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Abstract
In this paper, an efficient projection wavelet weighted twin support vector regression (PWWTSVR) algorithm is proposed.
PWWTSVR determines the regression function by solving a pair of smaller unconstrained minimization problems in primal
space, which can reduce computational costs. Classical SVR algorithms give the same emphasis to all training samples,
which degrades performance. PWWTSVR gives samples penalty weights determined by wavelet transforms. These are
applied to both the quadratic empirical risks term and the first-degree empirical risks term to reduce the influence of outliers.
A projection axis in each objective function is sought to minimize the variance of the projected points due to the utilization
of a priori information of training data. Therefore, data structure terms are added to the penalty functions. The final regressor
can avoid the overfitting problem to a certain extent, and yields great generalization ability. Numerical experiments on
artificial and benchmark datasets demonstrate the feasibility and validity of the proposed algorithm.

Keywords Machine learning · Support vector regression · Projection variance · Unconstrained minimization · Wavelet
transform

1 Introduction

Support vector machine (SVM) is a computationally
powerful machine learning method that can be used for
classification and regression; the SVM for regression is
termed an SVR. The adoption of kernel mapping can
extend the algorithm to nonlinear cases, which typify real-
world problems based on Vapnik’s theory [1, 2]. One of
the advantages of SVM over other supervised learning
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methods, such as neural networks, is that it reduces the
upper bound of generalization error due to its structural risk-
minimization principle. Other strong points include having
sparse solutions and operating with a small-scale dataset,
which result in its wide use in pattern-recognition.

Along with continuous research progress, many modi-
fications have been proposed in recent years [3–14, 26].
Jayadeva et al. [3] proposed a twin SVM (TSVM) by find-
ing two nonparallel bound functions, which can increase
the computational speed by solving two smaller quadratic
programming problems (QPPs) instead of one large one in
standard SVM. In 2010, Peng [4] extended this strategy
to regression applications, resulting in twin support vec-
tor regression (TSVR). To reduce the heavy computational
costs of QPP problems, Suyken et al. [5, 6] proposed least
squares SVM (LS-SVM) for large-scale dataset problems.
ν-support vector regression (ν-SVR) [7] extends standard
SVR by forcing a fraction of the data samples to lie inside
an ε tube and minimizing the width of the tube by intro-
ducing a parameter ν. Inspired by ν-SVR and integrating
the concept of pinball loss [8–11], Xu [12] proposed asym-
metric ν-twin support vector regression (Asy-ν -TSVR),
which is a kind of twin SVR suitable for dealing with
asymmetric noise. In 2013, Shao et al. [13] introduced reg-
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ularization terms in objective functions of TSVR, which
resulted in ε-twin support vector machine for regression
(ε-TSVR), taking account of structural risk minimization
rather than the empirical risk minimization principle. ε-
TSVR can improve the performance of regression because
it partly solves the overfitting problem. Reshma Rastogi et
al. proposed a v-twin support vector machine-based regres-
sion method (ν-TWSVR) [14]. The regularization terms and
insensitive-bound values ε in the method were all added
into the objective functions to minimize the risks, which
can adjust the values of ε automatically. Peng et al. [15]
introduced a pair of projection terms to the optimization
problems, with the advantage that the data’s structural infor-
mation is embedded into the learning process, resulting in
the decrease of empirical variance values. Melki et al. [16]
studied multi-target regression and presented several mod-
els for problems with multiple outputs, [18] studied an SVM
multiple-instance formulation, and [19] proposed an online
learning algorithm for solving L1 SVM. Ding et al. [17]
adopted a wavelet kernel function based on the wavelet
kernel features and proposed a novel TSVM.

However, all of the training samples in the above methods
are considered to have the same status and are given the
same penalties, which may degrade performance due to the
influence of noise or outliers. It is useful to give the training
samples different weights depending on their importance.
Xu et al. [20] proposed K-nearest neighbor (KNN)-based
weighted twin support vector regression, in which the local
information of data is used to improve prediction accuracy.
Gupta [21] later presented several solutions in the primal
space based on KNN. KNN-based methods are suitable for
regression with clustered samples, but not for time series.

Additionally, the traditional regressors of SVR are
calculated in approximate dual space. However, it was
demonstrated [22] that the approximate dual solution may
not result in a good primal approximate solution. Several
papers, such as the one mentioned above [21], deal
with optimization problems by directly solving the primal
problems.

In this paper, we present a TSVR called projec-
tion wavelet weighted twin support vector regression
(PWWTSVR), which is suitable for time-series data, and is
solved in the primal space. Combining the idea of the pro-
jection axis [15] and ε-TSVR, PWWTSVR finds a pair of
bound functions by solving two smaller-sized optimization
problems. More importantly, it introduces a weight matrix
based on a wavelet transform that can reduce the influence
of noise in the training samples. The regularization terms
and data structure terms are all embedded in the objec-
tion functions, which can combine the merits of ε-TSVR
and the projection method. Moreover, regressors of the pro-
posed algorithm are solved in terms of unconstrained primal
problems rather than solving their dual problems, which

can improve learning speed. The numerical results show
that the algorithm has better generalization ability. The key
contributions of this work include the following:

1. A weight matrix is introduced to both the quadratic
and first-degree empirical risks terms to reduce the
influence of outliers. This is significantly different
from [23] and [20], and is an expansion of traditional
methods. The weight matrix, which represents the
distance of noised samples and its ‘real position,’ can
reflect the prior information of the training samples.
Larger weights are given to samples with less noise, and
smaller weights to those with more noise. The addition
of D to the objection function can reduce the impact of
noise and outliers.

2. Wavelet transform theory is adopted to calculate a
weight matrix, which is a new angle of preprocessing
samples. A wavelet transform is a kind of time-
frequency representation for signals, and the proposed
method based on wavelet theory is suitable for dealing
with time-sequence samples due to the character of the
wavelet transform.

3. The proposed objective functions are proved mathemat-
ically to be convex, so global and unique solutions can
be obtained. The objective functions are added projec-
tion terms and are solved in the primal space, which
can improve performance and reduce the computational
complexity.

This paper is organized as follows. Section 2 briefly
describes ε -TSVR and TPSVR. Section 3 proposes
PWWTSVR. Experimental results are described in
Section 4 to investigate the validity of the proposed
algorithm, and Section 5 provides concluding remarks.

2 Brief introduction to ε-TSVR and TPSVR

In this section, the classical ε-TSVR [13] and TPSVR [15]
algorithms are described briefly. Assume a training set T =
{(x1, y1), (x2, y2), ..., (xm, ym)}, where xi ∈ �n and yi ∈
�, i = 1, 2, ..., m. Then the output vector of the training
data can be denoted as Y = (y1, y2, ..., ym)T ∈ �m and the
input matrix as A = (A1, A2, ..., Am)T ∈ �m×n , and the i-
th row Ai = (xi1, xi2, ..., xin)

T is the i-th training sample.
Let e and I be a ones vector and an identity matrix of
appropriate dimensions, respectively. The kernel mapping
can be expressed as K(·, ·).

2.1 Twin support vector regression (ε-TSVR)

Proposed by Shao et. al., ε-TSVR is an efficient regression
method with low computational costs compared to SVR [24,
25]. ε-TSVR has two ε-insensitive-bounds: down-bound
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denotes f1(x) = wT
1 x+b1 , and up-bound denotes f2(x) =

wT
2 x + b2, where w1, w2 ∈ �n, b1, b2 ∈ �. Then, the

regressor f (x) can be gotten by taking the mean of the two
bound functions, i.e.,

f (x) = 1

2
(f1(x) + f2(x)) = 1

2
(w1 + w2)

T x + 1

2
(b1 + b2).

(1)

By introducing the regularization terms 1
2 (w

T
1 w1 + b21) and

1
2 (w

T
2 w2 + b22), the primal problems can be expressed as

follows:

min
w1,b1,ξ

1
2c3(w

T
1 w1+b21)+ 1

2 ‖Y −(Aw1 + eb1)‖2+c1e
T ξ

s.t. Y −(Aw1 + eb1) � −ε1e − ξ, ξ �0 (2)

and

min
w2,b2,η

1
2c4(w

T
2 w2+b22)+ 1

2 ‖Y −(Aw2 + eb2)‖2+c2e
T η

s.t. (Aw2 + eb2) − Y � −ε2e − η, η � 0 (3)

where c1, c2, c3, c4, ε1 and ε2 are positive parameters.
The main advantage of ε-TSVR is the introduction of the
extra regularization terms 1

2c3(w
T
1 w1 + b21) and

1
2 (w

T
2 w2 +

b22), thus the structural risk-minimization principle is
implemented.

After introducing the Lagrangian functions of (2) and (3),
and considering the corresponding Karush-Kuhn-Tucker
(K.K.T.) necessary and sufficient optimality conditions, the
dual QPPs can be obtained as

min
α

1
2α

T G(GT G + c3I )−1GT α − YT G(GT G + c3I )−1GT α + (eT
1 ε + YT )α

s.t. 0 � α � c1e (4)

and

min
γ

1
2β

T G(GT G + c4I )−1GT β + YT G(GT G + c4I )−1GT β − (Y T − eT
2 ε)β

s.t. 0 � β � c2e (5)

where G = [ A e ]. Once the QPPs (4) and (5) are solved,
the optimized parameters u1, u2 can be obtained as

u1 = [ wT
1 b1 ]T = (GT G + c3I )−1GT (Y − α) (6)

u2 = [ wT
2 b2 ]T = (GT G + c4I )−1GT (Y + β). (7)

The final regressor can be calculated by (1). It can be seen
that the structural risk is taken into account in the model,
which can partly overcome the problem of over-fitting.
However, the prior information of training data is not used.
That is, the two bound functions do not depict the data
structure.

2.2 Twin projection support vector regression
(TPSVR)

Peng proposed a modified TSVR, called TPSVR [15],
which also finds a pair of insensitive bound functions by two
smaller-sized QPPS. In each QPP, TPSVR finds a projection
axis, ŵk = [wk; −1], k = 1, 2, which is normal to the

line of the bound regression functions. The projection axis
is meant to make the projected zone or the variance of the
projected noise as small as possible. In mathematics, this
idea can be expressed as:

min
1

2n

n∑

i=1

(ŵT
k zi − ŵkμz)

2

= min
1

2n

n∑

i=1

ŵT
k (zi − μz)(zi − μz)

T ŵT
k

= min
1

2
ŵT

k 	zŵk

= min
1

2
(wT

k 	xwk + 	y) − wT
k 	xy (8)

where zi is the training point zi = (xi; yi), i = 1, ..., n, μz

is the centroid point of zi , and 	z is the covariance matrix
of zi , 	x and 	y are the empirical covariance matrices
of inputs and responses, 	xy is the empirical correlation
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coefficient matrix between the inputs and responses. They
are defined as

	z = 1

n

n∑

i=1

(zi − μz)(zi − μz)
T ,

	x = 1

n

n∑

i=1

(xi − μx)(xi − μx)
T ,

	y = 1

n

n∑

i=1

(yi − μy)(yi − μy)
T ,

	xy = 1

n

n∑

i=1

xiyi − μxμy, (9)

where μx and μy are the respective centroid points of the
inputs and outputs. Noting that 	y has a fixed value for a
given training example, the objective function (8) can be
expressed as

min
1

2
ŵT

k 	zŵk = min
1

2
wT

k 	xwk − wT
k 	xy (10)

The TPSVR model is as follows:

min 1
2wT

1 w1 + λ1
2 ŵT

1 	zŵ1 − υ1
n

n∑
i=1

(wT
1 xi + b1) + c1

n

n∑
i=1

ξi

s.t. yi ≥ wT
1 xi + b1 − ξi , ξi ≥ 0,

(11)

min 1
2wT

2 w2 + λ2
2 ŵT

2 	zŵ2 − υ2
n

n∑
i=1

(wT
2 xi + b2) + c2

n

n∑
i=1

ηi

s.t. yi ≤ wT
2 xi + b2 + ηi, ηi ≥ 0,

(12)

where λk, υk, ck, k = 1, 2, are the trade-off factors of the
terms.

Solutions of the TPSVR model and other details referred
to Peng [15]. This model is suitable for many problems
due to the introduction of projection axes, where the
projected points in the normal directions have minimized
variances. Although some performance improvement is
obtained through the model, samples with different amounts
of noise have the same effect on the regression functions,
which degrades performance.

3 Projection wavelet weighted twin support
vector regression (PWWTSVR)

Inspired by ε-TSVR and TPSVR, a projection wavelet
weighted TSVR (PWWTSVR) is presented in this section.
Similar to other TSVRs, PWWTSVR is constructed by two
non-parallel hyperplanes, down-bound f1(x) = wT

1 x + b1
and up-bound f2(x) = wT

2 x + b2, where each determines
the ε -insensitive bound regressor, and the final regressor is
also f (x) = 1

2 (f1(x) + f2(x)).

3.1 Linear PWWTSVR

Linear PWWTSVR also solves a pair of optimization
problems, which are described as follows:

min
w1,b1,ξ1

L1 = 1
2 (Y − (Aw1 + eb1))

T D(Y − (Aw1 + eb1)) + 1
2c11(w

T
1 w1 + b21)

+ 1
2c12ŵ

T
1 	zŵ1 + c13e

T Dξ1
s.t. Y − (Aw1 + eb1) � −ε1e − ξ1, ξ1 � 0e ,

(13)

and

min
w2,b2,ξ2

L2 = 1
2 (Y − (Aw2 + eb2))

T D(Y − (Aw2 + eb2)) + 1
2c21(w

T
2 w2 + b22)

+ 1
2c22ŵ

T
2 	zŵ2 + c23e

T Dξ2
s.t. (Aw2 + eb2) − Y � −ε2e − ξ2, ξ2 � 0e ,

(14)

where c11, c12, c13, c21, c22, c23 > 0 are parameters chosen
a priori by the user; ε1, ε2 are insensitive parameters; and
ξ1, ξ2 are slack vectors to measure the errors of samples
outside the “ε tube”. D ∈ �m×m is a weighting matrix,
which will be discussed later, and m is the number of
training points. Figure 1 shows the geometric interpretation
of linear PWWTSVR as an example.

If we omit the weight matrix D, the first term in the
objective function of (13) has the same expression as
the second term of the ε-TSVR objective function (2). It
is the sum of weighted squared distances from training

points to the down-bound function, which is called empirical
risk. Minimizing this causes the function f1(x) to fit the
training samples and avoid under-fitting. The second term is
a regularization term, which can make f1(x) as smooth as
possible. The structural risk minimization is implemented by
minimizing the regularization term 1

2 (w
T
1 w1 + b21). A small

value of 1
2 (w

T
1 w1+b21) corresponds to the function (13) being

flat. The third term, the data structure term, can minimize
empirical variance values of projected points on the down-
bound functions. The fourth term aims to minimize the sum
of errors of the points lower than the down-bound f1(x),
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which can possibly over-fit the training points. The ratios of
the four penalty terms in the objective function of (13) can
be adjusted by the choice of c11, c12,and c13.

To solve the optimization problems (13) and (14), we
convert the constrained problems to a pair of unconstrained
problems by introducing the plus function (·)+ as

min
w1,b1

L1 = 1
2 (Y − (Aw1 + eb1))

T D(Y − (Aw1 + eb1)) + 1
2c11(w

T
1 w1 + b21)

+1

2
c12ŵ

T
1 	zŵ1 + c13e

T D((Aw1 + eb1) − (Y + ε1e))+ (15)

and

min
w2,b2

L2 = 1
2 (Y − (Aw2 + eb2))

T D(Y − (Aw2 + eb2)) + 1
2c21(w

T
2 w2 + b22)

+1

2
c22ŵ

T
2 	zŵ2 + c23e

T D((Y − ε2e) − (Aw1 + eb1))+ (16)

Plus functions that are not differentiable can be replaced by
smooth approximate functions p(·), and the fourth terms of
(15) and (16) are respectively replaced by

L12 = c13e
T Dp(Gu1 − f1), (17)

and

L22 = c23e
T Dp(f2 − Gu2), (18)

where f1 = (Y + ε1e), f2 = (Y − ε2e), u1 = [wT
1 , b1]T ,

u2 = [wT
2 , b2]T , and G = [A, e]. For simplicity, we define

L11(w1, b1) = 1

2
(Y −(Aw1+eb1))

T D(Y −(Aw1 + eb1))

+1

2
c11(w

T
1 w1+b21)+

1

2
c12ŵ

T
1 	zŵ1, (19)

L21(w2, b2) = 1

2
(Y −(Aw2+eb2))

T D(Y −(Aw2 + eb2))

+1

2
c21(w

T
2 w2+b22)+

1

2
c22ŵ

T
2 	zŵ2. (20)

Then the objective functions (15) and (16) are converted to
differentiable functions as follows:

min
w1,b1

L1 = L11 + L12 (21)

min
w2,b2

L2 = L21 + L22 (22)

In this paper, we adopt the sigmoid integral function as a
smooth function; it is defined as

p(x) = x + 1

α
log(1 + exp(−αx)). (23)

where α is a positive real constant. Note that L1 in (21) and
L2 in (22) are convex (see Theorem 1 ). Global and unique
solutions can be gotten, and the Newton iterative approach
adopted later in this paper will be convergent. In Section 3.2,

the Newton iterative approach will be adopted to solve the
minimization problems.

Remark 1 The differences between TPSVR and PWWTSVR
are as follows.

(1) The weighting matrix D is inserted in the first and last
term in (13). The weighting matrix D is calculated by
wavelet transform theory, and the addition of D can
decrease the influence of noise and outliers.

(2) The second term, 1
2c11(w

T
1 w1+b21), in (13) is different

from the first term, 1
2w

T
1 w1, in (11). Adding b1 to the

objective function can optimize the offset parameter b1
and improve the performance.

(3) The third term in the objective function of (11) is
meant to optimize the sum of estimated values of
training points, and optimizing it causes the regression
function f1(x) to be as large as possible [15]. The
constitution of this form has benefited in the deduction
of dual QPP (see (20) in [15]). Compared with the
third term in the objective function of (11), the first
term in the objective function of (13) of the proposed
algorithm has a definite meaning. It is the sum of
weighted squared distances from training points to
the down-bound function, and it can minimize the
empirical risk.

For the optimization problem (14), we have similar
illustrations.

3.2 Newton iterative approach

First, substitute (10) into (19) and rewrite (19) as

L11(w1, b1) = 1

2
(Y −(Aw1+eb1))

T D(Y −(Aw1 + eb1))
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Fig. 1 Geometric interpretation
of PWWTSVR

+1

2
c11(w

T
1 w1 + b21)

+1

2
c12w

T
1 	xw1 − c12w

T
1 	xy

= 1

2
YT DY − YT D(Aw1 + eb1)

+1

2
wT
1 AT DAw1+ eT b1DAw1+ 1

2
b21e

TDe

+1

2
c11(w

T
1 w1 + b21) + 1

2
c12w

T
1 	xw1

−c12w
T
1 	xy

= 1

2
wT
1 (c11I + AT DA + 	x)w1

+(−YT DA + eT b1DA − c12	
T
xy)w1

+1

2
(c11 + eT De)b21 − YT Deb1+ 1

2
YTDY (24)

The gradient of L11 over w1 and b1 can be deduced as

∇L11(w1) = (c11I + AT DA + 	x)w1

+AT Deb1 − (AT DY + c12	xy) (25)

∇L11(b1) = eT DAw1 + (c11 + eT De)b1 − eT DY (26)

Let u1 = [wT
1 , b1]T as previous, and define

Q1 =
[

c11I + AT DA + 	x AT De

eT DA c11 + eT De

]
,

P1 =
[

AT DY + c12	xy

eT DY

]
. The gradient of L11 over u1 is

∇L11(u1) = Q1u1 − P1. (27)

The second-order gradient of L11 over u1 can be deduced as

∇2L11(u1) = Q1. (28)

Similarly, the second-order gradients of L21 are expressed
as

∇L21(u1) = Q2u2 − P2, (29)

∇2L21(u2) = Q2. (30)

where u2 = [wT
2 , b2]T , Q2 =

[
c21I + AT DA + 	x AT De

eT DA c21 + eT De

]
,

and P2 =
[

AT DY + c22	xy

eT DY

]
.

Second, the first- and second-order gradients of L12 and
L22 can be calculated as

∇L12(u1) = c13G
T Ddiag

(
1

1 + exp(−α(Gu1 − f1))

)

(31)

∇2L12(u1)=αc13G
TDdiag

(
exp(−α(Gu1−f1))

1+exp(−α(Gu1−f1))2

)
G

(32)

∇L22(u2) = −c23G
T Ddiag

(
1

1 + exp(−α(f2 − Gu2))

)

(33)

∇2L22(u2)=αc23G
TDdiag

(
exp(−α(f2−Gu2))

1+exp(−α(f2−Gu2))2

)
G.

(34)
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Thus the first- and second-order gradients of L1 in (21) are
deduced, and substituting (27), (28), (31), and (32) in it
results in

∇L1(u1) = Q1u1 − P1 + c13G
TDdiag

(
1

1+exp(−α(Gu1−f1))

)
(35)

∇2L1(u1) = Q1 + αc13G
TDdiag

(
exp(−α(Gu1 − f1))

1+exp(−α(Gu1 − f1))2

)
G.

(36)

Similarly, for L2,

∇L2(u2) = Q2u2 − P2 − c23G
T Ddiag

(
1

1 + exp(−α(f2 − Gu2))

)

(37)

∇2L2(u2) = Q2 + αc23G
TDdiag

(
exp(−α(f2 − Gu2))

1+exp(−α(f2−Gu2))2

)
G.

(38)

The iterative solutions of minimization problems (15) and
(16) can be obtained by adopting the Newton method and
using (35)–(38 ), as follows:

uk+1
1 = uk

1 − (∇2L1(u1))
−1(∇L1(u1)), (39)

uk+1
2 = uk

2 − (∇2L2(u2))
−1(∇L2(u2)). (40)

Theorem 1 L1 in (21) and L2 in (22) are convex.

To prove Theorem 1, the following lemmas are needed.

Lemma 1 [27] Let A ∈ �n×n be a real symmetric matrix.
ThenA is positive definite if and only if there is a B ∈ �m×n

such that A = BT B.

Lemma 2 [27] Suppose that A = [aij ] ∈ �n×n is real
symmetric and strictly diagonally dominant. If aii > 0 for
all i = 1, 2, ...n, then A is positive definite.

Lemma 3 [28] Let A be a real symmetric matrix

partitioned as A =
[

A11 A12

AT
12 A22

]
, in which A22 is square

and nonsingular. Then A > 0 (A is positive definite, the
same below) if and only if both A22 > 0 and A/A22 > 0.
Here, A/A22 is the Schur complement of A22 in A, i.e.,
A/A22 = A11 − A12A

−1
22 AT

12.

Proof Here, L1 is an example for proving the theorem.
It can be seen that if the second-order gradients of L1,
∇2L1(u1) > 0, then L1 is convex. Now, we prove
∇2L1(u1) > 0. Rewrite (36) as

∇2L1(u1) = ∇2L11(u1) + ∇2L12(u1)

=
[

c11I + AT DA + 	x AT De

eT DA c11 + eT De

]

+αc13G
T Ddiag

(
exp(−α(Gu1−f1))

1 + exp(−α(Gu1 − f1))2

)
G.

(41)

The diagonal matrix D and diag
(

exp(−α(Gu1−f1))

1+exp(−α(Gu1−f1))
2

)
are positive,

so the real symmetric matrix Ddiag
(

exp(−α(Gu1−f1))

1+exp(−α(Gu1−f1))
2

)

can be decomposed as BT B, where B is a square root

matrix of Ddiag
(

exp(−α(Gu1−f1))

1+exp(−α(Gu1−f1))
2

)
. It can be checked

that ∇2L12(u1) can be decomposed as

∇2L12(u1) = αc13(GB)T (GB). (42)

Note that α and c13 are positive scalars; based on Lemma 1,
it can be seen that ∇2L12(u1) is positive definite.

For the first term, the Schur complement of c11 + eT De

in ∇2L11(u1) can be written in the for

∇2L11(u1)/(c11 + eT De) = c11I +AT DA+	x −AT De(c11+ eT De)−1eT DA

= c11I +AT DA+	x − 1

c11 + ∑
di

AT

⎡

⎢⎢⎣

d2
1 d1d2 ... d1dm

d1d2
... ...
d1dm d2

m

⎤

⎥⎥⎦A

= c11I +	x + 1

c11+∑
di

AT

⎡

⎢⎢⎣

(c11+∑
di)d1− d2

1 − d1d2 ... −d1dm

−d1d2
... ...
−d1dm (c11+∑

di)dm − d2
m

⎤

⎥⎥⎦ A (43)
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where positive scalar di is the ith main diagonal element of
D, i = 1, 2, ..., m.

Let

M =

⎡

⎢⎢⎣

(c11 + ∑
di)d1 − d2

1 − d1d2 ... −d1dm

−d1d2
... ...
−d1dm (c11 + ∑

di)dm − d2
m

⎤

⎥⎥⎦

(44)

For the j th column of M , j = 1, 2, ..., m, main diagonal
element minus other elements, it can be obtained that

(c11 +
m∑

i=1

di)dj − d2
j −

m∑

i=1,i �=j

didj

= (c11 +
m∑

i=1

di)dj −
m∑

i=1

didj

= c11 > 0 (45)

It can be seen from (45) that M is real symmetric and
strictly diagonally dominant, and the coefficients of M ,
1/(c11 + ∑

di) > 0, so, based on Lemma 2, the third term
of (43) is positive definite.

From the definition of 	x , it is known that if 	x > 0
and c11I > 0, then (43) is positive definite. According to
Lemma 3 , it can be obtained that ∇2L1(u1) > 0, and
similarly, ∇2L2(u2) > 0. Then, Theorem 1 is proved.

3.3 Nonlinear PWWTSVR

To extend the application of PWWTSVR to nonlinear cases
in the real world, a kernel trick is adopted to map the
input to a higher-dimensional feature space, i.e., x →
ϕ(x). However, ϕ(x) lacks an explicit formulation due to
the higher dimensions, which prevents the computation of
	ϕ(x). In Peng’s work [15], the eigenvalue decomposition
method is adopted to explicitly map to the empirical feature
space. Let K(A, AT ) denote an m × m matrix of rank r ,
whereK is an appropriately chosen kernel. SinceK(A, AT )

is a symmetric positive-semidefinite matrix, it can be
decomposed as K(A, AT ) = Pm×r�P T

r×m where � is a
diagonal matrix containing only the r positive eigenvalues
of K(A, AT ) in decreasing order, and Pm×r consists of the
eigenvectors corresponding to the positive eigenvalues. The
mapping from the input data space to the kernel space is
expressed as x → ϕ(x) = �−1/2P T K(x, AT ).

Then, for nonlinear cases, the matrix A in linear cases
can be replaced by K(A, AT ), and x by ϕ(x). For example,

(24) and (17) can be transformed as

L11(w1, b1) = 1

2
wT
1 (c11I + K(A, AT )T DK(A, AT )

+	ϕ(x))w1 + (−YT DK(A, AT )

+eT b1DK(A, AT ) − c12	
T
ϕ(x)y)w1

+1

2
(c11+ eT De)b21 − YT Deb1 + 1

2
YT DY

(46)

and

L12 = c13e
T Dp(G∗u1 − f1), (47)

respectively, where G∗ = [K(A, AT ), e]. Other formulas
can be transformed similarly.

After calculating u1 = [wT
1 , b1]T and u2 = [wT

2 , b2]T ,

the regressor f (x) can be gotten by (1).

3.4Weighting parameters determined by wavelet
transform

The parameter mentioned in the first subsection, D ∈
�m×m, is a weighting matrix. It should be determined
beforehand according to the importance of training data. By
direct observation of the objective functions of ε-TSVR and
TPSVR, it is easy to see that all of the samples have the
same penalties, which may reduce the performance of the
regressors due to the impact of data with too much noise.
Instinctively, different training samples should be given
different weights, where a larger weight means a sample
is more important. Motivated by this idea, the weighting
parameter D is determined by the following Gaussian
function:

D = diag

(
E exp

(
−

∣∣∣Y − Ŷ

∣∣∣
2
/σ 2

))
, (48)

where E is the peak value of the Gaussian function, σ

represents the standard deviation, and Ŷ is the estimated
value vector of the output Y . Figure 2 shows the weight
value of PWWTSVR and unweighted TSVR over the error
of samples as an example.

The wavelet transform is a method to deal with
time sequences. For non-time sequences, other regressing
algorithms, such as TSVR, as mentioned above, can be
adopted as a pre-regressor to calculate Ŷ . In this paper,
wavelet filters are adopted to calculate Ŷ by three stages, as
follows.

(1). Wavelet transforms may be considered forms of
time-frequency representation for signals, so they
are related to harmonic analysis. Discrete wavelet
transforms (DWTs) use a discrete-time filterbank.
The DWT of a signal in the l-th decomposition
step xal(n) is calculated by a series of filters. The
samples are passed through a low-pass filter with
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Fig. 2 Weight values of
PWWTSVR and unweighted
algorithms over error of samples
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impulse response φ(t), resulting in the approximation
coefficients xal+1, and a high-pass filter with impulse
response ψ(t), resulting in the detail coefficients
xdl+1,

xal+1(n) =
∑

k

φ(k − 2n)xal(k) (49)

xdl+1(n) =
∑

k

ψ(k − 2n)xal(k) (50)

The approximation coefficients xal+1 can be decom-
posed further to get xal+2 and xdl+2.

(2). The obtained l groups of decomposed sequences
(xd1, xd2, ..., xdl, xal) after l steps of decomposition
are processed by an appropriate algorithm to remove
noise. In this paper, the high frequency is set to zero
directly as a denoising algorithm. Then, the denoised
sequence (xd ′

1, xd ′
2, ..., xd ′

l , xa′
l) is obtained.

(3). In this stage, the estimated value of output
ŷ is reconstructed by the denoised sequence
(xd ′

1, xd ′
2, ..., xd ′

l , xa′
l).

xa′
l−1(n) =

∑

k

φ(n−2k)xa′
l(k)+

∑

k

ψ(n−2k)xd ′
l (k)

(51)

This process of reconstruction is carried on further,
and after l steps of reconstruction, the estimation
value of output Ŷ can be obtained, i.e., ŷ = xa′

0.

Substitute Ŷ in (48), and the weighting matrix D can
be calculated. The process of signal decomposition
and reconstruction is illustrated in Fig. 3.

3.5 Algorithm summary

In this subsection, the proposed PWWTSVR algorithm is
illustrated.

Algorithm 1 Projection wavelet weighted twin support

vector regression.

Input: The appropriate parameters

the kernel parameters,

Gaussian function parameters, and the training data matrix

.

Output: The regression function

Process:

1. Calculate by (48), preprocess the data points by

the empirical kernel technique for the nonlinear case,

compute or or .

2. Start with any and . Using and , compute

and by (39) and (40) until and

are less than some prescribed error.

3. Compute

The algorithm can be summarized as in Fig. 4.

4 Experimental results

In this section, some experiments are conducted to examine
the performance of PWWTSVR, which is compared to
TSVR [4], ε-TSVR [13], TPSVR [15], ν-TWSVR [14],
Asy-ν-TSVR [12], KNNUPWTSVR [21], andWL-ε-TSVR
[23], using four artificial datasets and eight benchmark
datasets. The computer programs for simulation are
implemented in a MATLAB R2014a environment on a PC
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Fig. 3 The process of
decomposition and
reconstruction of the time series
by wavelet. a Decomposition
process, b Reconstruction
process

xd1
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xal

xdl

'
lxd

'
–1lxa

'
1xd

'
1xa

'
0xa'

-1lxd

'
lxa

0xa

(a)

(b)

with an Intel Core i5 processor (3.3 Ghz) with 8 GB RAM.
In this paper, a Gaussian nonlinear kernel is adopted for all
datasets, i.e.,

K(aT , bT ) = exp

(
−‖a − b‖2

e

)
, (52)

where a and b are vectors, and e determines the width
of the Gaussian function. The choice of parameters is
essential for the performance of algorithms. In this paper,
parameter values are chosen by the grid-search method from
the set of values {10i |i = −4, −3, ..., 5}. To degrade the
computational complexity of parameter selection, let c11 =
c21 = c1, c12 = c22 = c2, c13 = c23 = c3 in PWWTSVR;
C1 = C2 = C, ε1 = ε2 = ε in TSVR; c1 = c2, c3 = c4
in ε-TSVR; c1 = c2 = c, ν1 = ν2 = ν, λ1 = λ2 = λ in
TPSVR; c1 = c3, c2 = c4, ν1 = ν2 = ν, in ν−TWSVR;
C1 = C2 = C, ν1 = ν2 = ν in Asy-ν-TSVR; c1 = c2,

c3 = c4, ε1 = ε2 = ε in KNNUPWTSVR; and c1 = c2 = c,
ν1 = ν2 = ν, in WL-ε-TSVR.

The performance of PWWTSVR and the other seven
methods is evaluated by selected criteria. The number of
testing samples is denoted by l, yi denotes the real value of
a testing sample point xi , ȳ = ∑

i
1
l
yi is the mean value of

y1, y2, ..., yl , and ŷi denotes the predicted value of xi . The
criteria are specified as follows.

SSE: Sum squared error of testing samples, defined as
SSE=

∑m
i=1(yi − ŷi )

2.
SST: Sum squared deviation of testing samples, defined as

SST=
∑m

i=1(yi − ȳi )
2.

SSR: Sum squared deviation that can be explained by the
estimator, defined as SSR=

∑m
i=1(ŷi − ȳi )

2.

SSE represents the fitting precision. Too small an SSE value
may mean overfitting of the regressor due to the fitting of

Fig. 4 Summary of steps performed by PWWTSVR algorithm
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Fig. 5 Regression performance of PWWTSVR for noise variance ς2 = 0.22 on a Function 1 dataset; b Function 2 dataset; c Function 3 dataset;
d Function 4 dataset

noise. SST represents the variance of the testing samples,
and SSR reflects the explanation ability of the regressor.

SSE/SST: Ratio between sum squared error and sum
squared deviation of testing samples, defined as
SSE/SST=

∑m
i=1(yi − ŷi )

2/(yi − ȳi )
2.

SSR/SST: Ratio between interpretable sum squared devi-
ation and real sum squared deviation of test-
ing samples, defined as: SSR/SST=

∑m
i=1(ŷi −

ȳi )
2/

∑m
i=1(yi − ȳi )

2.

In most cases, a small SSE/SST represents good
agreement between estimates and real values, but too small

Table 1 Function definition and definition domain of artificial datasets

Name Function definition Domain of definition

Function 1 f (x) = sin x
x

x ∈ [−4π, 4π ]
Function 2 f (x) = x2/3 x ∈ [−2, 2]
Function 3 f (x) = 4

|x|+2 + cos(2x) + sin(3x) x ∈ [−10, 10]
Function 4 f (x) = 4

|x|+2 + cos(2x) x ∈ [−10, 10]

a value also probably means overfitting of the regressor.
SSR/SST shows the variance ratio of the estimated data over
the sample data. SSR/SST=1 means the estimated data have
the same variance as training samples.

4.1 Experiments on artificial datasets

To demonstrate the performance of the proposed algo-
rithm on artificial datasets, consider four noised func-
tions for approximation, denoted as y = f (x) + n,
where the noise n˜N(0, ς2) is Gaussian additive noise
with mean zero and variance ς2 being 0.12 and 0.22,
respectively. Set the number of training points to 200. Db-
3 wavelets used in PWWTSVR are selected to denoise
the training data. We compare the performance of seven
algorithms (TSVR, ε-TSVR, TPSVR, ν-TWSVR, Asy-
ν-TSVR, KNNUPWTSVR, and WL-ε-TSVR) to that of
PWWTSVR. Figure 5 shows the one-run approximation
functions obtained by PWWTSVR for four artificial func-
tions with different variance noise. The adopted functions
for regression are defined in Table 1. The selection of
parameters can be seen in Table 2.
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The number of training points and testing points were
all set to 200. Testing data were selected randomly under
a uniform distribution and assumed to be noise-free. Other
settings can be seen in Table 2.

The average results are summarized in Table 2. In the
value items, the first item shows the mean value of 10-
times testing results and the second represents plus or minus
the standard deviation. The values with the lowest SSE,
SSE/SST, and CPU time, and the closest SSR/SST to 1 are
typeset in bold. Obviously, PWWTSVR obtains the lowest
testing errors, and it has the smallest SSE and SSE/SST
values among these eight cases. For the value of SSR/SST,
PWWTSVR gets a value near to 1 and is close to that of
other methods. For calculation time, PWWTSVR gets the
smallest value for function 1 and function 2, and the second
smallest value for function 3 and function 4. It is slightly
higher than that of KNNUPWTSVR, which is also solved in
primal space rather than dual space. From the comparisons
of the eight algorithms, it can be seen that PWWTSVR has
better performance in most criteria.

To further verify the validity of the proposed algorithm,
an iterative regression experiment was carried out. The
procedure was as follows.

Step 1: Calculate regression function f (x) using Algo-
rithm 1.

Step 2: Replace the Ŷ in (48) by f (x) and renew the
weighting parameter D by (48).

Step 3: Repeat steps 1 and 2 several times.

Figure 6 shows a one-shot SSE value over iteration times
for the regression of function 1. The training number and
test number are both set to 500, the variance of noise is 0.2,
and other parameters can be seen in Table 2. The STD in
Table 3 means the standard deviation of the performance.
It shows that the SSE value decreases as the iterations
increase, which can verify the effectiveness of adding the
weighting parameter D. The quality of pre-regression can
determine the regression precision of the proposed method;
that is why the iterative process can play a positive role.

To test the sensitivity of parameter selection on
PWWTSVR regression performance, we studied the influ-
ence of parameters c1, c2, c3, E, σ 2 on SSE, SSE/SST, and
SSR/SST for artificial datasets on function 1 and function 2
with noise variance σ 2 = 0.12. From Fig. 7, we can see that
most SSE and SSE/SST curves show convexity, i.e., with
the increase of a parameter, the performance value decreases
first and then increases, which can ensure that the opti-
mal value can be found. However, their sensitivities to the
change of parameter values are different. The performance
is sensitive to c1, c2, E, σ 2, but not to c3.

The selection of a kernel function is important to the
performance of regression algorithms. To test the effect of
kernel functions, we studied the performance of six kernel
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Fig. 6 The influence of iterative
times on SSE value for Function
1 dataset

1 2 3 4 5
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iterative times

S
S

E

functions for artificial datasets on function 1, including
the Gaussian kernel adopted in the proposed method. The
function expressions and performance are listed in Table 3.
It is easy to see that the Gaussian kernel achieves the best
results. For linear kernel or polynomial kernel to have high
SSE values means that it is not suitable for regression in this
kind of problem.

4.2 Experiments on benchmark datasets

To further evaluate the performance of the proposed
algorithm, experiments on benchmark datasets from the
UCI machine learning repository [29] were conducted. Due
to the properties of wavelet transforms, the selected datasets
are all time series. Although there are many regression
applications of time-series signals, few publicly available
datasets are available to use. Information on the selected 14
datasets is summarized in Table 4, including the adopted
number of training samples and attributes. Note that the
Istanbul stock dataset is used as four datasets by adopting
1/2/4/8 attributes as inputs of algorithms. In addition, one
dataset, Concrete, which is not a time series, is used for
performance comparison.

Energy Energy used in a low-energy building.

Beijing2.5 PM2.5 data of U.S. Embassy in Beijing.
AirQuality Gas concentrations on the field in an

Italian city.
DowJones Weekly data for the Dow Jones Indus-

trial Index.
Istanbul Returns of the Istanbul Stock Exchange

with seven other international indices.
PowerConsume Measurements of electric power con-

sumption in one household.
GHG Emissions of greenhouse gas in

California.
Electricity Electricity consumption of 370 points/

clients.
DailyDemand Demand data collected from a large

Brazilian logistics company.
SML Indoor environmental data in a house,

including temperature, humidity, and
carbon dioxide in ppm.

Concrete Concrete compressive strength, which is
a highly nonlinear function of age and
ingredients (not a time-series dataset).

For all the real-world examples considered in this
paper, the original data are normalized as: s̃i = (si −
smin)/(smax − smin), where si is the input value of the

Table 3 Comparisons of PWWTSVR on Function 1 with different kernel functions

Kernel name Function definition SSE SSE/SST SSR/SST

Gaussian exp(-‖x-xi‖2 /e) 0.1458±0.0356 0.0086±0.0021 0.9328± 0.0186

Linear xxT
i 21.171±0.0963 1.0087±0.0045 0.0091±0.0043

Polynomial (axxT
i + c)d 13.602±0.0855 0.6825± 0.0042 0.3056±0.0218

Sigmoid tanh(axxT
i + c) 0.4815±0.0682 0.0311±0.0044 0.9171±0.0340

Multiquadric (‖x-xi‖2 + σ 2)0.5 0.2754±0.0747 0.0121±0.0032 0.9154±0.0313

Log -log(1+‖x-xi‖σ ) 0.2146±0.0649 0.0121±0.0037 0.9282±0.0367
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Fig. 7 Influence of parameter c1, c2, c3, E, σ 2 on SSE, SSE/SST, and SSR/SST for artificial datasets Function 1 and Function 2 with noise
variance σ 2 = 0.12. The curve of SSE over c1 for Function 1 is marked as Fun1c1, for example

ith sample, s̃i is its corresponding normalized value, and
smin and smax denote the minimum and maximum values,
respectively. The parameters are shown in Table 5, which
also show the performance of the eight algorithms for
the benchmark datasets. The odd-numbered examples are
selected as training data, and even-numbered examples as

Table 4 Benchmark datasets and their number of samples and attributes

Datasets Samples(m) Attributes(n)

Energy 500 22

Beijing2.5 500 4

AirQuality 411 9

DowJones 360 4

Istanbul 268 1/2/4/8

PowerConsume 298 4

GHG 162 18

Electricitye 250 9

DailyDemand 30 4

SML 212 8

Concrete 500 8

test data, so the amounts of training data and test data are
the same. The numbers (m) and dimensions (n) of samples
are listed in Table 5. So as not to destroy the character of
the time series of the data, one-shot experiments rather than
cross-validation experiments are adopted. The values with
the lowest SSE, SSE/SST, and CPU time, and the closest
SSR/SST to 1 are typeset in bold.

From Table 5, it can be seen that PWWTSVR
outperforms the other algorithms. On most datasets,
PWWTSVR obtains the smallest or the second-smallest
SSE and SSE/SST value. Only on PowerConsume, GHG,
Electricity, and Concrete does PWWTSVR obtain poor
values. This is mainly because these datasets have too
much noise, or the regularity of change with time is not
strong, which will result in weakening or failure of the
wavelet-filtering effect. In particular, the contrast dataset
Concrete is not a time series, which leads to very poor
performance for PWWTSVR. This also illustrates the scope
of application of our algorithm. For SSR/SST criteria,
PWWTSVR achieves nine of the first or second values
which is close to 1 among 14 datasets. It means that the
proposed algorithm has nearly the same variance as the



3076 L. Wang et al.

Ta
bl
e
5

Pe
rf
or
m
an
ce

an
d
se
le
ct
io
n
of

pa
ra
m
et
er
s
of

ei
gh
ta
lg
or
ith

m
s
on

be
nc
hm

ar
k
da
ta
se
ts

D
at
as
et
s

PW
W
T
SV

R
T
SV

R
ε
-T
SV

R
T
PT

SV
R

ν
-T
W
SV

R
A
sy
-ν
-T
SV

R
K
N
N
U
PW

T
SV

R
W
L
-ε
-T
SV

R

(D
at
a
Si
ze

m
*n
)

c 1
,
c 2

,
c 3

,
E

,
σ
2

C
,
ε

c 1
,
c 3

c
,
ν
,
λ

c 1
,
c 2

,
ν

C
,
ν
,
p

c 1
,
c 3

,
ε

c
,
ν

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

E
ne
rg
y

0.
01
,1
0,
1,
10
,0
.1

0.
01
,1
0

0.
1,
0.
01

10
00
,1
00
,1
00
00

0.
01
,1
00
,0
.0
1

0.
01
,0
.0
1,
0.
5

10
,0
.0
1,
10

10
,0
.0
1

(5
00
*2
2)

3.
67
67

3.
87
50

3.
70
77

3.
69
04

3.
73
06

3.
86
28

3.
71
01

3.
70
77

0.
48
54

0.
51
16

0.
48
95

0.
48
72

0.
49
25

0.
50
99

0.
48
98

0.
48
95

1.
15
17

1.
23
48

1.
11
90

1.
15
23

1.
14
20

1.
22
80

1.
07
69

1.
11
90

0.
14
44

0.
23
85

0.
37
69

0.
89
41

0.
78
38

0.
45
15

0.
98
63

0.
29
12

B
ei
jin

g2
.5

0.
01
,1
0,
10
,1
00
,1

0.
01
,1
0

0.
1,
0.
01

10
00
,1
00
,1
00
00

0.
00
01
,1
,0
.1

0.
01
,0
.0
1,
0.
5

0.
00
01
,1
,1
0

1,
0.
00
01

(5
00
*4
)

6.
17
00

6.
34
87

6.
53
99

6.
48
61

6.
17
65

6.
34
33

6.
58
09

6.
19
35

0.
55
03

0.
56
63

0.
58
33

0.
57
86

0.
55
09

0.
56
58

0.
58
70

0.
55
24

0.
39
22

0.
37
06

0.
36
07

0.
36
72

0.
38
63

0.
36
88

0.
36
00

0.
38
98

0.
21
77

0.
34
21

0.
38
68

1.
45
80

0.
86
46

0.
39
77

0.
13
49

0.
26
42

A
ir
Q
ua
lit
y

0.
01
,1
00
,1
00
,1
0,
0.
1

0.
00
1,
0.
1

0.
1,
0.
01

10
00
,1
00
,1
00
00
0

0.
00
1,
1,
0.
1

0.
00
1,
0.
1,
0.
4

1,
0.
00
01
,1
0

1.
00
00
,0
.0
01

(4
11
*9
)

1.
02
39

1.
07
03

1.
19
34

1.
26
25

1.
07
08

1.
07
05

1.
06
27

1.
07
05

0.
06
36

0.
06
65

0.
07
42

0.
07
85

0.
06
66

0.
06
65

0.
06
60

0.
06
65

0.
85
93

0.
83
14

0.
80
82

0.
85
46

0.
83
16

0.
83
13

0.
88
17

0.
83
13

0.
16
45

0.
27
74

0.
20
78

0.
90
48

0.
50
12

0.
17
69

0.
50
86

0.
18
67

D
ow

Jo
ne
s

0.
1,
10
0,
10
,1
0.
00
00
,0
.1

0.
1,
10

0.
1,
0.
01

10
00
,1
00
,1
00
00
0

0.
00
1,
10
0,
0.
01

0.
1,
0.
01
,0
.4

10
,0
.0
1,
10

10
0,
0.
01

(3
60
*4
)

0.
03
86

0.
05
09

0.
05
01

0.
09
71

0.
04
88

0.
04
88

0.
04
92

0.
05
01

0.
00
26

0.
00
34

0.
00
33

0.
00
65

0.
00
33

0.
00
32

0.
00
33

0.
00
33

0.
98
97

0.
94
52

0.
93
99

0.
92
57

0.
94
23

0.
94
07

0.
93
77

0.
93
99

0.
05
37

0.
28
09

0.
17
59

0.
52
72

0.
26
16

0.
45
92

0.
21
79

0.
21
68

Is
ta
nb
ul
1

1,
10
0,
10
0,
10
,0
.1

0.
01
,1
0

0.
1,
0.
01

10
00
,1
00
,1
00
00
0

0.
1,
10
0,
0.
00
1

0.
01
,0
.0
01
,0
.5

10
00
,0
.0
1,
10

10
0,
0.
01

(2
68
*1
)

5.
52
13

6.
17
66

5.
79
84

6.
44
90

5.
50
18

6.
17
60

5.
78
06

5.
79
84

1.
36
02

1.
52
16

1.
42
84

1.
58
87

1.
35
54

1.
52
14

1.
42
40

1.
42
84

0.
98
27

1.
52
86

1.
40
17

1.
59
35

1.
13
87

1.
52
94

1.
32
00

1.
40
17

0.
03
00

0.
17
55

0.
09
34

0.
50
47

0.
28
65

0.
11
64

0.
21
68

0.
15
80

Is
ta
nb
ul
2

1,
1,
10
,1
0,
0.
1

0.
01
,1
0

0.
1,
0.
01

10
00
,1
00
,1
00
00
0

0.
1,
10
,0
.1

0.
01
,0
.1
,0
.6

10
0,
0.
01
,1
0

10
,0
.1

(2
68
*2
)

5.
23
82

5.
41
27

5.
41
53

5.
81
78

5.
28
32

5.
40
99

5.
60
69

5.
27
45

1.
29
04

1.
33
34

1.
33
40

1.
43
32

1.
30
15

1.
33
27

1.
38
13

1.
29
94

1.
11
22

1.
48
31

1.
46
67

1.
58
13

1.
33
16

1.
48
20

1.
42
23

1.
32
05

0.
03
48

0.
11
64

0.
09
04

0.
49
23

0.
29
79

0.
11
51

0.
29
09

0.
09
37



A projection wavelet weighted twin support vector regression and its primal solution 3077

Ta
bl
e
5

(c
on
tin

ue
d)

D
at
as
et
s

PW
W
T
SV

R
T
SV

R
ε
-T
SV

R
T
PT

SV
R

ν
-T
W
SV

R
A
sy
-ν
-T
SV

R
K
N
N
U
PW

T
SV

R
W
L
-ε
-T
SV

R

(D
at
a
Si
ze

m
*n
)

c 1
,
c 2

,
c 3

,
E

,
σ
2

C
,
ε

c 1
,
c 3

c
,
ν
,
λ

c 1
,
c 2

,
ν

C
,
ν
,
p

c 1
,
c 3

,
ε

c
,
ν

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

Is
ta
nb
ul
4

1,
10
,1
00
,1
0,
0.
1

0.
01
,1
0

0.
1,
0.
01

10
00
,1
00
,1
00
00
0

0.
1,
10
,0
.1

0.
01
,0
.1
,0
.5

10
0,
0.
01
,1
0

10
,0
.1

(2
68
*4
)

4.
65
03

4.
67
25

4.
77
78

4.
64
35

4.
71
90

4.
66
87

5.
17
10

4.
71
52

1.
14
56

1.
15
11

1.
17
70

1.
14
39

1.
16
25

1.
15
01

1.
27
39

1.
16
16

1.
30
74

1.
66
66

1.
64
07

1.
67
39

1.
51
61

1.
66
64

1.
66
85

1.
50
43

0.
03
85

0.
14
74

0.
08
30

0.
48
75

0.
29
33

0.
10
54

0.
21
41

0.
08
91

Is
ta
nb
ul
8

0.
00
1,
10
,1
00
00
,1
,0
.0
1

0.
01
,1
0

0.
1,
0.
01

10
00
,1
00
,1
00
00
0

0.
1,
10
00
,0
.1

0.
01
,0
.1
,0
.5

10
0,
0.
1,
10

10
0,
0.
1

(2
68
*8
)

3.
99
04

4.
06
82

4.
23
95

4.
13
44

4.
02
70

4.
05
75

3.
99
42

4.
31
94

0.
98
30

1.
00
22

1.
04
44

1.
01
85

0.
99
20

0.
99
96

0.
98
40

1.
06
41

1.
45
73

2.
02
71

2.
00
09

2.
03
81

1.
86
29

2.
02
53

1.
46
90

1.
81
41

0.
09
38

0.
16
37

0.
10
51

0.
58
55

0.
23
06

0.
09
84

0.
21
26

0.
25
80

Po
w
er
C
on
su
m
e

0.
01
,0
.1
,0
.1
,0
.1
,0
.1

1,
10

10
,1

10
00
,1
00
,1

0.
01
,1
00
,1

10
00
,1
,0
.0
1

1,
0.
01
,1
00

1,
0.
1

(2
98
*4
)

0.
29
66

0.
32
34

0.
28
68

0.
33
15

0.
33
99

0.
28
13

0.
34
78

0.
33
64

0.
02
84

0.
02
74

0.
02
43

0.
02
81

0.
02
88

0.
02
38

0.
02
95

0.
02
85

1.
12
36

1.
22
58

1.
27
37

1.
20
87

1.
21
48

1.
25
10

1.
21
52

1.
19
87

0.
02
95

0.
30
98

0.
28
97

0.
49
59

0.
31
10

0.
22
92

0.
16
36

0.
13
86

G
H
G

0.
00
1,
10
00
0,
0.
1,
10
00
,1

1,
10
0

1,
0.
00
01

10
00
,1
00
,1
00
00

0.
00
01
,1
00
,1

10
,1
0,
0.
1

10
0,
0.
00
1,
10
00

0.
00
1,
0.
00
01

(1
62
*1
8)

6.
97
23

6.
90
10

6.
76
85

7.
01
60

6.
82
30

6.
97
89

6.
63
22

6.
85
72

0.
89
86

0.
89
73

0.
88
01

0.
91
23

0.
88
72

0.
90
75

0.
86
24

0.
89
16

0.
25
54

0.
12
62

0.
12
28

0.
12
11

0.
13
29

0.
16
14

0.
26
29

0.
12
45

0.
02
96

0.
06
79

0.
09
58

0.
13
49

0.
12
38

0.
08
26

0.
14
52

0.
07
12

E
le
ct
ri
ci
ty

0.
1,
10
,1
00
0,
10
00
,1
00
0

1,
1

1,
0.
1

10
00
,1
00
,0
.1

0.
01
,1
0,
0.
00
1

10
,0
.0
1,
0.
01

0.
00
1,
0.
00
01
,1

10
,0
.0
00
1

(2
50
*9
)

3.
09
86

3.
09
85

3.
10
07

3.
36
27

3.
09
85

3.
09
94

3.
09
85

3.
09
85

1.
01
68

1.
01
67

1.
01
75

1.
10
34

1.
01
67

1.
01
70

1.
01
67

1.
01
67

0.
01
68

0.
01
67

0.
01
75

0.
10
34

0.
01
67

0.
01
70

0.
01
67

0.
01
67

0.
04
34

0.
10
60

0.
13
03

0.
13
12

0.
09
52

0.
08
59

0.
03
18

0.
07
11

D
ai
ly
D
em

an
d

10
0,
10
00
,1
00
00
,1
00
00
,1
00

1,
0.
01

1,
1

10
00
,1
00
,1

0.
00
1,
10
0,
1

1,
0.
01
,0
.1

1,
1,
1

10
0,
0.
00
1

(3
0*
4)

1.
03
62

1.
11
07

1.
28
94

1.
12
24

1.
11
07

1.
04
90

1.
13
64

1.
04
89

0.
56
93

0.
61
03

0.
70
85

0.
61
67

0.
61
02

0.
57
64

0.
62
44

0.
57
63

0.
32
59

0.
32
89

0.
24
80

0.
30
27

0.
32
89

0.
33
37

0.
34
09

0.
33
25

0.
00
32

0.
00
96

0.
00
95

0.
01
39

0.
01
13

0.
00
89

0.
00
16

0.
00
72



3078 L. Wang et al.

Ta
bl
e
5

(c
on
tin

ue
d)

D
at
as
et
s

PW
W
T
SV

R
T
SV

R
ε
-T
SV

R
T
PT

SV
R

ν
-T
W
SV

R
A
sy
-ν
-T
SV

R
K
N
N
U
PW

T
SV

R
W
L
-ε
-T
SV

R

(D
at
a
Si
ze

m
*n
)

c 1
,
c 2

,
c 3

,
E

,
σ
2

C
,
ε

c 1
,
c 3

c
,
ν
,
λ

c 1
,
c 2

,
ν

C
,
ν
,
p

c 1
,
c 3

,
ε

c
,
ν

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
E
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

SS
R
/S
ST

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

C
PU

se
c.

SM
L

0.
01
,1
00
00
,0
.0
1,
10
00
,0
.1

0.
1,
0.
1

10
0,
0.
00
1

10
00
,1
00
,1
00
00

0.
00
1,
10
0,
0.
01

10
00
,0
.0
1,
0.
00
1

10
00
0,
10
,1

10
0,
0.
00
01

(2
12
*8
)

3.
67
62

4.
64
67

4.
79
80

3.
74
99

4.
79
10

4.
62
79

5.
28
26

3.
88
64

0.
41
83

0.
52
88

0.
54
60

0.
42
67

0.
54
52

0.
52
66

0.
60
12

0.
44
23

1.
48
63

1.
33
19

1.
43
00

1.
22
47

1.
32
75

1.
39
21

1.
15
01

1.
38
86

0.
01
18

0.
16
31

0.
14
54

0.
17
99

0.
12
99

0.
14
14

0.
07
77

0.
11
18

C
on
cr
et
e

0.
01
,1
,0
.1
,0
.1
,0
.0
1

0.
01
,1

0.
01
,0
.1

10
0,
10
0,
10
00
0

0.
1,
0.
1,
0.
1

0.
1,
0.
1,
0.
5

10
,0
.0
1,
10
00

1,
0.
1

(5
00
*8
)

8.
58
98

7.
38
94

7.
40
87

8.
47
39

7.
40
87

7.
40
87

11
.9
39
6

7.
40
87

0.
45
25

0.
38
59

0.
38
69

0.
44
26

0.
38
69

0.
38
69

0.
62
36

0.
38
69

0.
40
74

0.
75
86

0.
75
90

0.
93
69

0.
75
90

0.
75
90

0.
97
24

0.
75
90

0.
10
20

0.
40
94

0.
46
19

2.
42
66

0.
80
05

0.
79
78

1.
27
16

2.
05
19



A projection wavelet weighted twin support vector regression and its primal solution 3079

Table 6 Algorithms’ average rank for SSE, SSE/SST, and CPU time

Datasets PWWTSVR TSVR ε-TSVR TPTSVR ν-TWSVR Asy-ν-TSVR KNNUPWTSVR WL-ε-TSVR

SSE 1.8639 5.0909 4.5227 6.3182 4.2273 5.3864 4.6136 3.9773

SSE/SST 2.0862 5.1136 4.3864 6.2727 4.2955 5.3409 4.6136 3.9091

CPU sec. 1.3182 4.7273 3.9545 7.8636 6.1818 5.0000 3.4545 3.5000

original data. From the experimental results of Istanbul1,
Istanbul2, Istanbul4, and Istanbul8 (Istanbul datasets with
1/2/4/8 attributes), it can be seen that SSE decreases as
the number of input attributes increases, i.e., more input
information leads to more accurate estimation. This shows
the importance of collecting more information for learning
accuracy. For the training time, due to the adoption of
the Newton optimization approach in primal space, the
PWWTSVR takes the minimum amount of CPU time
except for Beijing2.5, Electricity, and DailyDemand. For
these datasets, PWWTSVR uses the second shortest CPU
time and KNNUPWTSVR the first, and its objective
function is also solved in terms of the unconstrained primal
problem.

4.3 Statistical analysis

Non-parametric statistical tests were carried out to validate
the experimental performance results of the proposed
algorithm. The Friedman test [16] was run to rank the
algorithms over 22 datasets, including eight artificial
datasets and 14 real datasets. The Friedman test had
alpha=0.05 and was distributed according to chi-square
with seven degrees of freedom. The Friedman statistic
was 43.78, 39.74, and 98.85, with p -values of 2.3595e-
7, 1.4112e-6, and 1.8650e-18 for SSE, SSE/SST, and
training time, respectively. The average ranks obtained
by the eight methods for the criteria SSE, SSE/SST,
and training time in the Friedman test are shown in
Table 6, from which we can see that the average SSE,
SSE/SST, and training time ranks of PWWTSVR are
lower than those of other methods. This shows the

superiority of the proposed algorithm, which achieves better
generalization performance and shorter running times. To
check the significant differences between the methods,
the p-value was calculated through the Bonferroni-
Dunn non-parametric test by computing multiple pairwise
comparisons among the proposed algorithm and the other
methods. The test assumes that the performances of two
algorithms are significantly different if their average ranks
differ by at least some critical value [16]. Table 7 lists the
p-value of the Bonferroni-Dunn test on the criteria SSE,
SSE/SST, and training time ranking results obtained by
the Friedman procedure. The null hypothesis of these tests
is that there is no difference between the results. From
Table 7, we see that the p-value is very small, which means
that PWWTSVR is quite different from other methods for
SSE, SSE/SST, and training time, and this confirms its
superiority.

From the above analysis, we can conclude that
PWWTSVR can improve the performance of the model and
reduce the computation time. The empirical risk term in the
objective function is the sum of weighted squared distances
from training points to the bound function. Minimizing it
causes the function f (x) to fit the training samples and
avoiding under-fitting. The regularization term in the objec-
tive function is adopted to solve the overfitting problem.
The structural risk minimization is implemented by mini-
mizing the regularization term, and solving the problems in
the primal space can reduce the computational costs. The
introduction of the projection item and weighting parame-
ters into both quadratic and first-degree empirical risk terms
are feasible and effective, and the preprocessing of train-
ing data by the wavelet transform method can utilize the

Table 7 p-value of
Bonferroni-Dunn test for SSE,
SSE/SST and CPU time
comparing our PWWTSVR
with other methods

Algorithms SSE SSE/SST CPU sec.

TSVR 1.0606e−5 2.9385e−5 3.9134e−6

ε-TSVR 2.8451e−4 1.4706e−3 3.5745e−4

TPTSVR 1.2065e−9 8.0033e−9 7.8179e−19

ν-TWSVR 1.2563e−3 2.2455e−3 4.5368e−11

Asy-ν-TSVR 1.5270e−6 7.1227e−6 6.1896e−7

KNNUPWTSVR 1.7467e−4 4.7904e−4 3.8201e−3

WL-ε-TSVR 3.9191e−3 1.1549e−2 3.1349e−3
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prior information of samples. It should be noted that wavelet
theory is a powerful denoising tool for time-series signals.
So, the proposed method is suitable for dealing with time-
series datasets. If we deal with non-series samples with the
proposed algorithm, performance may suffer. Additionally,
the proposed model is suitable for small datasets, and a
large number of training samples will incur a tremendous
computational cost.

5 Conclusions

In this paper, a projection wavelet weighted twin support
vector regression algorithm is proposed. The PWWTSVR
calculates the regression function by the mean of up- and
down-bound regression functions, which are solved by two
small-sized optimization problems in primal space. Unlike
the cases in ε-TSVR, each optimization problem of the
proposed algorithm aims to seek a suitable projection axis
such that the variance of projected points can be minimized.
Moreover, samples in different positions in the proposed
model are given different weights according to the distance
between samples and preprocessed results by wavelet trans-
form. Computational comparisons between PWWTSVR
and several existing methods were performed on artificial
and benchmark datasets. The experimental results show bet-
ter generalization performance and demonstrate the effec-
tiveness of the proposed method. The solution of the pro-
posed objective functions based on the Newton iterative
approach is deduced in this paper, and the experimental
results manifest the advantage in calculation time. However,
one can notice that a matrix-inversion process is involved in
the algorithm, so it is not suitable for large-scale nonlinear
problems. The selection of parameters can obviously affect
the performance of PWWTSVR, so for future work, the
study of optimal parameter selection and a method involving
less calculation could be carried out.
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