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Abstract
Maximum margin of twin spheres support vector machine (MMTSSVM) is effective to deal with imbalanced data
classification problems. However, it is sensitive to outliers because of the use of the Hinge loss function. To enhance
the stability of MMTSSVM, we propose a Ramp loss maximum margin of twin spheres support vector machine (Ramp-
MMTSSVM) in this paper. In terms of the Ramp loss function, the outliers can be given fixed loss values, which reduces the
negative effect of outliers on constructing models. Since Ramp-MMTSSVM is a non-differentiable non-convex optimization
problem, we adopt Concave-Convex Procedure (CCCP) approach to solve it. We also analyze the properties of parameters
and verify them by one artificial experiment. Besides, we use Rest-vs.-One(RVO) strategy to extend Ramp-MMTSSVM
to multi-class classification problems. The experimental results on twenty benchmark datasets indicate that no matter in
binary or multi-class classification cases, our approaches both can obtain better experimental performance than the compared
algorithms.

Keywords MMTSSVM · Ramp loss · CCCP · Multi-class

1 Introduction

An increasing number of machine learning approaches are
prevailing these days, such as artificial neural networks
[1], multi-objective optimization [2] and support vector
machine (SVM) [3], and they all have their pros and cons.
The SVM, proposed by Vapnik, is based on statistical
learning theory. Under the guidance of VC dimension
and structural risk minimization principle, it can get a
good generalization and promotion ability through the
compromise between empirical risk and model complexity.
It is very effective when solving small sample, nonlinear,
high dimensional sample problems, also feasible to avoid
dimensional disasters and over-fitting problems to some
extent. Nowadays, SVM has been applied to many fields,
containing text classification [4], disease detection [5, 6],
driver fatigue detection [7] and object detection [8] etc.
Nevertheless, there are still some defects in SVM, and many
improvements have been put forward in recent years.
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One drawback of classic SVM is the slow computational
speed. In order to improve this problem, Jayadeva et al.
[9] proposed a twin SVM (TSVM) for binary classification
problems. TSVM generates two nonparallel hyperplanes by
solving two smaller-sized quadratic programming problems
(QPPs) rather than one large QPP, which makes the
computational speed approximately four times faster than
that of classic SVM in theory. Meanwhile, TSVM requires
that the data points of one class are as close as possible to
one hyperplane and as far as possible from the other. Based
on TSVM, many algorithms in [10–17] have been proposed.

In many TSVM-based algorithms, they all need matrix
inverse operation. However, sometimes the matrix may not
be reversible. What’s more, solving a matrix inverse is
computationally expensive. In order to remedy this problem,
the twin hypersphere support vector machine (THSVM)
[18] was raised. It finds two irrelevant hyperspheres rather
than two nonparallel hyperplanes by solving a pair of
smaller-sized QPPs. It requires each hypersphere to capture
as many data points of one class as possible. Because
it needs to find two centers and two radiuses, it is still
computational cost. In addition, THSVM can not deal with
imbalanced data classification problems well.

To decrease computational cost and deal with imbalanced
data classification problems more efficently, Xu [19] came
up with a maximum margin of twin spheres support
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vector machine (MMTSSVM). It finds two homocentric
hyperspheres rather than two irrelevant hyperspheres by
solving one QPP and one linear programming problem
(LPP).

All algorithms mentioned above use the Hinge loss
function, which makes the models sensitive to outliers.
The outliers may normally be given the largest hinge
loss values, so the decision hyperplane is drawn toward
outliers incorrectly, leading to decreased generalization
performance. Hence, Huang et al. [20] proposed a ramp
loss support vector machine (RSVM). According to the
Ramp loss function, the outliers can be given fixed loss
values. Thus, RSVM decreases the sensitivity to outliers.
Because the RSVM is a non-convex optimization problem,
the authors adopt the effective Concave-Convex Procedure
(CCCP) [21] to solve it. Based on RSVM, some algorithms
have been proposed, such as RLSSVM [22] etc.

In our daily life, multi-class classification problems are
more common. The researchers have proposed a great deal
of multi-class classification strategies, such as One-vs.-One
(OVO) [23, 24], One-vs.-Rest (OVR) [25, 26], Rest-vs.-One
(RVO) [27, 28] and One-vs.-One-vs.-Rest(OVOVR) [29–
31]. For a K-class classification problem, OVO needs to
combine the K classes in pairs. We choose the ith class
as the positive class, and the j th class as the negative
class to generate a classifier. Thus, K(K-1)/2 classifiers will
finally be obtained. In OVR method, we choose the ith class
as the positive class, and the rest classes as the negative
class to generate a classifier. In total, OVR will generate
K classifiers. RVO is just opposite to OVR. It picks the
ith class as the negative class and the rest classes as the
positive class to generate a classifier. RVO will also generate
K classifiers. OVOVR is a bit similar with OVO. It also
combines the classes in pairs. We select the ith class as the
positive class, the j th class as the negative class and the
remaining classes as the rest class to generate one classifier.
OVOVR will also generate K(K-1)/2 classifiers totally. All
the strategies above determine the type of a new data point
by ‘voting’ scheme.

In order to improve the generalization performance of
MMTSSVM, we propose a Ramp loss maximum margin of
twin spheres support vector machine (Ramp-MMTSSVM)
in this article. We employ MMTSSVM as the core of
our algorithm because it has faster computational speed
and can deal with imbalanced data classification problems
effectively. Meanwhile, we use the Ramp loss function
to substitute the Hinge loss function to decrease the
sensitivity of MMTSSVM to outliers. After introducing
the Ramp loss function, the optimization problem becomes
a non-differentiable non-convex problem, which can not
be solved by quadratic programming directly. Therefore,
we use CCCP approach to deal with it. We also
discuss the properties of parameters in Ramp-MMTSSVM,

which can help us determine the range of parameters.
In addition, we extend Ramp-MMTSSVM to multi-
class classification problems by RVO strategy, termed as
multicategory Ramp loss maximum margin of twin spheres
support vector machine (MRMMTSSVM). Through twenty
benchmark experiments, we compare Ramp-MMTSSVM
with THSVM, SSLM and MMTSSVM and compare
MRMMTSSVM with OVO-THSVM, THKSVM and OVR-
MMTSSVM. The experimental results imply that our
algorithms have better performance than other algorithms.

The paper is organized as follows. Section 2 gives
a brief introduction on MMTSSVM and RSVM. In
Section 3, we introduce Ramp-MMTSSVM. Section 4
shows our algorithm, MRMMTSSVM. Several artificial
experiments and twenty benchmark experiments to testify
the effectiveness of our algorithms are shown in Section 5.
The last section, Section 6, is our conclusion on present
study.

2 Background

In this section, we review the basics of MMTSSVM and
RSVM.

To make it easier to understand, we first give some
definitions of notions. Given a set {(x1, y1), . . . , (xl , yl)},
where xi ∈ Rm and yi ∈ {+1, −1}, i = 1, . . . , l includes
l+ positive data points and l− negative data points. In
addition, I+ and I− represent positive set and negative set,
respectively. φ is a nonlinear mapping, which maps the
input data points into the higher-dimensional feature space.
Kernel function K(xi , xj ) = (

φ(xi ) · φ(xj )
)

is selected in
advance.

2.1Maximummargin of twin spheres support vector
machine

MMTSSVM is good at dealing with imbalanced data
classification problems. It aims to find two homocentric
spheres. On one hand, the small sphere needs to cover as
many data points of the positive class as possible. On the
other hand, the large sphere needs to push out as many
data points of the negative class as possible. In addition,
it follows the maximum margin principle which requires
the margin between the small sphere and the large sphere
is as large as possible. The optimization problems that
MMTSSVM needs to solve are denoted as follows,

min
R2,C,ξi

R2− ν

l−
∑

j∈I−
‖φ(xj )−C‖2+ 1

ν1l+
∑

i∈I+
ξi

s.t . ‖φ(xi ) − C‖2 ≤ R2 + ξi,

ξi ≥ 0, i ∈ I+, (1)
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and

min
ρ2,ηj

R2 − ρ2 + 1

ν2l−
∑

j∈I−
ηj

s.t . ‖φ(xj ) − C‖2 ≥ R2 + ρ2 − ηj ,

ηj ≥ 0, j ∈ I−, (2)

where ν, ν1 and ν2 are parameters chosen a priori. C

and R are the center and the radius of the small sphere,
respectively.

√
R2 + ρ2 is the radius of the large sphere.

The decision function of MMTSSVM is shown as
follows,

f (x) =
{

1, if ‖φ(x) − C‖ <
R+

√
R2+ρ2

2−1, else.
(3)

2.2 Ramp loss SVM

Classic SVM employs the Hinge loss function, which
is denoted as follows, Hs(z) = max(0, s − z), where
s indicates the position of the Hinge point, to penalize
examples classified with an insufficient margin. In terms
of the Hinge loss function, the objective function can be
written as follows,

min
w,b

1

2
‖w‖2 + c

l∑

i=1

H1 (yif (xi )) , (4)

where the f (x) is the decision function and the expression
of f (x) is f (x) = wT x + b.

From Fig. 1, we can see that the outliers tend to
have the largest loss values according to the Hinge loss
function. Therefore, the outliers have a negative influence
on constructing the hyperplane and the model is sensitive
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Fig. 1 When s=-1, the geometric decomposition diagram of the Ramp
loss function

to outliers. To improve this problem, researchers proposed
the Ramp loss function, i.e., the Robust Hinge loss. The
expression of the Ramp loss function is shown as follows,

Rs(z) =
⎧
⎨

⎩

0, z > 1
1 − z, s ≤ z ≤ 1
1 − s, z < s,

(5)

where s < 1 is given a prior. We can see that the Ramp
loss function can be expressed by a convex Hinge loss and
a concave loss, i.e., Rs(z) = H1(z) − Hs(z) in Fig. 1. After
introducing the Ramp loss function, RSVM is denoted as
follows,

min
w,b

1

2
‖w‖2 + c

l∑

i=1

Rs (yif (xi ))

= 1

2
‖w‖2 + c

l∑

i=1

H1 (yif (xi )) − c

l∑

i=1

Hs (yif (xi )) . (6)

This is a non-differentiable non-convex problem, which is
solved by CCCP approach.

3 Ramp loss maximummargin of twin
spheres support vector machine

Because MMTSSVM is sensitive to outliers, we substitute
the Hinge loss function with the Ramp loss function to
improve this problem.

We set u1 = R2 − ‖φ(xi ) − C‖2, u2 = ‖φ(xj ) −
C‖2 − (R2 + ρ2). Since the Hinge loss function is Hs(z) =
max(0, s − z), the objective functions of problems (1) and
(2) are equal to

min
R2,C

R2 − ν

l−
∑

j∈I−
‖φ(xj ) − C‖2 + 1

ν1l+
H(u1), (7)

and

min
ρ2

R2 − ρ2 + 1

ν2l−
H(u2). (8)

3.1 Primal Formulations

After replacing the Hinge loss function with the Ramp loss
function, we get the primal formulations as follows,

min
R2,C

R2 − ν

l−
∑

j∈I−
‖φ(xj ) − C‖2 + 1

ν1l+
Q(u1), (9)

and

min
ρ2

R2 − ρ2 + 1

ν2l−
Q(u2), (10)
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where Q(u1) and Q(u2) are the Ramp loss functions. Q(u1)

and Q(u2) can be denoted as follows,

Q(u1) =
⎧
⎨

⎩

0, u1 ≥ 0
−u1, −k1R

2 < u1 < 0
k1R

2, u1 ≤ −k1R
2,

(11)

Q(u2) =
⎧
⎨

⎩

0, u2 ≥ 0
−u2, −k2(R

2 + ρ2) < u2 < 0
k2(R

2 + ρ2), u2 ≤ −k2(R
2 + ρ2),

(12)

where k1 and k2 are chosen a prior.
Then, the problems (9) and (10) can be rewritten as

min
R2,C

R2 − ν

l−
∑

j∈I−
‖φ(xj ) − C‖2

+ 1

ν1l+
Q

(
R2 − ‖φ(xi ) − C‖2

)
, (13)

and

min
ρ2

R2−ρ2+ 1

ν2l−
Q

(
‖φ(xj )−C‖2−(R2 + ρ2)

)
. (14)

From (11) and (12), we can see that the Ramp loss
function limits the maximum loss value, which reduces the
influence of outliers on the optimal solution to the problem.
Therefore, the model is less sensitive to outliers.

3.2 Dual problems

The Ramp loss can be decomposed into the sum of a convex
Hinge loss and a concave function, i.e.,

Q(ui) = H1(ui) − H2(ui), (15)

where H1(ui) = max(−ui, 0)(i = 1, 2),
H2(u1) = max(−u1 − k1R

2, 0), H2(u2) =
max

(−u2 − k2(R
2 + ρ2), 0

)
.

The (13) and (14) can be rewritten as follows,

min
R2,C

R2 − ν

l−
∑

j∈I−
‖φ(xj ) − C‖2 + 1

ν1l+
H1(u1)

︸ ︷︷ ︸
Jvex

− 1

ν1l+
H2(u1)

︸ ︷︷ ︸
Jcav

, (16)

and

min
ρ2

R2 − ρ2 + 1

ν2l−
H1(u2)

︸ ︷︷ ︸
Jvex

− 1

ν2l−
H2(u2)

︸ ︷︷ ︸
Jcav

. (17)

We can see that QPP (16) and LPP (17) are both composed
of a convex function and a concave function, which can not
be solved by quadratic programming. For this reason, we
take advantage of CCCP approach to solve this problem for
its simple tuning and iteration manner.

We first take QPP (16) into consideration. The objective
function is the sum of a convex function u(x) and a concave
function v(x). CCCP solves problems by iterating a series
of concave functions, i.e.,

xt+1 = argminxu(x) + xT ∇v(xt ), (18)

where t means the number of iterations. The convex part of
QPP (16) is shown as follows,

Jvex(C, R2)=R2− ν

l−
∑

j∈I−
‖φ(xj )−C‖2+ 1

ν1l+
H1(u1),

(19)

and the concave part is shown as follows,

Jcav = − 1

ν1l+
H2(u1). (20)

The CCCP process for this issue is as follows:

Then we rewrite the problem (21) as follows:

min
C,R2,ξi

R2− ν

l−
∑

j∈I−
‖φ(xj )−C‖2 + 1

ν1l+
∑

i∈I+
ξi

+J ′
cav

(
R2−‖φ(xi )−C‖2

)
·
(
R2−‖φ(xi )−C‖2

)

s.t . ‖φ(xi ) − C‖2 ≤R2 + ξi,

ξi ≥ 0, i ∈ I+. (22)

To simplify the process, we introduce the following
symbols,

θi = − 1

ν1l+
∂H2(u1)

∂u1

=
{

1
ν1l

+ , if ‖φ(xi ) − C‖2 > R2 + k1R
2

0, else.
(23)



All-in-one multicategory Ramp loss maximummargin of twin spheres support vector machine 2305

Therefore, problem (22) can be rewritten as follows,

min
C,R2,ξi

R2 − ν

l−
∑

j∈I−
‖φ(xj ) − C‖2 + 1

ν1l+
∑

i∈I+
ξi

+
∑

i∈I+
θi

(
R2 − ‖φ(xi ) − C‖2

)

s.t . ‖φ(xi ) − C‖2 ≤ R2 + ξi,

ξi ≥ 0, i ∈ I+. (24)

Similarly, the CCCP structure of problem (17) can also be
given. The convex part of this problem is shown as follows:

Jvex(ρ
2) = R2 − ρ2 + 1

ν2l−
H1(u2), (25)

and the concave part is shown as follows:

Jcav(ρ
2) = − 1

ν2l−
H2(u2). (26)

The CCCP process for problem (17) is as follows:

Then we rewrite the problem (27) as follows:

min
ρ2,ηj

R2 − ρ2 + 1

ν2l−
∑

j∈I−
ηj + J ′

cav

(
‖φ (

xj

) − C‖2

−
(
R2 + ρ2

)) (
‖φ (

xj

) − C‖2 −
(
R2 + ρ2

))

s.t . ‖φ(xj ) − C‖2 ≥ R2 + ρ2 − ηj ,

ηj ≥ 0, j ∈ I−. (28)

To simplify the process, we introduce the following
symbols,

δj = − 1

ν2l−
∂H2(u2)

∂u2

=
⎧
⎨

⎩

1
ν2l

− , if ‖φ(xj ) − C‖2 < R2 + ρ2

−k2
(
R2 + ρ2

)

0, else.
(29)

Therefore, problem (28) can be rewritten as follows,

min
ρ2,ηj

R2 − ρ2 + 1

ν2l−
∑

j∈I−
ηj

+
∑

j∈I−
δj

(
‖φ (

xj

) − C‖2 −
(
R2 + ρ2

))

s.t . ‖φ(xj ) − C‖2 ≥ R2 + ρ2 − ηj ,

ηj ≥ 0, j ∈ I−. (30)

To solve the problem (24), we introduce the Lagrange
function which is shown as follows,

L1 = R2 − ν

l−
∑

j∈I−
‖φ(xj ) − C‖2 + 1

ν1l+
∑

i∈I+
ξi

+
∑

i∈I+
θi

(
R2 − ‖φ(xi ) − C‖2

)

+
∑

i∈I+
αi

(
‖φ(xi )−C‖2 − R2−ξi

)
−

∑

i∈I+
βiξi . (31)

where αi ≥ 0, βi ≥ 0 both are Lagrange multipliers.
Differentiating the Lagrangian function L1 with respect to
variables R2, C and ξi yields the following Karush-Kuhn-
Tucker(KKT) conditions:

∂L1

∂R2
= 1 +

∑

i∈I+
θi −

∑

i∈I+
αi = 0, (32)

∂L1

∂C
= 2ν

l−
∑

j∈I−

(
φ(xj ) − C

) + 2
∑

i∈I+
θi (φ(xi )

− C) − 2
∑

i∈I+
αi (φ(xi ) − C) = 0, (33)

∂L1

∂ξi

= 1

ν1l+
− αi − βi = 0. (34)

From (32), we can get

∑

i∈I+
(αi − θi) = 1. (35)

From (33), we can obtain the center C as follows:

C = 1

1 − ν

⎛

⎝
∑

i∈I+
(αi − θi)φ(xi ) − ν

l−
∑

j∈I−
φ(xj )

⎞

⎠ . (36)
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Then

< C,C > = 1

(1 − ν)2

⎛

⎝
∑

i∈I+

∑

j∈I+
(αi − θi)

·(αj − θj )K(xi , xj )

+
( ν

l−
)2 ∑

i∈I−

∑

j∈I−
K(xi , xj )

− 2ν

l−
∑

i∈I+

∑

j∈I−
(αi − θi)K(xi , xj )

⎞

⎠ . (37)

Finally, we derive the dual formulation as follows:

max
α

−
∑

i∈I+

∑

j∈I+
(αi − θi)(αj − θj )K(xi , xj )

+
∑

i∈I+
(αi − θi)

⎛

⎝2ν

l−
∑

j∈I−
K(xj , xi )

+ (1 − ν)K(xi , xi )

⎞

⎠

s.t . 0 ≤ αi ≤ 1

ν1l+
,
∑

i∈I+
(αi − θi) = 1. (38)

In order to obtain the radius of the small sphere, we
use positive points xi whose Lagrangian multiplier αi

satisfy 0 < αi < 1
ν1l

+ . Supposing the number of xi

above is np. According to KKT condition, we can get:
αi

(‖φ(xi ) − C‖2 − R2 − ξi

) = 0. Then we can acquire the
square radius of the small sphere as

R2 = 1

np

np∑

i=1

‖φ(xi ) − C‖2 = 1

np

np∑

i=1

⎛

⎝K(xi , xi ) + C2

− 2

1−ν

⎛

⎝
∑

j∈I+
(αj −θj )K(xi,xj)− ν

l−
∑

j∈I−
K(xi,xj)

⎞

⎠

⎞

⎠.

(39)

To solve the problem (30), we introduce the Lagrange
function which is shown as follows,

L2 = R2 − ρ2 + 1

ν2l−
∑

j∈I−
ηj +

∑

j∈I−
δj

(
‖φ(xj ) − C‖2

− (R2 + ρ2)
)

−
∑

j∈I−
γj

(
‖φ(xj ) − C‖2−R2−ρ2

+ ηj

) −
∑

j∈I−
λjηj . (40)

where γj ≥ 0 and λj ≥ 0 are Lagrange multipliers.
Differentiating the Lagrange function L2 with respect to

variables ρ2 and ηj yields the following KKT conditions:

∂L2

∂ρ2
= −1 −

∑

j∈I−
δj +

∑

j∈I−
γj = 0, (41)

∂L2

∂ηj

= 1

ν2l−
− γj − λj = 0. (42)

From (41), we can obtain
∑

j∈I−

(
γj − δj

) = 1. (43)

Finally, we derive the dual formulation as follows:

max
γ

−
∑

j∈I−

(
γj − δj

) (
‖φ(xj ) − C‖2

)

s.t .
∑

j∈I−
(γj − δj ) = 1, 0 ≤ γj ≤ 1

ν2l−
. (44)

In order to obtain ρ2, we use negative points xj whose
Lagrangian multiplier γj satisfy 0 < γj < 1

ν2l
− . Supposing

the number of xj is nn. According to KKT condition:
γj (‖φ(xj ) − C‖2 − R2 − ρ2 + ηj ) = 0, we can acquire

ρ2 = 1

nn

nn∑

j=1

(
‖φ (

xj

) − C‖2 − R2
)

. (45)

Then, CCCP procedure based on Ramp-MMTSSVM is
summarized as follows.

3.3 Property of parameters ν1 and ν2

In the Ramp-MMTSSVM, parameters ν1 and ν2 have their
theoretical significance. In the following part, we will
analyze the properties of ν1 and ν2.

To make it easier to understand, we first give the
following two definitions.

Definition 1 The small sphere can be divided into four sets
S+ = {i|‖φ(xi ) − C‖2 < R2}, B+ = {i|‖φ(xi ) − C‖2 =
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R2}, R+ = {i|R2 < ‖φ(xi ) − C‖2 < R2 + k1R
2} and

W+ = {i|‖φ(xi ) − C‖2 ≥ R2 + k1R
2}.

Definition 2 The large sphere can be divided into four sets
S− = {j |‖φ(xj ) − C‖2 ≤ R2 + ρ2 − k2(R

2 + ρ2)},
B− = {j |R2 + ρ2 − k2(R

2 + ρ2) < ‖φ(xj ) − C‖2 <

R2 + ρ2}, R− = {j |‖φ(xj ) − C‖2 = R2 + ρ2} and
W− = {j |‖φ(xj ) − C‖2 > R2 + ρ2}.

According to the two definitions above, we can obtain the
following propositions.

Proposition 1 Let n1 represent the number of positive
samples in B+, R+ and W+, n2 represent the number of
positive samples in R+ and W+, n3 represent the number of
positive samples in W+. Thus, we can obtain n2−n3

l+ ≤ ν1 ≤
n1−n3

l+ .

Proof If xi (i = 1, 2, . . . , l+) represents a positive data
point in S+, we can get ξi = 0. Then, according to KKT
condition αi(‖φ(xi ) − C‖2 − R2 − ξi) = 0, we can get
αi = 0. From (23), we can acquire θi = 0. If xi represents a
positive data point in B+, we can get ξi = 0, then according
to KKT condition βiξi = 0, we can get βi ≥ 0. Therefore,
0 ≤ αi ≤ 1

ν1l
+ , and θi = 0. If xi represents a positive data

point in R+, we can get ξi 	= 0, then βi = 0, then αi = 1
ν1l

+
and θi = 0. If xi represents a positive data point in W+, we
can get αi = 1

ν1l
+ and θi = 1

ν1l
+ . According to the

conclusions above, we have n2
ν1l

+ ≤ ∑
i∈I+ αi ≤ n1

ν1l
+ and

− ∑
i∈I+ θi = − n3

ν1l
+ . Therefore, n2−n3

ν1l
+ ≤ ∑

i∈I+(αi −
θi) ≤ n1−n3

ν1l
+ . From (35), we can get n2−n3

ν1l
+ ≤ 1 ≤ n1−n3

ν1l
+ .

Then, n2−n3
l+ ≤ ν1 ≤ n1−n3

l+ .

Proposition 2 Let m1 represent the number of negative
samples in S−, B− and R−, m2 represent the number of
negative samples in S− and B−, m3 represent the number of
negative samples in S−. Thus, we can obtain m2−m3

l− ≤ ν2 ≤
m1−m3

l− .

Proof If xj (i = 1, 2, . . . , l−) represents a negative data
point in S−, we can get ηj 	= 0, then according to KKT
condition λjηj = 0, we can get λj = 0. From (42), we can
acquire γj = 1

ν2l
− . And from (29), we can get δj = 1

ν2l
− .

If xj represents a negative data point in B−, we can get
γj = 1

ν2l
− , and δj = 0. If xj represents a negative data point

in R−, we can get ηj = 0, then λj ≥ 0, then 0 ≤ γj ≤ 1
ν2l

−
and δj = 0. If xj represents a negative data point in W−,
we can get ηj = 0, then γj = 0 and δj = 0. According to
conclusions above, we have m2

ν2l
− ≤ ∑

j∈I− γj ≤ m1
ν2l

− and

− ∑
j∈I− δj = − m3

ν2l
− . Therefore, m2−m3

ν2l
− ≤ ∑

j∈I−(γj −

δj ) ≤ m1−m3
ν2l

− . From (43), we can get m2−m3
ν2l

− ≤ 1 ≤ m1−m3
ν2l

− .

Then, m2−m3
l− ≤ ν2 ≤ m1−m3

l− .

From Propositions above, we can acquire the range of ν1

and ν2: 0 < ν1, ν2 < 1.

4Multicategory Ramp loss maximummargin
of twin spheres support vector machine

Because multi-class classification problems are more
common, we extend Ramp-MMTSSVM to multi-class
classification problems by RVO strategy. For a K-class
classification problem, we choose the ith class as the
negative class and the rest classes as the positive class
to generate a Ramp-MMTSSVM. Thus, K classifiers
will finally be generated. The optimization problems of
MRMMTSSVM are shown as follows:

min
Ck,R

2
k ,ξi

R2
k − νk

lk

∑

j∈Ak

‖φ(xj ) − Ck‖2 + 1

ν1klK−1

∑

i∈Bk

ξi

+
∑

i∈Bk

θi

(
R2

k − ‖φ(xi ) − Ck‖2
)

s.t . ‖φ(xi ) − Ck‖2 ≤ R2
k + ξi,

ξi ≥ 0, i ∈ Bk . (46)

and

min
ρ2

k ,ηj

R2
k − ρ2

k + 1

ν2klk

∑

j∈Ak

ηj

+
∑

j∈Ak

δj

(
‖φ (

xj

) − Ck‖2 −
(
R2

k + ρ2
k

))

s.t . ‖φ (
xj

) − Ck‖2 ≥ R2
k + ρ2

k − ηj ,

ηj ≥ 0, j ∈ Ak . (47)

where lk denotes the number of data points of kth class
and lK−1 denotes the number of data points of the rest
classes, Ak ∈ Rlk×n(k = 1, . . . , K), and Bk =
[AT

1 , . . . AT
k−1, A

T
k+1, . . . A

T
K ]T .

For solving each classifier, we also use CCCP approach.
The usage of CCCP approach is the same as the binary
classification case. Finally, we adopt ‘voting’ scheme to
obtain the class of each new data point.

5 Numerical experiments

In this section, we conduct experiments on one artificial
dataset and twenty benchmark datasets to demonstrate the
validity of the algorithms we proposed.
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Fig. 2 Illustration of linear Ramp-MMTSSVM

5.1 Experiments on one artificial dataset

We generate a 2-D artificial dataset, including 80 positive
data points and 10 negative data points. The positive
data points follow uniform distribution N(0,0,3,3) and the
negative data points follow N(3,3,2,2). The illustration of
linear Ramp-MMTSSVM on this dataset is shown in Fig. 2.

In this part, we compare linear Ramp-MMTSSVM and
linear MMTSSVM which are shown in Figs. 2 and 3 on the
artificial dataset. From the pictures, it is easy to find that the
small sphere captures more positive data points in Ramp-
MMTSSVM than that in MMTSSVM. This represents
Ramp-MMTSSVM has better experimental performance
than MMTSSVM on this artificial dataset.
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Fig. 3 Illustration of linear MMTSSVM
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Fig. 4 Illustration of linear Ramp-MMTSSVM when handling the
noise data points

To testify that the Ramp loss can reduce the effect
of outliers, we add five noise points to the positive
and negative class respectively. After adding noises, the
performance of Ramp-MMTSSVM and MMTSSVM are
shown in Figs. 4 and 5 respectively. From Fig. 5, it is
obvious that the boundary of MMTSSVM expands outward.
However, the boundary of Ramp-MMTSSVM in Fig. 4 has
almost no change. That is to say, when handling noises and
outliers, Ramp-MMTSSVM has better performance than
MMTSSVM.

In addition, in order to better show the property of ν1

which is mentioned in part 3, we depict Fig. 6, where the
x − axis represents the values of parameter ν1. In the
picture, the black dotted line indicates when ν1 changes,
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Fig. 5 Illustration of linear MMTSSVM when handling the noise data
points
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Fig. 6 The property of parameter ν1

the changing proportion of n1 − n3 in positive data points.
The red solid line represents the changing values of ν1. The
blue dotted line indicates when ν1 changes, the changing
proportion of n2 − n3 in positive data points.

From the picture, we can get that parameter ν1 is a lower
bound on the fraction of n1 − n3 in the positive data points
and an upper bound on the fraction of n2 −n3 in the positive
data points, which is helpful for us to select the range of
parameters.

5.2 Experiments on benchmark datasets

In this part, we make experiments on twenty benchmark
datasets, which are collected from UCI machine learning
repository. The detailed information of twenty datasets is
shown in Table 1.

In the binary classification case, Ramp-MMTSSVM
is compared with THSVM, SSLM and MMTSSVM.
In the multi-class classification case, MRMMTSSVM
is compared with OVO-THSVM, THKSVM and OVR-
MMTSSVM.

We adopt 5-fold cross-validation for each experiment to
make the experiments more convincing. All experiments
are carried out in Matlab R2014a on Windows 7 running
on a PC with system configuration Inter Core i3-4160Duo
CPU(3.60GHz)with 4.00 GB of RAM.

5.2.1 Parameters selection

The approaches we mentioned above, i.e., THSVM,
SSLM, MMTSSVM, THKSVM, Ramp-MMTSSVM and
MRMMTSSVM all depend heavily on parameters selec-
tion. In these experiments, we choose the Gaussian kernel
function k(xi , xj ) = exp(−‖xi − xj‖2/σ 2). We acquire

Table 1 The characteristics of twenty benchmark datasets

Datasets � Examples � Features � Classes

Sonar 208 60 2

Breast cancer 569 30 2

Ionosphere 351 34 2

Heart 294 13 2

Liver disorder 345 6 2

Pima 768 8 2

Spectf heart 267 44 2

Banknote 1372 4 2

Monks 432 6 2

Abalone 2835 8 2

Iris 150 4 3

Soybean 47 35 4

Seeds 210 7 3

Ecoli 327 7 5

Optidigits 2268 64 4

Hayes-roth 132 5 3

Teaching 151 5 3

Balance 625 4 3

Image 2310 19 7

Cmc 1473 10 3

optimal values of the parameters by the grid search method.
All the Gaussian kernel parameter σ is selected from the set
{2i |i = −3, −1, . . . , 7}.

In THSVM, for reducing computational complexity, we
set c1 = c2 and ν1 = ν2, which are chosen from the set
{2i |i = 0, 2, . . . , 8} and {0.1, 0.2, . . . , 0.9}, respectively.

In SSLM, we set ν1 = ν2, which are selected from the
set {0.001, 0.01} and the range of ν is {0.1, 0.2, . . . , 0.9}.

In MMTSSVM, we set ν1 = ν2. All the ν are selected
from the set {0.1, 0.2, . . . , 0.9}.

In THKSVM, the range of νk is {2i |i = −4, −2, . . . , 4}.
And dk is selected from the set {2i |i = 1, 3, . . . , 9}.

In our approach, we set k1 = k2 whose range is
{0.5, 1, 1.5, 2}. The range of other parameters in our
approaches is the same as that in MMTSSVM.

5.2.2 Result analysis

In Tables 2 and 3, ‘Accuracy’ means the average value
of testing results and plus or minus the corresponding
standard deviation. ‘Time’ means the mean value of the
time, including training time and testing time.

From Table 2, we can see in binary classification case,
the experimental results of our approach are better than
other algorithms on most datasets, i.e., Sonar, Breast cancer,
Heart, Pima, Spectf heart and Abalone dataset. MMTSSVM
obtains the best performance on Ionosphere, Banknote and
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Table 2 The experimental results for binary classification case on ten benchmark datasets

Datasets THSVM SSLM MMTSSVM Ramp-MMTSSVM

Accuracy(%) Time(s) Accuracy(%) Time(s) Accuracy(%) Time(s) Accuracy(%) Time(s)
(c1, ν1, r) (ν1, ν, r) (ν1, ν, r) (ν1, k1, ν, r)

Sonar 66.98±11.79 0.05 61.40±12.80 0.05 70.23±6.86 0.04 72.09±11.74 0.04
(16,0.9,128) (0.001,0.2,128) (0.6,0.8,8) (0.6,0.5,0.8,32)

Breast cancer 71.83±7.52 0.26 91.65±2.27 0.59 92.70±2.51 0.27 93.22±1.89 0.64
(4,0.9,32) (0.001,0.7,128) (0.3,0.3,32) (0.2,2,0.8,128)

Ionosphere 81.69±13.66 0.11 86.20±6.25 0.18 92.96±3.30 0.13 91.83±4.61 0.14
(64,0.5,0.5) (0.01,0.9,8) (0.2,0.9,2) (0.3,1,0.9,2)

Heart 67.00±3.21 0.09 63.67±2.17 0.13 68.00±5.70 0.09 70.00±5.40 0.08
(16,0.9,8) (0.01,0.9,128) (0.4,0.9,128) (0.7,0.5,0.9,32)

Liver disorder 69.57±6.06 0.11 57.10±1.65 0.17 65.80±4.98 0.12 67.83±5.74 0.09
(64,0.9,8) (0.01,0.5,128) (0.5,0.9,128) (0.8,1.5,0.9,8)

Pima 66.62±1.56 0.41 70.26±2.40 1.83 72.34±3.27 0.51 73.25±3.74 0.51
(256,0.4,8) (0.001,0.4,128) (0.3,0.8,128) (0.2,0.5,0.9,128)

Spectf heart 82.22±7.00 0.09 74.81±7.12 0.11 82.22±3.84 0.08 82.96±6.73 0.08
(4,0.9,32) (0.01,0.4,128) (0.6,0.8,32) (0.2,0.5,0.8,32)

Banknote 89.60±7.70 1.43 77.60±2.49 3.91 93.38±1.65 1.20 92.65±1.69 1.19
(4,0.7,0.125) (0.01,0.1,0.125) (0.3,0.9,0.125) (0.3,1.5,0.7,0.125)

Monks 66.82±20.87 0.13 55.00±8.26 0.26 71.36±12.92 0.13 69.09±7.29 0.12
(16,0.3,0.5) (0.01,0.5,2) (0.7,0.9,8) (0.9,1.5,0.7,2)

Abalone 96.51±4.82 7.62 89.12±2.71 32.46 96.30±1.53 7.24 97.32±1.07 6.86
(64,0.1,0.125) (0.01,0.1,0.125) (0.1,0.7,0.5) (0.1,0.5,0.8,2)

Bold type shows the best result

Table 3 The experimental results for multi-class classification case on ten benchmark datasets

Datasets OVO-THSVM THKSVM OVR-MMTSSVM MRMMTSSVM

Accuracy(%) Time(s) Accuracy(%) Time(s) Accuracy(%) Time(s) Accuracy(%) Time(s)
(c1, ν1, r) (νk, dk, r) (ν1, ν, r) (ν1k, k1, νk, r)

Iris 64.00±5.48 0.06 96.67±3.33 0.05 92.00±2.98 0.08 95.33±3.80 0.07
(16,0.6,0.125) (16,8,2) (0.2,0.2,2) (0.4,1.5,0.7,0.5)

Soybean 82.00±8.37 0.03 98.00±4.47 0.04 98.00±4.47 0.05 100.00±0.00 0.04
(64,0.1,2) (1,2,2) (0.1,0.9,2) (0.2,0.5,0.9,128)

Seeds 80.95±10.10 0.08 89.52±9.46 0.09 88.10±7.14 0.11 89.52±8.00 0.14
(256,0.5,0.5) (16,128,2) (0.6,0.6,8) (0.9,1.5,0.4,2)

Ecoli 66.87±5.21 0.38 78.81±3.24 0.30 73.73±6.03 0.36 85.67±3.09 0.57
(4,0.5,0.125) (16,128,0.125) (0.4,0.4,32) (0.3,2,0.8,0.125)

Optidigits 72.94±6.70 6.97 92.11±1.61 20.24 96.32±2.17 19.61 98.33±1.16 33.05
(256,0.8,8) (16,8,32) (0.2,0.6,32) (0.1,2,0.6,32)

Hayes-roth 47.14±2.99 0.05 48.57±7.41 0.04 42.14±6.39 0.06 57.86±8.89 0.06
(4,0.4,2) (0.25,2,2) (0.3,0.9,8) (0.6,2,0.4,2)

Teaching 65.16±26.44 0.04 66.45±22.65 0.05 54.84±33.60 0.07 67.74±22.81 0.06
(256,0.5,0.5) (1,512,0.125) (0.9,0.9,2) (0.8,1,0.3,0.125)

Balance 78.73±3.24 0.43 80.79±8.44 0.78 81.11±8.61 0.70 88.25±4.71 0.94
(256,0.1,0.5) (16,32,2) (0.3,0.8,2) (0.2,1.5,0.7,2)

Image 68.27±10.20 9.04 76.62±11.26 38.74 80.65±9.31 38.46 81.17±9.57 53.52
(64,0.8,8) (16,512,8) (0.2,0.6,32) (0.2,0.5,0.8,32)

Cmc 87.57±2.21 2.15 59.12±6.56 4.26 85.81±3.68 3.73 86.08±2.64 5.06
(16,0.7,2) (16,32,2) (0.4,0.9,2) (0.2,1,0.9,2)

Bold type shows the best result
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Table 4 Average ranks of four algorithms in binary classification case

Datasets THSVM SSLM MMTSSVM Ramp-MMTSSVM

Sonar 3 4 2 1

Breast cancer 4 3 2 1

Ionosphere 4 3 1 2

Heart 3 4 2 1

Liver disorder 1 4 3 2

Pima 4 3 2 1

Spectf heart 2.5 4 2.5 1

Banknote 3 4 1 2

Monks 3 4 1 2

Abalone 2 4 3 1

Average rank 2.95 3.70 1.95 1.40

Monks dataset. However, the accuracy of our algorithm is
lower than MMTSSVM within a little range and higher than
THSVM and SSLM. THSVM performs the best on Liver
disorder dataset. Also, the performance of our approach is
slightly worse than THSVM, which ranks the second. In
binary classification case, SSLM never acquires the best
performance on the ten datasets.

From Table 3, we can see in multi-class classification
case, MRMMTSSVM has the best experimental results
on most datasets, i.e., Soybean, Ecoli, Optidigits, Hayes-
roth, Teaching, Balance and Image dataset. For Seeds
dataset, THKSVM and MRMMTSSVM acquire the same
accuracy, which is the highest. THKSVM obtains the
best performance on Iris dataset, but MRMMTSSVM is a
little worse than THKSVM, ranking the second. On Cmc
dataset, OVO-THSVM gets the best experimental result.
Though the accuracy produced by MRMMTSSVM is not
the highest on Cmc dataset, it is better than THKSVM and
OVR-MMTSSVM. In multi-class classification case, OVR-
MMTSSVM never obtains the highest accuracy on the ten
datasets.

In conclusion, we can see that both in binary and multi-
class classification case, our algorithms perform better than
other algorithms.

5.2.3 Friedman test

In order to better analyse the experimental performance
of eight algorithms statically, we introduce Friedman Test.
Tables 4 and 5 show the average ranking of four algorithms
in binary and multi-class classification case respectively.

Under the null-hypothesis that all the algorithms
are equivalent, one can compute the Friedman statistic
according to:

χ2
F = 12N

k(k + 1)

⎡

⎣
∑

j

R2
j − k(k + 1)2

4

⎤

⎦ , (48)

where Rj = 1
N

∑
i r

j
i and r

j
i represents the j th of k

algorithms on the ith of N datasets. Friedman’s χ2
F is

undesirably conservative and derives a better statistic

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

, (49)

which is distributed according to the F-distribution with
k − 1 and (k − 1)(N − 1) degrees of freedom.

According to (48) and (49), we can obtain in binary
classification case, χ2

F = 18.9300 and FF = 15.3902,
where FF is distributed according to F-distribution with
(3,27) degrees of freedom. The critical value of F(3, 27) is
2.96 for the level of significance α = 0.05, and similarly it
is 3.65 for α = 0.025 and 4.60 for α = 0.01. We can see
that the value of FF is much larger than the critical value
which means our approach in binary classification case has
significant difference with other algorithms. In addition,
from Table 4, it is clear that the average ranking of our
approach is far lower than that of the remaining algorithms,
which means our approach is more valid than other three
algorithms in binary classification case.

Table 5 Average ranks of four
algorithms in multi-class
classification case

Datasets OVO-THSVM THKSVM OVR-MMTSSVM MRMMTSSVM

Iris 4 1 3 2

Soybean 4 2.5 2.5 1

Seeds 4 1.5 3 1.5

Ecoli 4 2 3 1

Optidigits 4 3 2 1

Hayes-roth 3 2 4 1

Teaching 3 2 4 1

Balance 4 3 2 1

Image 4 3 2 1

Cmc 1 4 3 2

Average rank 3.50 2.40 2.85 1.25
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Fig. 7 The effect of parameter k on the performance

Similarly, we can obtain that in multi-class classification
case, χ2

F = 16.1700 and FF = 10.5228. It is also clear
that the value of FF is much larger than critical value.
From Table 5, we can see that the average ranking of
MRMMTSSVM is the lowest. They both represent that
MRMMTSSVM has better experimental performance than
other three algorithms.

In conclusion, our approaches are more valid than other
algorithms both in binary and multi-class classification
condition.

5.3 The effect of parameters on the performance

In Ramp-MMTSSVM and MRMMTSSVM, there are three
parameters, i.e., k, ν, and σ . The different values of the
three parameters will have a great influence on experimental
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Fig. 9 The effect of parameter σ on the performance

accuracies. Therefore, in this part, we conduct experiments
on Sonar dataset to investigate the influence of the three
parameters on experimental performance. The results are
shown in Figs. 7, 8 and 9.

The x-axis of the three figures denotes the changing
values of the three parameters, and the y-axis denotes the
corresponding accuracies. From Fig. 7, we can see that
on Sonar dataset when k is from 0.5 to 1.5, the accuracy
increases. While when k = 2.0, the accuracy decreases.
Figure 8 shows that when ν is small, the accuracy is
stable and great change of accuracy takes place when ν

increases. We can get in Fig. 9 that the accuracy changes
greatly when σ is small and as σ increases, the accuracy
tends to be stable. In conclusion, the three parameters k,
ν and σ all have an influence on experimental results in
Ramp-MMTSSVM and MRMMTSSVM. In addition, the
proper ranges of these paremeters are different for different
datasets.

6 Conclusions

In this paper, we propose a Ramp loss maximum margin
of twin spheres support vector machine. It reduces
the sensitivity to outliers and improves generalization
performance. Because it is a non-differentiable non-convex
optimization problem, we adopt CCCP approach to solve
it. Furthermore, we prove the properties of the parameters
ν1 and ν2, and testify them by one artificial experiment.
In addition, we extend Ramp-MMTSSVM to multi-class
classification problems by RVO strategy. The experimental
results show that our approaches both in binary and multi-
class classification cases have better performance than
other algorithms on twenty benchmark datasets. During
the experiments, we find that the computational speed of
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our algorithms is a little slower than other algorithms.
Therefore, how to accelerate the computational speed is our
future work.
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