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Abstract

Many evolutionary algorithms have been proposed to deal with the problem of community detection in social dynamic networks.
Some algorithms need to fix parameters in advance; others use a random process to generate the initial population and to apply the
algorithm operators. These drawbacks increase the search space and cause a high spatial and temporary complexity. To overcome
these weaknesses, we propose in this paper a novel multi-objective Bat Algorithm that uses Mean Shift algorithm to generate the
initial population, to obtain solutions of high quality. In our proposal, Bat Algorithm simultaneously optimizes the modularity
density and the normalized mutual information of the solutions as objective functions. The operators of the algorithm are applied to
the problem of community detection in social dynamic networks by giving another sense to the velocity, frequency, loudness and the
pulse rate of natural Bat. The algorithm keeps the principal of the Mean Shift algorithm to generate new solution and avoid the
random process by defining a new mutation operator. The algorithm does not need to the non-dominated sorted approach or the
crowding distance, but it attributes a weight to each objective function. The method is tested on artificial and real dynamic networks

and the experiments show satisfactory results in terms of normalized mutual information, modularity and error rate.

Keywords Community detection - Modularity density - Mean shift - Bat algorithm - Dynamic network

1 Introduction

In social networks, the increasing number of users and interac-
tions between them imply a complex structure of the system
which needs to be analyzed. In the literature, complex systems
have the capability of being represented as graphs. This repre-
sentation facilitates the comprehension of their structure and al-
lows to the revealing of some important information. Taking the
example of social network, which is a set of individuals connect-
ed with different relationships. The structure of such network can
be represented as graph where the nodes design the individuals
and the links design the relations between them. It is known that
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individuals in social networks organize themselves into commu-
nities, where the nodes of the same community are very dense
and close compared to the rest of the network.

Another major characteristic of social networks is the dy-
namic evolution, where we can define a dynamic network as
a network that changes its structure (nodes and interactions)
over the time. In social network analysis, community detection
is one of the main tools that play an important role as revealing
new relations and new information. But due to the dynamic
evolution of social networks, community detection becomes
more and more significant problem, since it can reveal the
transformations that a network can undergo over the time.

Many research works have been done to deal with the
problem of community detection on static networks, such as
label propagation SLPA in [1], clustering algorithm in [2],
genetic algorithm in [2], bee swarm optimization in [3] and
hybrid optimization algorithm in [4]...etc. However the evo-
lution of the network over time implies a lot of changes as the
addition of new nodes or the removal of edges. For example,
in Facebook, at any time an individual can add friends; can be
member of new groups ...etc. For these reasons, community
detection algorithms in static networks cannot be applied di-
rectly on dynamic networks.
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Thus, several research works are interested to analyze dy-
namic networks which are classified into two categories “non-
evolutionary” category and “evolutionary category”. In the
non-evolutionary category, or the two-stage category the pro-
posed algorithms do not take the historical community detec-
tion into account. They treat the network structure indepen-
dently of its evolution over the time, such as the algorithms
proposed in [5] and the algorithm proposed in [6].

To overcome this weakness, the evolutionary category of
algorithms appears where we can cite the algorithm proposed
in [7]. The algorithm is an evolutionary link community de-
tection based on the weights of edges to cluster the nodes. At
each time step the algorithm needs to the parameter alpha to
control the size of the detected communities. We can also cite
FacetNet proposed by [8]. FacetNet is a framework for ana-
lyzing communities and their evolution in dynamic networks.
According to [6], the algorithm allows the participation of
individuals in multiple communities at the same time and with
different participation levels. However, only link information
is considered and the model is only used for explaining the
observed data, it is not possible to predict the future behavior
of the individuals of a network. The algorithm also needs to
define the values of some parameters such as the number of
communities.

Furthermore, the multi-objective optimization algorithms
have been proposed. These algorithms do not need to fix pa-
rameters in advance and take the historical community struc-
ture into account by using a cost function. This function is
composed of the snapshot cost (SC) which measures the qual-
ity of the community structure at time ¢, and the temporal
quality (TC) which evaluates the similarity between the com-
munity structure at time ¢ and #-1. The algorithm proposed in
[9] is a multi-objective evolutionary algorithm for detecting
communities in dynamic networks using genetic algorithm.
Another multi-objective approach is proposed in [10] using
biogeography metaheuristic.

The major drawback of the multi-objective evolutionary
algorithms is the random generation of initial population that
increases the search space and causes a high spatial and
temporary complexity. The method presented in [11] is
an evolutionary computing approach for dynamic com-
munity detection based on label propagation algorithm to
generate the initial population of the evolutionary algo-
rithm. Although, the opinion presented in [12] says that
“the label propagation method has the shortcomings of
uncertainty and randomness in the label propagation
process.” This last affects the accuracy and the stability
of the communities.

Thus, in this paper we propose a multi-objective Bat
Algorithm (BA) based on Mean Shift (MS) approach. BA
takes the advantage of echolocation of microbats, adjusts the
frequency and velocity automatically and increases the pulse
rate when it is close to the best solution. BA also combines the
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advantages of PSO and GA and it is superior to them in terms
of accuracy and efficiency. In order to resolve the problem of
premature convergence and reduce the search space, we use
the MS approach to generate the initial population. The MS
approach returns a set of high quality solutions and has the
advantage of running fast with minimal error. MS also does
not need to fix the number of clusters in advance. In addition
we derive the principal mechanism of MS algorithm to de-
fine a new mutation and get high quality solutions. This mu-
tation adopts the principal of MS algorithm to escape from the
low quality of random traditional mutation.

The algorithm uses two objective functions, the modularity
density to maximize the snapshot quality and the normalized
mutual information to minimization of temporal cost. In addi-
tion, the multi-objective optimization is efficient than a single
objective. Because it returns a set of non-dominated optimal
solutions compared to the single objective which returns one
solution. The method is tested on real and artificial networks
and the obtained results are satisfactory compared to other
methods.

The main contributions of our proposal are:

—  The utilization of MS approach to generate the initial
population provides high quality clustering.

—  The utilization of multi-objective BA to optimize two
objective functions simultaneously.

— A new solution is generated by adjusting frequency and
velocity. A new mutation is defined based on the MS
principal mechanism.

—  The complexity of the proposed is polynomial.

—  The paper is organized as follow: in Section 2 we detail
the related works and in Section 3 we give the prelimi-
naries of the work. Section 4 explains the method and
Section 5 is devoted to the experiments. Finally we give
the conclusion in Section 6.

2 Related works

Community detection is a fundamental concept that allows us
to understand the main structure of the networks. In static
networks, a large number of methods have been proposed
such as the algorithm proposed in [13]. This algorithm divides
the nodes of the network into several communities; next it
merges them to increase the value of modularity. Finally, it
returns hierarchical representation called “dendrogram”
which is cut on the level that have optimized the value of
modularity. Another algorithm presented in [14] deals with
the problem of community detection. This algorithm runs on
two steps. In the first step, each node of the network is put in
its community, next the communities are merged by optimiz-
ing the gain in terms of modularity. The second step considers
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the communities of the first step as nodes of a new network.
The two phases are repeated till no optimized value of modu-
larity remains.

The work presented in [15] uses a random walk strat-
egy to decompose the network into several communi-
ties. In this algorithm an information theoretic approach
is employed where the information flows in the real
system are seen as the probability flows of random
walks. The algorithm is applied on directed and weight-
ed networks. The label propagation strategy is also used
in the process of detecting communities in networks.
The paper presented in [16] initializes each node of
the network with a unified label. In next step, each
node takes the label that occurs on its neighbors.
Finally, the nodes with a same label are considered as
one community. In [2] a genetic algorithm is proposed
to deal with the problem of community detection. The
algorithm optimizes several objective functions simulta-
neously, expressed by the combination of the Density,
Centralization, Heterogeneity, Neighbourhood, and
Clustering Coefficient in one objective function. The
population of the algorithm is represented as binary vec-
tors. The algorithm uses a random crossover and muta-
tion points.

The work proposed in [17], is a multi-objective genetic
algorithm applied on the problem of community detection.
The algorithm uses the locus-based adjacency representation
to represent the population which is generated randomly. The
algorithm uses crossover, mutation and selection operators to
maximize the intra-connections inside the community and
minimize the inter-connections between communities. Ant
colony optimization is also applied on the problem of com-
munity detection such as the algorithm proposed in [18]. The
algorithm simulates the behavior of real ants to the nodes
clustering in a network. Each node in the network is represent-
ed as ant in a virtual grid. One ant moves in the grid by
calculating a probability and a pheromone diffusion model is
proposed where the ant colony movement determines the net-
work partitioning.

From the works cited above, we can see that some of them
use exact methods to detect communities in social networks
and others use evolutionary methods. However, the dynamic
evolution of real social networks makes the analysis of static
networks non-significant. In addition, these approaches do not
work well on dynamic networks. For this reason many works
concentrate on the analysis of dynamic networks.

The paper proposed in [6] presents a survey on community
detection in dynamic networks. The work classifies the
methods into several categories which are: Event based
methods, Random walk methods, Probabilistic methods;
Modularity based methods and Evolutionary methods. In this
paper, we classify them into evolutionary-based methods and
non-evolutionary-based methods.

2.1 Non-evolutionary-based methods

In this section, we can enumerate several approaches begin-
ning by iLCD suggested in [5] which uses k-clique clustering
to propose an incremental k-clique clustering method. In this
work the dynamics of social networks is represented as change
stream, the depth first search is used to solve the incremental
k-clique clustering. However, the clique percolation based
method has worst results on large networks. In addition, the
incremental spectral clustering is sensitive to scale parameters
and need to several improvements such as the improvement of
creating similarity matrix and dealing with large-scale net-
works as mentioned in [19].

A local dynamic method is proposed in [20], it con-
centrates on the part of network that changes over time.
At iteration =0, a static algorithm for community de-
tection is executed and then a PageRank-approach is
performed which needs to the seeds. These seeds are
selected using a seeding strategy to track the behaviors
of dynamic communities which construct a partial evo-
lution graph. It is known that the PageRank approach
run fast. However the seeding strategy applied to found
good seeds, performs a lot of test on each node to
check if it is a local-minimal conductance node or not,
which is not practical. In [21] NEIWalk is suggested,
the work modifies a content-based network to a node
and edge interaction and it integrates the linkage struc-
ture, node content and the edge content. The major
drawback of this work is a bounded accuracy loss
caused by the random walk sampling.

In [22] a community event prediction on dynamic network
is suggested. The framework can be summarized in four steps:
community detection, feature extraction, community
matching and finally the phase of classification. This last step
considers the events such as: growth, merge, split ...etc. as
classes. In the phase of community matching, a Jaccard coef-
ficient is calculated between two consecutive snapshots to
verify if the two communities match each other.
Consequently, the corresponding event is determined on the
basis of three matching thresholds values. So the disadvantage
of'this approach is the requirement of fixing the values of these
thresholds.

The work presented in [23] is an event-based framework
which uses an incremental algorithm to detect the evolution of
event in the interaction graph. In this approach a measure of
stability, sociability is computed. According to [6], the frame-
work is based on the use of certain critical events that facilitate
the ability to compute and reason about the novel behavior
oriented measures. This last, can offer new and interesting
insights for the characterization of dynamic behavior of such
interaction graphs. The remarkable inconvenient is the ignor-
ing of historic community structure due to the clustering of
each snapshots graph independently.
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2.2 Evolutionary-based methods

In [8] Facetnet is proposed. It is a framework for analyzing
communities and their evolutions in dynamic networks. The
work represents the problem as non-negative matrix factori-
zation. The framework also uses a soft clustering algorithm
from static graph to dynamic and then performs an iterative
algorithm in order to converge to the optimal solutions. But
the method needs to fix the number of communities in ad-
vance and cannot approximate well the ground truth which
is expressed by the lower values of normalized mutual infor-
mation. An evolutionary link community structure discovery
in dynamic weighted networks is proposed in [7]. The algo-
rithm is based on the weights of edges to cluster the commu-
nities and it needs to the parameter a/pha to control the size of
the communities at each time step.

The algorithm ESPRA, proposed in [24], extends the per-
turbation theory in quantum physics for static networks to
dynamic networks. In the algorithm a new similarity including
structural perturbation and topology is proposed, and the tem-
poral smoothness framework is employed as evolutionary
clustering algorithm. This framework is defined as a linear
combination of the similarity on dynamic network. The pro-
cess of the algorithm begins by choosing the centers of clus-
ters that have high density, and then classifies the nodes. In
second step, a modified modularity is used to merge the clus-
ters. The drawbacks of the algorithm are a complicated pro-
cess of structural perturbation and the need of the parameter 5
to define the combined similarity. In [25] a multi-objective
framework for community detection is proposed. The authors
of this work conclude that the major evolutionary methods for
community detection on dynamic network have a same prin-
ciple which is the optimization of snapshot cost and temporal
cost.

DYNMOGA is a multi-objective evolutionary algorithm to
detect communities in dynamic networks proposed in [9]. The
work is a multi-objective genetic algorithm formulated to de-
tect communities with temporal smoothness. The advantage
of the algorithm is that it automatically returns a solution
representing the best trade-off between the accuracy of the
obtained clustering, and the deviation from one time step to
the successive one. The weakness of the algorithm is the high
execution time produced by the random generation of the
initial population.

Another multi-objective approach is proposed in [10], the
work presents a multi-objective biogeography based optimi-
zation algorithm which uses a decomposition mechanism to
detect the communities. This mechanism optimizes normal-
ized mutual information and modularity. In addition two op-
erators are designed to improve the effectiveness of the algo-
rithm which are the problem-specific migration and mutation.
The work also suffers from the problem of generating the
initial habitat population randomly.
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DYN-MDPSO proposed in [26] is a multi-objective
particle swarm optimization which maximizes the
modularity density and the normalized mutual infor-
mation simultaneously. The algorithm uses the decom-
position framework, meaning that the algorithm is
decomposed into single objective sub-problems. The
algorithm also uses new updating rules to generate
new solutions.

The major drawback of the multi-objective ap-
proaches is the random generation of initial population
which increases the search space and causes high spatial
and temporary complexity. The method presented in
[11] is an evolutionary computing approach for dynamic
community detection. The initial population of this evo-
lutionary algorithm is generated on the basis of label
propagation approach. But according to the opinion of
[12], the label propagation method has the shortcomings
of uncertainty and randomness in the label propagation
process, which affects the accuracy and stability of the
community.

From the above studies we can conclude that there are
several static community detection algorithms which cannot
be applied on dynamic networks. In dynamic community de-
tection, the non-evolutionary methods need to fix some pa-
rameters in advance as [22], and do not take into account the
historic community structure such as [23]. However, the evo-
lutionary methods take a lot of time and iterations to converge
due to the random initialization of population as DYN-
MOGA [9]. The work of [11] uses a label propagation process
to get high quality solutions, but the label propagation also has
a percentage of uncertainly. The work also uses a genetic
algorithm to optimize two objective functions, where it per-
forms in several iterations with crossover, mutation and selec-
tion operators, and it sorts the solutions with fast non-
dominated sorted approach. In this paper, we propose a
multi-objective BA based on MS to have solutions of high
quality. The algorithm optimizes two objective functions and
assigns to each one a weight.

According to [27], the multi-objective optimization
methods are classified into interactive methods, posteriori
methods, and a priori methods, depending on the decision
maker (DM) preferences. We can add also the no-preference
methods where the preferences of the decision maker are not
defined, but at the end of the process, the DM accepts or
rejects the solutions.

1. Interactive methods: In this field the process of decision
and optimization are combined such as the DM defines
the preferences and modifies them when the optimization
process runs.

2. Posteriori methods: In these methods the preference of the
DM is not required. However, the DM takes the set of
good solution from the generated pareto solutions.
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3. A priori methods: In this field the opinion of the DM is
required before starting the optimization process. The de-
fined preferences help to search for the pareto optimal
solutions that match it. The DM also knows the priority
of'the objective functions which will be transformed into a
single one.

Many approaches are used to combine the objective
functions and resolve the problem as mono-objective such
as:

3.1 The e-constraint approach: This class uses one ob-
jective function and considers the others as
constraints.

3.2 The goal programming: in this class the DM must
define the goals 7; of all objectives f;. The new ob-
jective function is defined such as it decreases the
difference between the goals and the results.

3.3 The weighted sum methods: in this class field the
weights are attributed to each objective function,
such as the sum of all weights is equal to one;
expressed as:

(Minimize)Y*  w,f5(X) w;>0 ¥ w; =1

Because our algorithm uses weights to combine the two
objective functions we classify it as a priori multi-objective
optimization algorithm.

Several posteriori multi-objective Bat algorithms have
been proposed to deal with the problem of multi-objective
optimization such as the algorithm proposed in [28]. This
algorithm is a multi-objective Shuffled Bat algorithm for op-
timal placement and sizing of multi distributed generations in
radial distribution systems. Two objective functions are min-
imized by using Bat algorithm as an optimization algorithm.
The method does not attribute a weight to each objective
function as the priori-based methods, but it chooses the best
solutions from the pareto front where the non-dominated so-
lutions are analysed with NSGA-II. However, the process is
complicated and the algorithm needs to a decision variable d
and the viable objective area Z.

In [29] the multi-objective optimization using Bat algo-
rithm for shell and tube heat exchanges is proposed. The al-
gorithm does not combine the two objective functions which
are the shell and the heat exchange, but searches for a set of
optimal pareto front solutions. However the optimal solutions
are chosen by fixing the tube sheet and the segmental baffles.

The multi-objective Bat algorithm is also used in the design
of power filter in [30]. The method uses external archive to
store the non-dominated solutions and the search space of
variables is divided into many hyper-cubes. The method does
not combine the objective functions but need to define the
constraints of each one. In [31] a multi-objective hybrid Bat

algorithm for combined economic/emission dispatch is pro-
posed. The algorithm uses the elitist strategy with external
archive. The algorithm also modifies the update of velocity
and the random walk of the standard Bat algorithm. In order to
have a distributed pareto optimal front a modified crowding
distance is employed.

From the works cited above, we can conclude that the
posterior Multi-objective optimization algorithms have com-
plicated process and need some parameters in some cases.
However, the process in priori based-methods is simple and
the affectation of weights facilitates the sorting of solutions.
For these reasons we choose a priori method in our proposal.
In addition, BA uses the velocity and frequency to generate a
new solution and control the convergence by increasing the
pulse rate when it closes to the best solution. The new defined
mutation based on MS approach, also increases the efficiency
of the algorithm, because it is guided and it is different from
the random traditional mutation. At the best of our knowledge
neither MS algorithm nor BA algorithm have been applied on
the problem of community detection in dynamic network. This
motivates us to hybridize the two approaches to have benefits
from their advantages.

3 Preliminaries
3.1 Bat inspired algorithm

BA is a bio-inspired algorithm based on swarm intelligence.
The algorithm was developed by Xin She in 2010. As defined
in [32], BA follows echolocation of Bats by using sonar ech-
oes to detect and avoid obstacles. It is generally known that
sound pulses are transformed into frequencies which are
reflected from obstacles. Xin-She in [32] proposed three gen-
eralized rules for BA:

—  All Bats use echolocation to sense distance, and they also
guess the difference between food/prey and background
barriers in some magical way.

— Bats fly randomly with velocity vi at position xi with a
fixed frequency fmin, varying wavelength and loudness
AO to search for prey. They can automatically adjust the
wavelength (or frequency) of their emitted pulses and
adjust the rate of pulse emission » depending on the prox-
imity of their aim.

—  Although the loudness can vary in many ways. It is as-
sumed that the loudness varies from a large (positive) AQ
to a minimum constant value Amin.

The application areas of Bat algorithm are several such as:

the detection of intrusion in [33], the association rule mining in
[34] and the mining of numerical association rules in [35].. .etc.

@ Springer
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3.2 Multi-objective optimization problem

The multi-objective optimization problem can be defined as a
simple optimization problem which includes at least two ob-
jective functions, expressed as suggested in [36] by:

min(F(x):[F1(x);F2(X);---§Fk(x)]T) (1)

Subjectto gix)<=0j=1;2... mand l(x)=01=1;2; ...; e.

Where £ is the number of objective functions, m is the
number of inequality constraints, and e is the number of equal-
ity constraints. x € E" is a vector of decision variables. F (x) is
a vector of objective functions.

Definition 1 The feasible design space X:
X is defined as the set{x| g(x)< =0}, j=1, 2, ..., m and
hilx)=0,i=1,2....e.

Definition 2 The feasible criterion space Z is a set of
{Fx)lxe X}

Definition 3 Non-Dominated and Dominated Points:

A vector of objective functions, F (x*) € Z, is non-
dominated iff there does not exist another vector, F (x) € Z
such that ' (x) <= F (x*) with at least one Fi(x) < F; (x¥),
otherwise, F (x™) is dominated.

Definition 4 Pareto Optimality
The Pareto front PF of a multi-objective can be defined as
the set of non-dominated solutions so that: PF = {xe F]— 13

x €F:fix) <flx)}
3.2.1 Multi-objective bat algorithm

As mentioned in [37] the multi-objective optimization prob-
lems are more complicated than the single objective optimi-
zation because it should find and/or approximate the optimal-
ity fronts. The pseudo code of the multi-objective BA taken
from [37] is as follow:

Algorithm 1 Multi-objective Bat Algorithm
1: Objective functions f1(x); ... ; /i(0), X=( X1, X7

2: Initialize the bat population xi(i= 1,2, ..., n) and vi

3

4: for (=1 to N) do (points on pareto fronts)
5:  Generate k weights w,>= 0 so that ¥5_, w, = 1
6: Form a single objective f = XX_, wy fic
7
8:  while t < Max number of iteration do

: Generate new solutions by adjusting frequency,
10:  and update velocities and locations/solutions

12:  if rand > r; then

13:  Random walk around a selected best solution
14:  endif

15: Generate a new solution by flying randomly

17: ifrand <A, and f(x,) < f(x +) then
18:  Accept the new solutions

19:  Increase 7; and reduce A;

20:  endif

21:  Rank the bats and find the current x*
22: end while

21: Record x* as non-dominated solution
23: end for

24: P rocess results and vi
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In the lines 1 and 2 the initialization of the objective func-
tions and the bat population is done.

In the lines 5 and 6 k weights are affected to each objective
function, such as the sum of weights is equal to one.

In line 8: while the maximum number of iterations is not
meet new solutions are generated by adjusting frequency and
updating velocity.

From line 12 to 14 ifa random number is less than the pulse
rate a random walk around the best solution is done.

From line 17 to 20: if a random number is less than the
loudness and the objective function of the current solution is
less than the best one, the new solution is accepted, increase r
and reduce A. At the end of the iteration the current best
solution is found.

3.3 Mean shift algorithm

Mean Shift algorithm is a kind of clustering data which
does not need to fix any parameter in advance. The
algorithm was developed in 2002 [38]. In this paper
we apply this algorithm to the problem of community
detection, as its idea is very simple and its results are
improved. In addition the algorithm does not need to fix
the number of clusters as the case of k-means algo-
rithm. The algorithm affects the points of data iterative-
ly to the clusters that have the highest density of
datapoints. The process of the algorithm begins by cal-
culating the neighbors N(x) for each point x in the set
of datapoints X, by the Euclidean distance, and then
calculates the mean shift m(x) by the following equa-
tion:

- ZeenKix)x

mix) = Yen (K (xix)

(2)

Where K is the Gaussian Kernel. In next step all x € X are
changed to m(x). The process is repeated a number of itera-
tions until convergence or stability.

4 Proposed approach

This section shows the details of the method adopted in this
paper, which uses BA to detect the communities of the net-
work. The initial population of the algorithm is generated
according to the sub-section 4.1. Each bat in the generated
population is represented according to 4.2. These bats are
evaluated by using two objective functions defined in sub-
section 4.3. The proposed mutation is defined in 4.4. After
that, we follow the behavior of bat defined in sub-section
4.5 to execute the method described in the flowchart of Fig. 3.
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4.1 Initial mean shift algorithm

To get the preliminary partition with Mean Shift we
need to use the similarity matrix as input. This matrix
is obtained by converting the » nodes network to a
signaling process which is done as indicated in [39,
40] as follow:

First, the identity matrix is added to the adjacency
matrix of the network: Z=(In+A)". After that, each el-
ement of the matrix is normalized by dividing it by the
root of the sum of the other elements of the squared
matrix.

In next step, the Euclidean distance between the vectors of
the obtained matrix is calculated to serve as input of the
MS approach described in the section 3.3. By varying the
number of iterations in the algorithm and the bandwidth of
the Gaussian Kernel, we return the maximum number of
solutions with high quality.

4.2 Representation of solutions

In the encoding step, the individuals (bats) are represented by
the so called “string-based representation” noted as B =[b1,
b2, ..., bi,. .., bn] where bi corresponds to the label of the
community to which the node 7 belongs. n is the number of
nodes in the network. Table 1 corresponds to the encoding of
the network of Fig. 1.

All nodes with the same label should be in the same com-
munity. For example, the nodes 2 and 3 have the label 1, and
should be in the community 1.

4.3 Objective functions

In order to evaluate the solutions we need to use the objective
function. In this paper we adopt two objective functions to
formulate a multi-objective algorithm. The function widely
used in community detection problems is the modularity den-
sity D defined in [41] as:

LV, V,-)—L(V,-,V[)
Vil G)

Fig. 1 Sample network

Table 1 Example of bat’s encoding

Node i 1 2 3 4 5 6 7 8 9 10

Bat B 1 1 1 1 1 2 2 2 2 2

Where L(V,, V;) is the number of links in the
community V;, L(V;,V;) is the number of links with
one node in the community Vi and other node
outside V;. | V,| is the number of nodes in the
community V..

The second objective function is the normalized mu-
tual information defined in [42] as a measure criterion
adopted to know if the true partition of the network and
the detected one are similar or not. In this paper we
calculate the normalized mutual information between
the partition at time t and t - 1.

4.4 The mutation operator

In this section we define the mutation operator de-
rived from MS algorithm. We begin by searching the
neighbors of the nodes in each community of the par-
tition. Second, we compute the mean shift m(x) be-
tween the corresponding node and its neighbors. Next,
we calculate the Euclidean distance between the node
and the m(x). Finally, the node takes the label of the
neighbors that have minimum distance, as showed in
Algorithm 2.

Algorithm 2: The mutation operator

1: Input: The node

2: P= partition(network)

3: for all neighbors in P do

4:  //calculates its mean shift

S5: my=mean_shifi(the node, neighbors)
6: end for

7: I=min(Euclidiean_distance(the node, m;)
8: label (the node)=/

10 (9)
(8)
(7
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4.5 Behavior of bats

Naturally, bat sends a signal with a frequency f. This signal is
sent back as echo while the bat finds its object. We simulate
this movement by the artificial bats.

In this paper we consider the velocity vi as a set of permu-
tations that allows each bat to change its position and to create
another two bats by improving the objective functions. The
frequency fi corresponds to the positions chosen on the bat
where the modification will be done. The frequency is calcu-
lated by the following equation:

fi=(0+1)8 p3e[0, 1] (4)

Where £, refers to the length of the solution.

The new solution is transformed according to Fig. 2.

In Fig. 2 we calculate two frequencies fmin and fimax on
two individuals. By adding the velocity to the solutions we
obtain four children. Finally, if childl dominates child2, we
take childl otherwise we take child2. If child3 dominates
child4 we take child3, otherwise we take child4. The flow-
chart of our modified Bat Algorithm is shown in Fig. 3.

The algorithm begins by the initialization of the population
using MS approach.

The frequency is described by the eq. (4) and the velocity
corresponds to the set of permutations that improves individ-
uals. The position xi refers to the solution after defining a new
velocity and a new frequency, 0 and Ai are chosen in the
ranges [0, 1] and [2, 17] respectively. While ¢ is less than the
maximum number of iterations, we generate new solutions
by adjusting f'and v. In order to benefit from the quality of
individuals, if a random number is superior to 77, we add a
generated population with MS to the current population. Ifa
random number is less than Ai and the objective function of

modulo [f]

Fig. 2 Bat’s updating position

individual 1

individual2 8 9

child1

child2
child3

child4
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the current solution is less than the best one, we mutate the
best solution. We rank the bats and found the best; we increase
ri and reduce Ai by applying the two following equations:
A = Al and 7 = r[1—exp(—t)], a =y=0.9. Where we
set AV =2 and ¢ = 0.1. Finally we rank the bats and return
non-dominated set.

4.6 Complexity

The complexity of the proposed approach can be calculated as
the sum of the complexity of MS algorithm and the multi-
objective BA. The complexity of MS is calculated according
to the size of the used identity matrix which reflects the num-
ber of node in the network and the number of iterations that
the algorithm takes to converge. So, this complexity is given
by complexity(MS) = size(I) * nb-iter. The complexity of
multi-objective BA is calculated according to the number of
bats &, the number of iterations ifer and the complexity of
creating a new solution.

So complexity(multi-bat) =k = iter* complexity
(createnew sol), where complexity(create-new-sol) is cal-
culated as: because we brows two solution to create two
other best solutions. So the complexity is given by
complexity(create-new-sol) =2 = len(solution) + N, where
N is the complexity of the mutation operator: because we
brows all the neighbors of a partition, and in the worst case,
all the neighbors is equal to the number of nodes in the
network.

This complexity is low than the complexity of NSGAII,
MOPSO which is of M#*n” and the complexity of MOEA
which is of m*N*T, where T is the number of weight vectors
in the neighborhood.

fmin fmax

l l
L1 | 2 | 3 | a4 | s ] 6 | 7 ]| 8]

1 p 7 0 4 3

NS NN SR o
EN NS oo
I !
S T, T
IR RS N A AT

child1= individuall + vl
child2= individual2 + v2
child3= individuall + v3
child4= individual2 + v4
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Fig. 3 Flowchart of the modified
multi-objective Bat Algorithm

Begin
17
Initialize the bat

population using MS

Generate k weights to
form a single objective
function

Generate new
solutions by f
and v

Add new population

to the front using
MS

Tand<Ai &
fxi) < f(x#)

Mutate the best solution
rank the bats and found
the best

yes

5 Experiments

Our proposal is implemented in Python on a computer of 2.50
GHZ processor and 12G Ram. We show the performance of
our method on synthetic and real networks and we compare
the obtained results to the results of L-DMGA [11],
DYNMOGA [43], FacetNet [8], DYN-MODPSO [26],
ESPRA [24] and IsoFdp [44].

5.1 Evaluation criteria

To evaluate the quality of the obtained results we use the
normalized mutual information (NMI), error rate defined in
[42], and the modularity as metrics of evaluation.

5.1.1 Normalized mutual information

As defined in [42], NMI is a measure criterion adopted to
know if the true partition of the network and the detected
one are similar or not. Given a network of N nodes, a true
partition A and a detected partition B, each element Cij of a
confusion matrix C corresponds to the common nodes be-
tween the community i and j of partition A and B, respectively.
The measure is defined as follows:

=235 i, Ciylog (CyN [ (CiCy) )
Yie, (Cilog(Ci/N)) + X5, (C,log (Ci/N))

NMI(A,B) =

(5)

Where Ca, Cb are the numbers of the communities in the
partitions A and B respectively. Ci, Cj are the numbers of
nodes in the communities i and j respectively. If NMI (A,
B) =1, then the two partitions are identical, else if
NMI(A,B) =0, then the two partitions are different.

5.1.2 Error rate

The error rate measures the distance between the detected
communities and the real communities. To calculate it, we
create an n* k indicator matrix Z, where #n is the number of
nodes and k is the number of communities, and a similar
indicator matrix G to represent the real community. So

error(Z,G) = HZZT—GGTH (6)

5.1.3 Modularity

The function widely used in community detection problems is
the modularity Q defined in [45] as

m. [(2m.+ e, 2
asT
ceC | M m

(7)

Where m is the number of links in the network, mc is the
number of links in the community ¢ and ec is the number of
external links in the community c.
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5.1.4 Density

In IsoFdp [44], an improved partition density function to eval-
uate the quality of the detected communities is proposed as
follow:

2 ; me—(n.—1)
D= N 2™ ne2) (m1)

Where, N is the number of nodes in the network. m,, n. are
the numbers of links and nodes respectively, in each commu-

(8)

nity c. v/k is the squared root of the community number.

5.2 Dataset 1

In order to generate the dataset we use the benchmark used in
[11], which is like Girvan-Newman (GN) benchmark [46].
The network has 128 nodes, divided into four groups with
32 nodes each. The average degree of the network is noted
k, and the number of edges connecting each node outside the
community is noted z. To create a dynamic network we move
nC% nodes from one community to another. The benchmark
needs to parameter N which represents the number of nodes in
the network, and the parameters cmin, cmax that illustrate
respectively the maximum and the minimum community size.
The benchmark also needs to the average degree k , the max-
imum degree kmax, the mixing parameter of the topology u,
the number of steps s to get a dynamic network, and the prob-
ability of switching p which indicates how many nodes can
change its community.

5.3 Dataset 2

As defined in [43] SYN-FIX is similar to the synthetic dataset
1. The network consists of 128 nodes divided into four com-
munities of 32 nodes each. Every node has an average degree
of 16 and shares a number z of links with the other nodes of
the network. In order to introduce the dynamics, 3 nodes are
randomly selected from each community and randomly
assigned to the other three communities. Two datasets of type
SYN-FIX are generated by varying the parameter z to 3 and 5,
respectively.

5.4 Dataset 3

The SYN-VAR is a synthetic network composed of 256 nodes
that are divided into four communities. As defined in [26], the
benchmark includes the forming and dissolving process of
communities and the attaching and detaching of nodes. At
each time step, 32 nodes are randomly selected to form a
new community. This is done for 5 time steps and these se-
lected nodes return to their original communities in the

@ Springer

following 5 time steps. In addition, 16 nodes are randomly
deleted and 16 new nodes are added to network at each time
step.

5.5 Real networks

Cell phone calls It is the dataset 1 from IEEE VAST 2008 Mini
challenge 3, which includes 400 nodes and more than 498
edges.

Karate It is a social network of friendships between 34 mem-
bers of a karate club at a US university in the 1970s. The
network has 34 nodes and 78 edges.

Football This is the network of American football games be-
tween Division IA colleges during regular season Fall 2000.
The network has 115 nodes and 613 edges.

Dolphins It is an undirected social network of frequent asso-
ciations between 62 dolphins in a community living of
Doubtful Sound, New Zealand. The network has 62 nodes
and 159 edges.

Lesmis This undirected network contains co-occurrences of
characters in Victor Hugo’s novel ‘Les Misérables’. A node
represents a character, and an edge between two nodes shows
that these two characters appeared in the same chapter of the
book. The network has 77 nodes and 254 edges.

Jazz This is the collaboration network between Jazz musi-
cians. Each node is a Jazz musician and an edge denotes that
two musicians have played together in a band. The network
has 198 nodes and 2742 edges.

5.6 Results in terms of NMI on dataset 1

In this section we test the method on two networks generated
by varying the parameter nC from 10% to 30%, setting the
parameter k to 16 and the parameter z=5 . The other param-
eters of the dataset are set as follow: N=128,s =35, kmax=17,
cmin =32, cmax =32. The obtained results are compared to
the results of L-DMGA [11], DYNMOGA [43], FacetNet [8].
We refer to our method by MS-DYN.

From Figure Figs. 4 and 5 we vary the parameter nC
to get two different type of networks, on which ones we
can see that MS-DYN conducts better than L-DMGA,
DYNMOGA and FacetNet in terms of normalized mu-
tual information. This means that our method approxi-
mates the ground truth on different type of networks
and on different steps of the dynamic networks. In
Fig. 4 at time =20 we can see that MS-DYN has
0.33 as value of NMI which is high than LDMGA,



A multi-objective bat algorithm for community detection on dynamic social networks 2129

Fig. 4 Normalized mutual 0.35

information of detected
communities where nC =10%

0.3

0.25

0.2

0.15

=¢—_DMGA
=li—=DYNMOGA
==fe=FACENET
=>é=MS-DYN

0.1

Normalized mutual information

0.05

DYNMOGA and FacetNet which have respectively 0.2,
0.15 and 0.1 as values of NMI. In Fig. 5 at time =10
we can see that MS-DYN has 0.6 as value of NMI
which is high than L-DMGA, DYNMOGA and
FacetNet which have respectively 0.25, 0.15 and 0.18
as values of NMI.

10 15 20

Time steps
z=5 and nC=10%

5.7 Results in terms of NMI on dataset 2

In this section we test the method on Syn-fix network, where
we set the parameter z to 3 and 5. The obtained results are
compared to the results of DYNMOGA [43], FacetNet [8] and
DYN-MODPSO [26].

Fig. 5 Normalized mutual 0.7
information of detected
communities where nC =30%

0.6

0.5

N

== DMGA

0.2 -

. / \
/ —#—DYNMOGA
0.3

=== FACENET

* MS-DYN

Normalized utual information

10 15 20

Time steps
z=5 and nC=30%
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Fig. 6 Normalized mutual 1.2
information of detected
communities on synfix network

where z=3 1 - |:i 53

0.8

Normalized mutual information

0.6 === FACENET
‘_/\‘_\ ——DYNMOGA
04 === DYN-MODPSO
' 4= MS-DYN
0.2
O T T T T 1

4 6 8 10
Time steps

SYNVAR when zout=3

From Figs. 6 and 7 we can see that MS-DYN conducts
better than DYNMOGA and FacetNet in terms of NMI and
Error. For example, in Fig. 6 when FacetNet has 0.5 as value
of NMI on all time steps, MS-DYN keeps the value of 1.0,
which means that MS-DYN approximates well the ground

truth. However MS-DYN keeps the same values of NMI as
DYN-MODPSO on all time steps. In Fig. 7 in time = 10, we
can see that DYNMOGA fails to detect the real communities
with value of NMI=0.83, but MS-DYN still has the value of
1.0 as NMI.

Fig. 7 Normalized mutual 1.2
information of detected
communities on synfix network

where z=5 1 - ; ; | | :

0.8

=¢—FACENET

=li=DYNMOGA
«=fe=DYN-MODPSO

©
>

==>é=MS-DYN

o
[N

Normalized mutual information
o
(o)}

4 6 8 10
Time steps

SYNVAR when zout=5
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Fig. 8 Error rate of detected 160
communities on synfix network

where z=3
140
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40

20

oladat oot ote
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5.8 Results in terms of error rate on dataset 2 5.9 Results in terms of NMI on dataset 3

From Figs. 8 and 9 we can see that DYNMOGA has higher  In this section we test the method on Syn-var network, where
values of Error rate when z=3 and when z=5, compared to ~ we set the parameter z to 3 and 5. The obtained results are
DYN-MODPSO and MS-DYN, which keep the value of 0 on ~ compared to the results of DYNMOGA [43], FacetNet [8] and

all time steps of the two dynamic networks. DYN-MODPSO [26].
Fig. 9 Error rate of detected 12000
communities on synfix network
where z=5
10000
8000
£
s 6000 —6—DYNMOGA
b == MS-DYN
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O -

o 1 2 3 4 5 6 7 8 9 10
Time steps
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Fig. 10 NMI of detected 1.2
communities on Syn-var network
where z=3
1 —W‘ .\V.—

c
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In Figs. 10 and 11 we can see that FaceNet still has
lower values of NMI which are between 0.5 and 0.6.
However DYNMOGA has improved values of NMI
which are between 0.9 and 1. In contrast, MS-DYN
and DYN-MODPSO share the same values of NMI on

SYNFIX when zout=3

most time steps, when z=3 and z=5. For example,
when z=3 and r=6, DYN-MODPSO has lower value
of NMI compared to MS-DYN, furthermore when z=5
and t=6, DYN-MODPSO and MS-DYN have NMI less
than 1 but MS-DYN still outperforms DYN-MODPSO.

Fig. 11 Normalized mutual 1.2
information of detected
communities on Syn-var where
=3 1 -W K —
c
K]
=)
©
€08
Lo
£
S o6 —o—FACENET
= 0.
_E ~——DYNMOGA
(7] ‘ 4’
2 94 ¢ ¢ ¢ M <~ DYN-MODPSO
m .
£ —>é=MS-DYN
2
0.2
O T T T T T 1
1 2 4 6 8 10
time steps
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5.10 Results in terms of modularity on cell phone calls
network

In this section, we compared the obtained results in terms of
Modularity to the results of DYNMOGA [43], DYN-
MODPSO [26] and ESPRA [24].

In Fig. 12 we can see that ESPRA has lower values of
modularity over all time steps compared to DYNMOGA and
DYN-MODPSO which have approximated values. However
MS-DYN outperforms twice DYNMOGA and
DYNMODPSO on the most time steps.

5.11 Results in terms of modularity on real networks

In this section, we compared the obtained results in terms of
Modularity to the results of MOGA-Net [47], CNLPSO-DE
[48] and MOEA [49].

From Table 2 we can see that MS-DYN outperforms the
other evolutionary algorithms on most real networks.

5.12 Results in terms of density on real networks

In this section, we compared the obtained results to those of
IsoFdp [44] in terms of Density.

From Fig. 13 we can see that MS-DYN outperforms
IsoFdp in terms of density, on dolphins and jazz networks.
The IsoFdp outperforms MS-DYN on football and jazz net-
works. However, on football network, MS-DYN has 5

0.9

Table2  Results in terms of Modularity on Real network

Karate Dolphins Football Net-
science
MS-DYN 0.6346 0.8843 0.8112 0.8969
MOGA-Net 0.4198 0.5258 0.5280 0.8916
CNLPSO-DE 0.420 0.5265 0.6045 0.9519
MOEA 0.4198 0.5210 0.6044 0.9143

communities compared to IsoFdp which has 8§ communities.
On lesmis, also IsoFdp outperforms MS-DYN, but MS-DYN
has 4 communities which are lower than 5 communities of
IsoFdp.

In Fig. 14 we show the partition of SYN-FIX when z = 3 by
MS-DYN algorithm.

5.13 Discussion

This paper presents a multi-objective based community
detection method. The method uses MS approach to
generate the individuals of high quality; these individ-
uals are optimized using a multi- objective BA. After
getting the best one, we decode it to have the corre-
sponding communities. By using two objective functions
we get a set of best solutions rather than one. In addi-
tion, to generate a new solution we use the velocity and

Fig. 12 Modularity of detected
communities on Cell Phone Calls

network 0.8

o
N

o
o

\

o
>
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=>é=MS-DYN

o
(N)

0.1

4 5 6
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Fig. 13 Density of detected 0.25
communities on real networks
0.2
0.15 Yo
Z
e
8 == MS-DYN
0.1 =li—IsoFdp
0.05
O T T T 1
dolphins football lesmis jazz
networks

the frequency of BA which returns the solutions of good 6 Conclusion
quality. Another advantage of multi-objective BA is the
assignment of weight to objective functions which facil-  Many algorithms have been proposed to deal with the problem

itates the non-dominated solution search. This assign- of community detection in static networks, but the evolution
ment is better than the fast non-dominated sort of ge-  of the networks over the time implies a lot of changes which
netic algorithm that uses the crowding distance. motivates us to treat the community detection problem on

Fig. 14 NMI of detected
communities on SYN-FIX where
z=3
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dynamic network. The major community detection evolution-
ary methods generate the initial population randomly which
need a lot of iterations to get good solutions. In this paper, we
use MS approach to generate high quality population. MS
does not need to fix the number of clusters in advance as k-
means. The used BA also does not need to any parameters; the
algorithm simulates the movement of real bats to artificial bats
by giving another signification to the velocity and frequency.
The individuals in the algorithm are evaluated using the mod-
ularity density and NMI as objective functions. MS-DYN
showed better performance than the compared algorithms in
terms of NMI and SOt testing on artificial dynamic networks.
MS-DYN also showed better performance than the compared
algorithms in terms of modularity and density on real dynamic
networks. The performance of our method is derived from the
convergence of BA and the high quality results of MS ap-
proach. In future work, we plan to track the evolution of com-
munities over the time. Since, one community can be merged
with another community, split or died...etc. So we can consid-
er this problem as classification problem and take all this
events as classes.
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