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Abstract
Circle extraction is usually a previous task used in different applications related to biometrics, robotics, medical image
analysis among others. Solutions based on meta-heuristic approaches, such as evolutionary and swarm-based algorithms,
have been adopted in order to overcome the main deficiencies of Hough Transform methods. In this paper, the task of circle
detection is presented as an optimization problem, where each circle represents an optimum within the feasible search space.
To this end, a circle detection method is proposed based on the Teaching Learning Based Optimization algorithm, which
is a population-based technique that is inspired by the teaching and learning processes. Additionally, improvements to the
evolutionary approach for circle detection are obtained by exploiting gradient information for the construction of the search
space and the definition of the objective function. To validate the efficacy of the proposed circle detector, several tests using
noisy and complex images as input were carried out, and the results compared with different approaches for circle detection.

Keywords Circle detection · Optimization · TLBO algorithm · Computer vision · Meta-heuristics · Pattern recognition

1 Introduction

The importance of automatic circle detection becomes evi-
dent considering the variety of computer vision applications
for which circle extraction is a key element. For exam-
ple, some biometric authentication systems rely largely on
an accurate iris segmentation [1, 2]. In robotics, on the
other hand, circular markers have been used for visual-based
localization purposes [3, 4]. Similar applications seize on
man-made objects such as traffic signs [5] for autonomous
navigation tasks. Regarding industrial and manufacturing
applications, circle extraction has been used for autonomous
inspection [6, 7], and remote sensing processing used for oil
circular depots detection [8, 9]. Given the relevance to this
problem, different methods for circle detection have been
investigated in order to offer a solution.

The methods based on the Hough transform (HT) have
been extensively used due to their effectiveness. The classi-
cal Circular HT (CHT) performs an exhaustive exploration
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of the search space by mapping every point in the input
image into a parametric space, replacing the difficult pat-
tern detection in the image space into a local peak searching
in the parameter space. This approach makes the CHT
robust to noise, yet computationally inefficient. Conse-
quently, some new approaches based on the CHT principles
have been proposed to improve both storage and compu-
tational requirements. For instance, some methods modify
the architecture of the traditional CHT in order to propose
a multi-threaded implementation [10], or a FPGA imple-
mentation of the CHT [11]. Other approaches exploit the
CHT principles in combination with gradient information
and curvature analysis. For instance, the Curvature Aided
Hough transform for Circle Detection (CACD) algorithm
estimates the circle center and radius by adaptively estimat-
ing curvature radius [12]. The CACD approach estimates
the curvature on the edge-only image to perform a one-to-
one vote using accumulator arrays of different radius ranges.
Similarly, the work in [13] uses first-order and second-order
derivatives to compute a one-to-one dense CHT; however,
the method does not performs edge extraction as a prepro-
cessing step.

There are some other recent approaches that also exploit
gradient information along with other geometrical prop-
erties of circles to perform circle detection. For instance,
some work use the fact that the center of a circle lies along
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the normal direction of edgels, and that the intersection of
these normal lines is the center of the circle [14, 15]. In the
work of [16], on the other hand, an inverted gradient hash
map is used to detect circles by using the fact that pairs
of edgels on a circumference differ in orientation by 180
degrees. Another method implements an isosceles triangles
sampling to estimate centers and radius [17]. The method
performs a refinement process using chords and a linear
compensation based on gradient information of edgels.

Other approaches rely on a sampling procedure to reduce
the computational time for the circle detection task. An
example is a recent method called GRCD-R (Gradient-
based Randomized Circle Detection with Refinement) [18].
This method randomly selects four non-collinear edgels.
Then, gradient orientation is used to test if the gradient
vectors point to the center of a candidate circle. After that
validation, three edgels are used to compute a circle, and
the last one determines whether the candidate circle is a
possible circle in function of its distance to the candidate
circumference. Finally, a voting procedure is performed
to decide whether possible circles are to be upgraded to
detected circles. The work in [19] adds further constraints
based on the curvature of the isophotes. Isophotes are
curves connecting pixels in the image with equal intensity,
whose properties make them particularly suitable for object
detection.

Other methods use arc segments instead of edgels to find
circles and ellipses in binary images [20, 21]. EDCircles
[22], for instance, uses edges extracted by an edge segment
extractor named EDPF (Edge Drawing Parameter Free). The
edges are then converted into lines, and lines into circular
arcs, which are joined together using heuristic algorithms
to fit circles and ellipses. To eliminate false detections,
EDCircles uses a contrario validation step based on the
Helmholtz principle. Their idea is to compute the level
line orientation field (which is orthogonal to the gradient
orientation field) of a given image, and look for a contiguous
set of pixels having similar level line orientation.

The methods described above are efficient, but some-
times they produce false and missing detections. Thence,
evolutionary and swarm-based algorithms have been studied
as a meta-heuristic manner to perform circle extraction. For
example, circle detectors have been proposed using the Dif-
ferential Evolution approach [23], the Electromagnetism-
like optimization (EMO) algorithm [24], the Artificial
Bee Colony (ABC) method [25], the Collective Ani-
mal Behavoir (CAB) approach [26], the Harmony Search
(HS) algorithm [27], and the Clonal Selection Algorithm
(CSA) [28]. Unfortunately, despite the fact that many meta-
heuristics have been used for the circle detection task, to
our knowledge, less effort has been done into exploring the
use of gradient information within the search process. In

particular, the pattern present in circular shapes within the
gradient orientation field has not been used to better guide
the search with the objective function.

If the objective function is improperly defined, it can
lead to non-acceptable solutions whatever meta-heuristic is
used. Most of the reported work evaluates the fitness of
an individual by essentially counting the number of pixels
in the target edge map that coincide with the perimeter of
candidate circles. The fitness value is given by the ratio
of candidate to target pixels. They also punish points not
exactly on the perimeter of a candidate circle using a
displacement factor. A drawback of this approach becomes
evident while avoiding small false positive circles and
working in noisy conditions. The reason is that this approach
tends to favor smaller circles since fewer pixels are required
to define a high ratio.

Another drawback of circle detectors based on meta-
heuristics is that they need the tuning of several parameters.
For these methods, a set of algorithm-specific parameters
must be tuned appropriately to accomplish good accuracy
and high detection rate when dealing with different image
conditions, such as variations in illumination and blurring
boundaries. For instance, the DE approach requires the
tunning of the differential weight, and the crossover prob-
ability. The EMO algorithm, on its part, needs the tunning
of the step length. ABC requires tuning of the number of
bees (employed, scout, and onlookers), limit, and others.
CAB, on its part, requires the probability of attraction, the
probability of random movement, and the elite size. Sim-
ilarly, HS requires tunning of the harmony memory and
pitch adjusting rates, and the number of improvisations. In
the case of CSA, the mutation rate is to be tuned, along
with the clonal size, the length of the antibody and others.

To overcome the aforementioned issues, in this paper
we propose, differently from previous meta-heuristic-based
circle detectors, the utilization of gradient information to
better customize the search space, and to improve the search
guidance provided by the objective function. Additionally,
in the interest of reducing the number of parameters to
tune, we use another natural phenomena inspired optimizer,
namely, the Teaching Learning Based Optimization (TLBO)
algorithm [29]. The TLBO algorithm does not require the
tuning of many parameters in comparison with other meta-
heuristics, since only the number of iterations and the size of
the population are needed, and no other algorithm-specific
parameters need to be tuned.

The rest of the paper is organized as follows. Section 2
describes the TLBO algorithm as used in this work.
Section 3 presents the use of the TLBO algorithm for circle
detection. Section 4 shows the performance of the algorithm
through some tests and comparisons. And finally, Section 5
states the conclusions and future work.
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2 Teaching Learning Based Optimization
algorithm

The TLBO algorithm starts with an initialization procedure,
where N random solutions (students) Xi i ∈ {1, · · · , N} are
generated within the search space. In the TLBO context, the
student Xi of the population is a real-valued vector with D

elements, where D is the dimension of the problem and is
used to represent the number of subjects that an individual
enrolls for. The algorithm tries to improve the population
by changing individuals during two consecutive phases: The
teacher phase and the learner phase. The teacher phase aims
to increase the knowledge level of the whole class and to
help students individually to get better grades. The learner
phase, on its part, attempts knowledge increase through the
interaction between students. The algorithm is terminated
after a certain number of iterations is completed.

Within the teacher phase, the best individual (best
solution) is assigned as the teacher Xteacher . The algorithm
attempts to improve other individuals by moving their
position towards the position of the teacher by taking into

account the current mean value of the individuals. The
student position Xi is updated by:

Xnew = Xi + r · (Xteacher − TF · Xmean), (1)

where r is a real random number between 0 and 1 and
T F , called the teaching factor, can be either 1 or 2 and
is decided randomly with equal probability. The former
equation indicates how the improvement of student Xi may
be influenced by the difference between the knowledge of
the teacher and the qualities of all students. Thus, Xi is
replaced by Xnew if the latter gives better fitness value.
The factors T F and r contribute to the exploration and
exploitation capabilities of the TLBO algorithm. When
T F = 1 and r approximates to 1, the individuals try to
approximate the teacher, thus exploiting the search space
near to the teacher. Conversely, when T F = 2, the
individuals tend to explore far from the teacher according to
the value of r.

During the second and final phase, the learner phase,
a student learns with the help of other students. Hence,
student Xi tries to improve its knowledge by learning from
an arbitrary student Xj . In the case that Xj is better than Xi ,
Xi is moved towards Xj according to:

Xnew = Xi + r · (Xj − Xi). (2)

Otherwise, it is moved away from Xj according to:

Xnew = Xi + r · (Xi − Xj). (3)

The objective of this phase is to attain knowledge transfer
from a more qualified student to a less qualified student. To
this end, Xi is replaced by Xnew if the latter gives better
fitness value.

The TLBO algorithm is a successful meta-heuristic
method for solving complex optimization problems, still
keeping a simple structure and an easy implementation.
Thence, several engineering and scientific applications
using this meta-heuristic have been published [29–32].
The simplest form of the TLBO process is described in
Algorithm 1. The proposed method adopts this process for
circle extraction as explained in the following section.

3 Circle detection using the TLBO algoritm

In this section, we describe the proposed approach for cir-
cle extraction. Our method aims different objectives: To
have high detection rate and good accuracy in images with
cluttered textures, blurring boundaries, low contrast and
occluded circles; to detect multiple circles; to work with
real images; and to produce a few or no false detections.
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In order to achieve these objectives, the TLBO algorithm
is used, and gradient information is exploited. Since our
detector is based on a meta-heuristic, we describe the fol-
lowing elements: The search space organization, the indi-
vidual representation, and the objective-function definition.
Further, we explain the use of gradient orientation for the
particular case of circle detection.

3.1 Search space organization

Regarding the organization of the search space, in previous
works [23–26, 28], edge extraction is first performed, to
then organize the search space in a set where all edgel
locations are indexed one after the other as the edgels
are visited in the edge map from left to right and top
to bottom. A different approach involves storing edgel
locations randomly within the set [33]. These organizations,
as stated in [34], do not ensure that nearby pixels in the edge
map are neighbors in the search space. This is an important
issue to our approach, since the TLBO algorithm locates
better individuals in each iteration by shifting them towards
the position of the best one. Thus, neighboring individuals
within the search space are expected to belong to the same
circle and have similar fitness value. Consequently, we
perform a different procedure to enhance the search space
for the TLBO algorithm. This improvement is achieved by
reducing the size of the search space and by customizing
its organization, so that its shape better suits the geometric
meaning of the TLBO algorithm.

For the search space definition, we use gradient informa-
tion extracted from image derivatives. First, image noise is
reduced by using a 3 × 3 Gaussian filter. Then, edge extrac-
tion is performed in order to obtain one-pixel-wide edges.
Image derivatives in horizontal (gx) and vertical (gy) direc-
tions are performed to extract gradient information, both
magnitude and orientation. Gradient magnitude M(x, y) is
computed by:

M(x, y) =
√

gx(x, y)2 + gy(x, y)2, (4)

and gradient orientation O(x, y) is obtained by:

O(x, y) = atan2
(
gy(x, y), gx(x, y)

)
. (5)

Where atan2(·) is the function that returns the value of
the arc tangent of gy/gx in radians; the function takes into
account the sign of both arguments in order to determine the
quadrant.

To perform the image derivatives gx and gy , we convolve
the image with derivative kernels. To reduce the error in the
gradient computation, the 3 × 3 Sobel operators are used

since the accuracy of these operators can be up to 0.12
radians in noiseless conditions [35, 36].

We use gradient magnitude to achieve one of the objectives
of the search space enhancement, which is to reduce the
search space. This reduction is attained in two steps. Within
the first step, all pixels with gradient magnitude lower than
a threshold Tm are removed. The threshold Tm is computed
as follows:

Tm = τ · Mmean (6)

where Mmean is the mean magnitude value for the image
as computed by Eq. 4, and τ ∈ [0, 1] is the factor that
controls the distinctiveness of the magnitude values. When
τ is near 1, more pixels are discarded. Conversely, when τ is
near 0, less pixels are discarded. Finally, within the second
step, the remaining pixels are connected into contours using
the border-following algorithm that constructs the adjacency
tree of the image [37]. Then, all the contours that are
considered too small (i.e. below a threshold Tc pixels) to
form a significant part of a circle are removed. To define the
threshold Tc, we define a minimum radius rmin and compute
Tc as follows:

Tc = ceiling(2πrmin). (7)

In consequence of the previous steps, all edgels with
small magnitude are removed as well as the short linked
contours. Hence, the result is a smaller edge map organized
into connected contours that are sufficiently large to be
part of a circle. Also, gradient orientation of the remaining
edgels is available. Figure 1 summarizes the operations of
the preprocessing steps for the proposed approach.

The search space is finally organized in a set Vc with edgel
locations stored together and ordered according to their
respective contour c. Hence, the search space is encoded
within the set Vc = {c1, c2, · · · , cn} with n the number
of linked contours, and ci = {pi1(xi1 , yi1), · · · , pimi

(ximi
, yimi

)} with mi the number of edgels connected in the
i-contour. One result of this organization is an increase of
the probability that nearby edgels in the search space belong
to the same circle within the edge map, since connected
edgels are stored together.

3.2 Individual representation

Each student X of the population encodes a candidate circle
C that passes through three different edgels. Thus, to define
student X, three different elements are randomly chosen
from Vc. Hence, X = {i, j, k}, with i, j and k being the
index positions in the search space encoded in Vc for the
edgel positions pi(xi, yi), pj (xj , yj ) and pk(xk, yk) in the
edge map, respectively.
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Fig. 1 The preprocessing step
aims to reduce the search space
and customize its organization.
The gray-scale input image in
(a) is processed to obtain the
edge map as shown in (b). Then,
edge pixels with small gradient
magnitude are removed to
obtain the image in (c). The
remaining pixels are connected
into contours as shown in (d).
However, short contours are not
considered to be part of the
search space and are
consequently removed. Thus,
the input information to the
proposed method is organized
into linked contours large
enough to be part of a circle as
shown in (e)

From student X, the center (x0, y0) and the radius r of a
candidate circle C are calculated by the following equations:

x0 =

∣∣∣∣
x2
j + y2

j − (x2
j + y2

i ) 2(yj − yi)

x2
k + y2

k − (x2
i + y2

i ) 2(yk − yi)

∣∣∣∣
4((xj − xi)(yk − yi) − (xk − xi)(yj − yi))

, (8)

y0 =

∣∣∣∣
2(xj − xi) x2

j + y2
j − (x2

j + y2
i )

2(xk − xi) x2
k + y2

k − (x2
i + y2

i )

∣∣∣∣
4((xj − xi)(yk − yi) − (xk − xi)(yj − yi))

, (9)

and

r =
√

(x0 − xd)2 + (y0 − yd)2 , (10)

where d ∈ {i, j, k}. Therefore, a candidate circle C(x0,

y0, r) can be represented by Vc indexes i, j , and k belonging
to the student X = {i, j, k}, using (8) through (10).

3.3 Objective function

The last element to define is the objective function that guides
the search. Usually, reported meta-heuristic approaches for
circle detection only use edgel locations in the objective
function [23–26, 28]. Conversely, our proposed method
improve results by using additional data provided by the
gradient orientation. However, the pattern of the gradient
orientations within a circumference is not the same for a
circle with less intensity than the background and a circle
with more intensity than the background. This results in a
gradient orientation inconsistency problem that needs to be

tackled to reliably use gradient orientation in the definition
of the objective function.

3.3.1 Orientation alignment

The gradient orientation inconsistency problem is shown
in Fig. 2. This problem entails that for the same circle
parameters (x0, y0, r), one pixel orientation, say π/2, may
belong to a concave segment as in Fig. 2a; or to a convex
segment as in Fig. 2b. In other words, the circle parameters
encoded by student X is not enough information to assume
whether the orientation vectors should point towards or
against the center of the circle.

To solve the orientation inconsistency problem, the
work in [18] uses a set of four 9 × 9 masks to verify
whether an edgel belongs to a concave or convex segment.
A different mask is used in different sections of the
same circumference. Another used strategy involves the
computation of second derivatives in order to calculate
the contour curvature and decide whether a curve is
concave or convex, consequently finding the correct
orientation pattern [15]. These techniques are computational
expensive or sensitive to noise. Hence, in order to reduce
the computational burden, the proposed method partially
verifies orientation alignment as now explained.

Instead of verifying whether a pixel belongs to a concave
or convex segment, the proposed strategy validates the
gradient orientation of a pixel within a circumference
regardless it lies o n a concave or a convex segment. In
regard to Fig. 2, it is clear that for a circle C with parameters
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Fig. 2 Gradient orientation
inconsistency problem. The
orientation pattern obtained
from image derivatives is
different for a circle a brighter
than the background, and b
darker than the background

(x0, y0, r), the pixel p1(x0 + r, y0) within the perimeter of
C has gradient orientation of either 0 as in Fig. 2a, or π as in
Fig. 2b. Likewise, the pixel p2(x0, y0 +r) has an orientation
of π/2 as in Fig. 2a, or −π/2 as in Fig. 2b. For all pixels in
the perimeter of C, the absolute difference of the two facing
valid orientations is always π . We use this fact to verify
orientation alignment.

Given the circle parameters (x0, y0, r) encoded by a
student X, two valid patterns of gradient orientations can
be computed. Taking the case of Fig. 2a for convenience,
it is noted that for each pixel pi(xi, yi) within the
circumference, the ideal gradient orientation Oi can be
computed by:

Oi = atan2 (yi − y0, xi − x0) . (11)

Thus, the proposed algorithm computes the degree of
orientation alignment of the actual orientation Oi of the
edgel pi(xi, yi) w.r.t the ideal orientation Oi using the
following metric:

M(Oi) = |cos(|Oi − Oi |)|. (12)

This metric approximates to 1 whether the real gradient
vector of pi points towards or against the center of the
circle, as long as its orientation approximates to either one
of the two valid orientations of the concave and convex
cases. On the other hand, the metric approaches 0 as the
real gradient vector becomes perpendicular to either of
the two valid orientations. According with this metric, the
proposed algorithm classifies orientation alignment into
three categories:

Oi alignment=
⎧
⎨
⎩

θ -aligned if M(Oi) > cos(θ)

γ -aligned else if M(Oi)>cos(γ )

not aligned otherwise
(13)

Within this classification, the orientation Oi is θ -aligned
when it deviates less than θ radians from either of the two
valid orientations. Similarly, the orientation Oi is γ -aligned
when it deviates less than γ radians (but more than θ ) from

either of the two valid orientations. An illustration of the
three classifications is shown in Fig. 3.

The gradient orientation pattern is preserved even in the
presence of noise. In Fig. 4, the error between an ideal and
a real orientation pattern is shown. To compute the error,
the circle parameters are manually detected. Then, a valid
gradient orientation Oi is computed for each edgel within
the circumference. The real gradient orientation Oi , on the
other hand, is obtained for the same edgels with derivative
kernels. As shown in the figure, for this particular image
with different circles of different intensities, the majority of
edgels are θ -aligned even in the presence of different levels
of Gaussian noise.

3.3.2 Objective-function definition

Having defined the orientation alignment, we now describe
how it is used in the objective function computation. A well

Fig. 3 Orientation alignment. The proposed algorithm categorizes the
orientation alignment of each edge pixel into three classifications
according to their gradient orientation
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Fig. 4 Orientation alignment
test in real images. a Original
image corrupted with different
levels of Gaussian noise.
θ -aligned edgels are shown in
blue, while γ -aligned edgels in
red. b Boxplots showing the
orientation alignment error of
pixels within the circumference
of each circle

fitted student is the one that encodes a candidate circle that
actually exists within the edge map and has a valid gradient
orientation pattern. To score a solution, reported meta-
heuristic approaches for circle detection do not use gradient
information and proceed as follows. For a candidate circle
C, a certain amount of test points in the perimeter of C

is generated. The value of the classical objective function,
Fclassical , is the ratio of the total number of test points
appearing in the edge map to the total number of test points.
Variations to this conventional objective function include
different penalizations as the edge points recede from the
test circle. Unfortunately, when in noisy conditions, the
quantity of false positive circles may increase using this
approach due to the fact that small circumferences may
contain enough pixels in the edge map to give a high
ratio. For this reason, in the proposed method, additional
information provided by the gradient orientation is used in
order to surmount the problem.

Given a candidate circle C(x0, y0, r) encoded by a
student X, Nc test triplets T = {t1(x1, y1, O1), · · · , tNc

(xNc , yNc , ONc)} are generated. In the interest of reducing
the computational burden and improving the sub-pixel
accuracy, the locations of test points are generated using the
Midpoint Circle Algorithm (MCA) [38]. The MCA aims
to minimize the error between the pixel discrete positions
and the continuous candidate circumference. Additionally,
it reduces the computational burden of the algorithm by
only computing pixel positions within the first octant of the
circumference and mirroring the rest. Gradient orientation
of each test point, on the other hand, is computed using (11).

Candidate test points within the perimeter of C must
exist in the edge map, and their gradient orientation must be
aligned. Thus, the proposed fitness function is computed by:

Fproposed(X) =
∑Nc

i=1 E(xi, yi, Oi)

Nc

, (14)
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where E(·) is the function that verifies the pixel existence
in pi(xi, yi), and its orientation alignment Oi w.r.t Oi . E

returns zero when the test point pi(xi, yi) is not an edgel.
On the other hand, when the pixel pi belongs to the edge
map, E returns:

E(xi, yi, Oi) =
⎧
⎨
⎩

ϕ1 · M(Oi) if θ -aligned
ϕ2 · M(Oi) if γ -aligned
κ if not aligned,

(15)

where M(Oi) is the metric for orientation alignment in (12),
and the weights ϕ1, ϕ2 and κ can be set according to the
desired accuracy. We set and fixed the weights empirically
to: ϕ1 = 1, ϕ2 = 0.5 and κ = 0.25; and the threshold
angles to θ = 0.12 and γ = 0.26 radians. Different values
modify the relevance of orientation alignment within the
search process.

The example of Fig. 5 illustrates the evaluation of two
test points pT 1 and pT 2 belonging to a circle encoded
by student X = {i, j, k}. Since pT 1 is θ -aligned, PT 1

contributes to Fproposed by a factor of ϕ1M(oT 1). On the
contrary, since the test point PT 2 is neither θ -aligned nor γ -
aligned, it only contributes by a factor of κ . Recall that both
PT 1 and PT 2 belong to the edge map, however PT 1 meets
the additional orientation test.

3.4 Implementation of TLBO-based circle detector

The whole circle detection algorithm is summarized in
Fig. 6. First, the preprocessing step is performed in order to
obtain the edge map, gradient information, and the search
space encoded in Vc. Then, the TLBO algorithm is executed.
The first step of the TLBO algorithm involves generating
the initial population. All the solutions within the first
population must consist of three non-collinear points. To
achieve this, the algorithm first verifies if the denominator
in (8) or 9 is different from zero. If this is not the case,
at least two of the points are collinear, and that particular
combination of points is not added to the population. Later

in the process, in the Teacher an Learner phases, the
algorithm prevents individuals consisting in collinear points
by assigning a fitness equal to zero if the denominator in
(8) or (9) is equal to zero. At the end, the teacher of the last
iteration of the TLBO algorithm is selected as the solution.

Our proposed method is able to achieve multiple-circle
detection. To this end, the proposed method is executed as
many times as needed. After one execution, the detected
circle is removed from the search space and the edge map.
Then, the process is carried out again over the modified
search space and edge map. Multiple executions of the
whole process are carried out until the algorithm returns
a final solution whose fitness value is below a predefined
threshold fmin. Finally, every detected circle is validated
by analyzing the continuity of the detected circumference
segments as in [23].

4 Experimental results

In this section, results of the application of the proposed
method on real images are reported, and compared with five
different approaches that also use gradient information: 1)
The OpenCV implementation of a HT-based circle detector;
2) The isophotes RCD algorithm with the same parameters
as in [19]; 3) The on-line demo of EDCircles provided
by the authors; 4) the Matlab implementation of CACD
provided by the authors; and 5) The classical DE algorithm
with the same search space and objective function as the
TLBO algorithm. We have selected these methodologies in
the interest of contrasting our method with other approaches
that also use gradient information, while at the same
time are based on different methodologies. The OpenCV
implementation is a one-to-many CHT, while the CACD is a
one-to-one CHT. Isophotes RCD, on its part, is based on an
iterative sampling methodology. EDCircles is an arc-based
circle detector; and the DE-based circle detector relies on a
meta-heuristic.

Fig. 5 Fitness evaluation. a A
candidate solution X = {i, j, k}
represents a candidate circle
C(x0, y0, r). b Two pixels pT 1
and pT 2 within the perimeter of
C are evaluated. Both pixels
contribute to the fitness of X.
However, pT 1 contributes to a
greater extent than pT 2, since
the former meets the additional
orientation test
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Fig. 6 General procedure of the
proposed meta-heuristic-based
circle detector

The experimental setup includes the use of real images
commonly used in the literature: Streetlight (544 × 509),
Plates (504 × 489), Bowling (467 × 480), Gobang (234 ×
231), Cells (519×459), Cell (701×664), Watch (467×480),
Cookies (295×292), Eye (190×143), and Insulator (492 ×
553). All the experiments were executed on a 2.80GHz Intel
Core i7-7700HQ CPU, with a C++ implementation of the
algorithm. To perform edge extraction and border following,
implementations from OpenCV were utilized.

4.1 Parameter setup

The sets of parameters for the meta-heuristics, shown in
Tables 1 and 2, have been chosen empirically in favor of
performing a fair comparison. First, the settings for the

Table 1 Parameter setup for the DE-based circle detector

Parameter Value

Number of epochs 200

Population size 50

Differential weight 0.25

Crossover probability 0.80

TLBO algorithm were experimentally defined. Then, the
parameters of the DE algorithm that control the number of
objective function evaluations (FEs) were set specifically
to equate this number for both approaches. Finally, the rest
of the DE parameters were set after experimentation. On
the other hand, the thresholds for the preprocessing step
and the multiple-circle detection process were fixed at τ =
0.05, Tc = 2π · 5 pixels, and fmin = 0.20, respectively.
The parameters and thresholds for both meta-heuristics
remained fixed for every experiment.

As stated above, when the number of FEs is the same
for all methods, a fair comparison is guaranteed since all
algorithms sample the search space an equal number of
times. Otherwise, an algorithm with more FEs has, a priori,
more chances to provide a better solution, since it gathers
more information of the problem. The number of FEs for
each approach is now described.

Table 2 Parameter setup for the TLBO-based circle detector

Parameter Value

Iterations 100

Population size 50
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Given M individuals and N iterations, the number of
FEs for the TLBO algorithm is

FEsT LBO = (2N + 1) · M . (16)

The above equation is easily deduced considering that
in the initialization step for the TLBO algorithm, the
objective function is evaluated once for each individual;
and that at each iteration, two function evaluations are
carried out for each individual (one per step: teacher and
learner). Distinctively, the DE-based detector only requires
one objective function evaluation at each epoch for each
individual, and another within the initialization step. Thus,
the number of FEs for the DE algorithm is

FEsED = (N + 1) · M . (17)

We now describe results related to the convergence of the
algorithm, since our approach is based on a meta-heuristic.

Then, in the following subsections, we discuss qualitative
and quantitative results.

4.2 Convergence analysis

The evolution of the best individual, the mean fitness value
and the similarity of the population are examined for every
generation. To compute a measure of similarity S for a
population P , the student X = {i, j, k} is considered
as a vector. Thus, the L2-norm of student X is |X| =√

i2 + j2 + k2. To calculate S, we first compute the L2-
norm of each student within P . Then, each output value
is divided by the maximum L2-norm value within P . The
output of the last computation is a set of values between 0
and 1. We thus define S as the standard deviation of these
values. For convenience, S is plotted along with the mean
fitness value and the best individual in Fig. 7.

Fig. 7 Comparison between different combinations of meta-heuristic,
search-space organization, and objective function. a Obtained results
with DE optimizing over different search-space organizations and

guided by different objective functions. b Results for the TLBO algo-
rithm optimizing over different search-space organizations and guided
by different objective functions
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Within the convergence analysis, the TLBO and DE
algorithms optimize over two different representations of
the search space: 1) Edgels locations are indexed in a
set V one after the other as they are visited within the
edge map from left to right and top to bottom; and 2)
Edgels locations are indexed in a set Vc with linked
contours as proposed in Section 3.1. Further, to guide the
search, two different objective functions are used: 1) The
classical objective function Fclasical that only considers
edgel locations; and 2) The objective function Fproposed as
described in Section 3.3.

Results demonstrate that the proposed combination of
an objective function that considers gradient orientation,
an adequate search space, and the TLBO algorithm,
results in an efficient circle detector. First, we discuss the
performance of the proposed objective function. Figure 7
shows the detected circles after one execution of each meta-
heuristic. From the figure, it is clear that when Fclassical

is used, false positives are detected because they have high
fitness value. Conversely, when guided by the proposed
objective function, a true circle is detected.

To better explain why our proposed objective function
guides more efficiently the search, Fig. 8 depicts that,
oppositely to Fclasical , Fproposed clearly differentiates good
from bad solutions, since it scores better a true circle than
a false positive circle. The last statement is true due to the
fact that Fproposed does not only verifies edgels existence
in the perimeter of a candidate circumference, but gradient
orientation as well.

By additionally organizing the search space into linked
contours, the fitness of the final solution is better, and
the TLBO tends to converge. The graphs in Fig. 7b show
for the TLBO algorithm that, when optimizing over the
unorganized search space V and guided by either of the
two objective functions, the search is random, and in
consequence the best solution does not evolve. This is true
since the similarity of the population remained almost equal
throughout the iterations. Conversely, it is only when using
the proposed search space representation Vc along with the
proposed objective function Fproposed , that a clear evolution
and convergence of the population is seen. As a result,
the final solution has a higher fitness because the detected
circle fits better a true circle. In other words, more edgels
with a valid orientation pattern are truly present within the
perimeter of the detected circle. Another advantage of the
proposed search space representation is that it permits to
obtain accuracy while keeping a simple coding.

It is clear that optimizing over Vc and guided by Fproposed ,
good accuracy is obtained. Furthermore, by also utilizing
the TLBO algorithm, results are improved in comparison
with the DE approach. We discuss the advantages of the
TLBO algorithm by analyzing its exploration and exploita-
tion behavior. In comparison with DE, TLBO explores more
the search space as shown by the similarity of the popula-
tions in Fig. 7. The DE approach usually converges faster
(the similarity becomes zero); this means that the DE algo-
rithm stops searching. Differently, the TLBO algorithm
makes more exploration of the search space, since there

Fig. 8 Comparison between objective functions. a Test image and
linked contours. b Two different candidate solutions are to be scored. c
Fitness values computed with the classical objective function. d Fitness
values obtained with the proposed objective function. Fproposed truly

differentiates good from bad solutions by additionally evaluating ori-
entation alignment (θ -aligned, green; γ -aligned, red; and not aligned,
blue), and not only the existence of edgels within the edge map like
Fclassical
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are more variability within the population while keeping
the best solution. By allowing more iterations to DE, no
changes in the results would exist. To change the exploration
and exploitation capabilities of the DE approach, a differ-
ent setting of parameters is needed. Conversely, the TLBO
algorithm does not require the tunning of algorithm-specific
parameters to modify its convergence behavior.

4.3 Image performance

To evaluate the qualitative performance of the TLBO-based
detector, several tests were carried out regarding different
tasks involving:

1. Circle localization.
2. Multiple circle detection.
3. Blurred and low contrast circle detection.
4. Circular approximation.
5. Circle detection in presence of Gaussian noise.

The relevance of such tasks comes from the fact that they are
commonly found in typical computer vision applications.

Results shown in Figs. 9 and 10 demonstrate that the
proposed circle detector achieves efficiently every task. Our
circle detector found all circles present in the test images
despite cluttered textures, blurred and low-contrast circles,
occluded circles, and Gaussian noise.

To test the capabilities of the proposed method for the
first task, image Streetlight is used. For this task, the TLBO-
based detector outperforms the OpenCV implementation
and EDCircles. The OpenCV implementation does not fit
accurately the circle present in the image; while EDCircles
falsely detects a circular shape in the background.

Our method also detects multiple and concentric circles,
as shown by the results of the second task. Images Plates,
Bowling and Gobang show a better performance of our method
in comparison with the Opencv implementation and EDCir-
cles. For instance, EDCircles detects reflections as circles
in Bowling and Gobang; while the Opencv implementation

Fig. 9 Performance of the six
methods for the tasks of circle
localization with cluttered
textures (column 1), multiple-
circle detection (columns 2–4),
and blurred or low-contrast
circle detection (columns 5–6).
The number of detected circles
(including false positives) for
the best case is indicated
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Fig. 10 Performance of the six methods in regard to the tasks of circular approximation (columns 1–2), and circle detection under Gaussian noise
(column 3–6). The number of detected circles (including false positives) for the best case is indicated

does not detect all circles in Plates. Regarding the task
of dealing with blurred and low-contrast circle detection,
images Cells and Cell are presented. For this task, the TLBO-
based detector outperforms the the Opencv implementation,
and the CACD algorithm.

For the rest of the tasks, Fig. 10 shows the results
involving circular approximation and noisy images. In
comparison with other approaches, the proposed detector
obtains better results. For instance, the proposed detector
outperforms EDCircles in images Watch, Cookies and Eye.
EDCircles tends to classify as circles small curves like the
number “0” and “9” in image Watch. On the other hand, the
Isophotes RCD approach is outperformed by our method in
images Eye and Insulator with Gaussian noise.

It is noted that the DE algorithm has a similar performance
to the TLBO for the all images, except the image Eye.
This is due to the fact that they share the search space and
objective function. However, quantitative results described
in the next subsection show that the TLBO algorithm obtained
better quantitative accuracy.

4.4 Performance evaluation

To obtain quantitative information of the accuracy of all detec-
tors, a score metric is used to quantify their performance.
Results from the methods are compared to a manually
detected ground-truth circle using this score metric. Further,
to compute a statistical analysis, the meta-heuristic-based
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Table 3 Average time, average
Eo error, and success rate for
the meta-heuristic methods,
considering the test images in
Figs. 9 and 10

Image DE TLBO

Time Eo eror Succes rate Time Eo error Succes rate

Streetlight 0.420 0.107 100 0.396 0.088 100

Plates 1.260 0.073 95.87 1.589 0.084 96.55

Bowling 0.527 0.173 95.32 0.423 0.179 97.80

Gobang 0.443 0.147 90.33 0.557 0.062 92.35

Cells 0.794 0.182 78.33 0.812 0.175 72.66

Cell 0.359 0.112 59 0.318 0.098 65

Watch 0.540 0.091 97.50 0.417 0.152 96.20

Cookies 0.473 0.057 95.60 0.460 0.032 98.33

Eye 0.276 0.191 76 0.250 0.105 89.50

Eye (σ = 20) 0.352 – – 0.367 0.112 43

Insulator 0.808 0.135 98.66 0.787 0.124 100

Insulator(σ = 20) 0.887 0.187 90.20 0.792 0.193 92.35

Bold values indicate the best result for a particular experiment

circle detectors were executed 100 times for each test image.
The metric to evaluate a quantitative performance looks

at the percent overlap of the circle area. The overlap error
Eo is calculated as:

Eo = 1 − C1 ∩ C2

C1 ∪ C2
, (18)

where the second term is the overlap percentage, and is the
area of the overlap between circle 1, C1 and circle 2, C2,
divided by the area of the union of the circles. For multiple
circle evaluation, the average value of the Eo errors, MEo , is
calculated by:

MEo =
(

1

NC

)
·

NC∑
i=1

Eoi
, (19)

where NC is the total number of detected circles in the test
image.

For the meta-heuristic approaches, we also compute a
success rate Sr as now explained. Given an specific image,
let CGT be the set of ground truth circles, and CD the set of
circles detected by the method. For each circle in CD , we
find the match circle in CGT subject to Eo < 0.20. Only one
circle in CD is accepted as a valid match per ground truth
circle. Then, all the accepted circles are considered as true
positives and stored in a set CT P . Finally, we compute the
success rate Sr as follows:

Sr = card(CT P )

max(card(CGT ), card(CD))
, (20)

where card(·) returns the cardinality of a set. It is noted
that Sr is equal to 1 when all the ground truth circles are

Table 4 Time and Eo error for
the non-meta-heuristic
methods, considering the test
images in Figs. 9 and 10

OpenCV Isophotes RCD EDCircles CACD

Image Time Eo error Time Eo error Eo error Time Eo error

Streetlight 0.368 0.086 0.625 0.083 0.052 1.907 0.031

Plates 0.927 0.092 2.837 0.076 0.083 3.015 0.068

Bowling 1.017 0.318 1.605 0.152 0.065 2.216 0.105

Gobang 0.757 0.235 1.092 0.198 0.071 2.291 0.117

Cells 1.158 – 1.027 0.106 0.073 2.972 0.087

Cell 0.709 – 0.968 – 0.026 2.397 –

Watch 1.415 0.173 1.072 0.194 0.091 2.737 0.112

Cookies 1.157 0.025 2.142 0.177 0.124 2.471 0.089

Eye 0.831 0.104 1.793 0.052 0.087 1.916 0.062

Eye (σ = 20) 1.751 – 2.611 – – 3.041 –

Insulator 0.872 0.016 1.595 0.069 0.098 2.795 0.092

Insulator(σ = 20) 12.365 – 2.407 0.098 0.019 3.973 0.091
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found and no false positives are detected. Differently, when
all ground truth circles are found, but false positives are
detected, Sr decreases. The more false positives are detected
or the less ground truth circles are found, the more Sr

decreases and approximates to 0. Also, Sr is equal to 0 when
there are no found circles by the method that match the
ground truth circles. Sr penalizes even multiple detections
of circles with similar centers and radii. The succes rate Sr

allows us to obtain a measure of the performance of the
algorithm to detect all ground truth circles and discard false
positives. The error Eo, on the other hand, when applied
only to circles in CT P , allow us to obtain a measure of the
accuracy of the detected true-positives circles.

Quantitative results are shown in Tables 3 and 4. Table 3
exposes the average time, average error, and success rate for
the meta-heuristic approaches. Table 4, on its part, shows
the time and error for the non-meta-heuristic approaches. In
the case of EDCircles, computational time is omitted since
the on-line demo provided by the authors was used.

5 Conclusions

In this paper, we presented a meta-heuristic circle detector
based on the TLBO algorithm. The proposed method differs
from previous meta-heuristic approaches in the way that
it uses additional information provided by the gradient to
customize the search space, and to better guide the search
with a novel objective function.

In comparison with other approaches, the results
obtained by the TLBO-based detector required less effort
from the user because there are less parameters to tune
for this particular meta-heuristic. This is an advantage in
comparison to other meta-heuristic approaches, and even
to the OpenCV CHT and the isophotes RCD algorithms
that also require the set of various parameters. To test
the performance of the proposed approach, computation
time and accuracy have been compared with five different
approaches based on different principles: The OpenCV
CHT, the isophotes RCD algorithm, EDCircles, CACD, and
a meta-heuristic based on DE. We used a score metric to
evaluate the mismatch between a ground-truth circle and the
detected circle. Also, since our proposed circle detector is
based on a meta-heuristic, an evaluation of the convergence
of the algorithm was performed.

Our approach accurately detects circles in real images
despite the presence of cluttered textures, circle occlusions,
blurred effects, and Gaussian noise. Further, the detected
circles hold a sub-pixel accuracy due to the use of the circle
equation and the MCA method.

In future work, we will make efforts to expand our method
to detect ellipses and reduce the computation time; and
also to explore the use of gradient magnitude, and not only

orientation in the objective function, since usually pixels of
the same circumference have similar magnitude values.
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México, and a M. Sc. Eng.
Degree in Optomechatronics
in 2014 from Centro de Inves-
tigaciones en Óptica, A.C.,
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