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Abstract
In this paper, we focus on the task of estimating crowd count and high-quality crowd density maps. Among crowd
counting methods, crowd density map estimation is especially promising because it preserves spatial information which
makes it useful for both counting and localization (detection and tracking). Convolutional neural networks have enabled
significant progress in crowd density estimation recently, but there are still open questions regarding suitable architectures.
We revisit CNNs design and point out key adaptations, enabling plain a signal column CNNs to obtain high resolution and
high-quality density maps on all major dense crowd counting datasets. The regular deep supervision utilizes the general
ground truth to guide intermediate predictions. Instead, we build hierarchical supervisory signals with additional multi-
scale labels to consider the diversities in deep neural networks. We begin by obtaining multi-scale labels based on different
Gaussian kernels. These multi-scale labels can be seen as diverse representations in the supervision and can achieve high
performance for better quality crowd density map estimation. Extensive experiments demonstrate that our approach achieves
the state-of-the-art performance on the ShanghaiTech, UCF CC 50 and UCSD datasets.

Keywords Convolutional neural networks (CNNs) · Crowd counting · High-resolution density map · Multi-scale labels ·
Diversity

1 Introduction

In recent years, the degree of urbanization has substantially
enhanced, and the number of urban population has grown
exponentially, which has led to an increased number
of activities such as sporting events, political rallies,
religious gatherings, democratic protests, etc. (see Fig. 1 for
various crowd scenes), thereby resulting in massive crowd
gathering. In such scenarios, it is essential to analyze crowd
behavior for better management, safety and security. Critical
to such analysis is crowd count and density.

The history of crowd counting is extremely rich, we now
highlight a few representative works that have proven to be
of great practical importance. Broadly speaking, one may
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categorize works into a few groups such as I: monolithic
style and part-based pedestrian detection like the appear-
ance and motion feature based pedestrian detection [1],
Bayesian model segmentation based crowd detections [2],
and the HOG based head detections [3]; methods driven by
II: regression-based methods on top of features arrived at
through careful manual design, such as foreground area [4–
9], texture features [6, 7, 10], histograms of edge orientation
[5, 6, 11], or edge count [5, 6, 8]; and III: density based
methods that remain reliant on features of the human design,
such as MESA [12], random regression forest [13], Count-
forest [14], subspace learning [15]. Also, there has been
a recent wave of development using Convolutional Neural
Networks(CNNs) that emphasize the importance of auto-
matic hierarchical feature learning, including Wang et al.
[16], Fu et al. [17] and Zhang et al. [44]. Recent works using
multi-column and multi-scale architectures (MCNN [18],
Switch-CNN [20], Hydra CNN [21] and CNN-boosting
[22]) have demonstrated considerable success in achiev-
ing lower count errors. However, there remains large room
for improvement in these CNN-based methods, in both
performances of networks and run time.

Figure 1 intuitively explains the crowdcounting difficulty.
In those figures, we see extreme crowding, the size of each
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Fig. 1 Sample crowd scene from the ShanghaiTech dateset [18]

person is small. Meanwhile, there is significant variation in
the scale of the people who far from the camera appear to
be small while the near ones are significantly bigger.

To count such a tight crowd of small objects, one of the
most critical elements is the contextual information in an
image. Hu and Ramanan [23] showed the importance of
contextual information for CNN to recognize small objects.
In CNNs, different contextual information is equivalent
to requiring different receptive fields. The most common
approach to get those different receptive fields is to pool
(and subsampling in general) the feature maps throughout
the network. However, resolution is lost when subsampling.
Resolution is necessary to resolve a tight crowd of small
objects. The increased receptive field (and thus recognition
capability) comes at the price of losing resolution. The
resulting coarse features miss the details of small objects
that are difficult to recover even with efforts such as
dilated convolutions [24] or encoder-decoder network [25].
Thus, we need a specific method to properly address
recognition/resolution tradeoff.

As the promisingmethod, [26] introduced “skip branches”
to the fully convolutional neural networks (FCNNs), which
add features from the lower convolutional layers to the
upsampled layers, to compensate for the loss of spatial
information due to the stride in the convolution/pooling lay-
ers. Skip networks address the tradeoff between expanding
the receptive field and resolution quite explicitly: the infor-
mation at different resolutions is extracted and combined.
The original paper introduces this methodology as “com-
bining what and where.” Actually skip-network works quite
well in current computer-vision papers [26, 27].

Nevertheless, we highlight that a naive application of
skip-network does not always improve performance. The
skip model seems to be inflexible and arbitrary in how
to combine different resolutions features. First of all, it
combines verdicts(e.g. classification maps), instead of a
rich set of features. For example, it combines how a
layer evaluates that an object is a person using low-level
information, with how another layer evaluates whether the
same object is a person using higher level information.
This means that if objects may not be detected at lower
levels, it is useless to combine those verdicts(classification
maps) to higher levels. Moreover, the element-wise addition
restricts the combination of resolutions to be simply a
linear combination. We could certainly imagine that verdicts
require a more complex nonlinear combination of high-level
and low-level information to be effectively calculated.

We solve this problem by combining a rich set of fea-
tures, coming from each of the resolutions instead of ver-
dicts. To this end, we propose a novel module, which we
call Multilayer Perception(MP) module (Fig. 3). The MP
module extracts intermediate features from the network and
treated equally, then learns how to nonlinearly combine
these features to give the final verdict. This adds flexibility
to learn more complex relations between the different reso-
lutions and generalizes the element-wise addition of the skip
architecture.

The proposed MP module comprises of a fusion layer
which fuses the outputs of multiple branches. Supervision
only in the last fusion layer may cause heavy bias towards
learning large objects structure, that is, some layers may not
be optimized adequately. To alleviate this issue, in this paper,
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we utilize deep supervision [28] method, namely, both out-
puts of all branches and their fusion result are supervised.
However, using only one general supervision(i.e. the original
ground-truth) ignores the network diversities: diverse pre-
sentations of hierarchical layers. In addition, the general
supervision cannot be well-suited to all branches. Therefore,
we propose using diverse deep supervision (DDS) that can
adapt to all of branches or hierarchical diversities for crowd
counting. DDSmainly utilizes multi-scale labels which vary
from coarse level to fine level as deep features become more
discriminative. The labels in our work are the density maps
which preserve spatial distribution information of crowd.
Briefly speaking, we capture the multi-scale density maps
and insert them into the network to guide the intermedi-
ate layers in a coarse-to-fine side outputs. The multi-scale
labels not only make the network more discriminative, but
also are a good substitute for perspective maps which are
laborious to generate and unavailable for every dataset.

The proposed method uses CNNs to fuse features at
various levels for achieving lower count error and incorpo-
rate network diversities for better quality density maps. It
can be considered as a set of multilayer-perception CNNs
to estimate multi-scale density map. Hence, the whole
network architecture referred to as Multilayer Perception
Counting (MPC).

To summarize, we present several new elements as
our contributions: (1) Note that CNNs for accurate crowd
counting needs to address the trade-off between recognition
and resolution, we analysis the main families of recently
proposed single-column CNNs architectures for tackling the
aforementioned issue. (2) We design a single-column CNNs
with a single small filter size as the front-end for 2D feature
extraction, which is easy to train from scratch. Small-sized
filters not only preserve the spatial resolution but more
effective than large ones and allow us to build a deep
network. (3)We combine the feature maps of multiple layers
to balance the recognition/resolution tradeoff. Different
layers share the same low-level feature representations,
which results in fewer parameters, fewer training data
required, and faster training. (4) We introduce a diverse
deep supervision (DDS) by adding diverse supervision to
all side-outputs. It can improve the network generalization
and discrimination on crowd scenes with a large variation
in crowd density. (5) We conduct experiments on three
datasets: ShanghaiTech [18], UCF CC 50 [55] and UCSD
[6]; the results show that our MPC significantly outperforms
the state-of-the-art crowd counting methods.

2 Significance and related work

The proposed multilayer-perception counting (MPC) tack-
les two critical issues: (1) designing and training counting

model of the tradeoff between recognition and resolution,
the model is to enlarge receptive fields without losing
spatial resolutions and brutally expanding network com-
plexity. and (2) model discrimination ability improving with
deep diversity supervision, that performs to multiple layers
supervision using multi-scale labels guide early estimation
results. We discuss below the significance of the proposed
MPC algorithm when compared with the existing algo-
rithms along two directions in terms of: (1) Crowd counting
and density map estimation; and (2) Tradeoff between
recognition/resolution in neural networks

2.1 Crowd counting and density map estimation

The task of crowd counting and density estimation is
inherently challenging. After a few decades of research, they
have been compounded by myriad of factors that are key
and that are likely to play a role in a successful system:
(1) carefully designed and/or learned features [5, 6, 29, 39],
(2) foreground pixel extraction or background subtraction
[30–32], (3) regression model application [9, 12, 33–35]
(4) perspective-aware [5, 6, 18, 21, 32, 36] (5) scale-aware
[18, 20, 21, 37, 38] (6) whole image predictions (referring
to approaches that perform prediction by taking the image
contents globally and directly) [18, 19, 38–40], (7) multi-
task learning [40–44] and (8) context-aware [19, 39, 45].

Starting with the seminal work of Lempitsky et al. [12], a
density-based approach is proposed to learn a linearmapping
between local patch features and corresponding object den-
sity maps, primarily focuses on three of these aspects: using a
large number of manually designed features (property 1),
median filtering background subtraction (property 2), and
MESAdistance regression(property 3). Inspiredby the recent
deep learning success in computer vision, recent crowd
counting tasks are addressed by CNNs. The CNN-based
approaches have demonstrated significant improvements
over previous hand-crafted feature-based methods, thus,
motivating more researchers to explore CNN-based app-
roaches further for related crowd analysis problems. Sam et
al. [20–22, 47] using CNNs for patch-based crowd counting
contains an alternative common thread that focuses on three
aspects: automatic feature learning (property 1), considering
perspective-aware (property 4), and multi-scale response
fusion (property 5). However, For patch-wise predictions,
as in [21], the CNNs normally produce patches of density
maps for overlapping image patches. Although the whole
density map can be obtained by placing the density patches
at their image position and then averaging pixel density
values across overlapping patches, but the overlapping
prediction and averaging operation results in density maps
that are overly smooth(e.g., see Fig. 2c). More importantly,
their patch-to-pixel or patch-to-patch strategy results in
significantly downgraded training and prediction efficiency.
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(a) image (b) Ground Truth (c) CNN-patch[21] (d) MPC(ours)

Fig. 2 Comparison of different density map methods. All the density maps are in same color scale (a particular density value corresponds to the
same color across images). The green line in the image shows the region of interest (ROI). The red dots are the ground-truth person annotations

By our MPC network architecture, we intend to empha-
size that we are producing an easy-trained end-to-end crowd
counting system. Zhang et al. [18, 38, 43, 45] also per-
form a whole-image based inference, which focuses on four
aspects: automatic feature learning (property 1)multi-scale
response fusion(property 5) making whole image predic-
tions (property 6), exploiting multi-task learning(property
7). Crowd counting via regression suffers from the drastic
changes in perspective and scale, which commonly exist in
crowd images (see Fig. 1). Marsden et al. [38] attempted
to address the scale issue by performing a multi-scale aver-
aging during the prediction phase. While being simple and
effective, it results in an inefficient inference stage. Zhang
et al. [18] uses multi-column of convolution layers with
the same depth but with different filter sizes(small, medium
and large), which are combined in the end to adapt to the
large variations of perspective and scale. Despite [18] has
achieved high performance in this field, we observe two
disadvantages of it: (1) It is hard to train according to the
described training method. (2) It used 9×9 filters in order to
get a larger receptive field (with fixed depth), which is not
as effective as smaller filters [46]. Instead, we use single-
column CNNs with a small filter as the backbone, which
is easy to train. Meanwhile, small-sized filters preserve the
spatial resolution and are more effective.

In an entirely different approach, Sindagi et al. [43,
45] explored multi-task learning to boost individual task
performance. Vishwanath et al. [43] used a cascaded CNN
architecture to simultaneously learn to classify the crowd
count into various density levels and estimate density
map. However, using a density-level classifier makes the
design more complicated and spend a large portion of
network parameters. To generate high-quality density maps,
Vishwanath et al. [45] adopts multi-column convolutional
neural networks (MCNN) as a part of their network and
further concatenates its feature maps with local and global
context features from classification networks. While their
approach is successful in generating high-quality density
maps, they run much slower since it uses both a bloated
network structure and sliding window fashion per-pixel
prediction. Compare to our MPC, we use a single backbone
network with a single filter size. Density map estimation is
performed at a concatenated layer which merges the feature

maps from multiple scales of the network; it can therefore
easily adapt to scale variations and address the recogni-
tion/resolution tradeoff. In addition, multi-scale layers share
the same low-level parameters and feature representations,
which results in fewer parameters and faster prediction.

Works similar to ours are SaCNN [51] and FCNN-skip
[40]. The most obvious differences between our network
with SaCNN and FCNN-skip are in two part. First, SaCNN
and FCNN-skip only consider the last few convolution
layer feature to combine, in which lots of local infor-
mation to crowd density estimation is missed. In con-
trast to it, our MPC uses richer features from all the
convolution layers, thus it can capture more accurately
crowd location information. Second, our architecture com-
prises a single-stream deep network with additional diverse
deep supervision. Compared with traditional deep supervi-
sion, diverse deep supervision can adapt to the hierarchical
diversities with minimal manual effort. This architecture
can improve both discrimination and generalization for
high-quality density maps generation.

2.2 Tradeoff between recognition/resolution
in neural networks

As pointed out in [45], context information provide signif-
icant improvements in the crowd counting. Even humans
cannot recognize a small person in a surveillance imagery
patch without context information such as caps, bags or
other persons. Also, a higher spatial resolution is crucial.
In coarse resolution, small crowd can be over-estimated,
or under-estimated. Thus, we should pay attention to both
context(recognition capability) and resolution. But, as we
know, it seems contradictory to try to increase recognition
along with resolution in general signal-column CNNs. For-
tunately, there’s been a lot of work on how to deal with the
balance between recognition and resolution. In the follow-
ing, we analyze recently the main families of addressing
the recognition/resolution tradeoff networks that have been
used in the past two years.

Dilation networks Dilated convolutions are basically con-
volutional filters with gaps between the filter elements. By
increasing this gap, the kernel weights are placed far away
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at given intervals (i.e., more sparse), and the kernel size
accordingly increases. Dilations have been used as an alter-
native to upsampling for generating full-resolution outputs
[26, 52]; or as a means to increase the receptive field [53], by
enlarging the area covered by a convolution kernel without
increasing the number of trainable parameters.

While dilation networks have been reported to exhibit
certain advantages, they are computationally demanding.
Application of dilated convolution causes the problem: the
receptive field is indeed increased, but spatial consistency
between neighboring units becomes weak and local structure
cannot be extracted in a higher layer.

Deconvolution networks (Unpooling) The deconvolution
scheme uses a series of layers to learn to interpolate and
upsample the output. This is usually formulated as an encoder/
decoder architecture, where a base network is first designed
(the encoder) and then a reflected version of itself is attached
to it (the decoder, with corresponding deconvolution and
unpooling layers). However, the depth of deconvolution
networks is significantly larger, roughly twice the one of
the associated FCN. This often implies a slower and more
difficult optimization, due to the increase in trainable param-
eters introduced by deconvolutional layers. This model
does address the recognition/resolution tradeoff, but only
in the case where max pooling is used for subsampling.
To recover the lost resolution, it is required to transmit the
indices of the maximal activation of the max pooling layers
to the corresponding decoder unpooling layers.

Skip networks Skip networks as the name suggests skips
some layer in the neural network and obtain intermediate
features at different resolutions (not just the last one), the
final output map is built by combining multiple feature
responses. Skip networks add the link to incorporate the
feature responses from different resolutions of the primary

network stream, and these responses are then combined in
a share output layer. The skip network architecture provides
an efficient solution to address the recognition/resolution
tradeoff. However, the model is arbitrary and inflexible in
how the features are combined.

Multilayer-perception counting networks We list these
variants to help clarify the distinction between existing
approaches and our proposed multilayer-perception net-
works approach, illustrated in Fig. 3. There is often signif-
icant redundancy in existing approaches, in terms of both
representation and computational complexity. Our proposed
multilayer-perception counting network take multiple inter-
mediate features at different resolutions and combine them
seems to be a sensible approach to specifically address the
recognition/resolution tradeoff. In such a scheme, MPC can
expand the receptive field without losing resolution, mean-
while combining all of intermediate features constitutes
indeed an efficient use of resources.

3 Our approach

3.1 Network architecture

In this paper, we design a MPC network for counting
crowd and generating high-quality density maps. Unlike the
latest works such as [20, 45] which use the deep CNN for
ancillary, we focus on designing CNN-based density map
generator. Figure 3 shows a schematic of the proposed MPC
model: front-end module, diverse deep supervision(DDS)
module and multilayer perception(MP)module. The role of
each module is different. The front-end module is designed
to extract features that cover large context, and thus the
size of the receptive field is gradually increased as the
network deepen. The lateral MP module is dedicated to

Fig. 3 Overview of the proposed network architecture
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aggregating hierarchical features scattered by the front-end
module. Thus, the MP module is constructed using a set
of deconvolutional and fractionally-strided convolutional
layers. The set of fractionally-strided convolutional layers
help us to restore details in the output density maps. Finally,
The presence of DDS module in MPC is designed to
improve the generalization and discrimination of the model.
Thus, the DDS module has discriminating layer connected
to the deconvolutional layer in each stage.

Front-end Front-end module is our backbone. We need the
architecture of Front-end (1) to be deep, so as to efficiently
generate perceptually multi-level features; (2) to have multiple
stages with different strides, so as to generate meaningful
side outputs with different scales; and(3)to be easy-trained.
Recently, VGG16 nets [48] have gained popularity for com-
puter vision tasks [26, 49, 50], with great depth (16 convolu-
tional layers), great density (stride-1 convolutional kernels),
and multiple stages (five 2-stride downsampling layers).
Recent work [46] also demonstrates that carving the first
13 layers from VGG16 is useful to predict the density map
for a given crowd image. We therefore adopt the VGG16
architecture but make the following modifications: (a) we
remove the classification part of VGG16 (fully-connected
layers) and build the proposed MPC with convolutional lay-
ers in VGG16. (b)we cut the 5th pooling layer of VGG16.
If we add 5th pooling layer, the output size of this front-end
network is 1/32 of the original input size. That would be
harmful for crowd localization and generating high-quality
density maps. Our final Front-end module has 5 stages, with
strides 1, 2, 4, 8 and 16, respectively, and with different
receptive field sizes, all nested in the VGG16. It is clear that
the useful information captured by each conv layer becomes
coarser with its receptive field size increasing. However,
simple extension of receptive field fails to generate clear
density map because of spatially abstracted coarse features.
The problem is solved in next section of the network.

Multilayer perception(MP) The role of MP module is to
handle problem of front-end module. Specifically, aggres-
sive application of pooling causes: the high-resolution fea-
tures have a small receptive field, while the low-resolution
ones have a wider receptive field. If we combine the differ-
ent resolution features to adapt the network to the changes
in receptive field size, spatial resolution in crowd images
can be maintained. In such a scheme, we extract a subset
of intermediate features from the front-end module, then
concatenate those to create the pool of features. From the
pool of features, a neural network predicts the final density
map. In experiments section, the MP module is shown to be
effective especially for densely crowd scene.

Diverse deep supervision(DDS) Lee et al. [28] firstly pro-
posed to train deep neural networks with hidden-layer
supervision. Although they imposed additional supervision
to intermediate layers to improve the directness and trans-
parency of learning network, their general supervision fails
to present hierarchical diversities. Instead, our main aim
is to explicitly introduce diversities associated with differ-
ent intermediate layers. To this end, we propose the diverse
deep supervision, which acts as multiple specific discrim-
inant layers that produces a companion local output map
for early layers. The main difference of the diverse deep
supervision with [28] is: Notably, Lee et al. utilizes the orig-
inal ground-truth as supervisory signal to guide the whole
network. Instead, we use multi-scale ground-truth labels
which vary from coarse-to-fine as deep features become
more discriminative to instead of the original ground-truth.
The multi-scale ground-truth make the network more dis-
criminative and perform accurate count estimation as well
as present high quality density maps.

3.2 Multi-scale labels generation

In the training images, Ii, i = 1, · · ·N , all objects
presented in the image must be annotated with one point
in the center. The true density ground-truth for each pixel
p ∈ Ii is defined as a sum of Gaussian kernels centered on
the point annotations :

Fi =
∑

P∈Pi

N(p; P, σ 2I ), ∀p ∈ Ii (1)

where p is a pixel location of image Ii , N(p; P, σ 2I ) is a
2D Gaussian distribution centered at P , and Pi is the set
of ground-truth object locations in image Ii . The parameter
σ is the standard deviation of Gaussian filter. Depending
on the dataset, we use different methods to determine
parameter σ for generating ground truth density. Due to
perspective distortion and cross-scene scenarios, the images
usually contain heads of very different sizes. For the sparse
scenes, the parameter σ is the average head size. For the
highly congested scenes, we describe the process to estimate
the parameter σ as:

σi = argP∈Pi
βdi(P )

σ = 1

N

N∑

i=1

(σi) (2)

For each targeted object in the ground truth Pi , we use di(P )

to indicate the average distance of k nearest neighbors.
βdi(P ) is geometry-adaptive kernels [18] which vary the
spread parameter of the Gaussian depending on the local
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crowd density. Hence σi is the average spread of Gaussian
calculated from all objects in an image. For N training
images, σ in this case is given by averaging the σi . In
experiment, we refer to the configuration in [18], where
β = 0.3 and k = 3.

In this paper, we developed a crowd counting method
influenced by diverse deep supervision(DDS) to guide the
CNNs model. Our diverse deep supervision consists of
multi-scale labels. These multi-scale labels are used to adapt
to the diversities of intermediate layers which can present
different scale abstracts of the input image. Multi-scale
labels can be obtained by convolving the annotation map
with Gaussian kernels of different standard deviation σ j (j
is the number of side-outputs). The method of calculating
the parameter σ j is the same as the previous method of
calculating the parameter σ . For datasets with dense crowd,
we first compute di(P ) in the dataset and sort them in
ascending order, then divide them into j parts. Finally, we
average the j th part of di(P ) to calculate the value σ j .
Similarly, this approach is equally applicable to datasets that
have sparse crowds. The corresponding multi-scale labels
are denoted as {Fj }Jj=1, where J = 5 in this network. Five
different side-output predictions are separately supervised
with the corresponding Fj , and the fusion-output prediction
is still supervised with the original ground-truth (see Fig. 3).

3.3 Network Loss

For MPC training, we have 5 side-output layers and a
fusion layer, each side-output layer is also associated with a
regressor. We consider the squared Euclidean distance loss
to measure the distance between the estimated density map
and the ground truth [18, 20]:

�density(d, d̂) = 1

N

N∑

i=1

(
di − d̂i

)2
(3)

di and d̂i denote the ground truth density value and the
predicted density value respectively, N is the number of
training images. The Euclidean distance is computed at
pixels and summed over them.

Putting side-output layer loss and fusion layer loss
together, we minimize the following objective function via
standard (back-propagation) stochastic gradient descent:

� = 1

N

N∑

i=1

⎛

⎝
|J |∑

j=1

�side(d
j
i , d̂i) + �f use(di, d̂

f use
i )

⎞

⎠ (4)

where d
j
i is the activation value from stage j while d̂

f use
i

is from fusion layer. J is the number of stages (equals to 5
here).

We introduce another loss functions to jointly optimize
the model: count loss. The count loss helps to reduce the
variance of the prediction errors. The count loss function is

�count = 1

N

N∑

i=1

(
�di − �d̂i

)2
(5)

The crowd counting loss concentrates the learning on those
samples with relatively large prediction errors.

The training and evaluation was performed on NVIDIA
GeForce GTX 1080 GPU using Caffe framework [54]. We
directly train our MPC network from scratch by randomly
initializing the network parameters. Stochastic gradient
descent (SGD) minibatch samples 10 images randomly in
each iteration and applies fixed learning rate at 1e − 6
during training. The momentum and weight decay are set to
0.9 and 0.0002 respectively. We first regress the model on
the density map (4); once it converges, we add (5) in the
objective loss to jointly train a multi-task network for a few
more epochs.

4 Experiments

In this section, we discuss our detailed implementation
and report the performance of our proposed algorithm.
The data preparation and evaluation metrics are introduced,
and then we evaluate our method on three benchmarks
of crowd counting datasets. The first one, ShanghaiTech
dataset [18], which consists of two parts as Part A and Part
B. Part A is firstly used to establish an ablation study for
validating the effects of different modules, and then the
whole dataset (Part A and Part B) is conducted to compare
with the previous state-of-the-art methods. The other two,
UCF CC 50 dataset [55] and UCSD Pedestrian dataset
[6]are used to benchmark our method with the previously
proposed crowd counting methods. The statistics of the
datasets are summarized in Table 1, and some qualitative
results can be found in the supplementary.

4.1 Data preparation

To create the training dataset, we divide the input image into
four quarters blocks without overlapping. After that, we also
crop patches of size 1/4th the size of the original image from
60 random locations. The cropping leads the training set that
is a factor of 64 larger than the original dataset. Note that
the cropping is used only as a data augmentation technique
and the resulting patches are of arbitrary sizes.

Among these datasets, the UCF CC 50 and Shang-
haiTech Part A datasets are congested scenes, UCSD and
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Table 1 Statistics of the four
tested datasets Dataset Nf Res. Range TP

UCSD 2000 238 × 158 11-45 49885

UCF CC 50 50 varies 96-4633 63974

ShanghaiTech Part A 482 varies 33-3139 241,677

Part B 716 768 × 1024 9-578 88488

Nf is the number of annotated images or frames; Res. is the image/frame resolution; Range is the range of
number of objects inside the ROI of a frame; Tp is the total number of labeled objects

ShanghaiTech Part B datasets are sparse scenes. According
to the description in Section 3.2, we use different method to
calculate the parameter σ of Gaussian kernel depending on
the dataset. The setups for different datasets are shown in
Table 2.

4.2 Evaluationmetric

In our experiments, the following three metrics (7), (8) and
(9) to measure the prediction accuracy of the model: the
mean absolute error (MAE), Mean Squared Error(MSE),
and standard deviation of absolute error (Std AE) [56],
which is used to quantify the amount of variation or
dispersion of a set of estimation errors values.

AE = |ci − ĉi | (6)

MAE =
∑N

i=1 AE(i)

N
(7)

MSE =
√∑N

i=1 AE(i)2

N
(8)

Std AE =
√∑N

i=1(AE(i) − MAE)2

N
(9)

where AE in (6) is the absolute error, and ĉi is the predicted
value obtained from the model, while ci is the actual value
measured, N is the number of samples used for model
training, validating or testing. Roughly speaking, MAE
indicates the accuracy of the estimates, Std AE indicates
the uncertainty of the estimates, and MSE indicates the
robustness of the estimates.

Besides, we also use Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity in Image(SSIM)[57] to measure
the quality of density maps with respect to the ground truth
density map on ShanghaiTech Part A dataset.

4.3 Ablation Study on ShanghaiTech Part A

Here, we discuss the design of our model with ablation
studies on ShanghaiTech dataset Part A [18]. In this dataset,
people in the images present large variations in density,
scale and appearance, so it is difficult to estimate the
count with high degree of accuracy. Hence, it was chosen
for the detailed analysis of performance of the proposed
architecture. In the experiments, we use the train-test splits
provided by the authors [18].

Our experiments comprise two axes: MP module(with or
without), diverse deep supervision(DDS, with or without).
(1) The architecture of the model only uses front-end
module(without DDS and MP modules). The output feature
maps of front-end are fed into 1 × 1conv layer whose
output is used to estimate the density map. (2) Front-end
with diverse deep supervision(Front-end+DDS). In addition
to the front-end configuration, a Euclidean loss layer is
also connected to the deconv layer in each stage and the
network is trained using �density loss. (3) Front-end with
only MP module(Front-end+MP). The output of Front-
end is concatenated with all side-outputs and the network
are trained to estimate the density maps by minimizing
�f use loss. (4) Front-end with MP module and diverse deep
supervision(front-end+MP+DDS)train end-to-end. Detailed
architectures of main models are shown in Table 3. In all

Table 2 The setups of
generating the multi-scale
labels and ground truth for
different datasets

Dataset Multi-scale labels Ground truth

σ 1 σ 2 σ 3 σ 4 σ 5 σ

UCSD 2 3 4 6 8 4

UCF CC 50 2 3 5 7 9 5

ShanghaiTech Part A 2 4 6 8 9 6

Part B 5 7 10 12 15 10
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Table 3 Detailed architectures
of the networks Detailed architectures of the networks

Front-end MP DDS

stage 1 conv-n1-k1 loss

stage 2 deconv-n128-k4 conv-n1-k1 loss

stage 3 deconv-n256-k8 conv-n1-k1 loss

stage 4 deconv-n512-k16 conv-n1-k1 loss

stage 5 deconv-n512-k32 conv-n1-k1 loss

Four different configurations

Front-end Front-end+MP Front-end+DDS Front+MP+DDS

concat concat

conv-n512-k3 conv-n512-k3

conv-n256-k3 conv-n256-k3

conv-n1-k1 conv-n1-k1 conv-n1-k1 conv-n1-k1

loss loss loss loss

In the table, the top half of the table is the detailed structure of the main model, and the lower half of the
table is the four different configurations of the ablation study. Front-end module is fine-tuned from VGG-16
net where all convolutional layers are divided into five stages, stage(c) represents the c stage. In this table,
(de)conv-n(a)-k(b) represents a convolutional layer with b × b kernel, output number of feature maps of a.
loss represents Euclidean distance loss

of the models, convolutional layers except the last one are
followed by ReLU activations. All networks take the whole
image as input and predict the density map with the same
resolution.

Results discussion As we see in Table 4, Front-end+MP+
DDS(MPC) achieves the lowest count errors and the highest
quality metrics of the estimated density images, and with
MP module performs better than without MP modules.
In terms of using DDS module, Front-end+DDS performs
better than Front-end. Figure 4 shows estimated density
maps from various configurations along with [18] on sample
input images.

It’s natural to think that the single front-end module has
very weak performance(row two of Table 4). In a typical

Table 4 Estimation errors for different configurations of the proposed
network on Shanghai Tech Part A dataset [18]

Part A

Architecture MAE MSE PSNR SSIM

MCNN [18] 110.2 173.2 20.91 0.52

Front-end 135.2 172.7 20.45 0.49

Front-end+DDS 112.6 152.3 20.90 0.54

Front-end+MP 98.9 135.4 20.96 0.58

Front-end+MP+DDS(MPC) 83.9 128.6 21.24 0.62

Bold entries represent the best results obtained from different methods

pipeline of a counting by regression model, if accurate
results are to be achieved, the input features typically require
geometric correction to handle the differences in pedestrian
size due to the camera perspective and pedestrian velocity.
This phenomenon has been described in several works,
reporting state-of-the-art results (e.g. [44, 45, 55]). The
role of front-end module is to aggregate large context. The
features learned by single Front-end are not adaptive to
(hence the overall network is robust to) large variation in
people/head size due to perspective effect or across different
image resolutions. As a consequence, erroneous results are
expected by using a single front-end module.

The result on the benchmark dataset (row five of Table 4)
differs not only in MAE and MSE but also displays rapidly
rise in PSNR and SSIM comparing with Front-end. Here it
shows that diverse deep supervision is effective to obtain
desired density maps. The key characteristic of our proposed
DDS is that each diverse supervision layer is supposed to
play a role as a supervisor responsible for guiding network.
With DDS, direct control and guidance across multiple
scales, this network will not be biased towards learning large
objects structure.

As illustrated in Table 4, network structure of Front-
end+MP is a little less effective than MPC but clearly much
better than Front-end+DDS. The crowd images are more
crowded in Part A dataset, pedestrian heads are therefore
quite small; whilst the feature maps from the deep layers
tend to fire on big heads. Thus combining multi-scale out-
puts(+MP) doesn’t result in a lowest level in MAE and MSE
on Part A. But still, if we compare both the Front-end+DDS
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GT Count:1068 GT Count:584 GT Count:1157 GT Count:230

SSIM :0.4743
PSNR :20.1579
Est Count :997.42

SSIM :0.5642
PSNR :21.9916
Est Count :555.06

SSIM :0.6592
PSNR :22.5674
Est Count :1140.93

SSIM :0.4528
PSNR :19.6177
Est Count :219.22

SSIM:0.4451
PSNR:18.1077
Est Count:1015.02

SSIM:0.4362
PSNR:17.5894
Est Count:544.88

SSIM:0.5437
PSNR:20.1583
Est Count:1125.19

SSIM:0.6622
PSNR:21.0357
Est Count:211.17

SSIM:0.4892
PSNR:18.3311
Est Count:1113.68

SSIM:0.5916
PSNR:19.5038
Est Count:599.81

SSIM:0.6017
PSNR:20.1696
Est Count:1095.36

SSIM:0.8233
PSNR:24.4937
Est Count:199.25

SSIM:0.548
PSNR:18.5236
Est Count:997.42

SSIM:0.7331
PSNR:22.1363
Est Count:555.06

SSIM:0.6938
PSNR:21.4921
Est Count:1140.93

SSIM:0.8566
PSNR:24.7345
Est Count:207.17

SSIM:0.7248
PSNR:22.311
Est Count:1048.95

SSIM:0.8274
PSNR:25.1782
Est Count:591.35

SSIM:0.8057
PSNR:24.5268
Est Count:1130.46

SSIM:0.9245
PSNR:28.4554
Est Count:219.22

Fig. 4 Comparison of results from different configurations of the
proposed network along with MCNN [18]. Top Row: Sample input
images from the ShanghaiTech dataset [18]. Second Row: Ground

truth. Third Row: MCNN [18]. Fourth Row: Front-end. Fifth Row:
Front-end+DDS. Sixth Row: Front-end+MP. Bottom Row: Front-
end+MP+DDS(MPC)
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and Front-end, Front-end +MP gets a better performance
as crowd counter. The results validate our argument that the
combination of features from different levels from a net-
work is helpful in better recovering lost spatial information.

Figure 4 shows estimated density maps from various con-
figurations along with [18] on sample input images. It can
be observed that the density maps generated using Zhang
et al. [18] and Front-end (which regress on low-resolution
maps) suffer from loss of details. The use of diverse deep
supervision results in better estimation quality. Addition-
ally, the use of multiscale features and minimization over
a weighted-fusion of lside and lf use further improves the
quality and reduces the estimation error.

Effect of MP module To further analyze the effect of MP
module, we build upon configuration in Fig. 5. We train 5
independent networks induces from the five convolutional
blocks of VGG16 nets. Those networks correspond to dif-
ferent depths, where the number of convolutional layers
in those networks are 2, 4, 7, 10, 13, respectively. During
test, the final prediction is obtained by averaging the out-
puts of these individual networks. These independent net-
works achieve (MAE=108.4, MSE=171.3) where-as MPC
achieves (MAE=83.9, MSE=128.6) under the same experi-
mental conditions. Moreover, MPC is the nested multi-scale
architecture where multi-scale layers share the same low-
level parameters and feature representations, which results
in fewer parameters, fewer training data required, and faster
training.

Diverse deep supervision analysis To explicitly validate
the diverse deep supervision availability, we also employ
another variant which has the same architecture as our
MPC apart from imposing the general supervision( i.e.
original ground-truth) to five side-output predictions, that is
σ j = σ, j = 1, ...5 . The variant achieves (MAE= 91.7,
MSE=135.2). Relatively, theMPC reduces the error count to

Fig. 5 Separate training of different networks

(MAE=83.9, MSE=128.6), which get 9% lower MAE than
the variant. This provides evidence of the benefits of diverse
deep supervision.

4.4 Evaluations and comparisons

In this section, we position the proposed method with
respect to other results reported in the literature, complete
the evaluation on three challenging datasets. Some qualita-
tive results are shown in supplementary material.

ShanghaiTech The ShanghaiTech dataset consists of 1198
annotated images(Part A 482 images and Part B 716 images)
with a total of 330,165 people with head center annotations.
Following [18], we use 300 images for training in Part A;
400 images for training in Part B. Rest of the images are
used as test set. The setups of generating the multi-scale
labels and ground-truth density maps on Part A and Part B
can be found in Table 2.

On the ShanghaiTech dataset, our method is evaluated
and compared to other six recent works: Zhang et al.[44],
Marsden et al. [38], MCNN [18], Cascaded-MTL [43],
Switching-CNN [20] and CP-CNN [45]. The results are
shown in Table 5. It can be observed that our method
achieves the best MAE 16.2 and MSE 25.8 on Part B, and
a comparable result (second best) on Part A, with only CP-
CNN [45] performing better. Note that CP-CNN uses a
pre-trained VGG16 network as a density level classifier and
sliding-window for per-pixel prediction, which is very slow
for images of high resolution, taking 66 seconds to process
one image (0.015 fps). In contrast, Our MPC runs at 33.5
fps on 1024 × 768 images (see Table 9). We also report the
uncertainty of our model on ShanghaiTech dataset in Table 8.

UCF CC 50 The UCF CC 50 dataset [55] is an extremely
challenging dataset, contains 50 very different resolutions

Table 5 Comparison of MPC with other state-of-the-art on Shang-
haiTech dataset

Part A Part B

Method MAE MSE MAE MSE

Zhang et al. [44] 181.8 277.7 32.0 49.8

Marsden et al. [38] 126.5 173.5 23.8 33.1

MCNN [18] 110.2 173.2 26.4 41.3

Cascaded-MTL [43] 101.3 152.4 20.0 31.1

Switching-CNN [20] 90.4 135.0 21.6 33.4

CP-CNN [45] 73.6 106.4 20.1 30.1

MPC(ours) 83.9 128.6 15.8 25.2

Bold entries represent the best results obtained from different methods
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and aspect ratios images randomly crawled from the
Internet. There is a large variation in the number of people
varying from 96 to 4,633. The ground-truth density map
is generated using σ = 5. The multi-scale ground-truth
density maps are generated using σ ∈ {2, 3, 5, 7, 9}.
Following [44, 55], the evaluation is based on 5-fold cross-
validation.

In Table 6, we compared the performance of our models
with ten recent approaches on UCF CC 50 dataset: Idrees
et al. [55],Zhang et al. [44], MCNN [18], Hydra 2s [21],
CNN Boosting [22], Marsden et al. [38], Cascaded-MTL
[43], Switching-CNN [20], FCNN-skip [40]and CP-CNN
[45]. Among those methods, CP-CNN [45], taking global
and local context information into consideration, performs
the best. CP-CNN consists of four modules, each of them is
composed with one or multiple columns CNNs. Although
such a model has high density estimation accuracy, the
training process is quite complicated and computationally
demanding. Our MPC requires less computation compared
to CP-CNN and also achieves rather high accuracy, its MAE
is 313.6. The MAE on this dataset (see Table 6) is relatively
high as the dataset has very few training examples and
wide variations in the background and crowd density. This
also limits the ability of our MPC to learn the diversity of
space of crowd scene and causes the difference between the
estimate and its ground truth to be spread out over a wider
range of mean absolute error (see Table 8).

UCSD The UCSD dataset [6] is composed of 2000 low
resolution (238×158) surveillance video frames and 49,885
annotated pedestrians on pedestrian walkways at UCSD.
The scenes are characterized by sparse crowd with the
number of people ranging from 11 to 46 per frame. Training

Table 6 Comparison of MPC with other state-of-the-art on
UCF CC 50 dataset

Method MAE MSE

Idrees et al. [55] 419.5 541.6

Zhang et al. [44] 467.0 498.5

MCNN [18] 377.6 509.1

Hydra 2s [21] 333.7 425.2

CNN Boosting [22] 364.4 341.4

Marsden et al. [38] 338.6 424.5

Cascaded-MTL [43] 322.8 397.9

Switching-CNN [20] 318.1 439.2

FCNN-skip [40] 431.6 379.6

CP-CNN [45] 295.8 320.9

MPC(ours) 313.6 342.8

Bold entries represent the best results obtained from different methods

Table 7 Comparison of MPC with other state-of-the-art on UCSD
dataset when using the whole training set

Method MAE MSE

Zhang et al. [44] 1.60 3.31

MCNN [18] 1.07 1.35

CNN Boosting [22] 1.10 -

Switching-CNN [20] 1.62 2.10

FCNN-skip [40] 1.22 2.25

MPC(ours) 1.12 1.76

Bold entries represent the best results obtained from different methods

and test date splits used by traditional setting [6]. Of the
all frames, frames 601-1400 are used for model training
and the remaining 1200 frames are for testing. The ground-
truth density map is generated using σ = 4. The multi-
scale ground-truth density maps are generated using σ ∈
{2, 3, 4, 6, 8}.

The results on UCSD dataset are shown in Table 7. The
proposed method is evaluated against five recent state-of-
the-art approaches: Zhang et al. [44], MCNN [18], CNN
Boosting [22], Switching-CNN [20] and FCNN-skip [40].
Zhang et al. [18] proposed a multi-column convolutional
network (MCNN) to adapt to the large variations of perspec-
tive and scale and have shown robust performance(lowest
MAE 1.07), but the designs they used multi-column archi-
tectures also introduce disadvantage of redundant structure.
We notice that using one single column is able to retain over
70% accuracy of the multi-column model in [20], where
they use three CNN regressors the same as in MCNN.
Meanwhile, they use lager filters (9 × 9) in order to get
a larger receptive field (with fixed depth), which is not
as effective as smaller filters. Finally, such multi-column
CNNs architecture requires more time to train. Although
MCNN obtains accurate count estimation, the quality of
density graph is poor( e.g., density map in Fig. 4) so that
adversely affect other higher level cognition tasks which
depend on them. Again, our MPC is more effective(less
training time and single-column structure) than MCNN but
achieves worse MAE (1.12), since the largest object is only
about 30 pixels tall on UCSD dataset, this limits the per-
formance gain achieved by Front-end from leveraging large
context information. Also, result is shown in Table 8 which
indicates our model performs stably on this dataset.

4.5 Training data and runtime speed

Here we consider whether there is an impact on the final
results when using an augmented training set. Next we
report runtime speed of using the four most competitive
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Table 8 The standard deviation of absolute error in four datasets

Dataset Std AE

ShanghaiTech Part A [18] 79.4

ShanghaiTech Part B [18] 12.8

UCF CC 50 [55] 256.3

The UCSD [6] 1.07

methods on the tested datasets. The experiment was run on
the ShanghaiTech Part B dataset whose resolution was fixed
relative to the Part A and UCF CC 50 datasets and higher
than the UCSD dataset.

Data augmentation A commonly used strategy to improve
the performance of CNNs is to augment training data. Here,
we rotate the images to 8 different angles and crop the
rotated images into four quarters without overlapping; we
also flipped the patches right-left-wise and added small
random Gaussian noise. But we noted there was no obvious
improvement, and thus it did not necessarily require data
augmentation. This is most likely because we extracted all
the possible image patches to train the network so that it
already covers many useful permutations of the input.

Runtime speed Overall, MCNN [18], Switch-CNN [20],
CP-CNN [45] and our proposed method(MPC) perform the
best on the tested datasets. We summarize their runtime
speed in Table 9. The runtime is tested with caffe on
GeForce GTX 1080 on 1024×768 images of ShanghaiTech
Part B. Both Switch-CNN and CP-CNN use pre-trained
VGG model as density level classifier which spend a large
portion of parameters on categorizing the input images
into various density levels and do not run in a fully
convolutional fashion, resulting in slower prediction. CP-
CNN is especially slow because it also uses a 64×64 sliding
window classifier for per-pixel prediction to get the local
context information. In contrast, MCNN [18] is the fastest
among these methods since it uses much smaller models
and does not need extra data to pre-train the model. Our
MPC also runs fast because it uses a single column CNNs
structure with pure convolutional layers as the backbone.

Table 9 The runtime of the four most competitive methods

FPS

MCNN [18] 40.5

Switching-CNN [20] 1.72

CP-CNN [45] 0.02

MPC(ours) 33.5

5 Conclusion

As CNNs are becoming the leading choice for crowd count-
ing, the biggest concern of crowd counting with this tech-
nique is the amount of contextual information output. Most
of the work has adopted multi-scale or multi-task learning
CNN architectures in order to counteract this issue, but the
designs they used also introduce two significant disadvan-
tages: large amount of training time and complex structure.
We decided, however, to rethink simply-nested CNNs archi-
tectures.

In this paper, we propose MPC which generates high-
quality density map end-to-end. By concatenating multiple
feature maps of different scales (and thus different levels of
contextual information) in the congested scenes, MPC net-
work can expand the receptive field without losing resolu-
tion, and thus make a tradeoff between recognition and res-
olution. The proposed method is also influenced by diverse
deep supervision (DDS) which guide the MPC network
predictions. Compared with the general supervision, DDS
takes advantage of all of the intermediate layers or hierar-
chical diversities within the network. It can incrementally
improve the strength of the supervision and be well-suited
the network coarse-to-fine feature extraction paradigm.
Consequently, our proposed MPC produces high-quality
density map, meanwhile achieves better counting results
on three crowd datesets than MCNN and Switch-CNN.
Although CP-CNN has better results on some datasets than
our proposed method, it is much slower since it uses both
a bloated network structure and sliding window per-pixel
prediction. Taking into consideration of model size and run-
ning time, our method is the most favorable, especially for
cases requiring real-time prediction. Ideally, we would wish
to train one crowd counter that is able to perform well on
multiple benchmarks. Future works will focus on improving
generalization capability of network and adding perspective
information into the network training.

Finally, our idea is not limited in crowd counting tasks
and expected to be extended to counting tasks in other fields
such as cell microscopy, vehicle counting, environmental
survey, etc.

Appendix: Supplementary Material

This section presents some additional results of MPC for
the three datasets (Shanghai Tech [18], UCF CC 50 dataset
[55] and UCSD dataset [6].The PSNR (Peak Signal-to-
Noise Ratio) and the SSIM (Structural Similarity in Image)
perform to evaluate quality of generated density maps. Results
on sample images from these datasets are shown in Figs. 6,
7, 8 and 9, which represent a variety of density levels.
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GT Count:429

SSIM:0.75487
PSNR:20.9815
Est Count:441.88

GT Count:309

SSIM:0.85877
PSNR:24.3011
Est Count:299.34

GT Count:250

SSIM:0.68579
PSNR:19.193
Est Count:236.83

GT Count:195

SSIM:0.63379
PSNR:18.4379
Est Count:178.76

GT Count:250

SSIM:0.82749
PSNR:24.37
Est Count:262.92

Fig. 6 Results of our MPC medel on Shanghai Tech Part A dataset [18]. Left column: Input images. Middle column: Ground truth density maps.
Right column: Estimated density maps



Effective use of convolutional neural networks... 2429

GT Count:79

SSIM:0.85764
PSNR:25.1564
Est Count:74.19

GT Count:143

SSIM:0.84314
PSNR:23.5016
Est Count:126.9

GT Count:67

SSIM:0.89067
PSNR:29.91
Est Count:69.73

GT Count:98

SSIM:0.92275
PSNR:30.0145
Est Count:99.08

GT Count:29

SSIM:0.8751
PSNR:28.2934
Est Count:32.85

Fig. 7 Results of our MPC medel on Shanghai Tech Part B dataset [18]. Left column: Input images. Middle column: Ground truth density maps.
Right column: Estimated density maps
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GT Count:648

SSIM:0.5005
PSNR:27.8358
Est Count:622.92

GT Count:362

SSIM:0.76454
PSNR:22.0315
Est Count:332.56

GT Count:679

SSIM:0.79047
PSNR:28.1828
Est Count:702.15

GT Count:1998

SSIM:0.62915
PSNR:25.0576
Est Count:1878.61

GT Count:947

SSIM:0.76487
PSNR:22.286
Est Count:892.48

Fig. 8 Results of our MPC medel on UCF CC 50 dataset [55]. Left column: Input images. Middle column: Ground truth density maps. Right
column: Estimated density maps
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GT Count:22

SSIM:0.82766
PSNR:27.8152
Est Count:24.1812

GT Count:29

SSIM:0.89968
PSNR:30.0516
Est Count:30.8594

GT Count:27

SSIM:0.76245
PSNR:23.7573
Est Count:33.6613

GT Count:27

SSIM:0.79278
PSNR:25.3761
Est Count:31.7155

GT Count:24

SSIM:0.94456
PSNR:29.7308
Est Count:25.3327

Fig. 9 Results of the our MPCmodel on UCSD dataset [6]. Left column: Input images. Middle column: Ground truth density maps. Right column:
Estimated density maps

Publisher’s note Springer Nature remains neutral with regard to
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