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Abstract
Marginal Fisher analysis (MFA) is an efficient method for dimension reduction, which can extract useful discriminant features for
image recognition. Since sparse learning can achieve better generalization ability and lessen the amount of computations in
recognition tasks, this paper introduces sparsity into MFA and proposes a novel sparse modified MFA (SMMFA) method for
facial expression recognition. The goal of SMMFA is to extract discriminative features by using the resulted sparse projection
matrix. First, a modified MFA is proposed to find the original projection matrix. Similar to MFA, the modified MFA also defines
the intra-class graph and the inter-class graph to describe geometry structure in the same class and local discriminant structure
between different classes, respectively. In addition, the modified MFA removes the null space of the total scatter matrix. The
sparse solution of SMMFA can be gained by solving the ℓ1 –minimization problem on the original projection matrix using the
linearized Bregman iteration. Experimental results show that the proposed SMMFA can effectively extract intrinsic features and
has better discriminant power than the state-of-the-art methods.
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1 Introduction

Over the past few decades, on account of its potential appli-
cations in various fields such as psychology, lie-detection,
human-computer interaction (HCI) and psychopathology
analysis, facial expression recognition (FER) has been a quite
active and crucial research topic in the realm of affective com-
puting [1–5]. The primary job of FER is using a set of labelled
training facial expression images to label the unlabelled test
images. Extracting expression features using effective and ef-
ficient facial image description approaches is the major task of
constructing automatic facial expression recognition systems.
In terms of feature extraction, approaches for FER can be
broadly classified into two chief categories [1]. One of them
is geometric-based methods while the other is appearance-
based methods. Geometric-based methods accomplish a given

recognition task by describing a facial geometric structure,
that is, facial component shapes such as the edge of eyes and
mouth, based on a series of salient landmarks. Active appear-
ance model (AAM) [6] and Ekman’s facial action coding sys-
tem (FACS) [7, 8] are the two most typical geometric-based
approaches. FACS is based on forty four action units (AUs)
[9], which can be roughly interpreted as the smallest visible
units of human’s facial muscular motions. One problem of
geometric-based methods which cannot be ignored is that
the recognition performance of those methods mainly depends
on the accurate detection of facial components which is fairly
tough and not reliable in automatic FER systems [1]. The
recent research on FER has demonstrated that the
appearance-based approaches are more powerful than
geometric-based approaches in term of achieving higher rec-
ognition accuracy [5, 10–12].

Among appearance-based approaches for FER, most
methods focus on subspace learning [13–15]. As the facial
images are always represented as high-dimensional vectors
and some of the measured variables in high-dimensional data
are redundant which are not useful for understanding the un-
derlying relevant information, dimension reduction becomes a
vital and essential task in FER [5]. Facilitating the visualiza-
tion and interpretation of original data, dimension reduction
algorithms project the original high-dimensional data into a
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low-dimensional subspace in which the intrinsic and useful
information in expression images would be retained.
Common used methods include principal component analysis
(PCA) [16–18], locality preserving projection (LPP) [19, 20],
and linear discriminant analysis (LDA) [21–23].

PCA and LDA are the two typical dimension reduction
approaches which have been widely utilized in FER. PCA is
an unsupervised method which accomplishes the task of di-
mension reduction by finding a few orthogonal linear combi-
nations of the original variables with the largest variances.
Compared with PCA, LDA is a supervised method and tries
to maximize the ratio of between-class scatter to within-class
scatter. The core idea of LDA is quite simple, that is, samples
in the same class should cluster tightly together, while samples
from different classes are always as far as possible from each
other in the lower-dimensional representation. The application
of LDA in FER is limited for the following two reasons. One
is that the dimension of the sample space is quite larger than
the number of samples in the training set in theory, that is, the
so-called small sample size (SSS) problem [24], which en-
hances the difficulty of implementing robust and fast recogni-
tion. The other is that LDA characterizes the discriminant
capability of between-class and within-class, which is optimal
only in the cases that data for each class approximately obeys
the Gaussian distribution [25]. To overcome the limitations of
LDA, lots of variants have been proposed, such as null space
LDA [26], LDA/GSVD [27] and LDA/QR [28]. Yan et al.
proposed the Marginal Fisher Analysis (MFA) [25], which was
developed by using the graph embedding framework as a
platform to extract features. In MFA, two graphs are designed
to characterize the within-class compactness and the between-
class separability, respectively. The number of available pro-
jection directions for MFA is fairly greater than that of LDA,
overcoming the limitation of LDA that the number of avail-
able projection directions is fewer than the number of the
classes. In addition, there is no prior assumption on the data
distribution in MFA, which makes it more reliable in real
world applications than LDA.

Sparse learning has been proved to be a prominent model-
ling tool to implement the task of dimension reduction effec-
tively by obtainingmodels of high-dimensional data with high
degree of interpretability. Moreover, sparse projection matri-
ces could lessen the amount of computations and be stored
efficiently, which makes sparse learning approaches more ro-
bust and practical in constructing automatic recognition sys-
tem. The goal of sparsity is to minimize the empirical loss
using as few as features as possible. The most natural way
of imposing sparsity is to penalize the objective with the ℓ0-
norm, which is mostly NP-hard and difficult to be solved
directly. The ℓ1-norm regularization, which is effective in
avoiding overfitting, is also an alternative way to approximate
the ℓ0-norm and obtain sparse solution [29]. The least absolute
shrinkage and selection operator (LASSO) [30] is such a

method using the ℓ1 approximation of the ℓ0-norm penalty.
Similar to LASSO, basis pursuit uses the ℓ1-norm to replace
the ℓ0-norm in order to solve optimization problems [31],
which can also be used to obtain sparse solutions.

The projection matrices of the dimension reduction algo-
rithms mentioned above are not sparse, which means each
feature in the low-dimensional space is a linear combination
of all the features of the original data and the coefficients of
the linear combination are generally non-zero. This makes the
interpretation of the extracted features difficult when the data
dimension is large. To overcome this drawback, sparse prin-
cipal component analysis (SPCA) using LASSO to produce
sparse principal components [32] and sparse linear discrimi-
nant analysis (SLDA) learning sparse discriminant subspace
[33] are proposed. The sparse solutions of SLDA and SPCA
are both found by utilizing sparse regression. If the regulari-
zation parameters are zeros, SLDA and SPCA can derive the
exact solutions of the original problem, but the obtained solu-
tions are not sparse. And if the parameter of the ℓ1-norm pen-
alty is larger than zero, these sparse solutions are the approx-
imate solutions of the original objective function. Both of
SPCA and SLDA enhance the generalization ability and pro-
vide the psychological and physiological interpretation. Wang
et al. proposed a sparse local Fisher discriminant analysis
(SLFDA) method to recognize facial expression, obtaining
the sparse solution by solving the basis pursuit problem de-
rived from solutions of the local Fisher discriminant analysis
(LFDA). The projection matrix of SLFDA is sparse, which
can make the physical meaning of the extracted features clear
and procure preferable effects [5]. Puthenputhussery et al. pro-
posed a sparse representation model using the so-called com-
plete marginal fisher analysis framework [12], that is CMFA-
SR for short, and applied the proposed method to visual rec-
ognition tasks. However, CMFA-SR utilizes sparse represen-
tation to derive the final sparse features for recognition tasks
instead of a sparse projection matrix.

To generate a sparse projection matrix, this paper also in-
troduces sparsity into MFA and proposes a novel sparse sub-
space learning method, or sparse modified MFA (SMMFA).
First, a modified MFA (MMFA) is proposed to find the orig-
inal projection matrix. Similar to MFA, MMFA constructs the
intra-class adjacency graph and inter-class adjacency graph to
describe the local geometric information of samples in the
same class and the local discriminant information of samples
from different classes, respectively. Moreover, MMFA
removes the null space of the total scatter matrix. Inspired
by SLFDA, we obtain the sparse solution to SMMFA by find-
ing the minimum ℓ1-norm solution from the solution of the
modified MFA. When the minimum ℓ1-norm solution can be
formulated as an ℓ1-minimization problem, we can use the
linearized Bregman iteration to handle the ℓ1-minimization
problem. The major contributions of this paper contain the
following points:

2660 Z. Wang et al.



(1) First, this paper proposes a modified MFA to generate a
non-sparse original projection matrix for extracting more
effective discriminant features. Compared to MFA,
MMFA removes the information in the null space of
the total scatter matrix, which is not related with the
discriminant ability.

(2) Second, this paper presents a sparse MMFA (SMMFA)
to generate a sparse projection matrix through applying
the linear Bregman iteration to the ℓ1-minimization prob-
lem which is related to the original projection matrix
generated by MMFA. The sparsity of the projection ma-
trix makes SMMFA achieve better generalization ability.
It is the first time for MFA-based method to consider
getting a sparse projection matrix.

The remainder of this paper is organized as follows.
Section 2 describes the proposed SMMFA method in detail.
Section 3 discusses the connections of SMMFA with other
related work. Section 4 shows and analyses experimental re-
sults of the presented method. Section 5 concludes the paper.

2 Sparse modified MFA

In this section, we address the proposed sparse modified MFA
in detail. The framework of SMMFA is given in Fig. 1, where
P is the original projection matrix generated by the modified
MFA which removes the null space in the total scatter
matrix St, V is the sparse projection matrix obtained by apply-
ing the linearized Bregman iteration to P, and ⨂ denotes
the operation of matrix multiplication. The training dataset is
used to learn the original projection matrix P. The framework
of SMMFA can be simply described as follows.

First, SMMFA has two adjacency graphs, the intra-class
graph and the inter-class graph to describe the local geometry
structure in the same class and the local discriminant structure
between different classes, respectively, which is similar to
MFA. Different from MFA, SMMFA defines a total scatter
matrix and removes the null space of it to extract more dis-
criminant features, which will be discussed in detail in the
following section 2.1. Second, the linearized Bregman itera-
tion method is used to obtain the sparse solution of SMMFA

by solving the ℓ1-minimization problem on the solution
gained before. Finally, the labels of test data could be predict-
ed by the classification model trained in the projected
subspace.

2.1 Modified MFA

This section presents the modifiedMFA. Assume that we have

a set of N samples: xi; yið Þf gNi¼1, where xi ∈ℝ
D, yi ∈ {1, 2,…,

c} is the label of xi, N is the number of samples, D is the
dimension of each sample, and c is the number of classes.
MMFA defines two adjacency graphs, the intra-class graph
and the inter-class graph. The elements of the intra-class graph
Fw ∈ℝN ×N are defined as follows:

Fw
ij ¼ 1; if xi∈πþ

K x j
� �

or x j∈πþ
K xið Þ

0; otherwise

�
ð1Þ

where πþ
K x j
� �

denotes the set ofK homogenous nearest neigh-

bours of xj, xi∈πþ
K x j
� �

means that xi is the homogenous
nearest neighbour of xj, and xi and xj belong to the same class.
The elements of the inter-class graph Fb ∈ℝN ×N are defined
as follows:

Fb
ij ¼ 1; if xi∈π−

K x j
� �

or x j∈π−
K xið Þ

0; otherwise

�
ð2Þ

where π−
K x j
� �

denotes the set of K heterogeneous nearest
neighbors of xj, and xi and xj have different class labels.

Similar to MFA, MMFA is to maximize the inter-class
scatter to extract marginal discriminant information between
different classes, and minimize the intra-class scatter to extract
the local similarity information in the same class. In this way,
MMFA could retain the geometry structure of data.

The intra-class scatter is

∑
ij
∥xi−x j∥2Fw

ij

and the inter-class scatter is

∑
ij
∥xi−x j∥2Fb

ij

Fig. 1 Framework of SMMFA, where P is the projection matrix generated by using the modified MFA,V is the sparse projection matrix, and⨂ denotes
matrix multiplication
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Obviously, the intra-class scatter matrix has the form:

Sw ¼ XLwXT ð3Þ
and the inter-class scatter matrix is defined as:

Sb ¼ XLbXT ð4Þ
where X ∈ℝD ×N is the sample matrix composed of training
data, the Laplacian matrices Lw =Dw −Fw ∈ℝN ×N and Lb =
Db −Fb, both Dw and Dbare diagonal matrices, and Dw

ii ¼ ∑
j

Fw
ij and Db

ii ¼ ∑
j
Fb
ij.

Then, the total scatter matrix is St = X(Lw + Lb)X
T. It was

found that the null space in the total scatter matrix St cannot be
utilized to enhance the discriminant power and can be re-
moved [5, 34]. Thus, we adopt this viewpoint and introduce
it to MFA, which leads to the modified MFA.

Suppose that the total scatter matrix St can be decomposed
by

St ¼ AΛAT ð5Þ
whereΛ = diag(λ1, λ2, …, λr)is the eigenvalue matrix
with λi > 0, i = 1, 2, …, r, the rank r = rank( St), A = [a1,
a2,…, ar] ∈ℝD × r is the matrix consisting of eigenvectors
of St corresponding to r positive eigenvalues. For both Sw
and Sb, we need to remove the null space of St from them.

Letm be the size of the subspace or the projected subspace,
and P ∈ℝD ×m be the projection matrix of the modified MFA.
Then, the objection function of MMFA is given as followed:

max
P

PT ATSbA
� �

P

PT ATSwA
� �

P
ð6Þ

Assume that Fb = AT SbA and Fw = AT SwA, then the
solu t ion P to (6) can be gained by per forming

eigendecomposition on Fw
� �−1

Fb. Let pi be eigenvectors.
Then the projection matrix can be represented P = [p1, p2,

…, pm] consisting of m eigenvectors corresponding to the
first m largest eigenvalues.

2.2 Reducing computation

The dimension D of the samples is always quite high, which
makes it difficult to directly calculate the eigenvectors of
the D ×D matrix St. For computational considerations, we
need to improve the efficiency of calculating A.

First, we can get the intra-class graph Fw and the inter-class
graph Fb using (1) and (2), respectively. Then, we have the
global graph Ft =Fb +Fw, and the total Laplacian matrix Lt =
Lw + Lb. According to the spectral graph theory in [35], the
total Laplacian matrix Lt is symmetric and positive semi-def-
inite. Thus, we can decompose Lt as

Lt ¼ QtΛtQt
T ð7Þ

where Qt is the orthogonal eigenvector matrix and Λt ¼ diag

λ1
t ;λ

2
t ;…;λN

t

� �
;λi

t ≥0 is the eigenvalue matrix of Lt.
We can construct an auxiliary matrix and perform

matrix decomposition on it instead of St to reduce com-
putational complexity. Assume that S t = XL tX

T =
XQtΛtQt

TXT = HtHt
T, the auxiliary matrix Ht can be

constructed by

H t ¼ XQtΛt
1
2 ð8Þ

Then, we can perform the thin singular value decomposition
on Ht ∈ℝD ×N, and have

H t ¼ AΛtQ ð9Þ

where A is the left singular vector matrix, Λt is the singular
value matrix and Q is the right singular vector matrix of Ht.
Note that the left singular vector matrix A = [a1, a2,…, ar] ∈
ℝD × r is the one that we need, which is the eigenvector matrix
of St.

By performing the thin singular value decomposition on
Ht, we can get a more efficient way to obtain the eigenvector
matrixA since the size ofHt is apparently smaller than the that
of St.

2.3 Sparse projection matrix

Generally, the solution to (6) is not sparse. A sparse projection
matrix can reduce the computational complexity of algorithms
and be stored efficiently. Thus, SMMFA aims at getting the
sparse projection matrix based on the solution of MMFA. The
sparse solution is gained by the sparsification of the original
projection matrix P.

Let V ∈ℝD ×m be the sparse projection matrix. Then the
sparse projection matrix can be found by solving the follow-
ing ℓ1-norm minimization problems:

minV∥V∥1

s:t:ATV ¼ P
ð10Þ

where∥V∥1 ¼ ∑
D

i¼1
∑
m

j¼1
vij
�� ��, and A is the eigenvectors of St.

Actually, (10) is a basis pursuit problem. Here, we use the
linearized Bregman iteration [31, 36–38] to solve the basis
pursuit problem, which has been considered as one of the most
successful methods for solving (10). Therefore, we have the
following the iteration:

Bkþ1¼Bk−A ATVk−P
� �

Vkþ1 ¼ ξΓμ Bkþ1
� �

�
ð11Þ
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where B0 = V0 = 0, ξ > 0 is a user-defined parameter,
Γμ(B) = [Γμ(Bij)]ij and

Γμ Bij
� � ¼ 0; if Bij

�� ��≤μ
sgn Bij

� �
Bij
�� ��−μ� �

; if Bij
�� ��≥μ

�
ð12Þ

where sgn is the sign function and μ > 0 is a user-defined
parameter.

By iteratively calculating (11), we can obtain the sparse
projection matrix V. Algorithm 1 shows the detail procedure
of SMMFA.

When the spare projection matrix V is obtained, we
can project the training samples into the subspace
spanned by V. Let X′ = VTX be the projected matrix of
training data. Then, we can adopt the nearest neighbour
classifier with the Euclidean distance for the classifica-
tion tasks.

3 Connection to other related work

In this section, we briefly describe some related work, includ-
ing MFA and CMFA-SR.

3.1 MFA

Since the inter-class scatter in LDA cannot effectively
characterize the separability of different classes in the
case of data without the Gaussian distribution, MFA
was proposed to characterize the intra-class compactness
and the inter-class separability without the Gaussian dis-
tribution assumption [25]. MFA defines the intra-class
scatter matrix and inter-class scatter matrix, as (3) and
(4) shown in Section 2.1. The goal of MFA is to make
samples in the same class closer with each other and
samples in different classes farther as possible in the
projected space. Thus, the objective function of MFA
can be defined as

max
P

PTSbP
PTSwP

ð13Þ

where P is the projection matrix.
Note that projection matrix P gained byMFA is not sparse,

which is different from SMMFA. What’s more, compared
with MFA, SMMFA defines a total scatter matrix St and
removes its null space to enhance the discriminant power.

a

b

Fig. 2 Comparison of projection directions obtained by six methods on
toy Dataset A (a) and Dataset B (b)

Table 1 Average ratio of between-class scatter to the within-class
scatter in the projected subspace

Dataset A Dataset B

None 2.7902 ± 0.0503 3.2414 ± 0.1176

LDA 4.6757 ± 0.2302 5.0307 ± 0.2016

LFDA 4.3866 ± 0.1632 4.7884 ± 0.1811

LPP 4.4747 ± 0.1477 4.7758 ± 0.2146

SLFDA 4.3930 ± 0.2198 4.0905 ± 0.2595

MFA 4.7191 ± 0.2635 5.0462 ± 0.2530

SMMFA 4.7476 ± 0.2545 5.1348 ± 0.2415
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3.2 CMFA-SR

CMFA-SR is an algorithm based on MFA and uses sparse
representation to gain the sparse features for classification
tasks [12]. CMFA-SR first utilizes the complete MFA algo-
rithm to extract features in both the column space of the local
samples-based within-class scatter matrix and the null space
of its transformed matrix. After that, CMFA-SR makes the
extracted features have sparsity.

The main differences between SMMFA and CMFA-SR lie
in three aspects. First, the core idea of SMMFA is to learn a
sparse projection matrix to derive discriminant features, while
the goal of CMFA-SR is to obtain sparse discriminant features
instead of a sparse projection matrix. Second, SMMFA uses a
modified MFA to generate the original projection matrix P,
and CMFA-SR adopts the complete MFA to implement the
projection task, which extracts features in two subspaces.
Thus, the projection procedures of these two methods are dif-
ferent. Third, the projected features of SMMFA can be directly
used for classification tasks, while the projected features
gained by CMFA-SR still need to be transformed to sparse

features. The procedure of SMMFA is simpler than that of
CMFA-SR. Obviously, the computational complexity of
CMFA-SR is much greater than that of SMMFA since each
training sample or test sample need to be projected and
sparsification in CMFA-SR.

4 Experiments

To demonstrate the effectiveness of SMMFA, we perform
experiments on two toy data sets and three public FER data-
bases: the Japanese Female Facial Expression (JAFFE) data-
base [39], the Extended Cohn-Kanade dataset (CK+) [40] and
the GEMEP-FERA database [41]. The nearest neighbour clas-
sifier with the Euclidean distance is adopted to implement all

Fig. 3 Cropped facial expression images from the JAFFE facial
expression database with respect to seven expressions: ‘happy’ (the first
column), ‘sadness’ (the second column), ‘surprise’ (the third column),
‘anger’ (the fourth column), ‘disgust’ (the fifth column), ‘fear’ (the
sixth column) and ‘neutral (the seventh column)

Algorithm 1. Sparse Modified Marginal Fisher Analysis

Input: The training sample matrix , the 

corresponding label vector , is the label 

of , is the number of samples, the parameters and , and the 

tolerance .

Output: The sparse projection matrix .

1. Construct the intra-class graph using (1) and calculate the 

intra-class scatter matrix using (3);

2. Construct the inter-class graph using (2) and calculate the 

intra-class scatter matrix using (4);

3. Construct the total Laplacian matrix and perform eigen-

decomposition on it to obtain and .
4. Generate using (8) and perform the thin singular value 

decomposition on as (9) to obtain . 

5. Solve the generalized eigenvalue problem (6) to obtain the 

original projection matrix ;

6. Let and . 

7. Calculate using (11) repeatedly and let until

.

8. Return = .

Accuracy

Training time

a

b

Fig. 4 Accuracy (a) and training time (b) vs. parameters ξ and μ in
SMMFA
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a b

d

fe

c

Fig. 5 Average accuracy vs. dimension on the JAFFE database under different training images in each facial expression class. (a) 4 training images. (b) 8
training images. (c) 12 training images. (d) 16 training images. (e) 20 training images. (f) 24 training images
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classification tasks. LPP, LDA, MFA, LFDA are the most
widely used dimension reduction methods which have been
proved to be effective and efficient in many circumstances
[19, 25]. Similar to SMMFA, SLFDA generates the sparse
solution by finding the minimum ℓ1-norm solution from the
solution of relatively traditional dimension reduction method
[5]. CMFA-SR is another algorithm based on MFA and uti-
lizes a different sparse solution from SMMFA, achieving re-
markable recognition rate in multiple vision recognition tasks
[12]. All of the methods mentioned above (LPP, LDA, MFA,
LFDA, SLFDA and CMFA-SR) are implemented and com-
pared with SMMFA.

All numerical experiments are performed on a personal
computer with a 3.6GHz Intel(R) Core(TM) i7–7700 and
8G bytes of memory. This computer runs Windows 7, with
Matlab R2012a and VC++ 14.0 installed.

4.1 Experiments on toy data sets

In order to evaluate the projection effects of the subspace
learned by SMMFA, we generate two toy data sets, which
are two-class (Dataset A) and three-class (Dataset B) two-
dimensional Gaussian distributions, respectively. Each class
has 100 data points which are randomly generated according
to its distribution.

We compare just six methods, including LPP, LDA, MFA,
LFDA, SLFDA and SMMFA and show their projection direc-
tions. Since CMFA-SR has more than one projection matrix
and aims at sparse discriminant features, we do not consider it
here. For six methods, we project the two-dimensional data
points in Datasets A and B into a one-dimensional subspace,
respectively.

In the Dataset A, we generate two separated Gaussian
distributions, representing two-class data points.
Figure 2a shows the projection vectors of six methods.
We can see that all six methods can project the two-
class data points into the one-dimensional subspace and
obtain a good separability since the original data is lin-
early separable.

In the Dataset B, we generate three separated Gaussian
distributions to evaluate the projected effects of the methods
further. Figure 2b gives the effectiveness of six methods.
Although the projected data is not linearly separable, these
points are piecewise linear separable. Obviously, SMMFA has
the best separability, followed by MFA and LDA.

In order to show the effectiveness of methods more explic-
itly, we repeat 10 experiments on two toy data sets and calcu-
late the average ratio of the between-class scatter to the within-
class scatter in the projected subspace. Note that the greater
the ratio is, the better the separability is. The average ratios and
their standard deviations are shown in Table 1, where BNone^
means the situation without using dimension reduction
methods. The ratios on the toy Dataset A support the results
in Fig. 2a. All six methods have good separability. Even so,
SMMFA has the best separability among them, followed by
MFA. The ratios on the toy Dataset B also support the results
in Fig. 2b, or SMMFA has the best separability among six
methods.

In a nutshell, SMFA has the best discriminant power
among the six methods on the two toy sets.

4.2 Experiments on JAFFE database

The JAFFE database consists of 213 facial expression images
of 10 Japanese women, where each person has one neutral

Table 2 Comparison of best average accuracy and standard deviation (%) on the JAFFE database

4 train 8 train 12 train 16 train 20 train 24 train

LPP 33.54 ± 2.66(11) 44.94 ± 4.75(19) 56.63 ± 3.73(30) 64.16 ± 4.80(47) 70.82 ± 6.44(50) 71.67 ± 6.99(50)
LDA 38.35 ± 4.50(6) 51.72 ± 4.19(6) 63.76 ± 5.30(6) 67.72 ± 6.71(6) 75.41 ± 4.88(6) 80.78 ± 4.80(6)
MFA 36.27 ± 4.61(9) 50.32 ± 4.83(11) 62.67 ± 3.92(15) 67.87 ± 4.93(11) 76.92 ± 6.23(22) 80.89 ± 6.30(15)
LFDA 38.73 ± 5.13(6) 54.59 ± 4.04(6) 64.65 ± 4.24(10) 69.70 ± 5.55(11) 78.01 ± 4.88(10) 82.01 ± 6.18(11)
SLFDA 43.84 ± 4.67(6) 61.72 ± 3.94(7) 71.05 ± 4.70(11) 77.57 ± 3.60(13) 80.62 ± 5.87(24) 82.11 ± 6.22(50)
CMFA-SR 35.23 ± 4.11(11) 54.28 ± 5.72(19) 61.78 ± 4.85(30) 68.43 ± 5.54(49) 71.11 ± 4.31(11) 78.17 ± 5.27(47)
SMMFA 43.03 ± 4.86(10) 61.82 ± 5.62(10) 72.71 ± 3.95(12) 77.38 ± 4.64(23) 82.47 ± 5.54(20) 84.89 ± 4.92(30)

The bolded values in Table 2 are the highest ones among compared methods

Table 3 Comparison of training time (s) on the JAFFE database

SMMFA MFA LDA LPP LFDA SLFDA CMFA-SR

0.3669 ± 0.0552 0.3574 ± 0.0373 0.9095 ± 0.0514 0.0764 ± 0.0129 0.4495 ± 0.0478 14.8467 ± 0.4994 3.1275 ± 0.2051
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(NE) expression and six basic facial expressions, i.e., anger
(AN), disgust (DI), fear (FE), happiness (HA), sadness (SA),
and surprise (SU). In all the 213 images, there are 29 to 32
images categorized to every basic facial expression or neutral
expression. The initial image size in the JAFFE database is
256 × 256. In experiments, we manually align, crop and resize
them to 32 × 32 images. Figure 3 shows some aligned,
cropped and resized images from the JAFFE database.

The cropped images are randomly divided into two subsets,
training set and test set. The images in the training set are
utilized to learn the projection subspace spanned by the eigen-
vectors generated by dimension reduction algorithms. Any
image in the test set can be projected into the embedding
subspace by using obtained projection matrices.

4.2.1 Parameter sensitivity analysis

To look into the influence of parameters ξ and μ of SMMFA,
we randomly select 20 images from each expression category
of the JAFFE database and repeat the experiment for twenty
times using a different setting of these two parameters. Figure 4
shows the average accuracy and average training time of
SMMFAwhen ξ and μ range between 0.01 and 1, respective-
ly. From Fig. 4a, we can draw a conclusion that the recogni-
tion accuracy of SMMFA is slightly better when the value of
parameter ξ or μ is smaller. From Fig. 4b, we know that
the training time of SMMFA significantly increases
when the product of ξ and μ is greater than 0.001.
Moreover, the training time does not change significant-
ly and remains a higher value when the product of ξ
and μ is between 0.001 and 0.25. When the product of
ξ and μ is greater than 0.25, the training time would
slightly decrease. The shortest training time is obtained
when ξ = 0.01 and μ is 0.05 or 0.1.

Based on the conclusions above, the following parameter
settings are used: the values of parameters ξ and μ in SMMFA
are set to 0.01 and 0.05, respectively.

Fig. 6 Facial expression images constructed from the CK+ database with
respect to seven expressions: ‘anger’ (the first column), ‘contempt’ (the
second column), ‘disgust’ (the third column), ‘fear’ (the fourth column),
‘happiness’ (the fifth column), ‘sadness’ (the sixth column) and ‘surprise’
(the seventh column)

a

b

c

Fig. 7 Average recognition rate (%) vs. the dimension on the CK+
database under different training images in each facial expression class.
(a) 4 training images. (b) 8 training images. (c) 12 training images
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4.2.2 Performance comparison

Here, we compare SMMFAwith the other six methods (LPP,
LDA, MFA, LFDA, SLFDA and CMFA-SR) when changing
the dimension of the subspace and the number of training
samples. We randomly select s images from each expression
class in the JAFFE database for training, the remaining images
are used for test, where s ∈ {4, 8, 12, 16, 20, 24}. In order to
reduce the accidental error, for each value of s, we repeat 20
times with different training and test sets.

The variation of accuracy vs. dimensions is shown in
Fig. 5. For all seven methods, the accuracy increases remark-
ably at first when the feature dimension increases from a cer-
tain small value, that is 1, to be precise. After that, when the
feature dimension continues to increase, the recognition rates
of LPP and CMFA-SR keep increasing slowly, and the recog-
nition rates of LFDA, SLFDA, LDA, MFA and SMMFA de-
crease slightly after reaching their maxima. It is worth noting
that when feature dimension is at a relatively small value, the
recognition rate of SMMFA is often lower than some of the
other approaches like SLFDA and LDA. However, SMMFA
achieves a better performance than others when more features
are considered.

From Fig. 5, we can also draw a conclusion that the recog-
nition rate increases when the number of training samples
increases for all compared methods here. When the number
of training samples is small, see Fig. 5a–d, SMMFA and
SLFDA have compared performance and are always better
than other five methods. In Fig. 5e, f, SMMFA is much better
than the other six methods.

The best average accuracy of each approach with the stan-
dard deviation and the corresponding optimal dimension is
given in Table 2, where the bolded values are the highest ones
among compared methods. As we can see from Table 2, the
sparse learning methods such as SLFDA and SMMFA are
more powerful than non-sparse methods such as MFA and
LFDA, which shows that the sparse learning algorithms can
learn the intrinsic and useful information in facial images well.
Moreover, SMMFA gets the best performance as it reaches the
highest recognition rate among all the implemented
approaches.

4.2.3 Computational complexity

For SMMFA, the computational complexity of constructing
intra-class graph Fw and inter-class graphFb in Algorithm 1 is
O(N2), while the time complexity of obtaining matrix A is
O(N3). Assume that the iterative times is t. Then, the compu-
tational complexity of the linear Bregman iteration process is
O(tN3). Therefore, the overall time complexity of SMMFA is
O(tN3).

Now, we compare the computational complexity of seven
methods. Simply, we take the running time of training to

approximate the computational complexity of seven methods.
We repeat 20 experiments, in which there are 20 images ran-
domly selected from each expression category for training.

Table 3 shows the average running time of the training
process for all methods when the best average accuracies in
Table 2 are obtained. FromTable 3, we can see that LFDA and
MFA take similar training time, less than LPP and LDA does.
According to Table 3, SMMFA takes slightly more time to
complete the training process compared with MFA.
Although SLFDA has a similar solution for finding the sparse
projection matrix to SMMFA, SLFDA takes evidently more
time to converge compared with LFDA, which means the
convergence of SMMFA is efficient. As another method based
on MFA, CMFA-SR utilizes a different sparse solution from
SLFDA and SMMFA. It converges faster than SLFDA but
slower than SMMFA.

In a nutshell, SMMFA still has an advantage on computa-
tional complexity among the seven approaches.

Fig. 8 Facial expression sample images constructed from the GEMEP-
FERA facial expression database with respect to five expressions: ‘anger’
(the first row), ‘fear’ (the second row), ‘joy’ (the third row), ‘relief’ (the
fourth row), and ‘sadness’ (the fifth row)

Table 4 Comparison of best average accuracy and standard deviation
(%) on the CK+ database

4 train 8 train 12 train

LPP 33.67 ± 7.43(12) 31.75 ± 5.71(16) 34.50 ± 5.25(11)
LDA 50.65 ± 3.71(6) 61.74 ± 4.37(6) 65.79 ± 2.99(6)
MFA 41.54 ± 4.46(8) 53.70 ± 5.39(8) 61.03 ± 5.04(7)
LFDA 51.13 ± 4.45(6) 62.96 ± 4.27(7) 67.06 ± 4.39(6)
SLFDA 52.54 ± 8.71(10) 62.93 ± 8.19(7) 66.30 ± 9.64(7)
CMFA-SR 44.21 ± 5.55(8) 47.62 ± 5.83(20) 52.14 ± 6.17(18)
SMMFA 54.19 ± 6.74(10) 64.63 ± 6.56(11) 68.44 ± 5.23(12)

The bolded values in Table 4 are the highest ones among compared methods
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4.3 Experiments on CK+ database

The extended Cohn-Kanade (CK+) contains 593 facial ex-
pression sequences from 123 subjects. Each sequence is cate-
gorized to one of the seven basic expressions: anger, con-
tempt, disgust, fear, happy, sadness and surprise. The initial
size of images in every sequence is 640 × 490 or 640 × 480. In
this experiment, we select 314 images by cutting out the last
one or two images of some sequences in CK+ database. There
are 44 anger, 18 contempt, 57 disgust, 17 fear, 69 happiness,
27 sadness, and 82 surprise images in the selected image sub-
set. All 314 images are manually cropped and resized to
the resolution of 32 × 32. Some images are shown in Fig. 6.
We can see that the facial images in the extended CK+ data-
base are quite different in the lighting condition.

Similar to the experiments in the JAFFE database, we ran-
domly select s images from each expression class for training
and the remaining images are used for test, where s ∈ {4, 8,
12}. For each value of s, the experiment with different training
and test is repeated 20 times as well.

The variation of average accuracy vs. dimensions with dif-
ferent training sample number is shown in Fig. 7. Obviously,
SMMFA has the best classification performance among seven
methods under three situations. The best average recognition
rate of each approach, its standard deviation and the corre-
sponding optimal dimension are given in Table 4, where the
bolded values are the best ones among compared methods.
The difference in the lighting condition can lead to the overall
decrease of accuracy. In such circumstance, the effectiveness
of all the implemented methods has been distinctly weakened.
However, the discriminant power of SMMFA is still remark-
able since the recognition rate of SMMFA is much greater
than those of other methods when more images are selected
for training.

4.4 Experiments on GEMEP-FERA database

The Geneva multimodal emotion portrayals facial expression
recognition and analysis (GEMEP-FERA) database is a subset
of the GEMEP (Geneva multimodal emotion portrayals) cor-
pus used as a database for the FERA (facial expression recog-
nition and analysis) 2011 challenge [41]. FERA consists of
sequences of 10 actors displaying different expressions. There
are seven subjects in the training set and six subjects in the test
set. Each sequence shows facial expressions of five emotion
categories: anger, fear, joy, relief or sadness. We extract static
frames from each sequence from both the training set
and the test set, which results in 300 images including
67 fear, 57 sadness, 48 relief, 71 joy and 57 anger
images. The extracted images are cropped and resized
to the size of 32 × 32. Figure 8 shows samples of the
cropped images. As we can see from Fig. 8, there are
clear differences among the expression images in bright-
ness, intensity of facial movements and head pose,
which makes the recognition task more challenging.

We design similar experiments as we perform on JAFFE
and CK+ databases. Let s ∈ {4, 8, 12, 16, 20, 24}. From each
expression category, s images are randomly selected for train-
ing. For each s, the experiment is repeated 20 times to avoid
accidental error. The best average.

accuracy of each approach, with the standard deviation and
the corresponding optimal dimension is given in Table 5.

Table 5 shows that the performance of all the seven
methods is quite limited since their recognition rates are all
below 65% even if 24 images from each expression class are
selected for training. The main reason is that these expression
images are clearly different in brightness, head pose and the
intensity of facial movements. Naturally, all methods can en-
hance their performance using more training samples. As we

Table 5 Comparison of best average accuracy and standard deviation (%) on the GEMEP-FERA database

4 train 8 train 12 train 16 train 20 train 24 train

LPP 35.04 ± 3.97(12) 38.06 ± 3.45(10) 43.35 ± 3.69(30) 44.14 ± 4.62(25) 46.28 ± 4.31(25) 49.64 ± 5.11(29)
LDA 39.98 ± 5.16(6) 46.42 ± 4.01(20) 51.81 ± 3.70(29) 55.18 ± 2.94(30) 57.50 ± 2.68(30) 59.94 ± 3.62(30)
MFA 37.36 ± 5.23(6) 46.10 ± 4.94(7) 52.10 ± 3.70(10) 56.18 ± 2.78(11) 58.25 ± 2.86(11) 61.11 ± 3.39(14)
LFDA 40.68 ± 4.61(5) 46.27 ± 3.63(5) 51.50 ± 3.07(5) 55.50 ± 2.74(15) 58.48 ± 2.92(17) 61.53 ± 3.73(18)
SLFDA 41.32 ± 5.79(4) 43.98 ± 7.04(15) 48.15 ± 5.84(8) 53.32 ± 4.96(29) 53.95 ± 3.88(27) 55.92 ± 5.48(30)
CMFA-SR 37.42 ± 4.22(15) 40.86 ± 3.78(28) 44.52 ± 4.25(30) 50.30 ± 4.42(28) 55.95 ± 3.10(45) 59.42 ± 3.99(50)
SMMFA 41.48 ± 2.89(8) 47.63 ± 3.15(14) 53.06 ± 3.16(22) 56.36 ± 2.74(18) 59.53 ± 2.87(12) 62.03 ± 3.37(30)

The bolded values in Table 5 are the highest ones among compared methods

Table 6 Results of statistical test
CD0.10 SMMFA SLFDA CMFA-

SR
LFDA LDA MFA LPP

Mean Rank – 1.13 3.13 5.47 2.80 4.13 4.33 7.00

Friedman Test 1.45 – 2.00 4.33 1.67 3.00 3.20 5.87
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can see from Table 5, SMMFA is better than the other algo-
rithms on the GEMEP-FERA database.

4.5 Statistical comparison

As described above, we perform experiments on six-group
datasets of JAFFE, three-group datasets of CK+ and six-
group datasets of GEMEP-FERA. Thus, there are a total of
fifteen datasets. In order to compare SMMFAwith other relat-
ed methods more concretely, we perform the Friedman test
over different datasets. The Friedman test is one kind of
non-parametric statistical test which is used to determine
whether there are differences across multiple datasets [42].
The critical difference (CD) is defined as follows:

CDα ¼ qα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j jþ 1ð Þ
6T

r
ð14Þ

whereα is the threshold valuewhich is set as 0.1 generally, j is the
number of approaches in the experiments, and T is the number of
datasets. Here, T = 15, j = 7 and q0.1 = 2.326, then we get the
value of CD0.1, that is, 1.45, by the calculation of (14).

Table 6 shows the results of the statistical test. The first row in
Table 6 lists the mean rank of seven methods while the second
row lists the Friedman results with respect to SMMFA. Since the
Friedman results of LDA, MFA, CMFA-SR, LFDA, LPP and
SLFDA are greater than the value of CD0.1, the differences be-
tween them and SMMFA are significant, which means the per-
formance of SMMFA is remarkably better than these sixmethods.

5 Conclusion

In this paper, we propose a novel sparse subspace learning
method for FER. First, the modified MFA is proposed to gen-
erate the original projection matrix, and then the linearized
Bregman iteration is applied to obtain the sparse projection
for SMMFA. Extensive experiments are conducted. On two
toy datasets, we validate that SMMFA has the best separability
among six compared methods. Experiments are also performed
on three typical FER databases. On the JAFFE database,
SMMFA is compared with or better than SLFDA, and much
better than LPP, MFA, CMFA-SR, LDA and LFDA. On the
CK+ database, the advantage of SMMFA is very obvious. On
the GEMEP-FERA database, the sparse method SLFDA is
distinctly weakened and SMMFA still achieves the highest rec-
ognition rate among all seven methods. All results in experi-
ments show that SMMFA can effectively implement the task of
dimension reduction and sparsification, obtaining a model with
high degree of interpretability and generalization ability.
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