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Abstract
Time series forecasting has important theoretical significance and engineering application value. A number of studies have shown
that hybrid modelling is very successful in various modelling applications, and both theoretical and empirical findings have
shown that hybrid modelling is an effective method to improve the accuracy of time series models. This paper proposes a hybrid
model that combines a linear regression (LR) model and deep belief network (DBN) model for the prediction of time series data.
In the hybrid model, the linear AR (auto-regression) LR model or ARIMA (auto-regressive integrated moving average) model
and the nonlinear DBN model are explored to capture the linear and nonlinear behaviours of a time series, respectively. We first
use an LR model to fit the original data and obtain the LRmodel residuals between the original data and the predicted data of the
LR model. Then, the residuals are regarded as the nonlinear component and are used as inputs into the DBN model. The LR
model prediction and the output of the DBNmodel are the final forecasting value for the time series, which takes full advantage of
the two models for predicting time series. The proposed hybrid model and other existing models are applied to four well-known
time series for comparison, and the results show that the proposed hybrid model has a high prediction accuracy and may be a
useful tool for time series forecasting.

Keywords Hybridmodel . Time series forecasting . Linear regression . Deep learning

1 Introduction

Time series forecasting has been a very popular research topic
because it has wide applications in many different areas. For
example, it is very convenient for people to travel when they
are provided a traffic forecasting service. Forecasting climate
change provides great help in transportation and agricultural
production departments. Forecasting financial data is very
helpful for business investments. In time series modelling,
some data can be characterized by linear models, and some
data must be characterized by nonlinear models. Systems with
linear and/or nonlinear behaviours can be modelled using

different methods. For time series data, various prediction
models have been proposed in the literature [1], in which the
typical linear regression (LR) model is either a linear auto-
regression (AR) model or linear auto-regressive integrated
moving average (ARIMA) model, and a promising nonlinear
model is the deep belief network (DBN) model [2–4]. These
three models are used in this paper.

The LR model is widely used in different fields, such as
forecasting short-term electricity demands [5], stock indexes
[6], and wind speeds [7]. In this paper, the linear AR and
ARIMA models are used as predictive models for the linear
behaviours of a time series. For nonlinear time series, howev-
er, LR modelling may not be a good choice. The artificial
neural network (ANN) is an effective nonlinear modelling
technique for predicting nonlinear time series [1]. It has been
confirmed that ANNs could achieve a desired accuracy in
nonlinear time series prediction [8–11]. Over the past several
decades, ANNmodelling techniques have developed substan-
tially. There were more than 5000 publications using ANNs
for time series forecasting by 2007 [12]. Some famous ANN
structures are listed as follows: the radial basis function (RBF)
NN, error back-propagation (BP) NN, and so on. With a great
deal of research on ANNs, some problems have also arisen.
The main problem is difficulty in determining the values of
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node connection weights and other parameters in an ANN; if
one cannot obtain suitable values, the modelling accuracy
decreases. Another problem is that themodel parameter search
in an optimization process is easy to stop at local optima. For
these problems, Hinton and Osindero proposed the deep learn-
ing algorithm (DLA) [2], which first uses unsupervised learn-
ing to train the connection weights of a deep neural network.
The DLA is a good method to extract intricate structures in
high-dimensional data, and it has been successfully applied in
many fields, such as image compression [13], forecasting ex-
change rates [14], the evaluation of vehicle interior sound
quality [15], electricity load forecasting [3], breast cancer clas-
sification [16], magnetic resonance imaging [10], and time
series modelling [3, 4, 12]. Currently, the DLA is one of the
most effective algorithms for time series forecasting [2, 12]
and is also commonly used for nonlinear behaviour modelling
[17, 18]. The DLA may avoid falling into the local optimum
and prevent over-fitting; these problems are often encountered
in ANN training. The long short termmemory (LSTM) model
[19] is also widely applied in time series forecasting, which is
a special type of recurrent neural network (RNN) architecture
[19, 20], and RNNs a type of deep learning model. It has been
shown that LSTM outperforms traditional RNNs in many
temporal processing tasks [19].

In this paper, we use the DLA to train a DBN, which is
used for the nonlinear behaviour prediction of a time series.
The DBN has been proven to be very effective in learning
representative features from observation data without prior
knowledge. The DBN is a stack of restricted Boltzmann
machines (RBMs), where the RBM is a basic and powerful
neural network in which the connection between each neu-
ron is a bipartite graph [21]. As mentioned in the literature
[2, 13], the RBM is widely used in classic machine learning
tasks, such as image or voice recognition, and it has shown
impressive performance [22]. The RBM is a network of
neurons composed of two layers: a hidden layer and a vis-
ible layer. The visible layer corresponds to the components
of an observation, and the hidden layer is used to extract
features from the visible layer [23]. The feature of the RBM
is that the same layer variables are not connected to each
other. The connection between the hidden layer and the
visible layer is bidirectional and symmetric. Therefore, an
RBM forms a Markov random field [21]. Hinton and
Osindero proposed a fast, greedy learning method for the
DBN, which learns one layer at a time [2]. After unsuper-
vised training, a regression layer can be added at the top of
the network for supervised training, and labelled data are
then used for supervised fine-tuning to adjust the features
for better prediction. Compared with the traditional ANN, if
the model has fewer neurons, the traditional ANN has better
advantages than the DBN. However, the DBN is much bet-
ter than the traditional ANN when the number of nodes is
very large [3].

Although the single model mentioned above may obtain
good prediction results in many cases, a hybrid model, such
as one combining a linear model and nonlinear model, may
give better modelling results than a single model. This is be-
cause a hybrid model may absorb the qualities of the two
models. Thus, using hybrid models has become a common
practice to overcome the limitations of single models and im-
prove prediction accuracy [24]. In the literature [1, 7, 8, 11,
24–29], some hybrid models have been proposed to combine
the advantages of two or more individual models. For in-
stance, a hybrid ARIMA-ANN model [25] was proposed,
which combines a linear ARIMA model and a nonlinear
ANN model for predicting sunspot time series, Lynx and ex-
change rate data, and it was shown that the prediction accura-
cy of the hybrid model was higher than that of a single model.
Babu and Reddy also proposed a hybrid ARIMA-ANNmodel
[1]; they used kurtosis to distinguish linear and nonlinear
parts, and the proposed hybrid model achieved a higher pre-
diction accuracy for sunspot data and electricity price data.
Akouemo and Povinelli combined auto-regression with
eXogenous (ARX) processes and the ANN to identify anom-
alous data points, and the mean absolute percentage errors
decreased [8]. Zhu and Wei [28] proposed a hybrid model
using the ARIMA model and least squares support vector
machine for carbon price forecasting, and the forecasting ac-
curacy of the model was also better than that of a singlemodel.
Nourani et al. [29] used hybrid wavelet-artificial intelligence
models in hydrology. Shukur and Lee [30] proposed a hybrid
Kalman filter and ANN model to improve the accuracy of
daily wind speed forecasting. Barak and Sadegh [31] pro-
posed an ARIMA-ANFIS (adaptive network fuzzy inference
systems) hybrid algorithm to forecast energy consumption.
Qiu et al. [32] represent the empirical mode decomposition
(EMD) and DBN-based hybrid model, called EMD-DBN,
normally outperforms the corresponding single structure
models for time series forecasting, and nine benchmark
methods were compared to verify the effectiveness of the
EMD-DBN method (i.e., the persistence method [32], ensem-
ble DBN (EDBN) [33], support vector regression (SVR) [34],
ANN [35], DBN [13], random forest (RF) [36], EMD-SVR
[37], EMD-ANN [38] and EMD-RF [32]).

Based on the aforementioned studies [1, 9, 23, 25], in this
paper, we present a hybrid modelling approach that combines
a linear AR or ARIMA model with a DBN model for nonlin-
ear time series prediction because the best LR model may be
different for different types of data. We call the proposed
models BAR-DBN^ and BARIMA-DBN^ and conduct thor-
ough experimental studies. As seen in [3, 12, 14], it was
shown that compared with the Kalman smoothing model,
ARIMA model, multi-layer perceptron (MLP), self-
organizing fuzzy neural network (SOFNN), error BP,
ARMA and feed forward neural network (FFNN) model, the
DBN model is applicable to the prediction of time series and
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works better than other traditional methods or models.
Therefore, the DBN is chosen in this hybrid modelling meth-
od for time series prediction in this paper. This new hybrid
modelling method is used to overcome the limitation of a
single model, as mentioned above, for achieving more accu-
rate prediction results. For the selection of the LRmodel in our
hybrid model, according to the prediction results of the AR-
DBN and ARIMA-DBN models, the model with the mini-
mum MSE (mean square error) is used as the final prediction
model. To use the proposed hybrid modelling method, we first
use a linear AR or ARIMA model to fit a time series, and the
residuals of the AR or ARIMA models are then the nonlinear
component of the time series. Next, a DBN model is used to
model the nonlinear part. We use a fast, greedy learning meth-
od to train the DBN first in every layer [2]; then, according to
the target values, the BP algorithm is used for fine-tuning all
of the connection weights. By combining the advantages of
the LR model and DBN, the hybrid model not only can model
time series but can also extract different features of time series.
In addition, the AR-DBN and ARIMA-DBN models are
trained in a greedy manner, which permits the training of deep
layer networks and alleviates trapping into local minimums.
Therefore, benefiting from DBN, the proposed hybrid model
has desirable stability and learning ability. The proposed hy-
brid model approach is applied to the prediction of four time
series, and the results show that the prediction accuracy of the
proposed hybrid model is better than that of some models for
the studied time series.

The rest of the paper is organized as follows. The proposed
hybrid modelling method is presented in Section 2. The fore-
casting evaluation criteria used and the results and analysis of
the experiments are described in Section 3. Finally, we con-
clude this paper in Section 4.

2 Hybrid LR-DBN model

A novel hybrid LR-DBN modelling approach to time series
prediction is proposed in this section, which first uses linear
AR and ARIMA models to fit a time series and then uses two
DBNmodels to fit the two residual series of the linear AR and
ARIMA models. The final selected model (i.e., AR-DBN or
ARIMA-DBN) is determined by the statistical properties of
the final modelling residuals from the two LR-DBN models.

2.1 Linear AR modelling

In the proposed hybrid LR-DBNmodelling approach, we first
use a linear AR model to represent the linear behaviour of a
time series. A linear AR(p) model of order p is a linear func-
tion of the relation between the present value of a variable and
its past p observations. Given a time series {y(t) ∈ R, t = 1,2,3,
⋯,N}, a linear AR(p) model is defined as follows:

y tð Þ ¼ f y t−1ð Þ; y t−2ð Þ;⋯; y t−pð Þð Þ þ e tð Þ
¼ α0 þ ∑

p

i¼1
αiy t−ið Þ þ e tð Þ ð1Þ

where N represents the amount of data, f(•) represents linear
AR mapping, αi(i = 0, 1,⋯, p) represent the linear regressive
coefficients of model (1), e(t) represents the modelling error,
and p represents the order of the model. Model (1) can be used
for one-step- or multi-step-ahead prediction, and ŷ tð Þ ¼ f •ð Þ
represents the one-step-ahead forecast result.

For model (1), we use the least squares method to estimate
the AR coefficients αi(i = 0, 1,⋯, p) by making the square of
the error reach a minimum, and the obtained AR coefficients
are given by

α ¼ XTX
� �−1

XTY ð2Þ

where.

X ¼
1 y pð Þ y p−1ð Þ ⋯ y 1ð Þ
1 y pþ 1ð Þ y pð Þ ⋯ y 2ð Þ
⋮ ⋮ ⋮ ⋮ ⋮
1 y N−1ð Þ y N−2ð Þ ⋯ y N−pð Þ

2
664

3
775;Y

¼
y pþ 1ð Þ
y pþ 2ð Þ

⋮
y Nð Þ

2
664

3
775;α ¼

α0

α1

⋮
αp

2
664

3
775;

and N represents the length of the time series.

2.2 Linear ARIMA modelling

The linear ARmodel is easily estimated and suitable for use in
the proposed hybrid modelling method. However, if the time
series to bemodelled is nonstationary, the ARIMAmodel may
be better for extracting the linear part from the data in the
proposed LR-DBN modelling method. When using the
ARIMA model, the given original data are first checked for
stationarity. If they are not stationary, a differencing operation
needs to be carried out. If the processed data are still nonsta-
tionary, the differencing operation is again carried out until the
data are made stationary [1]. If differencing is carried out d
times, the integration order of the ARIMAmodel is defined as
d, and the resultant data are then fitted by an auto-regressive
moving average (ARMA) model as follows:

~y tð Þ ¼ β0 þ φ1~y t−1ð Þ þ φ2~y t−2ð Þ þ⋯þ φp~y t−pð Þ
þ ξ tð Þ þ β1ξ t−1ð Þ þ β2ξ t−2ð Þ þ⋯þ βλξ t−λð Þ ð3Þ

where ~y tð Þ ¼ 1−z−1ð Þdy tð Þ, z−1y(t) = y(t − 1), ξ(t) represents
the modelling error, φi(i = 1, 2,⋯, p) and βj(j = 0, 1,⋯, λ)
represent the model parameters, and p and λ indicate the
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orders of the model. For the estimation method of the ARIMA
model (3), one can refer to references [1, 9, 11, 24, 25, 27].
Model (3) can be used to compute the one-step-ahead fore-
casting, ŷ tð Þ, as follows: first, from (3), we obtain the predic-
tion y tð Þ ¼ β0 þ φ1~y t−1ð Þ þ φ2~y t−2ð Þ þ⋯þ φp~y t−pð Þ þ
β1ξ t−1ð Þ þ β2ξ t−2ð Þ þ⋯þ βλξ t−λð Þ and then compute

ŷ tð Þ ¼ y tð Þ− 1−z−1ð Þdy tð Þ þ y tð Þ.

2.3 Hybrid modelling

Many time series data contain both linear and nonlinear char-
acteristics. This subsection presents a hybrid LR-DBNmodel-
ling approach that combines the linear AR model (1) or
ARIMA model (3) with a DBN model for this type of time
series modelling. Time series {y(t) ∈ R, t = 1,2,3,⋯, N} is
decomposed into a linear component and a nonlinear compo-
nent as follows:

y tð Þ ¼ yL tð Þ þ yN tð Þ ð4Þ
where yL(t) represents the linear component and yN(t) repre-
sents the nonlinear component. We first use the AR model (1)
or ARIMAmodel (3) to fit the time series, and the residual e(t)
is given by

e tð Þ ¼ y tð Þ−ŷ̂L tð Þ ð5Þ
where ŷL tð Þ represents the predicted value using the AR mod-
el (1) or ARIMAmodel (3) at time t and e(t) only contains the
nonlinear element. Next, we design a DBN model to fit the
nonlinear component e(t) as follows:

e tð Þ ¼ g e t−1ð Þ; e t−2ð Þ;⋯; e t−qð Þð Þ þ ε tð Þ ð6Þ
where g(•) represents a nonlinear function approximated by
the designed DBN, q represents the order of the model, ε(t)
represents the final modelling error, and the prediction of e(t)
is denoted as ê tð Þ ¼ g e t−1ð Þ; e t−2ð Þ;⋯; e t−qð Þð Þ.

In this paper, we use the DLA to train the DBN model to
calculate the predictive value ê tð Þ. The DBN model is com-
posed of several RBMs, and the structure of the designed
hybrid model is shown in Fig. 1, where Nr represents the total
number of hidden layers, h(k)(k = 0, 1,⋯Nr) represent the out-
put values in the k − th hidden layer, and v(k)(k = 0, 1,⋯Nr)
represent the input values in the k − th visible layer. The LR
modelling residuals are used as input data for the first RBM of
the DBN. When a unit in the visible layer or hidden layer in
the DBN is activated, the probabilities of the layer are de-
scribed by [4]:

p h j ¼ 1jv� � ¼ φ bj þ ∑
m

i¼1
viwij

� �
ð7Þ

p vi ¼ 1jhð Þ ¼ φ ai þ ∑
n

j¼1
hjwij

 !
ð8Þ

where φ(x) = 1/(1 + e−x) is the sigmoid function that is obtain-
ed from the probability distribution of the visible layer or
hidden layer, with a varying range of [0,1]; wij represents the
bi-directional weight between the visible unit i and hidden unit
j; m represents the number of neurons in the visible layer;
ν = (v1, v2,⋯, vm)

T is the input vector; n represents the num-
ber of neurons in the hidden layer; h = (h1, h2,⋯, hn)

T is the
output vector; and ai and bj represent the bias in the input
variables and hidden variables, respectively.

The RBM in Fig. 1 is an energy-based model, whose ener-
gy function is defined as follows [13, 39].

E v;hð Þ ¼ ∑
m

i¼1

vi−aið Þ2
2σ2

i
− ∑

m

i¼1
∑
n

j¼1

vi
σi
h jwij− ∑

n

j¼1
bjh j ð9Þ

where σi represents the variance in the input variable vi. The
marginal probability distribution over the visible vector is de-
fined by [13, 39]:

p vð Þ ¼ ∑
h

exp −E v; hð Þð Þ
∫v∑hexp −E v; hð Þð Þdv ð10Þ

According to the energy function shown in (9), we can
define the probabilities for the visible and hidden units as
follows:

P vijhð Þ ¼ 1

σi
ffiffiffiffiffiffi
2π

p exp −

x−ai−σi ∑
n

j¼1
hjwij

 !2

2σ2
i

0
BBBBB@

1
CCCCCA ð11Þ

P hjjv
� � ¼ φ b j þ ∑

m

i¼1

vi
σi
wij

� �
ð12Þ

ˆ( )e t

ˆ( )y t

ˆ ( )Ly t ( )e t

( )y p ( 1)y p

Linear Regression model

(1)y

( 2)e t ( 3)e t ( )e t q( 1)e t

1

1 1
h v

2rN
h

1rN
h

rN
h

RBM

0 0
h v

Fig. 1 Structure of the LR-DBN model
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This model is suitable for continuous data, but the regular
binomial-Bernoulli RBM can also be used if the data are nor-
malized to [0, 1]. This method is used in our paper.

The RBMs are used as building blocks in the DBN. To
minimize the deviation between the actual value and predic-
tion value, we use the contrastive divergence (CD) algorithm,
which is a good stochastic approximation approach, and its
performance is better than that of some other algorithms [19].
According to the log-likelihood gradient, logp(v), which is
obtained from (9) and (10), we use one step CD update rules
to update the weight wij and bias ai and bj, which can be
updated by.

Δwij ¼ ε1
∂logp vð Þ
∂wij

¼ ε1
p h j ¼ 1jv� �

vi
σ2i

−
∑
m

i¼1
p vð Þp hj ¼ 1jv� �

vi

σ2i

0
BB@

1
CCA

¼ ε1
vih j

σ2i

� �
data

−
vih j

σ2i

� �
recon

� � ð13Þ

Δai ¼ ε1
∂logp vð Þ

∂ai
¼ ε1

vi
σ2
i
−
∑
m

i¼1
p vð Þvi
σ2
i

0
BB@

1
CCA

¼ ε1
vi
σ2
i

� �
data

−
vi
σ2
i

� �
recon

� � ð14Þ

Δb j ¼ ε1
∂logp vð Þ

∂b j
¼ ε1 p hj ¼ 1jv� �

− ∑
m

i¼1
p vð Þp hj ¼ 1jv� �� �

¼ ε1 hj
	 


data− hj
	 


recon

� � ð15Þ

where ε1 represents the learning rate, 〈•〉data denotes an expec-
tation with respect to the data distribution and 〈•〉recon denotes
the reconstructed state.

The output value of the first RBM is used as the input data
of the second RBM, and the next RBM is trained in the same
manner. The output value of the DBN model is the prediction
ê tð Þ. Next, using the difference between the actual output val-
ue e(t) and predicted output value ê tð Þ, the BP algorithm is
executed to fine tune the parameters of each RBM again.

The pseudo-codes for training the first RBM and fine-
tuning the DBN are presented in algorithms 1 and 2, respec-
tively. Let h(s) (s = 1,⋯,Nr) represent the output of the s − th
hidden layer, where Nr represents the total number of hidden
layers. In Algorithm 1, a(s) represents the bias of the s − th
visible layer, b(s) represents the bias of the s − th hidden layer,
and w(s) represents the weight of the pairwise interaction be-
tween the s − th layer and the (s − 1) − th layer. ê tð Þ represents
the output value of the DBN model, which is the predictive
output of the residual e(t) in (5).

Algorithm 1: Pseudo code for training the first RBM

Input values of the DBN:
T

1 , 2 , ,t e t e t e t q
m

e , 1 represents the learning rate.

Initialization: 

Weights: 
s

w

Bias: =0
s

a , =0
s

b
s

w w
s

b b
s

a a

for i=1:1:numepochs

Positive phase:

0

1 0( )

t
m

v e

h b wv

Negative phase: according to Eq. (11) and Eq. (12)

Update parameters: according to Eqs. (13-15)

0 0 1 1

1

s s
w w v h v h

1

s s
a a v v

0 1

1

s s
b b h h

end

0 1
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Finally, the output value of the DBNmodel is ê tð Þ, which is
the predicted value of the residual e(t), where ê tð Þ can be
calculated as follows.

ê̂ tð Þ ¼ φ w Nrð Þ
1 h Nr−1ð Þ tð Þ þ b Nrð Þ

1

� �
h ℓð Þ tð Þ ¼ h ℓð Þ

1 tð Þ; h ℓð Þ
2 tð Þ;⋯; h ℓð Þ

Qℓ
tð Þ

� �T
; ℓ∈ 1; 2;⋯;Nr−1f g

h ℓð Þ
nℓ tð Þ ¼ φ w ℓð Þ

nℓ h
ℓ−1ð Þ tð Þ þ b ℓð Þ

nℓ

� �
; nℓ∈ 1; 2;⋯;Qℓf g

w ℓð Þ
nℓ ¼ w ℓð Þ

nℓ ;1;w
ℓð Þ
nℓ ;2;⋯;w ℓð Þ

nℓ ;Qℓ−1

� �
; Q0 ¼ q

h 0ð Þ tð Þ ¼ e t−1ð Þ; e t−2ð Þ;⋯; e t−qð Þð ÞT

8>>>>>>>>><
>>>>>>>>>:

ð16Þ

where w ℓð Þ
nℓ denotes the weight matrix between the layer ℓ and

layer ℓ − 1, b ℓð Þ
1 ; b ℓð Þ

2 ;⋯; b ℓð Þ
Qℓ

� �
represents the bias of layer ℓ,

Qℓ represents the number of nodes in layer ℓ, Nr represents the
total number of layers, and h(ℓ)(t) denotes the output values of
layer ℓ.

Finally, the final forecasting value of the time series using
the AR-DBN model or ARIMA-DBN model is

ŷ̂ tð Þ ¼ ŷ̂L tð Þ þ ê̂ tð Þ ð17Þ

The pseudo-code for the hybrid LR-DBNmodel is present-
ed in Algorithm 3, and the modelling procedure of the pro-
posed method is as follows:

Stage 1: Linear modelling. The ARmodel (1) and ARIMA
model (3) are used to estimate linear information
from the observations. Then, the residuals e(t) are
obtained from this stage. The residuals are used as
input data for the next stage.

Stage 2: Nonlinear modelling. The DBN models are
trained using the residuals of the AR model and
ARIMAmodel. The coefficients of the two DBN
models are adjusted.

Stage 3: Combining. The predictive results of the first stage
and second stage are combined, which results in
the final predicted values of the hybrid LR-DBN

Algorithm 2: Pseudo code for fine-tuning

,dT t e t
m

e , t
m

e represents the input data, e t represents the target value at time t , f represents the 

fine-tuned learning rate.

While error does not meet the criteria

Forward propagation:

0 t t
m m

h e e

For 1, , rs N

1ssss tt
mm

h e b w h e

End for

1ˆ r r rN N N tte
m

b w h e

% ê t represents the predictive value at time t .

% Backward gradient propagation and parameter update:

The error is calculated by 
21

ˆ
2

t e t e t ;   

s s
f s

t
w w

w

s s
f s

t
b b

b

End while
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models. According to the prediction results of the
AR-DBN model and ARIMA-DBN model, the
LR-DBN model with the minimum MSE is used
as the final prediction model.

3 Application of the hybrid model to time
series

In this section, experimental studies are presented to dem-
onstrate the effectiveness and superiority of the proposed
hybrid LR-DBN model. Four time series (i.e., the

Algorithm 3: Hybrid LR-DBN model algorithm

Begin

Initialization

Pick the input example from the training set

for the entire training data

use the AR model and ARIMA model to fit the data

obtain the predicted value ˆLy t according to model (1) and model (3)

obtain the residuals of LR modelling e t according to Eq. (5)  

end

repeat

for every input e t in the training data

for all hidden units and visible units

update jh and iv according to Eqs. (7-8)

end

update weights w , bias a and b according to Eqs. (13-15)

end

until 

Use the BP algorithm to fine-tune the weights of each RBM.

return DBN output ê t

return the final predicted value ŷ t according to Eq. (17)

According to the prediction results of the AR-DBN model and ARIMA-DBN model, the model 

with the minimum MSE is selected as the final prediction model.

end
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Fig. 2 Time series generated from the Mackey-Glass equation

3008 W. Xu et al.



Mackey-Glass, sunspot, Individual Household Electric
Power Consumption (IHEPC) and electricity load demand
data sets from the Australian Energy Market Operator
(AEMO)) are used to evaluate the proposed hybrid LR-
DBN model. The modelling results of the proposed meth-
od are compared with the modelling results reported in
some studies. To verify the model prediction accuracy,
three criteria (i.e., the mean square error (MSE), normal-
ized mean square error (NMSE) and root mean square
error (RMSE)) are introduced to measure the performance
of the proposed hybrid LR-DBN model as follows:

MSE ¼ 1

N−p−q
∑
N

t¼pþqþ1
y tð Þ−ŷ̂ tð Þð Þ2 ð18Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N−p−q
∑
N

t¼pþqþ1
y tð Þ−ŷ̂ tð Þð Þ2

s
ð19Þ

NMSE ¼
∑
N

t¼pþqþ1
y tð Þ−ŷ̂ tð Þð Þ2

∑
N

t¼pþqþ1
y tð Þ−y
� �2

0
BBB@

1
CCCA ð20Þ

where y represents the mean value of the observation data.
When using the DBN model, we normalize all of the train-

ing and testing data by the following computation:

y* tð Þ ¼ y tð Þ−min y tð Þð Þ
max y tð Þð Þ−min y tð Þð Þ ð21Þ

where y∗(t) represents the normalized value of y(t).

Table 1 Comparison results for the Mackey-Glass time series

Model Estimation method Training set Testing set

MSE AIC MSE AIC

FIS (5 lags) [40] ANFIS 3.42 × 10−7 −6999.6 3.83 × 10−7 −6944.0
RBF(5,5) [41] EPA 2.92 × 10−4 −4007.4 3.50 × 10−4 −3916.8
RBF(5,5) [42] SNPOM 1.16 × 10−7 −7921.5 1.38 × 10−7 −7835.7
RBF-AR(5,3,2) [41] EPA 1.23 × 10−7 −7895.5 1.31 × 10−7 −7864.0
RBF-AR(5,3,2) [42] SNPOM 1.08 × 10−7 −7960.0 1.26 × 10−7 −7880.3
LLRBF-AR(5,3,2) [26] SNPOM 7.09 × 10−8 −8134.5 9.25 × 10−8 −8001.8
AR(5) 2.64 × 10−7 −7484.1 2.61 × 10−7 −7491.4
DBN(5,7,19,35,1) [13] 3.37 × 10−6 −4671.6 3.55 × 10−6 −4633.6
LSTM(5,20,1) 8.92 × 10−3 −4721.1 8.81 × 10−3 −4621.2
ANN(5,15,1) 1.63 × 10−6 −6384.0 4.77 × 10−5 −5036.7
ARIMA(5,1,4) 1.70 × 10−7 −7839.1 1.54 × 10−7 −7865.3
ARIMA(5,1,4)-ANN(5,15,1) HYBRID 1.39 × 10−7 −7677.1 2.72 × 10−7 −7905.1
AR(5)-DBN(5,4,9,1) HYBRID 1.67 × 10−8 −8618.5 1.99 × 10−8 −8531.6
EMD-DBN(5,9,15,1) [32] HYBRID 4.90 × 10−6 −4228.2 6.17 × 10−6 −3978.8
ARIMA(5,1,4)-DBN(5,4,9,1) HYBRID 1.01 × 10−8 −8899.2 1.71 × 10−8 −8621.6

11 100 200 300 400 500
-2

0
2

x 10
-3Predictive error

ARIMA(5)

r
orr

e

-2 -1 0 1 2

x 10
-3

0

100
200

Histograms

11 100 200 300 400 500
-2

0
2

x 10
-3

LLRBF-AR(5)

r
orr

e

-2 -1 0 1 2

x 10
-3

0

100
200

11 100 200 300 400 500
-2

0
2

x 10
-3

ARIMA-DBN(5)

r
orr

e

-2 -1 0 1 2

x 10
-3

0

100
200

Fig. 3 Predictive errors and histograms by the threemodels for the testing
data

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Points

A
m

pl
itu

de

Fig. 4 Sunspot time series

A hybrid modelling method for time series forecasting based on a linear regression model and deep learning 3009



3.1 Mackey-glass time series modelling

Here, we use the famous Mackey-Glass Eq. (22) to obtain the
time series and set a = 0.2, b = 0.1, and c = 10. Different values
of τ produce various degrees of chaos.

dy
dt

¼ ay t−τð Þ
1þ yc t−τð Þ −by tð Þ ð22Þ

For fair comparison, we select τ = 20, as used in Gan et al.
[26]. This chaotic time series model was also studied by Jang
and Gulley [40] and Shi and Tamura [41]. We use 1000 data
points, in which the first 500 observations are used to train the
model, and the last 500 observations are used to test the
modelling performance. The Mackey-Glass time series is
shown in Fig. 2.

In the first modelling stage, the order p of the LR model is
five, which is the same as that set in the literature [26, 40–42].
The AR model and ARIMA model are used to fit the original

data. In the process of dealing with the LR modelling resid-
uals, the structure of the DBN isNr = 3,Q0 = 5,Q1 = 4,Q2 = 9,
and Q3 = 1. The nonlinear DBN model in LR-DBN is fine-
tuned by the BP algorithm, and the number of fine-tuning
occurrences is 1000 in all cases. According to the prediction
results of the estimated AR-DBN and ARIMA-DBN models,
the model with the minimum MSE is selected as the final
prediction model. As seen in Table 1, the ARIMA-DBNmod-
el is selected as the prediction model, and the orders of the
ARIMA are p = 5, d = 1, λ = 4. The modelling results of the
proposed hybrid LR-DBN model are shown in Table 1. For
comparison, the modelling results of the LLRBF-AR [26],
RBF-AR [42], FIS [40], RBF [42], linear AR, ARIMA-
ANN, LSTM [19], DBN [13] and EMD-DBN [32] models
are also listed in Table 1, from which it can be seen that the
ARIMA-DBN model yields the smallest MSE and AIC, thus

Table 2 Modelling performance comparison for the test data in a sunspot series

Prediction method MSE RMSE NMSE

WP-MLP [49]
McNish-Lincoln [50]
Sello-nonlinear method [51]
Waldmeier [51]
Denkmayr [52]
RBF-OLS [46]
LLNF-LoLiMot [46]
ERNN [47]
MLP [53]
Hybrid Elman-NARX with residual [45]
SL-CCRNN [48]
AR(5)
ARIMA(5,1,4)
DBN(5,6,1)
LSTM(5,30,1)
EMD-DBN(5,9,15,25,1) [32]
ARIMA(5,1,4)-ANN(5,15,1)
ARIMA(5,1,4)-DBN(5,6,1)
AR(5)-DBN(5,6,1)

Not provided
Not provided
Not provided
Not provided
Not provided
Not provided
Not provided
Not provided
Not provided
1.41 × 10−4

Not provided
3.26 × 10−5

7.56 × 10−4

8.41 × 10−5

1.81 × 10−3

6.56 × 10−5

2.09 × 10−4

3.72 × 10−5

3.11 × 10−5

Not provided
Not provided
Not provided
Not provided
Not provided
Not provided
Not provided
1.29 × 10−2

Not provided
1.19 × 10−2

1.66 × 10−2

5.7 × 10−3

2.75 × 10−2

9.2 × 10−3

4.29 × 10−2

8.1 × 10−3

1.45 × 10−2

6.1 × 10−3

5.6 × 10−3

1.25 × 10−1

8 × 10−2

3.4 × 10−1

5.6 × 10−1

1.85
4.6 × 10−2

3.2 × 10−2

2.8 × 10−3

9.79 × 10−2

5.9 × 10−4

1.47 × 10−3

5.33 × 10−4

1.24 × 10−2

1.4 × 10−3

3.2 × 10−2

9.24 × 10−4

3.4 × 10−3

6.06 × 10−4

5.04 × 10−4
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providing the best modelling result from an Akaike informa-
tion criterion (AIC) point of view compared to other models.

For further comparison, we depict the predictive errors and
their histograms by the ARIMAmodel, the LLRBF-AR mod-
el and ARIMA-DBN model for the testing data of the
Mackey-Glass series in Fig. 3, from which it is seen that the
prediction accuracy of the ARIMA-DBN model is better than
that of the other two models.

3.2 Sunspot data modelling

A sunspot series is the most basic parameter used to describe
the level of solar activity. Studying sunspot data models plays
an important role in protecting the environment [43]. The
smoothed, monthly sunspot time series from November
1834 to June 2001 (2000 points) in Fig. 4 is obtained from
the SIDC (World Data Center for the Sunspot Index) [44]. The
data are the same as those used in the literature [45–53], where
the original data are scaled between [0, 1]. The data contain
the linear part and nonlinear part, which are widely used in
hybrid modelling [1, 25]. To evaluate the advantages of the
proposed model, a fair comparison is required. Therefore, the
sunspot data are also divided into two parts, as in the literature.
The first 1000 observations are used to train the model, and
the last 1000 observations are used to test the modelling
performance.

In this case, the LR model order p is selected as 5, as in
[45–53]. After obtaining the residuals of the LR model (i.e., the
nonlinear part), we then use the DBN to fit the residuals. The
structure parameters of the DBN model used here are Nr = 2,
Q0 = 5,Q1 = 6, andQ2 = 1, and the number of fine-tuning occur-
rences is 400. The model performance measures of the proposed
AR-DBNmodel and other models are given in Table 2. It can be
seen fromTable 2 that the AR-DBNmodel gives the best model-
ling result compared to other models for the testing data.

To ensure that the problem can be explained clearly, we
analyse the predictive errors of the proposed AR-DBN model
for the testing data, which is plotted in Fig. 5. It can be seen
from Fig. 5 that the residuals are small, and their histograms
have a reasonably symmetric shape around zero and a
Gaussian appearance. The original values of the sunspot time
series and their predicted values are compared in Fig. 6, which
shows that the AR-DBN model achieves a good prediction
accuracy near the peaks and valleys. These results show the
good statistical properties of the estimated hybrid model and
prove that the estimated hybrid model can represent the dy-
namic behaviour of the original data well.

3.3 University of California Irvine repository data
modelling

In general, deep learning algorithms are more advantageous
for large-scale data. To use a larger data set to further validate

Table 3 Modelling results comparison for IHEPC-GAP data

Dataset Model Training set Testing set

Adjustable parameters Time MSE AIC MSE AIC

IHEPC-GAP AR(20) 21 95.63 s 1.51 × 10−3 −194,580 1.52 × 10−3 −25,813
DBN(20,35,65,1) 3141 871 min 8.14 × 10−6 −345,520 2.03 × 10−7 −55,829
ARIMA(20,1,20) 41 157.37 s 1.22 × 10−3 −201,020 1.19 × 10−3 −26,702
EMD-DBN(20,35,65,1) [32] 31,410 1650 min 1.37 × 10−6 −346,000 9.51 × 10−7 5156.2

ARIMA(20,1,20)-ANN(20,55,1) 1251 601 min 1.13 × 10−4 −279,349 6.30 × 10−6 −45,218
LSTM (20,30,1) 661 30 min 7.67 × 10−5 −307,210 3.01 × 10−5 −41,966
ARIMA(20,1,20)-DBN(20,35,65,1) 3182 817 min 4.41 × 10−6 −385,610 3.51 × 10−6 −49,528
AR(20)-DBN(20,35,65,1) 3162 866 min 1.51 × 10−7 −469,840 7.47 × 10−8 −61,717

Table 4 The results of the one-day ahead load forecasting for testing data of the AEMO time series

Data Month Metrics Prediction model

Persistence
[32]

SVR
[34]

ANN
[35]

DBN
[13]

RF
[36]

EDBN
[33]

EMD-
SVR [37]

EMD-
ANN [38]

EMD-RF
[32]

EMD-
DBN [32]

LSTM
[19]

AR-
DBN

TAS Jan RMSE 89.82 60.97 69.92 63.96 65.90 60.68 61.73 63.38 58.51 56.10 118.02 53.21

Apr RMSE 157.73 111.89 94.40 93.81 92.64 109.78 104.59 87.41 86.61 85.13 190.61 83.60

Jul RMSE 120.47 90.99 89.17 87.30 90.48 85.19 92.54 82.92 81.34 73.91 126.02 80.35

Oct RMSE 109.46 79.45 72.86 75.73 69.80 80.81 82.85 80.85 73.86 68.26 128.89 67.51
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the effectiveness of the proposed hybrid modelling method, in
this subsection, experiments are carried out on UCI
(University of California, Irvine) benchmark data sets [54].
The modelling data used, with 34,000 data points, are the
Global Active Power data, which are extracted from the
Individual Household Electric Power Consumption (IHEPC)
data set, and we use the first 30,000 data points as training data
and the following 4000 data points as testing data. We denote
the data as IHEPC-GAP.

The order p of the linear regression model in the AR-DBN
or ARIMA-DBN model is determined by the AIC values. For
the IHEPC-GAP data, we finally select p = 20. The structure
parameters of the DBN model used here are Nr = 3, Q0 = 20,
Q1 = 35, Q2 = 65, and Q3 = 1, and number of fine-tuning oc-
currences is 5000. The modelling results of the different
models are given in Table 3, which shows that the AR-DBN
model with the smallest MSE and AIC gives the best model-
ling performance for the IHEPC-GAP data compared with the
other models.

Table 3 also gives the training time and the number of
adjustable parameters for each model, which shows that the
number of training times for the DBN-type models is approx-
imate (excluding the EMD-DBN) and longer than that of the
other models. This is because of the complexity of training the
DBNmodel and hybrid model. In general, the training time or
adjustable parameters of the LR-DBN model are longer or
greater than those of other single models when the DBNmod-
ule has many hidden layers, respectively. However, training of
the LR-DBNmodel performs offline; therefore, in most cases,
the use of the LR-DBN model in practice may not be affected
by long-term offline training. In this way, we computed the
results using a PC with an Intel i7–3770 CPU (3.4 GHz and
8 GB-RAM).

3.4 Prediction of the electric load time series
from AEMO

In this subsection, using the electricity load time series from
the Australian Energy Market Operator (AEMO) [55], the
performance of the proposed hybrid modelling method is
evaluated by comparing it with other eleven benchmark
modelling methods (i.e., the persistence method [32], artificial
neural network (ANN) [35], DBN [13], support vector regres-
sion (SVR) [34], ensemble DBN (EDBN) [33], empirical
mode decomposition (EMD)-based SVR model (EMD-
SVR) [37], EMD-based ANN (EMD-ANN) [38], EMD-
based random forest (RF [36]) (EMD-RF) [32], EMD-based
DBN (EMD-DBN) [32] and LSTM [19]).

For fair comparison, data sets from the year 2013 for
Tasmania (TAS) are chosen to train and test the proposed
hybrid model and other compared models. For TAS,
January, April, July and October data are used to reflect the
different seasons. In the experiment, the first 3 weeks of data

are used to train the model, and data from the remaining
week are used to test the model [32]. The electricity load
demand data from AEMO is sampled every half hour, which
means that there are 48 data points for 1 day [32, 56].
Therefore, there are 1008 data points for training and 336
data points for testing [32]. In this paper, for one-day ahead
load demand forecasting (i.e., the input data are composed of
the data points from y(t − 48) to y(t − 96)), y(t) represents the
output of the hybrid modelling method, which is the same as
that in [32].

According to the prediction results of the AR-DBN model
and the ARIMA-DBN model, the AR-DBN model with the
minimum MSE is selected as the final prediction model. The
prediction results of the one-day ahead load forecasting are
given in Table 4 using the estimated AR-DBN model and the
other eleven benchmark methods for the testing data. Table 4
shows that the proposed hybrid modelling method gives better
prediction results than the other methods in most cases. Thus,
it verifies the advantage of the proposed hybrid model for the
time series prediction.

4 Conclusion

In this paper, a novel hybridmodel composed of the LRmodel
and DBNmodel was proposed to overcome the deficiencies in
a single LR model or a single DBN model. Using an LR
model or nonlinear DBN model alone may be difficult in
characterizing a time series accurately, while the proposed
hybrid model, which combines the merits of the LR model
and DBN model, could be better than a single model. After
first using a linear AR model or ARIMA model to reveal the
linear part of the time series, the residuals of the AR or
ARIMA models only contain the nonlinear behaviour of the
time series. Next, the DBN better models the nonlinear part of
the time series. Case studies for four well-known time series
indicate that the proposed hybrid model has better modelling
accuracy than some single models and hybrid models. The
main reason is that the DBN has the strong ability to extract
features among layers and self-organization characteristics.
According to the four experimental results, we observed that
the more training data there are, the higher the prediction
accuracy. This is determined by the characteristics of deep
learning.
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