is an algorithm that does nor perform well in data-sets
where features are not independent of each other.
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Fig. 7 Naı̈ve Bayes classifier errors curve

6 Performance summary

6.1 Performance based rank

Figure 8 shows the performance summary results from the
four algorithms tested in the second stage.

As shown, the Random Forest (99.9708%) and J48
(99.9512%) have the best classification accuracies when it
comes to performance. Both of these algorithms - assisted
from K-means model in stage one are able to eliminate false

positives. As we mentioned false positives are a syndrome
of anomaly-based intrusions, and this proposed IDS
architecture in this paper is able to cope with them in an
easy and efficient way.

6.2 Computation performance

In order to evaluate the performance of the algorithms, the
computational time required to train and test the algorithms
are used. The models were built and tested using a Windows

Fig. 8 Attacks correctly
classified
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Table 8 Summarized results

Algorithm Performance Computational time

Random Forest 99.97% 4.29e-5

J48 99.95% 4.02e-6

Adaptive Boosting 97.86% 3.71e-6

Naı̈ve Bayes 92.75% 1.48e-5

HP Desktop with an Intel Core i7-6700 CPU @ 3.40 GHz.
Table 8 shows computational times versus classification
performance.

When it comes to classification performance, Random
Forest is the best algorithm to perform. Looking at com-
putational time required, J48 delivers similar performance
results (within 0.02% of Random Forest) but with almost
10 times better computational time requirement. Therefore,
considering implementation feasibility, computational limi-
tations and other factors, J48 is a feasible algorithm to select
for the second stage of the new proposed Intrusion Detection
Architecture in this paper [20, 26].

6.3 State of the art comparison

Other research papers have used the same dataset (KDD)
to build Intrusion Detection Systems and tested their
performance. Their approaches vary but based on our
literature survey we have not identified another intelligent,
two-stage IDS architecture as proposed in this work.
Generally, all the other research papers have an agreement
regarding the problematic false positives when building an
IDS [13]. Among many papers who have used IDS on the
knowledge discovery dataset we have selected papers in
Table 9 since they use the same dataset, leverage machine-
learning algorithms, are published recently and have some
of the best performance results. Table 9 compares our results
with these papers performances.

As shown from the table comparison, our proposed
algorithm stands out with the best performance in both
accuracy and F-Measure.

7 Summary

This paper initially provided a background in intrusion
detection systems and their importance in the cybersecu-
rity space. Then, a standardized dataset was analyzed and
pre-processed using variance, correlation coefficients, Least
Square Regression Error and Maximal Information Com-
pression Index. Pre-processing the data was necessary to
reduce the number of features and help with avoiding bias
and overfitting. After such pre-processing, the data was used
to build an intelligent, two-stage intrusion detection system.

The first stage uses the K-means algorithm to detect
an attack. The second stage tests four different supervised
learning algorithms (J47, Random Forest, Naı̈ve Bayes, and
Adaptive Boosting) to classify the attacks. After building
and testing the two-stage model we achieved a high
accuracy in performance results. In addition, the proposed
IDS was able to fully eliminate the number of false positives
which are usually a syndrome of anomaly-based intrusion
detection systems.

Lastly, we compared the performance results from this
proposed IDS with other state of the art research papers.
Based on the comparison we showed that results generated
from this IDS are one of the best performance results
achieved using the KDD dataset.
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