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Abstract
Due to good exploration capability, particle swarm optimization (PSO) has shown advantages on solving supervised feature
selection problems. Compared with supervised and semi-supervised cases, unsupervised feature selection becomes very difficult
as a result of no label information. This paper studies a novel PSO-based unsupervised feature selection method, called filter-
based bare-bone particle swarm optimization algorithm (FBPSO). Two filter-based strategies are proposed to speed up the
convergence of the algorithm. One is a space reduction strategy based on average mutual information, which is used to remove
irrelevant and weakly relevant features fast; another is a local filter search strategy based on feature redundancy, which is used to
improve the exploitation capability of the swarm. And, a feature similarity-based evaluation function and a parameter-free update
strategy of particle are introduced to enhance the performance of FBPSO. Experimental results on some typical datasets confirm
superiority and effectiveness of the proposed FBPSO.
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1 Introduction

With the fast development of technologies such as big data,
the number of attributes (or features) in data obtained by
decision-makers is growing at an unprecedented rate.
Because of lacking sufficient prior knowledge on real prob-
lems, original data usually includes many redundant or/and
irrelevant features in order to prevent losing useful informa-
tion. Obviously, those irrelevant and redundant features must
increases storage pressure and cost of computation systems
[29, 34]. Most of all, those features may reduce the perfor-
mance of adopted learning algorithm.

Feature selection (FS) is an effectively dimensional reduction
method. It can select a subset of features from all original ones,
resulting in reducing the learning cost and maximizing the per-
formance of classification [6, 11, 14, 27, 36]. Now it has been
applied into various high-dimensional data [8]. Based on the

proportion of labeled samples to unlabeled samples, existing
FS approaches can be classed into three categories: supervised,
semi-supervised and unsupervised. Supervised or semi-
supervised FS methods mainly use class label information to
search optimal feature subset. However, in the era of information
explosion, not all data can be labeled because of unaffordable
costs. Therefore, recently studying unsupervised feature selection
(UFS) has received more and more attention [15].

Up to now, researchers have proposed a variety of UFS
methods by introducing correlation, information theory, struc-
ture information and clustering techniques. He et al. [16]
employed Laplacian score to evaluate the effectiveness of fea-
tures, and proposed a Laplacian score-based algorithm (LS).
Cai et al. [9] proposed another effective UFS algorithm, called
multi-cluster feature selection algorithm (MCFS), by using the
L1-norm minimization regularization term. Wang et al. [31]
integrated unsupervised trace ratio formulation and structured
sparsity-inducing norms regularization, and proposed an im-
proved UFS method (TRACK). By preserving the local man-
ifold structure of data, these algorithms can effectively reduce
irrelevant or redundant features. But they did not consider the
local discrimination informationwhich has been demonstrated
as an essential property for analyzing data [7]. Li et al. [23]
proposed a nonnegative discriminative UFS algorithm
(NDFS) by employing spectral clustering to guide feature se-
lection directly. Mitra et al. [26] proposed an UFS algorithm,
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called unsupervised feature selection using feature similarity
(UFSFS), by considering the similarity between features.
These clustering-based algorithms do not need any exhaustive
search technique, but generally needs a right parameter set to
control the size of reduced features. Studying the hybrid
mechanism of multiple strategies, Tang et al. [30] proposed
a unified UFS framework via feature self-representation and
robust graph regularization, and Hou et al. [17] proposed a
hybrid algorithm with joint embedding learning and sparse
regression. These algorithms all demonstrate competitive re-
sults, but their results may still include more redundancy fea-
tures due to the lack of effective global search strategy.

Since the capability of seeking solutions using global search
strategies, recently evolutionary algorithms (EA) have received
much attention on solving feature selection problems [32, 35].
However, due to the lack of effective strategies on evaluating
individuals, there are relatively few studies on the applications
of EA in UFS. Tabakhi et al. [28] proposed a newUFSmethod,
called UFSACO, by using ant colony optimization as a global
search technology. Due to the iterative and parallel nature,
UFSACO can search in a greater feature space and select a
good feature subset. However, it needs larger computational
cost to construct a fully connected weighted graph among fea-
tures in advance. To shorten the computing time of an algo-
rithm, recently Kimovski et al. [22] discussed the parallel im-
plement of multi-objective evolutionary optimization ap-
proaches in solving high-dimensional UFS problems. Bhadra
and Bandyopadhyay [7] studied the application of a recently
developed differential evolution technique, called MoDE, in
UFS, and proposed an improved differential evolution based
UFS algorithm. Abualigah et al. [2] proposed a harmony
search-based UFS technique to solve the text clustering prob-
lem. These algorithms improve significantly the search ability
of UFS technique, but they still face the problem of Bcurse of
dimensionality^ as the number of features increases.

As a relatively new evolutionary technique, particle swarm
optimization (PSO) has advantages such as well global search,
concise implementation, fast convergence. Up to now re-
searchers have proposed many improved versions, and suc-
cessfully applied them to various real problems, such as
multi-objective optimization problems [25], classifier’s pa-
rameter optimization [4], and robot navigation [38]. Recently
a few researchers have attempted to study its application in
UFS problems. Wang et al. [33] proposed an UFS algorithm
based onMarkov blanket and PSO (UFSPSO). This algorithm
firstly filters out irrelevant features by using the maximum-
entropy principle, and then combines PSO and Markov blan-
ket to remove redundant features. Abualigah et al. [1] intro-
duced a hybrid PSO with genetic operators for the unsuper-
vised text feature selection problem. This method uses PSO to
remove sparse and non-meaningful features from text.
Iranmehr et al. [18] proposed a new PSO-basedUFS algorithm
for the problem of phonemes sound classification. Adeli and

Broumandnia [3] studied a novel feature selection approach
based on an adaptive inertia weight-based PSO, and applied
successfully to image steganalysis problem. Those methods
demonstrate the capability of PSO on solving UFS problems.
However, there are still some disadvantages: (1) Most of those
algorithms need the population to search optimal feature sub-
set in the whole original feature space, so to face the problem
of BCurse of Dimensionality^ as the size of features increases;
(2) most require decision-makers to set appropriate control
parameters in advance, such as inertia weight and acceleration
coefficients, for obtaining desirable solutions. But how to set
those parameter values is still a challenge, because their values
depend on individual applications or optimized problems.

Focused on these, this paper studies a novel unsupervised
feature selection method by combining a control parameter-
free PSO algorithm with two filter-based search strategies.
Herein, the PSO algorithm is designed to find potentially op-
timal regions, while the two filter-based search strategies are
used to improve the convergence speed of the proposed meth-
od. The highlights of this paper are as follows:

(1) By integrating the global search capacity of PSO with the
fast local search capability of filter-based approach, a filter-
based bare-bone particle swarm optimization algorithm is
proposed for unsupervised feature selection problems.

(2) A filter-based strategy, called the space reduction strate-
gy based on average mutual information, is given to re-
move irrelevant and weakly relevant features for reduc-
ing the search space of the swarm, as well as the cost of
fitness evaluation.

(3) Focusing on exploiting potentially optimal regions ob-
tained by the swarm, a local search strategy based on
feature redundancy is proposed to improve the exploiting
capability of the swarm.

(4) Moreover, a feature similarity-based fitness function and
a parameter-free update strategy of particle are intro-
duced to enhance the algorithm’s performance and re-
duce the dependence of the algorithm on control param-
eters, respectively.

This paper is organized as follows: Section 2 shows related
basic conceptions. Section 3 gives the proposed method, includ-
ing the filter-based strategy based on averagemutual information,
and the improved PSO. Section 4 reports experimental results on
several test datasets. Conclusions are presented in Section 5.

2 Related work

2.1 Problem formulation

Supposing that S is a data set which containsK samples andD
features, F is a set of all features, then a UFS problem can be
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described as follows: to select d features (d ≤D) from all the
features, so that appointed evaluation indicators (or objective
function) H(⋅), such as the classification accuracy, are opti-
mized. However, differing from supervised and semi-
supervised cases that can directly use label information to
evaluate selected features, generally UFS adopts implicit indi-
cators, such as the proportion of predominant features to se-
lected features [33] or the mean absolute difference [1], to
evaluate selected features.

We adopt a binary string to encode a solution in UFS prob-
lems:

X ¼ x1; x2; :::; xDð Þ; x j∈ 0; 1f g ð1Þ

where xj = 1 indicates the j-th feature is selected into the
subset X; otherwise, it is not. So a UFS problem is for-
mulated as follows:

max=minH Xð Þ
s:t:X ¼ x1; x2; :::; xDð Þ; x j∈ 0; 1f g; j ¼ 1; 2; :::;D;
1≤ jX j≤D; f Xð Þ∈ 0; 1½ �:

ð2Þ

2.2 Particle swarm optimization

As a swarm intelligence optimization technology, PSO is pro-
posed by Kennedy and Eberhart by simulating the hunting
behavior of bird [20]. Compared with other evolutionary al-
gorithms (EAs), PSO abstracts individuals in the population
into particles without mass and volume. Through information
sharing and cooperation among the particles, the swarm can
find optimal solutions from complex search spaces.

In traditional PSO, each particle has a velocity vector and a
position vector, and the swarm looks for optimal solutions by
constantly changing positions of all the particles. When PSO
is applied to FS problem, each particle will represent a poten-
tial feature subset of the problem. Taking the i-th particle as
example, let X t

i ¼ xi1; xi1;⋯xiDð Þ and Vt
i ¼ vi1; vi2;⋯viDð Þ

are its position and velocity respectively, then this particle
can be updated as follows:

vtþ1
ij ¼ ωvtij þ c1r1 Pbtij−x

t
ij

� �
þ c2r2 Gbtij−x

t
ij

� �
ð3Þ

xtþ1
ij ¼ xtij þ vtþ1

ij ð4Þ

Where, D represents the number of decision variables;
Pbti ¼ Pbi1;Pbi2;⋯;PbiDð Þ is the personal best position
(Pbes t ) f ound by th e i - t h pa r t i c l e , a nd Gbti ¼
Gbi1;Gbi2;⋯;GbiDð Þ is the global best position (Gbest) found
by neighbors of the particle. r1 and r2 are random numbers
uniformly distributed in [0, 1]. The inertia weight, ω, and the
two acceleration coefficients, c1 and c2, are three control param-
eters, which are used to control the influences of the previous
velocity, Pbest and Gbest on the search process of the swarm.

Traditional PSO was mainly designed to deal with
continuous optimization problems. Focused on binary
optimization problems, the literature [21] introduced a
binary PSO algorithm (BPSO). In the BPSO, the eq.
(3) is replaced as follows:

xtþ1
ij ¼ 1 othersise

0 if s vtþ1
ij

� �
< r3

�

s vtþ1
ij

� �
¼ 1= 1þ e−v

tþ1
ij

� �

8>>><
>>>:

ð5Þ

Wherein, s(⋅) is a sigmoid function, r3is a random values
within [0,1].

Furthermore, Kennedy removed the three control parame-
ters of the traditional PSO, and proposed a Gaussian
sampling-based method to update the position of a particle,
called bare-bones PSO (BBPSO) [19]. In details, the formula
of updating particle is as follows:

xtþ1
ij ¼ N

Pbtij þ Gbtij
2

; jPbtij−Gbtijj
 !

ð6Þ

In addition, Kennedy proposed other update formula as
follows:

xtþ1
ij ¼ N

Pbtij þ Gbtij
2

; jPbtij−Gbtijj
 !

r4 < 0:5

Pbtij otherwise

8><
>: ð7Þ

Compared with the traditional PSO presented by eqs. (3)
and (4), BBPSO does not require the three control parameters,
so it is more compact and more practical. Recently, Zhang
et al. [37] proposed an improved BBPSO algorithm and ap-
plied it to supervised FS problems. The proposed BBPSO
algorithm employs two strategies, the uniform mutation and
the intensive memory strategy, to improve the search capabil-
ity of BBPSO.

3 The proposed FBPSO algorithm

The proposed filter-based bare-bone particle swarm opti-
mization algorithm (FBPSO) is introduced in this section.
Firstly, a relevance measure is defined by means of mu-
tual information to evaluate the correlation between fea-
tures. Based on it, a space reduction strategy based on
average mutual information is given. After that, the unsu-
pervised feature selection based on BBPSO is introduced
by integrating several new operators, i. e., the local search
strategy based on feature redundancy and the feature
similarity-based fitness function, together with several
established techniques such as the parameter-free update
strategy of particle, and the real encoding strategy.
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3.1 Space reduction strategy based on average
mutual information

For a supervised FS problem, the correlation between a
feature and class labels can be directly calculated by
some measures. After that, optimal feature subsets are
determined by using those correlation values. However,
in the unsupervised issues, there are no class labels to
be employed directly. Therefore, how to evaluate the
correlation between a feature and underlying classes
needs to define suitable approaches.

Mutual information can be used to evaluate the inter-
dependence between two features. The higher the rele-
vant degree between two features is, the larger the mu-
tual information between them is. Wang et al. [33] used
the average mutual information (AMI) to evaluate the
relevance of a feature to all the rest features, and stated
that the greater the average mutual information of a
feature, the higher the relevance of this feature in the
dataset. In view of this, the average mutual information
can partly reflect the correlation between a feature and
potential classes. Therefore, this paper uses it to delete
irrelevant and weakly relevant features in advance.

Supposing that F = {f1, f2,⋯fD} represents a feature
set, Yi = (yi1, yi2,⋯yin) is sample value of the i-th feature
fi, the average mutual information of fi is calculated as
follows:

AMI f ið Þ ¼ H f ið Þ− ∑
D

j¼1

H f ij f j

� �
D−1

ð8Þ

Where, H(fi) is the information entropy of fi,

H f ið Þ ¼ − ∑
yij∈Y i

p yij
� �

log2p yij
� �

ð9Þ

H(fi| fj) is the conditional entropy fi aboutfj,

H f ij f j

� �
¼ H f ið Þ þ H f j

� �
−MI f i; f j

� �
ð10Þ

MI(fi, fj) is the mutual information (MI) between two fea-
tures fi and fj,

MI f i; f j

� �
¼ ∑∑p f i; f j

� �
log2

p f i; f j

� �

p f ið Þp f j

� � ð11Þ

According to the average MI defined in Eq. (8), the corre-
lation between a feature and potential classes can be calculat-
ed. Based on those correlation values, all the features can be
divided into three categories: strongly relevant features, irrel-
evant features and weakly relevant features. Since irrelevant
and weakly relevant features can enlarge the search space of
PSO and increase its computational cost, it is necessary to
remove these features before implementing PSO.
Specifically, in this paper, a threshold θ is used. If the average
mutual information of a feature is smaller than θ, the feature is
regarded as an irrelevant or weakly relevant feature, and is
removed. After removing those features, the search space of
PSO used in Subsection 3.2 can be reduced significantly.
Furthermore, Algorithm 1 shows pseudo code of the proposed
space reduction strategy.

3.2 The improved BBPSO based on local filter search

By running the space reduction strategy above, we get a
new reduced feature set which only contains strongly

relevant features. To further remove redundant features
from the set, this section presents an improved BBPSO-
based feature selection approach with few control param-
eters. Compared with the standard PSO, BBPSO does not
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require the three control parameters including inertia
weight and two acceleration coefficients, and is more
compact and more practical. However, the standard
BBPSO proposed in [19] still has disadvantages including
premature convergence, especially when the Pbest of a
particle happens to be close to Gbest. Focused on this,
an improved BBPSO based on local filter search is pre-
sented to deal with UFS problems.

3.2.1 Encoding of the particles

In most papers, the binary string is usually used to
represent a particle. In the string, if the value of a bit
is equal to B1^, then its corresponding feature is select-
ed into feature subset; on the contrary, ‘0’ indicates not.
But this kind of encoding strategy needs the sigmoid
function s(⋅) to transform the real velocity of a particle
to a binary value.

Differing from the binary coding, this paper adopts a more
direct method, i.e., real encoding strategy. This strategy uses
the probability that each feature is selected as the coding ele-
ment of a particle. Taking a data set with D features, the i-th
particle is expressed as:

X i ¼ xi1; xi2;⋯; xiDð Þ ð12Þ

Where, xij denotes the probability that the j-th feature is
selected. Further, a threshold value 0.5 is defined to decide
whether a feature is remained or not in the current set. xij > 0.5
indicates that the j-th feature is selected; otherwise, not
selected.

3.2.2 Feature similarity-based evaluation function

All features can be divided into two parts: selected fea-
tures (SF) and non-selected features (NSF), where Xi =
SF ∪ NSF and SF∩ NSF =∅. In this paper, we consider
both the dissimilarity of selected features, fit′, and the
similarity of non-selected features, fit″, to evaluate the
fitness of a particle.

The dissimilarity of selected features To calculate the dissim-
ilarity of selected features, fit′, the average of the maximal
mutual information of each selected feature to remaining se-
lected features is used as follows:

fit
0 ¼ 1

jSFj ∑
jSFj
i¼1max NMI f ið Þ ð13Þ

Where, max _NMI(fi) is the maximal mutual information
of the feature fi to remaining selected features, i.e.,

max NMI f ið Þ ¼ max NMI f i; f j

� �
j f j∈SF; f i≠ f j

n o
ð14Þ

NMI(fi, fj) is the normalized mutual information,

NMI f i; f j

� �
¼

MI f i; f j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H f ið ÞH f j

� �r ð15Þ

The smaller the value of fit′ is, the smaller the redundancy
between selected featues is.

The similarity of non-selected features To calculate the simi-
larity of non-selected features,fit″, the average mutual infor-
mation between each non-selected feature and its neighbors
among selected features is used as follows:

fit″ ¼ 1

jNSFj ∑
jNSFj
i¼1 NMI f i; f minð Þ f i∈NSF; f min∈SFð Þ ð16Þ

Where, fmin is the feature among the set SFwhich is closest
to the non-selected feature fi. A higher value of fit″ signifies
that each non-selected feature can be represented by one
among SF in some well manner.

Combining the similarity and dissimilarity items to ensure
the representativeness of selected features, the fitness funtion
is defined as the following problem:

fit ¼ fit″−fit
0 ð17Þ

The smaller the value of fit, the better the quality of selected
features.

3.2.3 Local filter search based feature redundancy

To improve the local exploitation performance of the swarm,
this subsection proposes a local filter search strategy based on
feature redundancy. This strategy includes mainly two opera-
tors: the deleting operator and the adding operator. The delet-
ing operator removes redundant features from a feature subset,
while the adding operator inserts missing key features into a
feature subset.

For the global best position, Gbest, found by the swarm,
supposing that the feature set after removing irrelevant and
weakly relevant features by the method in Section 3.1 is F′,
and the feature subset determined by the position Gbest is
Fset, the two operators are described as follows:

The deleting operator Firstly, this operator selects random-
ly two features from the set Fset, marked as fl1 and fl2;
Second, for each feature among {fl1, fl2}, run the k-
Nearest Neighbor algorithm to select its k nearest neigh-
bors from the set Fset, marked their neighbors as kNN(fl1)
and kNN(fl2) respectively; Next, calculate the average
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normalized mutual information (A_NMI) between this fea-
ture and its neighbors as follows:

A NMI f ið Þ ¼ ∑
f j∈kNN f ið Þ

NMI f i; f j

� �
k

; f i∈ f l1; f l2f g ð18Þ

After that, the one with larger A_NMI value among {fl1, fl2}
is removed from Fset.

The adding operator First, this operator selects randomly two

features from the set F′/Fset, marked as fl1
′ and f

0
l2; After that,

using the above method, calculate the average normalized
mutual information (A_NMI) between each feature and its

neighbors; and then the one with smaller A_NMI value among

f
0
l1; f

0
l2

n o
is added into the set Fset.

Furthermore, Algorithm 2 shows steps of the proposed lo-
cal search strategy. First, Step 1 implements the deleting op-
erator, and deletes the redundant one among {fl1, fl2} from
Fset. Second, Step 2 implements the adding operator, and

adds the important one among f
0
l1; f

0
l2

n o
into the set Fset.

Next, Step 3 generates a new position, Gbest′, by using the
features included in the set Fset. For each feature among Fset,
set its corresponding feature bit on Gbest′to 1, and set all the
rest feature bits to 0. Finally, Step 4 updates the global best
position Gbest. If Gbest′ is better than Gbest, the Gbest is
replaced by Gbest′; otherwise, we use the position Gbest′to
replace the worst particle among the swarm.

3.3 The steps of the proposed FBPSO

According to the above work, we describe steps of the pro-
posed unsupervised feature selection algorithm as follows:

& Step 1: Implement the space reduction strategy. Calculate
the average mutual information of all features according to
Eq. (8), and remove irrelevant and weakly relevant fea-
tures based on the method in Subsection 3.1;

& Step 2: Initialize all the particles, and evaluate their fitness
value by Eq. (17). For each particle, the Pbest is initialized
as its oneself position, and the Gbest is set to the particle
with the most fitness value;

& Step 3: For every particle in the swarm, implement the
following steps circularly:

Table 1 The selected data sets

datasets # of features # of samples # of classes type of data

Musk1 166 476 2 biological data

Arrhythmia 279 452 2 biological data

AR10P 2400 130 10 image data

ORL10P 10,304 100 40 image data

PCMAC 3289 1943 2 text data

BASEHOCK 4862 1993 2 text data
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& Step 3.1: Evaluate the fitness values of each particle by
Eq. (17).

& Step 3.2: Update the Pbest and Gbest of each particle by
the following standard strategy. For a particle, if its new
position is better than the current Pbest, the current Pbest
is replaced by the new position. If the new Pbest is better
than the current Gbest, Pbest replaces the current Gbest.

& Step 3.3: Update the position of each particle by Eq. (7);
& Step 3.3: Run the local filter search proposed in

Subsection 3.2;
& Step 3.4: Loop to Step 3.1 until the termination condition

is met.

4 Experiments

This section verifies the performance of the FBPSO algo-
rithm, by comparing with some existing unsupervised feature
selection algorithms on several frequently-used data sets.

4.1 Experiment settings

The proposed FBPSO was tested on six data sets, including
the biological data Musk1 and Arrhythmia, the image data
AR10P and ORL10P, the text data PAMAC and
BASEHOCK. The first two data sets are from the UCI repos-
itory [10], the rest come from the ASU repository [39]. Table 1

gives general information about these data sets. These data
sets have a wide range of spans and representations, with
sample sizes ranging from 100 to 2000, and feature numbers
from 166 to 10,304. Therefore, they can provide comprehen-
sive and detailed testing for the proposed algorithm under
different conditions.

We compare the proposed FBPSO algorithm with MCFS
[9], TRACK [31], UFSACO [28] and UFSPSO [33]. Where,
MCFS and TRACK belong to non-heuristic approaches, and
they have been used in many literatures such as [7, 9, 15, 30,
33]. In our experiments, the two algorithms are mainly used to
prove the superiority of EA-based approaches compared with
non-heuristic approaches. UFSACO and UFSPSO are two
representations of existing EA-based approaches. As we all
know, ACO and PSO are two very universal swarm intelli-
gence optimized algorithms. The two algorithms are mainly
used to validate the effectiveness of our improved PSO-based
algorithm, compared with existing EA-based approaches.

Since all data sets have different feature size, the maximum
correlation entropy in the FBPSO and UFSPSO method is set
to the entropy relevance value of the ⌈Dlog2D⌉ − th ranked
feature for each dataset, and 10-fold cross-validation is used,
where ⌈.⌉ is an upward integral function. We set the swarm/
population size to 40, the maximal iteration times to 100. The
1-nearest neighbor (1NN) and the decision tree classifier
(C4.5) are introduced to calculate the classification accuracy
of a feature subset. In order to reduce the impact of random-
ness, all algorithms are run 20 times on each data set to obtain
their statistical results.

4.2 Experimental analysis

We evaluate the proposed FBPSO algorithm by the following
two aspects: the proportion of selected features to all features
(PRO) and the classification accuracy (ACC) [40]. Fig. 1
shows the PRO value obtained by FBPSO. It can be seen that
FBPSO significantly reduces the number of features, where all
the PRO values locate within the range 4.72% to 1.19%. It
should be noted that the bigger the data size, the smaller the
PRO value obtained by FBPSO.

Compared FBPSO with other four feature selection
methods, Tables 2 and 3 report their ACC values by using

Fig. 1 The PRO values obtained by FBPSO

Table 2 Average ACC values
found by all the algorithms (1NN) Datasets All Feature TRACK MCFS UFSACO UFSPSO FBPSO

Musk1 80.76- 81.50- 79.20= 80.22= 79.83= 79.85

Arrhythmia 64.29+ 69.20+ 68.19+ 69.75+ 70.42+ 70.74

AR10P 66.92+ 69.60+ 66.15+ 71.79+ 73.00+ 73.31

ORL10P 88.00+ 89.81= 90.00- 89.27= 89.50= 89.53

PCMAC 76.36+ 76.50+ 76.60+ 76.06+ 77.98= 78.09

BASEHOCK 81.15+ 81.09+ 81.02+ 81.41+ 81.47+ 82.47

Average accuracy 76.24 77.95 76.86 78.08 78.70 79.01
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two classifiers and their statistical results, respectively. In the
two Tables, the baseline column is the ACC values obtained
by the classifier when all features are selected, other columns
are average ACC values obtained by different methods, and
the last row is the average classification accuracy of an algo-
rithm on different data sets. The best classification results are
highlighted at blackbody for the corresponding feature selec-
tion method. Moreover, according to the suggestion in [12],
theWilcoxon rank sum test with the significant level of 0.05 is
used to show the statistical significance of results. Here the
symbol B+^ indicates that the null hypothesis (i.e., the median
difference between two algorithms is zero) cannot be rejected
at the 5% level, and FBPSO is significantly better than the
compared one. The symbol B-^ indicates that the null hypoth-
esis cannot also be rejected at the 5% level, but FBPSO is
significantly worse than the compared one. The symbol B=^
indicates that the null hypothesis can be rejected at the 5%
level, and means that the differences between FBPSO and the
compared one are not significant.

From the 1NN-based classification results given in Table 2,
it can be seen that for the data sets Arrhythmia, AR10P and
BASEHOCK, the ACC values of FBPSO is significantly bet-
ter than that obtained by the four comparison algorithms, i.e.,
TRACK, MCFS, UFSACO, and UFSPSO. For the data sets,
Arrhythmia, AR10P, PCMAC and BASEHOCK, the FBPSO
algorithm obtained the highest ACC values. As the last line of
Table 2 shown, the FBPSO algorithm obtained the best aver-
age ACC values for all the six data sets. UFSPSO also obtain-
ed good ACC values similar to FBPSO for the data sets,
Musk1, ORL10P and PCMAC, and achieved the second best
values in terms of the average classification accuracy, as
shown in the last line of Table 2. Compared with the baseline
method, the classification accuracies of TRACK, MCFS,
UFSACO, UFSPSO and FBPSO are increased by 1.71%,
0.62%, 1.84%, 2.46%, and 2.77%, respectively.

Table 3 shows the ACC values of different algorithms un-
der the C4.5 classifier. We can see that for all the six data sets,
the performance of FBPSO is significantly better than the
three comparison algorithms, TRACK, MCFS, UFSACO, in
terms of the ACC values. UFSPSO also obtained good ACC
values similar to FBPSO for the data sets, Musk1,
Arrhythmia, AR10P and BASEHOCK, but its performance

is significantly worse than FBPSO on the data sets ORL10P
and PCMAC. Moreover, on four out of the six data sets, i.e.,
Musk1, Arrhythmia, AR10P and PCMAC, the FBPSO algo-
rithm has higher ACC values than the other four comparison
methods. Compared with the baseline method, TRACK,
MCFS and UFSACO, the classification accuracies of
FBPSO are increased by 0.86%, 0.58%, 1.47% and 0.95%,
respectively. Therefore, the performance of FBPSO is also
better than all the four comparison algorithms.

Overall, we can see from the above results that the pro-
posed FBPSO algorithm can optimize the feature selection
process and improve the classification accuracy of data. It is
a competitive data pre-processing tool.

4.3 Further discussion

This subsection evaluates the effectiveness of our proposed
local filter search strategy. Here, FBPSO without the local
filter search is denoted as FBPSO/LS. Fig. 2 shows experi-
mental results of both FBPSO and FBPSO/LS. We can see
that for all the datasets, under the help of the local search
operator, FBPSO obtains higher classification accuracies than
FBPSO/LS. Taking the dataset AR10P as example, FBPSO
achieves a better classification accuracy value, 73.24, which is
1.42 points higher than FBPSO/LS. Overall, the local search
strategy plays a key role in improving the performance of
FBPSO.

Table 3 Average classification
accuracy obtained by all the
algorithms (C4.5)

Datasets All Feature TRACK MCFS UFSACO UFSPSO FBPSO

Musk1 77.04+ 77.88+ 76.11+ 78.56+ 79.62= 79.67

Arrhythmia 66.37+ 66.45+ 63.56+ 66.49+ 67.04= 67.15

AR10P 69.31+ 70.00+ 69.62+ 70.05+ 70.40= 70.58

ORL10P 81.67= 84.00- 84.00- 81.33+ 81.40+ 81.72

PCMAC 77.51+ 77.84+ 77.72+ 77.90+ 78.18+ 78.38

BASEHOCK 85.08- 82.44+ 82.31+ 82.07+ 84.84= 84.62

Average accuracy 76.16 76.44 75.55 76.07 76.91 77.02
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Fig. 2 Average classification accuracy obtained by FBPSO and FBPSO/
LS
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Moreover, this paper uses a space reduction strategy based
on average mutual information to remove irrelevant and weak-
ly relevant features, as shown in Subsection 3.1. Now we
design another experiment to test the effectiveness of this
strategy. In this experiment, 20 new data sets are constructed
based on the two data sets, Musk1 and Arrhythmia. Taking
Musk1 as example, first we select randomly its 100 features,
and then add a certain degree of noise to these features by the
following method: v(xi) = (1 + λ × rand) × v(xi), i = 1, 2⋯,
100. Here, v(xi) represents the value of the i-th selected
feature, λ is the degree of noise, rand is a random
number within [−1,1]. In our experiment, we set λ to
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} respectively to
generate ten new data sets.

Fig. 3 shows the removal ratios of features from the 100
features by implementing the space reduction strategy on new
data sets. We can see that for the two original data sets (i.e.,
Musk1 and Arrhythmia when λ = 0), only 87 and 81 out of the
100 features are removed respectively. The main reason is that
the 100 features include strongly relevant features. However,
as the noise degree increases, the relevant degrees of all the
100 features become gradually weak. Correspondingly, the
removal ratios increase rapidly under the help of the space
reduction strategy. When the noise degree is equal to 0.2, the
removed ratios have already achieved 98% and 97% for the
two data sets, Musk1 and Arrhythmia, respectively.When λ ≥
0.4, all the 100 new features are removed because these fea-
tures have become totally irrelevant under the action of strong
noise. Therefore, the space reduction strategy has good capa-
bility on removing irrelevant and weakly relevant features.

5 Conclusion

This paper presented a new unsupervised feature selection
algorithm, the filter-based bare-bone particle swarm optimiza-
tion algorithm, FBPSO. The space reduction strategy based on
average mutual information, the problem-specific local search
strategy based on feature redundancy and the feature
similarity-based evaluation function proposed in this paper,

together with several established techniques such as the
parameter-free update strategy of particle, and the real
encoding strategy, all have made the FBPSO algorithm more
effective in dealing with UFS problems. Finally, the experi-
mental results on six datasets showed that the proposed
FBPSO algorithm can not only ensure the classification accu-
racy, but also significantly reduce the number of selected fea-
tures, and it is a highly competitive unsupervised feature se-
lection method.

Generally, a feature selection problem contains two main
objectives, i.e., the number of features and the classification
accuracy. An important topic for further research is to study
the applications of typical multi-objective particle swarm op-
timization technologies such as vortex multi-objective PSO
[24] in feature selection problems. Another venue of research
is to apply the developed algorithms to various real feature
selection problems presented in cancer diagnosis [5], image
recognition [13], and other practical application areas.
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