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Abstract
One of the most challenging issues when facing a classification problem is to deal with imbalanced datasets. Recently,
ensemble classification techniques have proven to be very successful in addressing this problem. We present an ensemble
classification approach based on feature space partitioning for imbalanced classification. A hybrid metaheuristic called
GACE is used to optimize the different parameters related to the feature space partitioning. To assess the performance of the
proposal, an extensive experimentation over imbalanced and real-world datasets compares different configurations and base
classifiers. Its performance is competitive with that of reference techniques in the literature.

Keywords Ensemble classification · Imbalanced classification · Feature space partitioning · Hybrid metaheuristics

1 Introduction

The classification task is one of the most important
and basic tasks in the field of machine learning. Many
approaches to this task have been developed over the
years. Some of the classical methods for this are decision
trees, artificial neural networks, K-nearest neighbours, and
support vector machines, among others. These techniques
operate under the assumption that the data contains a
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faithful balance between each of the classes represented in
the problem [13]. However, in many real-world problems,
this assumption leads to poor performance when the number
of instances of one class is much lower than those for the
other classes. If this situation occurs, the dataset is said
to be imbalanced. In these kind of datasets, the class with
the largest number of instances is called the majority class,
while a class with fewer instances is called a minority
class. Imbalanced data is present in real-world problems,
such as disease diagnosis [53], traffic congestion [43],
astronomy [54] and image classification [65, 67]. When
machine learning methods are applied to imbalanced data,
they should focus on achieving a good classification of the
minority class due to the fact that the cost of misclassifying
them is usually higher [21, 72]. Using the traffic congestion
forecasting problem as an example, it is more important to
achieve a higher accuracy regarding instances of congestion
(a minority class) than for instances of a normal state of
traffic (the majority class) due to the loss of time this can
involve for drivers in a real-world scenario.

Many approaches have been proposed in the literature
to deal with learning from imbalanced data: e.g., sampling
methods, cost-sensitive algorithms, one-class classifiers,
and ensemble classification techniques. These approaches
can be placed into three different categories:

– Data-level approaches, which are focused on restruc-
turing the training datasets in order to balance them.
Oversampling and undersampling methods are the most
common examples of this category;
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– Algorithmic level approaches, which introduce modifi-
cations in the classification methods to improve their
performance when classifying the minority class; and

– Ensemble methods, which combine the estimation of
a set of individual classifiers trained over the same
data. The most widely used approach of this class is
the so-called boosting algorithm, which works under
the premise that a set of weak classifiers works better
than a strong one. Examples of boosting algorithms are
SMOTEBoost [9], RUSBoost [52], and AdaBoost [57].

In the present paper, we focus on ensemble methods
because they have been shown to be one of the most
successful approaches to deal with imbalance classification
so far. However, the correct design of the ensemble plays
a pivotal role in obtaining good performace and involves,
among other aspects, decisions related to the selection of the
base classifiers and the method for aggregating the output of
the base classifiers [50]. This paper is centred on a particular
approach to designing ensembles called AdaSS (Adaptive
Splitting and Selection), which simultaneously divides the
feature space into partitions and establishes a different
classifier for each partition by adjusting the weights of the
different base classifiers within the discriminant function
of the collective decision-making method. AdaSS was
proposed by [28] and recently used in other papers, such
as [29, 30], with very promising results. This method for
building ensembles entails the resolution of a complex
optimization problem whose objective is the minimization
of the error of the whole system.

The proposal presented in this paper is related to the use
of ensemble methods based on AdaSS as a powerful tool to
deal with imbalance datasets because, as far as we know, it
has not been applied before in this context. The motivations
behind this research are:

– To select the best area possible to create the partitions
for each ensemble by optimizing the positions of the
centroids of the clusters that delimit the partitions of the
feature space.

– To optimize the weights of each base classifier within
the discriminant function of the collective decision-
making method of each ensemble. This optimization
will be unsupervised. In this way, neither expert
knowledge nor an external validation set will be
necessary to determine the initial values of the weights.
This also arranges that the classifiers work in a non-
restrictive way, i.e. the final weights will be based on the
level of expertise that the classifier had obtained along
the execution in every class.

– To address the last two tasks (feature space centroids
and individual weight optimization for each partition
and ensemble, respectively) in one integrated process.

This approach has been proven to obtain very good
results in other papers, such as [28–30]. The main
novelty of our proposal w.r.t. these publications is the
incorporation of a more powerful method to solve
the underlying optimization problem. This optimization
problem becomes even more complex in the context of
imbalanced data because the prediction of the majority
classes leads to local minima with big basins of
attraction, which is a characteristic that is known to
lead optimization methods to perform more poorly. For
this reason, in our opinion, the use of more advanced
optimization algorithms is a must in order to ensure the
best possible performance of the resulting ensemble.
To this end, we have used a hybrid metaheuristic,
called GACE, that combines a genetic algorithm (GA)
with a cross entropy (CE) method for the resolution
of the mentioned optimization problem. The main
advantage of this technique is the combination of the
exploration ability of the GA and the exploitation ability
of the CE. This method was successfully applied to the
optimization of hierarchical fuzzy rule-based systems in
[43], and continuous functions in [42].

– To be able to deal with imbalanced data without the
use of data-level methods such as SMOTE, which is
currently one of the most successful ones. As mentioned
before, data-level approaches to deal with imbalance
necessitate the modification of the training set, which
leads to an extra cost in terms of the time required for
the application of the technique. Our aim is to design
methods that provide similar or better results without
this extra cost by avoiding modifications of the training
set.

This paper is an extension of the work presented in [44].
The main novelties are:

– A wider and more realistic benchmark: the total number
of datasets has increased from 12 to 40 by incorporating
new imbalanced datasets. Furthermore, 10 out of 40
correspond to real-world datasets for traffic congestion
prediction.

– A new analysis of the algorithm’s behaviour: a study
of the influence of the size of the sub-population on
the performance of the ensemble method has been
included.

– An extension of the comparative study: the proposal
has been compared with new high-performance and
well-known methods from the literature on imbalanced
classification.

The rest of this paper is structured as follows. Section 2
reviews different publications related to ensemble methods
and hybrid techniques with a special focus on its application
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to imbalanced datasets. The ensemble methodology based
on AdaSS and GACE is exposited in Section 3. The
experimental set-up is presented in Section 4. Lastly,
Section 5 contains the conclusions and presents avenues for
future research.

2 Background

In this section, different approaches in the literature related
to our proposal are reviewed. We focus this section on
research in the state of the art from the three different areas
that form part of the problem and, the proposed solution
is exposited in this paper: Section 2.1 contains a brief
introduction to the definition of ensembles, their use, and
different design approaches; ensemble methods applied not
only to general themes but also to imbalanced datasets in
Section 2.2; metaheuristics applied to imbalanced datasets
in Section 2.3, and hybrid methods applied to both
imbalanced and balanced datasets in Section 2.4.

2.1 Ensemble learning: general approach

Ensemble classification can be defined as the combination
of a group of classifiers whose individual decisions are
joined in some manner to provide a final output [33]. The
principal idea behind the use of ensemble classification is to
learn from data using multiple individual classifiers.

Generally, ensemble classification has proved to obtain
better results than an individual classifier on its own, when
they are applied to the same problems [11], and it has also
been presented as a method to improve the performance
of a single classifier [5, 11, 32, 71]. When an ensemble is
created, there are some design decisions to make, such as
the algorithm or algorithms to use as individual classifiers
(also called the base classifiers), the sampling strategy,
and the collective decision making method for the final
output, i.e. the method for combining the outputs of the base
classifiers. Other aspects to take into account could be the
generation of diversity or the way each classifier will be
trained (with the whole training set or a part of it). This
area of research has attracted significant interest in recent
years. The interested reader is referred to [50] for a tutorial
on this topic, describing a taxonomy for characterizing
ensemble methods, and the general process of constructing
classification ensembles.

Focusing on the selection method used to choose the most
appropriate individual classifiers given a classification problem,
we can find two approaches: static classifier selection,
where the same ensemble is applied to all test samples;
and dynamic classifier selection, where a different ensemble
may be applied to each test sample [19]. Within dynamic

classifier selection, an interesting concept is the local
specialization of the base classifiers on specific partitions
of the feature space [37]. Some proposals in this direction
assume the local specialization of the individual classifiers
while others divide the feature space into partitions and
establish a different classifier for each of them.

Regarding the choice of a collective decision-making
method, two main groups of methods can be defined for this
task. The first one includes algorithms that join the answers
of their classifiers. Majority voting [51] and other kinds of
popular voting variants [37, 39, 59] are part of this group.
Advanced techniques include weighting the importance of
the decisions coming from the base classifiers. Treating
the process of weight selection as a separate learning
process is an alternative method [22, 28, 38]. One of
the advantages of these techniques is that they effectively
counteract any overtraining of the base classifiers [28].
The second group is formed by the procedures that use
a posteriori probability estimator to fuse classifiers at the
level of their discriminating functions. These methods do
not require a learning procedure. However, they can be only
used in clearly defined conditions [15].

As mentioned in the introduction, the present paper is
focused on the ensemble design method called AdaSS.
According to the previous taxonomy, it uses a dynamic
classifier selection method based on local specialization,
since different individual classifiers are applied depending
on the feature space partition they belong to; and weighted
voting as the collective decision-making method.

2.2 Ensemble learning applied to imbalanced
classification

Ensemble learning can be defined as the use of multiple
learning algorithms to obtain better predictive performance
than could be obtained from any of these algorithms alone
[47, 50]. Over the last decade, much research related to
this approach has been presented in the literature, focusing
on the classification problem for imbalanced datasets.
For example, in [49], a resampling ensemble algorithm
is developed focused on the imbalanced classification
problem. In this case, the minority classes are oversampled
while the majority classes are undersampled. To construct
the ensemble, machine learning methods are selected.

Another example can be found in [58], which presents a
bagging technique where two learning algorithms are used
to construct the ensemble to deal with an on-line imbalanced
learning problem.

In [40], a resampling ensemble algorithm is developed
focused on the classification problems for imbalanced
datasets. The optimization technique used in this case is the
BAT algorithm, where the accuracy rate of all the classes is
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optimized at the same time. From the experimental results,
the system can be used to reduce the time complexity
as well as enhance the accuracy rate of the imbalanced
classification process.

Another ensemble-based method is presented in [17], where
Synthetic Minority Over-sampling Technique (SMOTE)
and Rotation Forest algorithm are used to address the class
imbalance problem. Twenty KEEL imbalanced datasets
are used in the experimentation, where the proposal is
compared with different classification ensemble methods,
such as SMOTE-Boost, SMOTE-Bagging, and SMOTE-
random sub-space.

There are many papers related to this theme, which means
that it is an active issue in the literature. For this reason,
the state-of-the-art of ensemble imbalance classification is
wide. Interested readers are referred to [33, 46], and [57] for
different surveys of this issue.

2.3 Metaheuristics applied to imbalanced
classification

Metaheuristic techniques have been used in many different
fields over the last decades. This category includes algorithms
such as Particle Swarmn Optimization (PSO) [34], Ant Colony
Optimization (ACO) [14], Genetic Algorithm (GA) [25],
Bat Algorithm (BA) [62], Data Gravitation Classification
(DGC) [66], and others [68]. Focusing on classification,
and especially on imbalanced problems, these methods have
been widely used on their own as well as in combination
with other techniques in the literature. In [60], PSO is
proposed for omics data classification. The algorithm is
designed to handle the different characteristics of omics
data, such as high dimensionality, small sample size, and
class imbalance.

For example, in [63] there is proposed an undersampling
method based on ACO for an imbalanced problem involving
DNA microarray data. The proposal is evaluated on four
benchmark skewed DNA microarray datasets. It outper-
forms many other sampling approaches.

In [6] there is developed a cost-sensitive feature selection
method using a type of GA called a chaos genetic
algorithm. The evaluation function considers both the costs
of acquiring each feature and the costs of misclassification,
in the field of network security, weakening the influence of
the many instances from the majority classes in large-scale
datasets. The proposal is tested on a large-scale dataset of
network security, using two kinds of classifiers: C4.5 and
K-nearest neighbours.

Other paper related to this topic can be found in
[45], which analyses the performance of evolving diverse
ensembles using genetic programming for software defect
prediction with imbalanced data.

2.4 Hybrid algorithms applied to imbalanced
classification

In this subsection, different hybrid approaches in the
literature are mentioned. Hybrid algorithms are a way
of dealing with the weaknesses of the different methods
combined and, at the same time, maximizing their strengths.
These algorithms have been used in many and varied
domains, such as medicine [24], scheduling optimization
[41], transportation systems [43], and astronomy [53].

In the imbalanced classification field, many publications
can be found that use hybrid algorithms to deal with this
problem. For example, in [61], a PSO is proposed for
dealing with the class imbalance problem in medical and
biological data mining. A PSO is combined with multiple
classifiers and a performance metric for evaluation fusion.
The majority classes are ranked using multiple objectives
according to their merit and then combined with the
minority class to create a balanced dataset.

In [55] there is presented a soft-hybrid algorithm to
improve classification performance. The hybrid algorithm is
formed by different modified machine learning techniques
whose results were combined at the end of an experimen-
tation phase. Measures such as the true positive rate, the
F -measure, and the G-mean were used as quality measures.

Another example can be found in [8], where a hybrid
algorithm formed by a GA and an undersampling method is
created to improve the accuracy of support vector machines
on skewed datasets.

Lastly, in [3], the authors developed a hybrid Adaboost-
SVM method using Gaussian Mixture Modeling (GMM) to
investigate the effect of using GMM with the boosted SVM
in a multi-class phoneme recognition problem with the aim
of improving the classification of imbalanced data.

There are two main novelties in the present paper
with respect to the methods reviewed in this and the
previous subsections. Using feature space partitioning as
the approach to build the ensemble for imbalanced datasets
has not been used in this context before. GACE, the
optimization method for the ensemble approach in the
present paper, is a more powerful optimizer than those
used in previous work on ensemble-based feature space
partitioning. As mentioned before, the main motivation
behind this is that the problem becomes harder when the
datasets are imbalanced due to the big basins of attraction
created by the majority classes.

The concept of feature space partitioning has been
applied to imbalance classification in [35] and [36]. In
[35], the feature space partitioning consists in clustering
strategies, such as c-means or fuzzy c-means, and the
weights of the base classifiers are based on a heuristic
function that takes into account the Euclidean distance
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between the object and the boundary of the respective
class. In [36], the feature space partitioning is based on
random sub-spaces; the weights of the base classifiers are
set in the same way as before. Here, the main difference
from these two papers is the use of AdaSS as the feature
space partitioning technique: its main advantage is that it
simultaneously optimizes the partitions, assigns classifiers
to the partitions, and determines the weights of the base
classifiers for inferring the output class.

3 Description of the ensemble approach

In this section, we describe the different elements that
make up the proposed approach. First, we describe the
AdaSS algorithm for the simultaneous partitioning of the
feature space and assignment of classifiers to the partitions
(Section 3.1). Then, the details of the training algorithm
based on the GACE hybrid metaheuristic will be presented
in Section 3.2.

3.1 Description of the adaptive splitting
and selection algorithm

The Adaptive Splitting and Selection Algorithm exploits the
local competencies of given classifiers. Let us assume the
feature space X is divided into a set of H clusters,

X =
H⋃

h=1

X̂h, ∀k, l ∈ {1, ..., H }, k �= l, X̂k ∩ X̂l = ∅

(1)

where X̂h denotes the h-th constituent (cluster). The clusters
are defined by their centroids Ch = {c1

h, . . . , c
d
h}, where

d is the feature space dimension. With this information we
define:

member(C, x) = arg minH
h=1dist (x, Ch) (2)

as the function that returns the index of the cluster where
C = {C1, . . . , Ch} is the set of centroids and dist refers
to the Euclidean distance. In the case of a draw, the cluster
with the lower index is selected. Then, the decision rule for
the combined classifier � is given by the formula

�(x) = �̄member(C,xn)(xn) (3)

where �̄h is the classifier assigned to the h-th cluster (called
an area classifier). In this way, the compound classifier

returns the output of the classifier assigned to the cluster
to which the instance x belongs. It could be a single
classifier or an ensemble classifier, which is the case of
our proposal. It is important to take into account that the
parameter H plays a fundamental role in the performance
of the ensemble. On the one hand, a larger number of
clusters makes possible a wider exploration of the local
competencies of the area classifiers, but on the other hand, it
could lead to overfitting. In the present paper, the parameter
H is kept fixed throughout the experimentation.

We will now present the classification rules for the area
or local classifiers �̄h, which in turn are also ensembles. Let
us assume that we have k (base) classifiers �1, �2, . . ., �k

with which to build these local (ensemble) classifiers (note
that we use �̄ with a subscript to refer to the local classifier
and � with a superscript to refer to the base classifiers that
we use to build the local classifiers). For a given instance
x ∈ X, each local classifier decides, based on a discriminant
function, whether x belongs to class i ∈ M = {1, . . . , m}.
Let F (l)(i, x) denote a function that is assigned to class
i for a given value of x, and that is used by the l-th
classifier. To calculate the response of each of the classifiers,
a matrix W is defined that represents the weights used for
the discriminant function F . This matrix has k rows and
m columns of values, where k is the number of classifiers
used in the ensemble and m is the number of classes in the
dataset. In this way, the weight matrix corresponding to the
h-th cluster Wh can be formulated as follows:

Wh = [[w1
h(1), . . . , w1

h(m)], . . . , [wk
h(1), . . . , wk

h(m)]] (4)

Having said this, the local classifier �h uses the next
decision rule:

�̄h(x) = i if F̂h(i, x) = maxj∈MF̂h(j, x) (5)

where

F̂h(i, x) =
k∑

l=1

wl
h(i)F

(l)(i, x), (6)

and

k∑

l=1

wl
h = 1, ∀i ∈ M (7)

Finally, let us assume that for the training of the classifier
we have a learning set LS, that consists in N learning
objects. Then, LS is defined as

LS = (x1, y1), (x2, y2), . . . , (xN , yN) (8)
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where xn denotes the values for the nth object, and yn

denotes its correct class label. As usual, LS is divided into
two subsets: the training set |T S| = T , used during train-
ing, and the validation set |V S| = N − T . The optimization
criteria for the global combined classifier is

Q(�) = Q̂(�, T S) (9)

where Q̂ refers to a specific performance metric of the
classifier � in the training set T S (e.g. accuracy, area
under the ROC curve, etc.) that is defined according to the
user’s preferences. In the next subsection, we explain the
description and workflow of the training algorithm based on
the hybrid metaheuristic GACE.

3.2 Description of the training algorithm

The objective of the training algorithm is to learn the best
combination of cluster centroids C = {C1, . . . , CH } and
ensemble weights W = {W1, . . . , WH } that minimizes the
objective function described in (9), given a set of base
classifiers �1, �2, . . ., �k . To solve this optimization
problem, we used the GACE method, as mentioned before.
GACE is a hybrid algorithm that combines a genetic
algorithm with cross entropy in order to take advantage of
the exploratory ability of GA as a search algorithm and the
exploitation capability of CE, creating a synergy between
them. The benefits of GACE as an optimization method
are supported by its good results in topics such as the
optimization of hierarchical fuzzy rule-based systems [43]
or continuous functions [42].

The general working of the training method is as follows
(its pseudocode is given in Algorithm 1). First, the initial
population (POP ), with POPsize individuals, is randomly
generated following the structure of the codification of the
solution. In each generation, the population is then divided
into two sub-populations, GApop and CEpop, with GAsize

and CEsize individuals (POPsize = GAsize + CEsize),
respectively. The individuals of GApop are chosen using
the corresponding selection operator, while the individuals
in CEpop are the CEsize best individuals in the current
population POPt . The crossover and mutation operators of
the GA are applied to GApop, while the CE method is used
to evolve the corresponding sub-population in CEpop. Both
sub-populations of new individuals are joined into a single
population that then completely replaces the previous one.
This process is iteratively repeated until a specified stop
condition is reached. Interested readers are referred to [43]
for more information about the hybrid algorithm.

Algorithm 1 Pseudocode of the workflow followed by

the optimization method GACE

Data:
Result:

1

2

3

4 0

5 Initialize(

6 Initialize Means vector

7 Initialize Standard Deviation vector

8 Evaluate

9 while do
10 SelectionOperator(

11 SelectBestSamples(

12 Offspring Crossover( )

13 Offspring Mutation(Offspring )

14 Offspring Generate( )

15 Offspring )

16 Offspring )

17 Offspring Offspring

18 Evaluate 1

19 Add the best individual found to 1 if it is

not in the population

20 1

21 end

In the next part of this subsection, we will explain
the codification used for the solutions, the initialization
of the population, and the specific crossover and mutation
operators employed.

3.2.1 Codification of the solution

In a formal way, one individual in the population is
composed of two different parts: one of them codifies the
centroids of the partitions (C), and the other one contains the
weights used in the discriminant functions of the ensemble
classifiers (W ). Figure 1 shows an individual with the
described structure.

The part codifying the centroids C is represented as an
array of H elements, where H is the number of areas or
partitions defined by the user. Each centroid ch, where h ∈
[1 · · · H ] is the index of the partition, is a vector with the
same number of elements as the dimension of the dataset d.

As mentioned in previous sections, there are H matrices
contained in W . Each of these matrices, Wh, h ∈ [1 · · · H ],
has k × m entries, where k is the number of classifiers
used in the ensemble and m is the number of classes in
the dataset, as mentioned before. Each entry is the weight
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Fig. 1 Structure of an individual
in the population with H = 3
areas, k = 3 classifiers and
m = 2 classes

in discriminant function of the classifier l to determine the
class i of an instance assigned to area h. For example,
w3[1, 2] is the weight for the first classifier to determine
the second class in the third partition. Each of the possible
solutions is represented as shown in (10).

Ind(C, W) =
{

C = (C1, C2, . . . CH )

W = (W1, W2, . . . WH )
(10)

Here, ch = (v1, v2, . . . vd) and Wh =
{Wh[1, 1], ...Wh[k, m]}. Then, GACE is applied to achieve
the following goals:

1. Tuning the position of the different centroids C in the
feature space.

2. Adjust the values of the weight matrices W , for the
different classifiers and classes.

3.2.2 Initialization of the population

For the initial population, each value in Ch is initialized
with a random value in the interval [minr , maxr ], where
maxr and minr are the upper and lower bounds of the r-th
dimension of the feature space.

For the weights, each value of the matrices is initialized
randomly in the interval [0, 1] and then normalized to ensure
that, for each class, they sum to one. As mentioned, each Ch

has a size equal to the number of the variables in the feature
space, and each Wh has a size of k classifiers per m classes.

3.2.3 Operators of the sub-populations

Different operators are applied to each sub-population.
Selection, crossover, and mutation operators are used in the
case of GApop. As selection operator, tournament selection
[20] has been adopted. This operator chooses two random
individuals in the population and selects the best one
according to their fitness. A total of GAsize individuals are
chosen by this operator to form the GApop sub-population.
The crossover operator chosen was BLX-α [16]. Given
two parents X = (x1 . . . xz) and Y = (y1 . . . yz), for
each element i, BLX-α crossover creates two offspring by
generating random values in the interval shown in (11), with
α ∈ [0, 1]. The choice of this crossover is justified due to its
good synergy between exploration and exploitation of the
individual [23].

[min(xr , yr) − α|xr − yr |, max(xr , yr ) + α|xr − yr |] (11)

Gaussian mutation [4] is taken as the mutation operator.
Each element xi of an individual is updated according to
(12):

ar = N (xr ,
maxr − minr

10
) (12)

where N is a normal distribution with mean xr and standard
deviation (maxr - minr).
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4 Experimentation

This section presents the results of the experimentation
carried out. The objectives of this experimentation are listed
below:

– To validate the performance of the proposed ensemble
classification approach based on AdaSS and GACE on
complex imbalanced datasets and real-world problems.

– To analyse the influence of the algorithm used to
generate the base classifiers and the sizes of the
sub-populations of GACE in the performance of the
proposal.

– To compare the approach with different state-of-the-art
algorithms in imbalanced classification.

This section is structured as follows. In Section 4.1,
the different datasets and their main characteristics are
presented. The parameter settings and base classifiers are
presented in Section 4.2. The analysis of the results and
the comparison versus the state-of-the-art are presented in
Section 4.3.

4.1 Datasets

A total of 30 imbalanced datasets of different degrees of
complexity have been extracted from the KEEL repository1

in order to test the performance of the proposal in
different kinds of scenarios. The datasets chosen have
been used extensively in the literature. Table 1 shows the
characteristics of each dataset: name, number of instances,
features, classes, and imbalance ratio (IR) [69, 70], which
is the ratio between the number of instances from the
majority and minority classes. The larger the ratio is, the
more imbalanced the dataset. The number of classes in these
imbalanced datasets is two, which means that we are dealing
with imbalanced binary classification. These classes are
defined as positive (minority class) and negative (majority
class).

In addition, real-world datasets have been used in order
to apply the proposal to traffic congestion forecasting in a
road; the data collected comes from Lisbon highway A5 and
was used in EU FP7 project ICSI.2 This highway is a 25-
km long motorway in Portugal that connects Lisbon with
Cascais. Data from a total of 10 sensors in the road have
been transformed into datasets, and the proposal has been
applied to forecast the congestion in each one. Each dataset
contains 9 variables: day of the week, hour of the day,
number of motorbikes, number of cars, number of trucks,
number of buses, number of other types of vehicles, total

1http://sci2s.ugr.es/keel/datasets.php
2http://www.ict-icsi.eu/

Table 1 Details of imbalanced datasets used in the experimentation

No. Name Objects Features IR

1 Ecoli1 220 7 3.36

2 Ecoli3 336 7 8.6

3 Glass1 214 9 1.82

4 Glass6 214 9 6.28

5 Iris0 150 4 2

6 Page-blocks0 5472 10 8.79

7 Pima 768 8 1.87

8 Vehicle1 846 18 2.9

9 Yeast1 1484 8 2.46

10 Yeast3 1484 8 8.1

11 Glass016vs2 192 9 10.29

12 Ecoli4 336 7 14.3

13 Glass016v5 184 9 19.44

14 Glass5 214 9 22.78

15 Dermatology6 358 34 16.9

16 Shuttle6 230 9 22

17 Poker9 244 10 29.5

18 Yeast28 482 8 23.1

19 Yeast4 1484 8 28.1

20 Led7digit 443 7 10.97

21 Ecoli0137 281 7 39.14

22 WineRed8 656 11 35.44

23 WineWhite9 168 11 32.6

24 Yeast6 1484 8 41.4

25 Poker896 1485 10 58.4

26 WineWhite395 1482 11 58.28

27 Shuttle25 3316 9 66.67

28 WineRed35 691 11 68.1

29 Poker895 2075 10 82

30 Poker86 1477 10 85.88

number of vehicles, and a class called nextlevel. This class
contains the value of congestion that appears in the next hour at
a certain point and can take as values {LOW,MED,HIG}.
The level of congestion is defined to be LOW if the total
number of vehicles counted is below the 15th percentile,
MED (Medium) if it is above the 15th percentile but below
the 30th, and HIG (High), otherwise. In the present paper,
HIG is the positive class (minority class), and LOW and
MED will form the negative class (majority class). The
three first weeks of the month were used as the training set
and the last week as the test set. This group of datasets will
be referred to as A5-Traffic in the following sections.

4.2 Parameter settings

This section presents the parameter settings for the
experimentation and the definition of the base classifiers.

http://sci2s.ugr.es/keel/datasets.php
http://www.ict-icsi.eu/
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Three different algorithms have been used for creating the
baseline classifiers:

– Minimal distance classifier, which applies the 3-nearest
neighbours (3-NN) algorithm [10].

– A neural network (NN) method [27], trained with back-
propagation algorithm. The number of neurons depends
on the dataset used: the size of the input layer is equal
to the number of features. The size of the output layer is
equal to the number of classes. The number of neurons
in the hidden layer is equal to one-half of the sum of the
numbers of neurons in the input and output layers. In
this case, the total number of iterations was set to 2000
in order to have a fair comparison and not take so much
time for the bigger datasets.

– Support vector machine (SVM) classifier [7], using
the sequential minimal optimization procedure with a
polynomial kernel.

A homogeneous pool was used in this experimentation,
that is, all the base classifiers in the ensemble are built
with the same algorithm. To induce diversification, each
classifier is trained with a subset of 1/k-th of the instances
from the training set, where k = 3 is the number of
classifiers in the pool. Each subset is mutually exclusive
from each other and contains the same distribution of
examples as the training set. In this way, each ensemble
in the experimentation created with our proposal will have
three base classifiers generated with the same algorithm (3-
NN, NN or SVM) each one trained with 1/3 of the instances
of the dataset. Focusing on the parameters of the algorithm
used in the experimentation, the population size (POPsize)
has been set to 50, and the size of the GA sub-population
to 40 or 45 individuals, GAsize = {40, 45}. The reason
for setting POPsize to this value is because of the good
performance shown in other classification and optimization
tasks [42]. Besides, in those papers, a population with
a higher value of GAsize than the size of the CE sub-
population (CEsize) tended to show better results [43]. As
for the GA part parameters, the crossover probability pc

was set to 0.85 and the mutation probability pm to 0.1.
Regarding the CE parameters, the learning rate value Lr is
usually recommended to be set within the interval [0.7, 0.9].
In this case, Lr = 0.7 was chosen. The parameter nup,
i.e. the number of individuals that is used to update the CE
means and standard deviations, was set to nup = 0.4 ×
CEsize. The number of partitions H is the same as in the
present authors’ previous paper, and was set to H = 3.
The number k of classifiers in each pool was also set to
3. The stop condition was designed as follows: in the first
place, it checks if the best solution has not changed for 20
generations, and if so, the execution is stopped. Otherwise,
it checks if a maximum number of generations Tmax = 200

is fulfilled, stopping the execution in that case. A summary
of the parameter settings is presented in Table 2.

4.3 Results

This section presents the results obtained by the proposal
using the different configurations mentioned before. A
broad comparison of these results with those obtained by
state-of-the-art techniques from the literature is made. The
following classification techniques from the literature have
been used for this comparison:

– RUSBoost (RUS) [52] removes instances from the
majority class by randomly undersampling the dataset
in each iteration. After training a classifier, the weights
of the original dataset instances are updated, and then
another sampling phase is applied.

– UnderBagging to OverBagging (UOBag) [56] makes
use of both oversampling and undersampling. One of
the key points of this algorithm is that the diversity
is boosted using a resampling rate in each iteration.
This rate defines the number of instances taken from
each class. Hence, the first classifiers are trained with a
smaller number of instances than the last ones.

– Class and Prototype weighted classifier (CPW) [48] is
a method of extracting weights associated to prototypes
and classes, with the aim of enhancing the classification
accuracy of the 1-NN rule.

– Adaboost [31] is a boosting algorithm which repeatedly
invokes a learning algorithm to successively generate a
committee of simple, low-quality classifiers.

– FARCHD [1] is a three-stage fuzzy association rule-
based classification model which aims to obtain an
accurate and compact fuzzy rule-based classifier with a
low computational cost.

– Multilayer perceptron for cost-sensitive classification
problems (NNCS) [64] uses a multilayer perceptron to
classify, with minimal cost, a dataset of examples.

Table 2 Values of the parameters used in the experimentation

Parameter Symbol Values

Population size POPsize 50

GA pop. size GAsize {40, 45}
CE pop. size CEsize {10, 5}
Crossover probability pc 0.85

Mutation probability pm 0.1

Learning rate lr 0.7

No. updates nup 0.4 CEsize

No. of areas H 3

No. of classifiers k 3

No. of iterations Tmax 200
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Table 3 AUC obtained by the techniques on imbalanced datasets with IR less than 10

Ecoli1 Ecoli3 Glass1 Glass6 Iris0 Page-blocks0 Pima Vehicle1 Yeast1 Yeast3

AdaSSGACEKNN .40 0.890 0.864 0.750 0.889 0.999 0.931 0.703 0.673 0.700 0.897

AdaSSGACENN .40 0.833 0.734 0.647 0.903 0.970 0.880 0.738 0.778 0.711 0.890

AdaSSGACESV M .40 0.872 0.785 0.639 0.641 0.841 0.751 0.589 0.651 0.688 0.891

AdaSSGACEKNN .45 0.223 0.202 0.468 0.425 0.140 0.930 0.699 0.684 0.701 0.897

AdaSSGACENN .45 0.799 0.739 0.649 0.905 0.963 0.883 0.733 0.766 0.710 0.889

AdaSSGACESV M .45 0.875 0.761 0.635 0.647 0.910 0.757 0.577 0.652 0.681 0.892

RUS 0.884 0.840 0.780 0.921 0.990 0.956 0.725 0.786 0.701 0.919

UOBag 0.876 0.886 0.739 0.901 0.970 0.953 0.730 0.745 0.720 0.919

CPW 0.812 0.747 0.775 0.871 1.000 0.871 0.664 0.628 0.664 0.827

Adaboost 0.843 0.799 0.613 0.880 1.000 0.840 0.742 0.702 0.599 0.805

FARCHD 0.857 0.753 0.718 0.894 1.000 0.754 0.704 0.624 0.671 0.854

NNCS 0.854 0.856 0.607 0.851 1.000 0.736 0.727 0.660 0.677 0.743

It is important to note that some of the compared
techniques use a pre-processing algorithm to modify the
data before its execution. RUS uses SMOTE, and UOBag
applies resampling to the data before the application of
C4.5 as a base classifier. The techniques mentioned above
have been included to determine whether the performance
of the proposal of this paper, which we will refer to as
AdaSSGACE, reaches or exceeds that of state-of-the-art
techniques that do use pre-processing techniques.

KEEL [2] has been used for running the state-of-the-art
techniques, and MATLAB r2017 using PRTools Toolbox3

for the execution of AdaSSGACE. The experiments were
carried out on an Intel Xeon E5 2.30 GHz computer with
32 GB of RAM. For validation, 5-fold cross-validation was
used. The number of repetitions made for each method was
set to 10. The performance metric that we used to set the
function Q̂(�, T S) defined in (9) is the Area Under the
ROC Curve (AUC), which is calculated as in (13):

AUC = 1 + T Prate − FPrate

2
(13)

where T Prate and FPrate correspond to the true positive
ratio and the false positive ratio, respectively. This metric
is used in order to compare imbalanced datasets in a fair
way. It indicates the central tendency of the results obtained
by each method. The configurations of the proposed
technique are denoted by AdaSSGACEBC,GAsize , where
BC (either K-NN, NN, or SVM) is the algorithm used
to generate the three base classifiers of the ensemble,
and GAsize is the size of the GA sub-population. In this
way, AdaSSGACEKNN .40 indicates that this ensemble has
three base classifiers generated with KNN and the GAsize

parameter was set to 40.
Table 3 shows the results obtained by the techniques

in the imbalanced datasets with IR less than 10. Bold

3prtools.org/prtools/prtools-overview/

values represent the two best AUC values obtained on the
corresponding dataset. The most remarkable configurations
of the proposal are those formed by the couple (K-NN,
40) and by SVM with both population sizes. In the case of
the techniques from the state-of-the-art, RUS and UOBag
are the two techniques with the best results, with similar
values which, in turn, are similar to those obtained by
AdaSSGACEKNN .40.

Table 4 shows the results obtained for those datasets
with IR between 10 and 30. As in the previous table,
bold values represent the two best AUC values obtained on
each dataset. In this case, those configurations that used
K-NN to generate the base classifiers obtain, on average,
better results than the rest of AdaSSGACE configurations,
although the NN configurations also get similar results.
As for the state-of-the-art techniques, RUS and UOBag
continue obtaining good performance on almost every
dataset. Also remarkable is the performance obtained by the
FARCHD technique, which improves the values obtained
when it was applied to those datasets with IR less than 10.

Lastly, Table 5 contains the results obtained by the
techniques in those datasets with IR greater than 30. As
in previous cases, K-NN configurations lead to better
performance. Following the results obtained in the previous
datasets, the RUS technique obtains the best results among
the state-of-the-art techniques. In this case, FARCHD
improves the results obtained by UOBAG, placing itself as
the second best state-of-the-art technique in this case. While
the results of the proposal configurations are close, equal
to, or better than the results obtained by the best techniques
in most cases, in some datasets, such as Poker896, they
are far from the best results. This may be due to the fact
that in datasets with high IR, a bagging or boosting method
significantly improves the obtained results.

The AUC obtained by the techniques on the A5-Traffic
datasets are collected in Table 6. A total of 10 real-data

prtools.org/prtools/prtools-overview/
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Table 4 AUC obtained by the techniques on imbalanced datasets with IR in the interval [10,30]

Dermatology Ecoli4 Glass016vs2 Glass016v5 Glass5 Led7digit Poker9 Shuttle6 Yeast28 Yeast4

AdaSSGACEKNN .40 0.938 0.933 0.708 0.867 0.804 0.851 0.740 0.960 0.796 0.798

AdaSSGACENN .40 0.966 0.760 0.630 0.796 0.718 0.856 0.563 0.920 0.720 0.739

AdaSSGACESV M .40 0.749 0.907 0.611 0.733 0.675 0.785 0.636 0.843 0.737 0.509

AdaSSGACEKNN .45 0.946 0.940 0.678 0.863 0.785 0.845 0.705 0.965 0.801 0.799

AdaSSGACENN .45 0.979 0.805 0.594 0.832 0.764 0.839 0.586 0.894 0.711 0.709

AdaSSGACESV M .45 0.768 0.917 0.592 0.697 0.724 0.785 0.628 0.833 0.742 0.514

RUS 0.966 0.896 0.700 0.954 0.949 0.894 0.590 0.902 0.747 0.827

UOBag 0.938 0.867 0.629 0.963 0.988 0.881 0.556 0.948 0.778 0.763

CPW 0.500 0.870 0.577 0.836 0.893 0.500 0.950 0.900 0.769 0.677

Adaboost 0.500 0.842 0.494 0.891 0.995 0.910 0.572 0.900 0.770 0.548

FARCHD 0.949 0.872 0.491 0.789 0.745 0.883 0.848 1 0.700 0.565

NNCS 0.893 0.660 0.471 0.880 0.995 0.647 0.604 0.813 0.652 0.543

Table 5 AUC obtained by the techniques on imbalanced datasets with IR greater than 30

Ecoli0137 Poker895 Poker896 Poker6 Shuttle25 WineRed35 WineRed8 WineWhite395 WineWhite9 Yeast6

AdaSSGACEKNN .40 0.790 0.631 0.618 0.528 0.986 0.590 0.589 0.535 0.608 0.875

AdaSSGACENN .40 0.848 0.507 0.572 0.576 0.874 0.559 0.588 0.558 0.598 0.772

AdaSSGACESV M .40 0.682 0.588 0.557 0.469 0.672 0.580 0.528 0.531 0.576 0.515

AdaSSGACEKNN .45 0.814 0.629 0.623 0.526 0.982 0.608 0.578 0.535 0.645 0.868

AdaSSGACENN .45 0.848 0.507 0.586 0.551 0.912 0.579 0.588 0.561 0.580 0.757

AdaSSGACESV M .45 0.685 0.596 0.483 0.494 0.642 0.597 0.535 0.560 0.566 0.524

RUS 0.896 0.547 0.915 0.631 1 0.644 0.815 0.674 0.893 0.851

UOBag 0.867 0.618 0.534 0.584 1 0.615 0.700 0.576 0.714 0.814

CPW 0.870 0.517 0.504 0.504 1 0.494 0.541 0.537 0.894 0.734

Adaboost 0.842 0.495 0.735 0.864 0.929 0.547 0.528 0.599 0.685 0.598

FARCHD 0.872 0.500 0.960 0.900 1 0.499 0.498 0.500 0.788 0.599

NNCS 0.660 0.529 0.503 0.451 0.590 0.583 0.664 0.444 0.418 0.686

Table 6 AUC obtained by the techniques on A5-Traffic datasets

CL400 CL600 CL1505 CL1980 CL3600 CL4000 CL6800 CL7100 CL8050 CL9400

AdaSSGACEKNN .40 0.913 0.869 0.945 0.956 0.881 0.945 0.810 0.922 0.961 0.845

AdaSSGACENN .40 0.925 0.846 0.966 0.956 0.887 0.956 0.809 0.946 0.961 0.905

AdaSSGACESV M .40 0.916 0.785 0.927 0.953 0.707 0.952 0.817 0.908 0.963 0.697

AdaSSGACEKNN .45 0.909 0.868 0.949 0.954 0.873 0.947 0.806 0.923 0.960 0.850

AdaSSGACENN .45 0.915 0.828 0.969 0.953 0.891 0.954 0.828 0.940 0.959 0.886

AdaSSGACESV M .45 0.916 0.803 0.931 0.957 0.644 0.953 0.812 0.860 0.961 0.741

RUS 0.975 0.978 0.952 0.949 0.940 0.961 0.889 0.950 0.951 0.663

UOBag 0.997 0.966 0.966 0.949 0.922 0.958 0.889 0.937 0.965 0.825

CPW 0.967 0.868 0.965 0.500 0.852 0.500 0.864 0.975 0.500 0.967

Adaboost 0.950 0.894 0.966 0.938 0.927 0.938 0.839 0.958 0.948 0.971

FARCHD 0.905 0.841 0.984 0.945 0.873 0.935 0.864 0.962 0.957 0.929

NNCS 0.863 0.876 0.945 0.887 0.829 0.933 0.818 0.914 0.933 0.850
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Table 7 Results of Friedman
test for all the proposal
configurations

< 10 [10, 30] > 30 A5-Traffic Global

AdaSSGACEKNN .40 2.05 1.8 2.25 3.75 2.46

AdaSSGACENN .40 2.8 3.8 3.35 2.15 3.02

AdaSSGACESV M .40 4.5 4.85 5.3 4.2 4.71

AdaSSGACEKNN .45 4.35 1.8 2.45 4.1 3.17

AdaSSGACENN .45 3 4 3.15 2.9 3.26

AdaSSGACESV M .45 4.3 4.75 4.5 3.9 4.36

datasets are used, and each execution was repeated 10
times. The name of each column corresponds to the name
of the dataset. For this part of the experimentation, the
results obtained by all the techniques are similar. The
techniques mentioned in the previous experiments maintain
good performance, while others with poorer results, such
as CPW or Adaboost, improve their performance on these
datasets.

To assess whether the differences in performance
observed in the previous tables are significant or not, it is
necessary to perform statistical tests. For this reason, in this
article we follow the guidelines proposed in [12], where
non-parametric statistical testing is suggested in situations
like the one faced in this study (several datasets, algorithms
and configurations).

First, the Friedman test [12] has been used for multiple
comparisons to check if significant differences exist among
the set of algorithms. Besides this, the average rank return
by this test allows sorting the algorithms in terms of
performance. Each column of Tables 7 and 8 shows the
mean ranking provided by this non-parametric test for
each group of datasets (imbalanced with different IRs and
A5-Traffic), and globally over all datasets, for all the
configurations of the proposal, and between the comparative
methods and the best proposed configuration obtained
respectively. In case of the configurations, the best values
are obtained by (K-NN, 40), followed by the (NN,40)
configuration. As best configuration, AdaSSGACEKNN,40

will be used in Table 8 as the reference of the proposal.
Then, in the mentioned table, the best global rank is
obtained by RUS on all the datasets, followed by UOBag.

The proposed configuration obtains the 3rd best rank.
Looking at each group of datasets, we can see that RUS gets
the best average ranking in the imbalanced datasets with IR
lower than 10, between 10 and 30, and greater than 30, while
UOBag obtains the better rank in A5-Traffic. The best rank
obtained by the proposal is in the datasets with IR between
10 and 30, where it gets the second best rank.

To assess if the performance of the best technique in
the experimentation is significantly different from the other
techniques from the state-of-the-art, we applied Holm’s
[26] and Finner’s [18] post-hoc tests. Table 9 shows the
results returned by the Holm’s and Finner’s post-hoc tests
using RUS as the control method for all the datasets,
except in A5-traffic datasets, where UOBAG is used as the
control method due to the rank obtained in the previous
Friedman tests. These tests were applied for each group of
datasets, and globally over all datasets. The differences are
considered significant when the p-value returned by the test
is lower than 0.05. The values are rounded up to a maximum
of three decimal places for the sake of the visualization.

These tests show that the results obtained by the
proposed technique have no significant differences from
those obtained by the state-of-the art techniques with KNN
as base classifier and GAsize set to 40, according to
both statistical tests, except for IR > 30 datasets and
in a global way. Finally, in the case of state-of-the-art
techniques, RUSBoost obtains significantly better results
than all the techniques except UOBAG in all the datasets,
and Adaboost in IR ∈ [10, 30] datasets. For A5-Traffic
datasets, where UOBAG is the reference method, it only
obtains significantly better results against NNCS.

Table 8 Results of Friedman
test between state-of-the-art
algorithms and the proposal

< 10 [10, 30] > 30 A5-Traffic Global

AdaSSGACEKNN .40 3.4 2.95 4 4.45 3.7

RUS 2.35 2.8 1.85 2.9 2.475

UOBAG 2.55 3.45 3.15 2.65 2.95

CWP 5.25 4.7 4.35 4.65 4.73

Adaboost 4.65 4.35 4.8 3.45 4.31

FARCHD 4.75 4.2 4.05 3.95 4.23

NNCS 5.05 5.55 5.8 5.95 5.58
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Table 9 Results of Holm and Finner tests for the experimental techniques

<10 [10, 30] >30 A5-Traffic Global

Holm Finner Holm Finner Holm Finner Holm Finner Holm Finner

AdaSSGACEKNN .40 0.55 0.32 1.002 0.87 0.068 0.033 0.25 0.12 0.022 0.013

UOBAG 0.83 0.83 1.002 0.56 0.178 0.178 − − 0.325 0.325

CPW 0.01 0.01 0.24 0.14 0.038 0.019 0.19 0.11 0 0

Adaboost 0.05 0.025 0.434 0.205 0.011 0.006 0.815 0.466 0 0

FARCHD 0.05 0.025 0.441 0.212 0.068 0.033 0.535 0.255 0 0

NNCS 0.025 0.01 0.026 0.026 0 0 0.003 0.003 0 0

RUS − − − − − − 0.815 0.795 − −

5 Conclusions

In this paper, we have presented a new ensemble
classification approach for imbalanced data based on
feature space partitioning and hybrid metaheuristics, and
concretely, on the Adaptive Splitting and Selection Strategy
and the GACE metaheuristic, respectively. The main
objective of this new method was to deal with imbalanced
data without the use of data-level methods, something that
usually entails an extra cost in terms of the time required for
preprocessing the data.

The developed technique has been applied to a total of 40
datasets of different types: datasets with different imbalance
ratios, and real imbalanced datasets with traffic information.
Furthermore, the proposal has been compared with state-
of-the-art classification techniques in the literature, such as
RUSBoost, FARCHD, CPW, Adaboost, and NNCS. The
performance obtained by the proposed method in most
cases is similar to or better than the results obtained by
the compared techniques, regardless of whether or not they
used data-level methods. The best results so far have been
obtained with configurations with KNN and NN as the
algorithm to generate the base classifiers, with different
sizes for the genetic populations. Statistical tests have been
applied in order to corroborate the results obtained.

As future lines of research, it would be interesting to use a
heterogeneous pool of classifiers instead of a homogeneous
one. Also, another type of algorithms to be used as base
classifiers could be explored. Configurations with various
different sizes of the GA sub-population could be applied in
order to show a more dedicated analysis to the optimization
method in this theme. Besides, more techniques from the
literature could be used for the comparison. In this paper,
the experimentation has been focused on the performance of
the presented proposal in binary imbalanced classification.
In future work, OVO and OVA-based ensembles will be
used with multi-class imbalanced datasets, and a study of
the time consumed and the diversity of different population
configurations will be made. Finally, in this paper, a hybrid

method was formed by joining a GA and the CE technique.
Other methods, such as PSO, ACO or BAT algorithm, could
be used to replace either of the two components in order to
compare the performance against the proposal in ensemble
classification.
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