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Abstract
As a special MANET (mobile ad hoc network), VANET (vehicular ad-hoc network) has two important properties: the network
topology changes frequently, and communication links are unreliable. Both properties are caused by vehicle mobility. To predict
the reliability of links between vehicles effectively and design a reliable routing service protocol to meet various QoS application
requirements, in this paper, details of the motion characteristics of vehicles and the reasons that cause links to go down are
analyzed. Then a link durationmodel based on time duration is proposed. Link reliability is evaluated and used as a key parameter
to design a new routing protocol. Quick changes in topologymake it a huge challenge to find andmaintain the end-to-end optimal
path, but the heuristic Q-Learning algorithm can dynamically adjust the routing path through interaction with the surrounding
environment. This paper proposes a reliable self-adaptive routing algorithm (RSAR) based on this heuristic service algorithm. By
combining the reliability parameter and adjusting the heuristic function, RSAR achieves good performance with VANET. With
the NS-2 simulator, RSAR performance is proved. The results show that RSAR is very useful for many VANET applications.
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1 Introduction

With the development of communication technology, the
VANET (vehicular ad-hoc network) has become the most im-
portant part of building an intelligent city and an intelligent
transportation system (ITS). Because it is an extension of tradi-
tionalMANETs (mobile ad-hoc networks), VANET has elicited
much interest from automobile manufacturers, governments,
and research institutions to provide services such as traffic
warning, information consulting, and entertainment; many

projects in these fields have been launched [1, 2]. According
to WHO reports, the number of deaths caused by traffic acci-
dents is 1.24 million worldwide every year. World Bank statis-
tics show that the world economic loss caused by traffic acci-
dents is $500 billion per year [3]. With greater numbers of
vehicles in cities, solving traffic congestion has become a
worldwide problem. Traffic congestion can cause time delay,
wasted fuel consumption, and unnecessary environmental pol-
lution. At the same time, with the development of a social
vehicle network, in-car entertainment and communication be-
tween vehicles have become necessary functions that automo-
bile manufacturers provide to customers [4]. In VANETs, wire-
less communication can be divided into two types: vehicle-to-
infrastructure (V2I) and vehicle-to-vehicle (V2V). V2V is fa-
vored by many researchers because communication does not
rely on infrastructure and its deployment is flexible. However,
VANET has some characteristics that are different from tradi-
tionalMANETs [5]. First, in VANETs, the network nodes (cars)
move at high speed, which will cause frequent changes in net-
work topology. The short link time maintained between nodes
makes the links unreliable, and network performance varies
greatly with vehicle distribution. Second, vehicle nodes are re-
stricted to roads and are affected by many factors like speed
limits and traffic signals. Third, vehicles can provide enough
power and computing ability for themselves, meaning that the
energy limitations ofMANETare no longer an important factor.
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As an important support technology to realize an intelligent
transportation system, the design of an efficient routing protocol
has become an important step in implementing VANETapplica-
tions. Because the VANET topology changes frequently and the
links are unreliable, traditional routing algorithms based on
MANETs, such as the Ad-hoc On-demand Distance Vector
(AODV)[6]andDynamicSourceRouting(DSR)[7],aredifficult
tousewithVANETs.Thesealgorithmshavealowerdeliveryratio
and a longer transmission delay because they do not consider
rapid topologychanges.Toovercome this problem, some routing
algorithms based on geographic location, such as TFOR [8] and
GyTAR [9], have been proposed recently [10]. These routing
algorithms are designed based on traffic flow estimation, use
GPS to locate the destination node, and ignore topology changes,
but they do not consider link reliability between nodes. Some
reliable routing algorithms have been proposed, such as SLBF
[11] and EG-RAODV [12]. These algorithms were designed by
adding parameters such as link reliability between nodes and
packet error rate. This approach can improve the packet delivery
ratio to a certain extent, but cannot guarantee the time delay. In
VANETs, a rapidchange invelocity is themaincauseof topology
changesandunreliable links.Onlya full understandingofvehicle
motion characteristics can lead to effective evaluation of link re-
liability and efficient routing algorithm designs.

Assuming that vehicles are moving on a fixed route, various
factors can break the link between two nodes, such as the trav-
eling direction of the two vehicles, the distance between vehi-
cles, speed, and acceleration. To evaluate link reliability between
nodes effectively, these factors should be fully considered, es-
pecially given the low-density, high-speed environment. The
distance between vehicles plays an important role in ensuring
traffic safety and evaluating link reliability. Many models of
distance between vehicles have been proposed, such as the ex-
ponential distribution model, the normal distribution model, and
the lognormal distribution. In [13], the authors proved by exper-
iments that the distance between vehicles can bemore consistent
with real traffic flow and safe distances when it follows a log-
normal distribution. A full understanding of the traffic flow
model and the motion characteristics of vehicles can help eval-
uate link reliability between nodes effectively. With ongoing
studies of routing algorithms in recent years, some intelligent
algorithms [14] have been applied to VANETs and have yielded
better results than traditional routing algorithms. As a self-
learning algorithm, the Q-Learning algorithm [15] can find the
shortest path from a source node to a destination node through
constant interaction with its environment. Based on this idea, in
this paper, a reliable adaptive routing algorithm (RSAR) is pro-
posed by improving the Q-Learning algorithm. It can adaptively
adjust the Q-table while ensuring the reliability of each hop link
to adapt to a dynamic network topology such as VANET.

The main purpose of this paper is to propose a reliable and
adaptive routing algorithm. The reliability of an entire link
depends on the links between each hop. This paper establishes

a reliable model of a link between nodes by a detailed study of
the motion properties of vehicles. Once the probability of link
reliability has been calculated, it can be used as a parameter in
the Q-Learning algorithm to design the RSAR algorithm.

This paper is organized as follows. In the second section,
the routing algorithm is simply classified and partly analyzed.
In the third section, the development of a reliable link evalu-
ation model is described. The fourth section presents the main
concept of the RSAR algorithm and the development of the
model. The fifth section describes the simulation and analysis
performed. The sixth and final section provides a summary
and suggestions for future work.

2 Related work

2.1 Routing protocol classification

In VANETs, the routing algorithms can be divided into two
main types: one based on topology, the other based on
geographical location. Routing algorithms based on topol-
ogy can be divided into reactive (on-demand) routing al-
gorithms and active (table-driven) routing algorithms. In a
reactive routing protocol, nodes establish the route accord-
ing to their requirements and maintain an end-to-end path.
Representative routing algorithms include AODV and
DSR. Some algorithms like EG-RAODV [12] and
QLAODV [15] have been derived on this basis and are
more suitable to VANETs. In an active routing algorithm
like DSDVand OLSR [16], nodes maintain the topology of
the whole network through exchanging the routing table.
In a rapidly changing VANET, a fast change in topology is
the only factor that affects the active routing algorithm. In a
protocol based on geographical location, a GPS is provided
for each vehicle so that its coordinates, speed, and direc-
tion can be accurately determined. The vehicle does not
need to maintain the path from the source to the destination
node, and each node maintains only one neighbor table to
record the location and speed of neighbor nodes. Routing
algorithms based on geographical location can be divided
into two kinds. Algorithms in which the sending node
makes the routing decision actively are called sending
node-based forwarding (SBF). Algorithms in which the
receiving node determines whether it can be the next seg-
ment of a link are called receiving node-based forwarding
(RBF). Among SBF-based routing mechanisms, the most
representative is the GPSR [17] routing. In [18], the STAR
algorithm is proposed. These are both SBF-based routing
algorithms. In RBF-based routing, sending nodes send data
packets by broadcasting them. When receiving nodes re-
ceive broadcast data packets, they compete for the right to
forward them. The nodes that obtain the forwarding right
become the next hop in a link and suppress other nodes
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from forwarding packets. SLBF [11] is a typical RBF al-
gorithm that uses node locations to calculate waiting time;
the nodes that have the shortest waiting time have the right
to forward packets. Vegni [19] proposed a clustering-based
RBF algorithm that reduces the number of forwarding
nodes to suppress redundant packets.

2.2 Link evaluation algorithm

According to routing algorithm classification research, many
routing algorithms for VANETs have been proposed, but algo-
rithms that predict link reliability according to motion character-
isticsofvehiclesare rare. InVANETs, it isnecessary toensure link
reliability, which guarantees the entire path’s validity. In [20], the
authors predicted link reliability and routing path according to
signal strength. In [21], the authors developed a mobile model
to estimate the duration of an n-node path, in which they consid-
eredspeed,butnotacceleration.TheMORP[22]algorithmbased
onmotionpredictionhas alsobeenproposed.MORPpredicts the
futurepositionof thevehicle and the stabilityof the link.Byusing
location, direction, and speed to predict link state,MORP selects
the most stable end-to-end routing path. A prediction-based
routing algorithm [23] has been proposed for VANETs and ad-
justs the routingpathbypredicting the life cycleof the link,which
is predicted by communication range, vehicle position, and cor-
responding speed. Considering that the routing path consists of
manylinks, theminimum-duration linkdetermines themaximum
survival timeof thewhole link, so that themaximumlinkduration
of the path can be effectively predicted.

2.3 Q-learning algorithm

The Q-Learning algorithm [24] is a reinforcement learning al-
gorithm, which is proposed in a machine learning context. The
learning process is such that in different states, the agent finds a
path to reach the destination node with the maximum return
value by periodically updating its state-activity value (Q-
Value). Q-Learning is an unsupervised active learning algo-
rithm, which does not require a specific system model and can
adapt to different environments by interacting with its surround-
ings. In theQ-Learning algorithm, the Q-valueQ(s, a)(s ∈ S, a ∈
A) represents a reward value that a learning agent converted
from state s to another state through an activity a, where s
represents a state and a represents an activity. Because a state
closer to the destination will receive a higher reward value, the
distance between the state and the destination can be effectively
determined according to the reward value. As the agent contin-
uously converts activities to find the path to the destination node
in different states, it can ultimately find the shortest path from
the source node to the destination node. This intelligent algo-
rithm is beginning to be used in VANETs. Some researchers
[25–28] have proposed an algorithm by combining fuzzy logic
with Q-Learning (FQ-OPP); this algorithm can be adapted to

dynamic topology changes. References [29–32] proposed a
QGrid algorithm based on Q-Learning; they divided the entire
region into grid cells and selected the next hop forwarding node
by calculating the Q-value from both macro and micro aspects.

In addition, recent related studies are described in [33–39].
For example, reference [33] investigated a centralized model
and a heuristic algorithm for solving the multi-depot logistics
delivery problem, including depot selection and shared com-
modity delivery. Reference [37] concentrated on introducing
an adaptive cooperative caching strategy with novel cache
replacement and prefetching policies, which divided the net-
work into non-overlapping clusters. Reference [39] proposed
a novel filter model based on a hiddenMarkov model (HMM)
(FM-HMM) for an intrusion detection system to reduce the
overhead and time required for detection without impairing
the detection rate. Moreover, relative comparisons of results
among these methods have been done.

3 Link reliability model

On a highway, the fast movement of vehicles makes links very
unreliable. Designing a reliable routing algorithm is a chal-
lenging task. The movement of vehicles is the main factor that
makes the links unreliable. To evaluate link reliability between
nodes effectively, a capable system model and link duration
model must be developed. The first step is to develop the
system model based on vehicle motion characteristics; then
the duration of links between nodes can be evaluated, leading
to construction of a reliable link model.

3.1 System model

To evaluate link quality between nodes effectively, assuming
that the highway is generally a straight road as in [40, 41] and
that the broadcasting distance is much longer than the width of
the road, it can be further assumed that the width of the road
has a very small influence on selecting the next hop
forwarding node, and therefore the width of the road can be
ignored. Figure 1 shows the highway model used. It can fur-
ther be assumed that acceleration, deceleration, changing
lanes, overtaking, and other maneuvers are taking place on
the road. Besides, the distance between vehicles is log-
normally distributed [16], that is, Xi ∈ logN(μi, δi). As shown
in Fig. 1, Xi = {Xi(m),m = 0, 1, 2,⋯} is a random variable that
is log-normally distributed. Xi represents the distance between

Fig. 1 Road model
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vehicles i and i + 1, and Xi(m) is a random variable that repre-
sents the distance between node i and other nodes at timem. In
Fig. 1, if node Vs is regarded as the reference node, then X
represents the distance between Vs and any other node, where

X ¼ ∑
m

i¼1
X i, so X is also log-normally distributed [42].

Lemma 1 Assuming that X ∈ logN(μ, δ), the random variable

T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aX þ b

p þ c is log-normally distributed, where a, b,
c ∈ R, a, b, c ≠ 0 and aX + b ≥ 0.

Proof Let GT be the probability distribution function of T. For
every positive t, GT(t) = Pr[{T ≤ t}]. Obviously, because T is
continuous,

GT tð Þ ¼ Pr T ≤ tf g½ �
¼ Pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aX þ b

p þ c≤ t
n oh i

¼ Pr aX ≤ t−cð Þ2−b
n oh i

¼
FX

t−cð Þ2−b
a

 !
when a > 0

1−FX
t−cð Þ2−b

a

 !
when a < 0

8>>>>><
>>>>>:

where FX is the probability distribution function of X. When
a > 0, it is clear that T is log-normally distributed. When a < 0,

according to [13], F zð Þ ¼ 1
2 þ 1

2 erf
z−μz

σz
ffiffi
2

p
� �

, and letting z = ((t

− c)2 − b/a),

1−FX zð Þ ¼ 1

2
−
1

2
erf

lnz−μ Xð Þ
σ Xð Þ ffiffiffi

2
p

 !

¼ FY
a

t−cð Þ2−b

 !

where Y is a log-normal random variable with parameters −μ(X)
and σ(X). Note that the fact that − erf (x) = erf (−x) is used.
Hence, Tobeys a log-normal distribution, completing the proof.

Lemma 2 Assuming that X ∈ logN(μ, σ), the random variable
T = aX + b is log-normally distributed, where a, b, c ∈ R and a,
b, c ≠ 0.

This lemma can be easily proved using the arguments ad-
duced in the proof of Lemma 1.

3.2 Link duration model

In Fig. 2, Ba^ shows two vehicles moving in the same direc-
tion, and Bb^ shows two vehicles moving in opposite direc-
tions, where the black arrows indicate the direction of motion.

Assuming that thevehiclesaremovingona fixed road, thereare
twomainconditions(showninFig.2)underwhichthelinkbetween
two nodes becomes disconnected. In Figure Ba^, two vehicles are
moving in the same direction, and in Figure Bb^, two vehicles are
moving in opposite directions. Consider vehicle i as the reference
nodeandvehicle jasthetransmissionnode.Inothercases,vehicles i
and jhave the longest link communication time.Thenext step is to
analyze the link duration in detail in these two cases.

AsshowninFig.2a,assumethatat time t0 = 0,vehicle i iswithin
the one-hop communication range of vehicle j and that vehicle i is
located in front of vehicle j. The initial distance betweenvehiclesX
is a random variable. Themaximum communication radius of ve-
hicleR is a fixed constant. At the initial moment,X satisfies

0≤X < R:

According to the system model, there will be acceleration,
deceleration and overtaking of vehicles on a highway. The
maximum speed limit on the road is set to vm, i.e., all vehicles
should move at a speed less than or equal to vm. Assume that
the vehicle’s acceleration is a(0) and that its speed is v(0).
When t ≥ 0, the acceleration is defined as a(t), and the speed
is defined as v(t). At time t, the acceleration is as follows:

1) If a(0) = 0, for all t ≥ 0,

a tð Þ ¼ 0: ð1Þ

2) If a(0) > 0,

a tð Þ ¼ a 0ð Þ t≤
vm−v 0ð Þ
a 0ð Þ

0 otherwise

:

8<
: ð2Þ

3) If a(0) < 0,

a tð Þ ¼ a 0ð Þ t≤
−v 0ð Þ
a 0ð Þ

0 otherwise

:

8<
: ð3Þ

From the above analysis, it can be assumed that when t0 = 0, if
the acceleration a(0) at this time is also 0, then the instantaneous
acceleration is also 0, i.e., a(t) = 0. For Eqs. (2) and (3), if the

a b

Fig. 2 Two cases of link breakage
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speed is below the maximum speed limit or is reduced to 0, it is
assumed that the acceleration is still a(0); otherwise, it is changed
to 0. Taking the initial speed v(0) into account,at time t, the
instantaneous speed v(t) is defined by the following formula:

v tð Þ ¼ v 0ð Þ þ ∫
t

0
a uð Þdu; ð4Þ

where u ∈ [0, t], a(u) is the acceleration at time u.
Now Eqs. (1–4) can be combined to calculate the instanta-

neous speed:

1) If a(0) = 0, for all t ≥ 0,

v tð Þ ¼ v 0ð Þ

2) If a(0) > 0,

v tð Þ ¼ v 0ð Þ þ a 0ð Þt t≤
vm−v 0ð Þ
a 0ð Þ

vm else

8<
: ð5Þ

3) If a(0) < 0,

v tð Þ ¼ v 0ð Þ þ a 0ð Þt t≤
−v 0ð Þ
a 0ð Þ

vm else

8<
: ð6Þ

According to the above definition, the distance that any
vehicle moves at speed v(x) in time interval [0, t] is defined as:

S tð Þ ¼ ∫
t

0
v xð Þdx: ð7Þ

Again according to the above definition, as Fig. 2 shows,
the distance between vehicles i and j at time t can be calculat-
ed. Assuming that the initial speed and acceleration of vehi-
cles i and j are ai(0), vi(0), aj(0), and vj(0) respectively, the
instantaneous speed and acceleration of vehicles i and j at time
t are ai(t), vi(t), aj(t), and vj(t). According to Eqs. (1–7), the
distance between vehicles i and j in time interval [0, t] can be
calculated as follows:

Si tð Þ ¼ ∫
t

0
vi xð Þdx;

S j tð Þ ¼ ∫
t

0
v j xð Þdx:

When the initial distance between vehicles i and j is X, the
distance di, j between i and j at time t is:

di; j ¼
S j tð Þ þ Si tð Þ þ X same direction

S j tð Þ−Si tð Þ þ X opposite direction
:

�
ð8Þ

From Eq. (8), it is obvious that when di, j > R, the link is
disconnected.

The next step is to analyze the link duration in Fig. 2b,
where two vehicles are moving in opposite directions. When
two vehicles meet:

S j tð Þ þ Si tð Þ þ X ¼ R: ð9Þ

The maximum link duration t can now be calculated. By
assuming that S j tð Þ þ Si tð Þ ¼ 1

2 art
2 þ vrt, where ar = ai + aj

and vr = vi + vj, and by substituting this into Eq. (9), the max-
imum link duration t can be obtained as:

t ¼ −vr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r þ 2ar R−Xð Þp
ar

: ð10Þ

When two vehicles are moving in the same direction, as
shown in Fig. 2a, during acceleration, deceleration, and over-
taking, it is critical to determine whether vehicle i or j is in
front. When Sj(t) − Si(t) + X > 0, vehicle j is located in front of
vehicle i; otherwise, vehicle i is located in front of vehicle j. To
express effectively which vehicle is in front, a symbolic func-
tion was defined as follows:

I i; jð Þ ¼ 1 S j tð Þ−Si tð Þ þ X > 0

−1 otherwise
:

�
ð11Þ

When the link is in a critical state of disconnection,:

S j tð Þ−Si tð Þ þ X ¼ R⋅I i; jð Þ: ð12Þ

At this point, two cases must be considered to calculate the
link duration.

When I(i, j) = 1, vehicle j is located in front of vehicle i.
From Eq. (12), Sj(t) − Si(t) + X = R. Similarly to Eq. (10), be-
cause S j tð Þ−Si tð Þ ¼ 1

2 art
2 þ vrt, where ar = aj − ai and vr = vj

− vi, the time t can be determined as:

t ¼ −vr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r þ 2ar R−Xð Þp
ar

: ð13Þ

Similarly, when I(i, j) = − 1, vehicle i is located in front of
vehicle j. From Eq. (15), Sj(t) − Si(t) + X = − R, and the link
duration t can be determined as:

t ¼ −vr−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r−2ar Rþ Xð Þp

ar
ð14Þ

Equations (10), (13), and (14) can be used to calculate the
link duration of the sending node and an arbitrary node within
one hop range.

Lemma 3Assuming that the communication link between two
vehicles i and j breaks at time t, the link duration time is either
a linear function of X or a square root function of X.

Proof When the link disconnects at time t, by the definition of

Si(t) according to Eq. (7), it is known that Si tð Þ ¼ ∫t0 vi xð Þdx is a
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linear function of t when the speed vi is constant, i.e., vi = vm.
Let Si(t) = at + b. Similarly, if vj is a constant, it can be conclud-
ed that Sj(t) = ct + d is also a linear function of t. Obviously,
according to Eq. (8), when the two vehicles are moving in
opposite directions, (a + c)t + b + d + X = R. The link duration
time t ¼ R−b−d−X

aþc is a linear function. Similarly, when a link has

been established between codirectional vehicles i and j, the link
duration time is also a linear function according to the equation
(c − a)t − b + d + X = R ⋅ I(i, j). Hence, the link duration t is a
linear function when both vi and vj are constant. If either vi(t)
or vj(t) are not constant, then the distance function will be a
quadratic polynomial. Without loss of generality, let vi(t) = v-
i(0) + ait. By definition, the distance function is:

Si tð Þ ¼ ∫
t

0
vi 0ð Þ þ ai

¼ vi 0ð Þt þ 1

2
ait2

:

As shown in Eqs. (9) and (12), S j tð Þ � Si tð Þ ¼ 1
2 art

2 þ vrt
and a ≠ 0. Therefore, the solution must be a square root func-
tion of X.

Theorem 1 The duration T of the link between vehicles i and j
is log-normally distributed.

Proof By Lemma 3, the link duration can be expressed as

either aX + b or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aX þ b

p þ c. By Lemma 1, the expressionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aX þ b

p þ c is log-normally distributed. By Lemma 2,
aX + b is log-normally distributed. Hence, in all cases, the
duration time of the link has a log-normal distribution. This
completes the proof of the theorem.

3.3 Link reliability model

Based on the link duration between nodes, the link duration of
vehicles i and j is log-normally distributed as T ∈ logN(μt, σt),
where the expectation is μt and the variance is σt. Link reli-
ability can then be evaluated according to duration. Link reli-
ability is defined as the probability of direct communication
between two vehicles in time period Tp. Assuming that the
communication link between any two vehicle nodes is l, when
t = t0, the link reliability between nodes is:

r lð Þ ¼ P t0 þ Tpjt0∈M
� �

;

where M is the starting time for the connection between the
two vehicles. Hence, the link reliability is:

rt lð Þ ¼ ∫
t0þTp

t0
f Tð ÞdT Tp > 0

0 else

8><
>: ð15Þ

where f(T) is the probability function of the time interval T.

4 RSAR algorithm

In VANETs, the fast motion of the nodes makes the network
topology change frequently. It is difficult for a simple
forwarding strategy to find an efficient routing path in this
rapidly changing network environment. Related studies have
presented the Q-Learning algorithm as an unsupervised self-
learning algorithm. Through continuous interaction with the
external environment, it can adaptively adjust its value to find
the optimal path to the destination. Hence, it is well suited to
dynamic VANETs. This section will describe the routing and
forwarding strategy of the Q-Learning algorithm in VANETs.

4.1 Idea of Q-learning algorithm in VANET

Standard Q-Learning is a heuristic learningmethod based on a
learning agent. Generally, in the standard Q-Learning algo-
rithm, the learning process of the agent is composed of a 3-
tuple {S, A, R}, where S = {s1, s2,⋯, sn} represents the state
space; A = {a1, a2,⋯, an} represents the activity space, and
moving from one state to another is regarded as an effective
activity; R represents the immediate reward for an activity;
and the closer the agent is to the destination, the higher the
reward obtained for the activity. The following subsections
will present a few related definitions first and then describe
the learning process in detail.

4.1.1 Related definitions

Definition 1 Basic components.
Learning environment: The whole VANETenvironment as

the learning environment of the agent;
Agent: Each vehicle node is a learning agent;
State space S: The state space of a given agent is composed

of all other nodes except for this agent;
Activity space A: A beacon packet is transmitted from one

vehicle to another, which is defined as an activity;
Immediate reward R: obtained when an agent carries

out an activity.

Definition 2 Reward value: According to Definition 1, the
reward that an agent receives for carrying out an activity is
called the immediate reward, and its range is [0, 1]. Because
the destination node can directly reach the destination node, its
reward value is 1. Formula (16) defines the initial value R of
the entire network as follows:

R ¼ 1 s ∈ Nd

0 else
:

�
ð16Þ

where Nd represents the one-hop neighbor node set of desti-
nation node D. The reward value of an activity for all the
neighbor nodes of the destination node is 1. In the learning
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process, the reward value that may be obtained from a transi-
tion from one state to another is indicated by the Q-valueQ(s,
a)(s ∈ S, a ∈ A), which lies in the range [0, 1].

Definition 3 Q-table: Each learning agent maintains a two-
dimensional table, which is used to record the Q-values of
the reachable destination node and its one-hop neighbor
nodes. This two-dimensional table is called the Q-table
(shown in Table 1).

In the Q-table, the first line contains the IDs of all possible
destination nodes, which are expressed asDi. The first column
contains the IDs of the one-hop neighbor nodes, which are
expressed as Ni. Q(D1,N1) represents the Q-value between
the node and the neighbor node N1 when it reaches the desti-
nation node D1. As shown in Table 1, the Q-table is a two-
dimensional table, its size is determined by the number of
neighbor nodes and the number of destination nodes. It is
obvious that it has good scalability. The values in the Q-
table are updated by periodically exchanging beacon packets
between nodes. The learning task is distributed to each node,
which makes the algorithm quickly converge to the optimal
path, and adjustments to changes in network topology can be
made in a timely manner.

4.1.2 Learning process

The above definitions establish that every vehicle node is de-
fined as a learning agent. Unlike traditional ways of learning,
each vehicle node has a Q-table. Nodes complete the task of
learning by exchanging beacon information and updating their
Q-tables. The beacon packet sent by each node contains not
only its own speed, location, and other information, but also
the maximumQ-value of the neighbor nodes to the destination
node, i.e., the maximum value in a column (as shown in
Table 2). Assume that there is a VANET topology G = {V,
E} as shown in Fig. 2, where V = {A, B,C,⋯,H} represents
the set of vehicle nodes, and that for node A, its state space SA
is the set of all nodes that do not contain A. Edge set E repre-
sents a collection of nodes that can communicate directly in
one hop range. Assume that as in Fig. 3, A is the source node,
and G is the destination node. Now the challenge is to find an
optimal path from the sending node A to the destination node
G using the self-learning approach.

Learning tasks are assigned to each vehicle node agent, and
the learning process is mainly updating the Q-table in the
agent and meanwhile updating the state activity pair of the

Q-value, Q(s, a)(s ∈ S, a ∈ A). The standard Q-Learning func-
tion is given as Eq. (17):

Qs d; xð Þ←Qs d; xð Þ þ Rþ γ⋅max
y∈Nx

Qx d; yð Þ
� �

; ð17Þ

whereQs(d, x) is the Q-value to be updated, S is the node, x is its
neighbor node, Nx is x‘s neighbor node, D is the destination
node, R is the reward value, and max

y∈Nx

Qx d; yð Þ is the maximum

Q-value between x and its neighbor node to the destination node
D. The discount factor γ is an important parameter because it
affects the reward that a node obtains for carrying out an activity
according to Eq. (17). Considering that link stability is an im-
portant parameter, the link reliability r(l) between nodes, which
was calculated according to Eq. (15), was used as a discount
factor, that is, γ = r(l). In VANETs, the available bandwidth, as
an important parameter, determines the rate of packet transmis-
sion. As defined in [28], the bandwidth BW can be calculated as:

BW bpsð Þ ¼ n� SB � 8

T
; ð18Þ

where n represents the number of packets that the node sends
and receives, SB is the size of the packet in bytes, and T is the
time interval. Assuming that the maximum available bandwidth
of the node is a fixed value defined as maxBW, the bandwidth
factor can be calculated as:

BF ¼ maxBF−BW
maxBF

: ð19Þ

Table 1 Q-table
D1 D2 ...

N1 Q(D1,N1) Q(D2,N1) ...

N2 Q(D1,N2) Q(D2,N2) ...

... ... ... ...

Table 2 Network parameter settings

Parameter Value

Size of topology (m) 1500 × 1500

MAC standard IEEE 802.11 MAC (2 Mbps)

Transmission range (m) 250

Propagation model Two-ray ground

Simulation time (s) 300

CBR packet size (bytes) 512

Data rate (packets/s) 10

Fig. 3 Model of the learning process
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As the factor that affects learning speed, the bandwidth
factor varies with changes in effective bandwidth and deter-
mines the learning progress of each vehicle node. Equation
(17) can be modified to obtain a new heuristic function:

Qs d; xð Þ← 1−BFð Þ⋅Qs d; xð Þ þ BF⋅ Rþ γ⋅max
y∈Nx

Qx d; yð Þ
� �

: ð20Þ

According to Eq. (20), the greater the number of hops, the
smaller the reward value. Hence, the final reward value is
based on the number of hops, the link reliability, and the
bandwidth. By adding bandwidth and link state, the optimal
path from source node to destination node can be obtained in
the dynamic network. In Fig. 3, nodes E and F are one-hop
neighbor nodes of destination node G. According to Eq. (20),
the reward values from nodes E and F to destination node G
can be represented as QE(G,G) and QF(G,G), respectively.
Considering the effects of link quality and bandwidth, it can
be determined that the final Q-values of QE(G,G) and QF(G,
G) are 0.7 and 0.8, respectively. The neighbor nodes of D are
A, B, C, E, F, and H.When D receives the beacon packets sent
from any neighbor, the data packets are parsed, and the max-
imumQ-value to the destination node G is extracted, taking F,
max
y∈N F

QF G; Yð Þ. According to Eq. (20), calculate the corre-

sponding Q-value, i.e., QD(G, F), and update the Q-table.
Obviously, QF(G,G) is the largest, and its value is 1, which
will be recorded in the beacon packet. A similar procedure
will be performed with data packets from other nodes; then
one particular column in the Q-table is updated. Considering
bandwidth and link reliability and assuming that QD(G, F) =
0.5 according to Eq. (20), the Q-tables of the other neighbor
nodes are updated, as shown in Fig. 4. As neighbor data
packets are continually received, node D constantly modifies
the maximumQ-value between nodeD and its neighbor nodes
in the Q-table. Similarly, when node D sends a beacon packet,
it traverses a particular column in the Q-table, finds the max-
imum Q-value among node D and its neighbor nodes, and
records and sends the Q-value. When node A receives the

beacon packet sent from node D, it forwards the maxi-
mum Q-value and carries on the computation to update
QA(G,D). The same procedure will be performed when it
receives beacon packets from other nodes. Through con-
stant exchange of data packets, the results shown in Fig. 4
will finally be obtained.

According to Fig. 4, the optimal path from A to G is easily
found, i.e., the path with the biggest Q-value of its nodes is the
optimal path. As Fig. 4 shows, A→B→ E→G is the path
with the maximum Q-value and therefore is the optimal path.
The dynamic update-and-save of the Q-table makes the algo-
rithm respond to dynamic changes in topology quickly and
with good reliability as well as robustness.

4.2 Description of the RSAR algorithm

This subsection describes the basic process of data packet
forwarding in the RSAR algorithm and then provides a de-
tailed description of each stage.

4.2.1 Basic transmission process

When the RSAR algorithm routes data packets, it performs the
following three steps:

1. When a source node sends a data packet, it checks its
own Q-table to see whether its first entry is the next
hop node to the destination. If so, then it selects the
neighbor node with the largest Q-value; if not, then it
starts the route development process, which is de-
scribed in subsection 4.2.2.

2. After the route has been developed, a basic path from the
source node to the destination node has been obtained,
and the learning of some vehicle nodes is complete. To
find the optimal path of the whole network topology and
solve the network segmentation problem, the route main-
tenance process is started to maintain the end-to-end path
dynamically. The route maintenance process is described
in subsection 4.2.3.

3. Through the processes described above, the optimal path
of the entire network topology is established. When a
vehicle node receives/sends data packets, it implements
the first step; otherwise, it will implement the second step.

4.2.2 Route development process

At the beginning, when the source node sends a data packet to
the destination node, it checks the Q-table to see whether there
is a next-hop node to the destination node. It then finds a
neighbor node with the maximum Q-value to the destination
node and forwards the data packet to it. If there is no such
node, it starts the route discovery process. The source nodeFig. 4 Q-values to the destination node G as saved by each node
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sends an R _ req data packet by broadcasting to the entire
network and starts a path request timer, where R _ req records
the IDs of all the nodes that it passed through in the routing
process. When the destination node receives the first R _ req
packet from the source node, it saves the packet, and subse-
quently received packets will be discarded. From the R _ req
data packet, the destination node extracts the ID information
that it recorded and flips it, then generates an R _ rep data
packet and writes the flipped path information into R _ rep.
After waiting for a time slot, it broadcasts the R _ rep data
packet to the nodes recorded in the flipped path. When a
recorded node receives the data packet, it modifies the next-
hop address, updates its Q-table, and sends out the packet
through single-hop broadcast. Other non-destination nodes
only modify their Q-tables and drop the packet when they
receive it. Until R _ rep is sent to the destination node, i.e.,
the source node of R _ req, the source node cancels the request
timer while updating its Q-table. At this time, a path has been
found from the source node to the destination node, and the Q-
tables of the nodes on the first path from source node to des-
tination node are updated for the first time; their initial values
in the Q-table are 0.

4.2.3 Route maintenance process

When the first route path is established, the Q-table values
of some nodes adjacent to the path are also updated. To
ensure that the path remains effective with dynamic
changes in the network, it is important to start the route
maintenance process. The main purpose of the route
maintenance process is to maintain the Q-tables dynami-
cally and to solve the network segmentation problem.
Each node periodically broadcasts beacon packets to up-
date the Q-tables of neighbor nodes, where the beacon
data packet is mainly composed of the position, speed,
and max(Q − Value) of the node. max(Q − Value) was de-
scribed along with the learning process. To ensure update
effectiveness, the transmission delay of the beacon packet
in the experiment was set to a random number in the
interval [0.5, 1]. The effective time of the destination node
is specified for the Q-table. If the time of a destination
node is longer than the specified time because it has not
been updated, the destination node is considered invalid,
and the corresponding column of data is deleted. When a
network partition emerges due to vehicle movement,
RSAR uses a store-and-forward strategy and starts the
path request timer to broadcast an R _ req data packet. If
it does not receive the R _ rep data packet sent from the
destination node until the timer has expired, the destina-
tion node is considered to be unreachable, and the source
node is informed to cancel the transmission; otherwise,
the routing path will be reestablished at the breakpoint.

5 Experimental tests

NS-2 was used to verify the performance of the RSAR algo-
rithm proposed in this paper. The simulation environment
(scenario and parameter setting) will first be described,
followed by a detailed analysis of the experimental results.

5.1 Simulation environment settings

NS-2 was used to simulate the experiment, and
VanetMobiSim was used to generate a 1500 × 1500 square
topology, as shown in Fig. 5. The topology consisted of inter-
sections and straight roads, where each road was set to two
two-way lanes, traffic lights were set at three intersections, and
the change time of traffic lights was 5 s. To highlight the
authenticity of the simulation, in the network environment,
every vehicle node used an intelligent driving model (IDM),
including changing lanes, overtaking, avoiding, and waiting.
The generated mobility model was added to NS-2. Table 2
shows the basic NS-2 parameter settings. Over the whole net-
work, 10 pairs of CBR data streams were randomly generated
to send packets with a size of 512 bytes, and the transmission
layer used UDP. The size of each beacon packet was calculat-
ed according to the transmitted information. To verify the
performance of the RSAR algorithm effectively, two situa-
tions were set up to simulate the scenario in Fig. 5. In the first
situation: the number of nodes in the entire network was set to
a fixed value of 80, and the maximum speed of the vehicles
ranged from 30 km/h to 90 km/h. In this situation, the discus-
sion will focus on the effect of vehicle speed on the routing
protocol. The second situation can be described as follows: the
maximum speed of the vehicles was set to a constant 40 km/h,
and the number of nodes varied from 60 to 120. In this situa-
tion, the discussion will focus on the effect of vehicle density
on the routing protocol. At the beginning of the experiment,
the nodes were randomly dispersed on different roads and
moved on a fixed route. Each simulation time was set to
300 s, each situation was run 20 times, the average value
was taken, and the simulation results were compiled.

5.2 Experimental results

The RSAR algorithm proposed in this paper was compared
with the GPSR algorithm [17], the SLBF algorithm [11], the
QLAODV algorithm [14], and the methods outlined in [22,
24, 26, 33, 37, 39]. These algorithms are all representative
routing algorithms. This comparisonmakes it possible to eval-
uate the advantages and disadvantages of RSAR. In different
scenarios, through comparisons of packet delivery ratio, end-
to-end delay, and number of hops, the results shown in Figs. 5,
6, 7, 8, 9, 10, 11, and 12 were obtained. Figures 5, 6, and 7
show the comparisons in the first test case, and Figs. 8, 9, and
10 show the comparisons in the second one.
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Figure 6 compares the relationship between packet delivery
ratio and speed. The packet delivery ratio is the ratio of the
number of data packets received by the destination node to the
number of data packets sent by the source node. Figure 6
shows that, with increasing speed, the RSAR proposed in this
paper achieved a high and stable packet delivery ratio, with an
average ratio greater than 90%. The packet delivery ratios of
the other three routing algorithms examined showed a sharp
downward trend with increasing speed. This improvement
was achieved because RSAR fully considered the influence
of speed changes on link reliability. By evaluating the links
between nodes, the reliability of these links was determined,
and this information was used in routing decisions as a learn-
ing parameter of the Q-Learning algorithm. The packet deliv-
ery ratio of GPSR declined most quickly due to its selection of
the next hop node without considering link reliability and due
to its greedy mechanism. When the speed was less than
54 km/h, the packet delivery ratio of QLAODV was also
greater than 90%, but when the speed exceeded 54 km/h, the
ratio dropped sharply. Although it uses the Q-Learningmodel,

because of the need for maintenance of an end-to-end reli-
able path, QLAODV must repair the path continuously
with increasing speed, leading to a decline in the ratio.
The packet delivery ratio of SLBF also declined because
it is affected by topology changes and link stability is not
fully considered. Due to its use of a greedy approach, it
was closer to the GPSR algorithm.

Figure 7 shows the relationship between end-to-end time
delay and speed, where the time delay is calculated only as the
average time taken by the destination node to receive valid
data packets. Figure 7 shows that with increasing speed of the
vehicle nodes, the time delays of the four algorithms all pre-
sented a rising trend. The time delay of the RSAR algorithm
proposed in this paper was between those of GSPR and SLBF
andwas relatively stable.When the maximum speed exceeded
60 km/h, time delay of SLBF increased rapidly and became
greater than that of RSAR. This trend was caused by the

Fig. 5 Simulation topology

Fig. 6 Packet delivery ratio versus speed

Fig. 7 End-to-end time delay versus speed

Fig. 8 Routing length versus speed
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influence of topology changes and the need for recalculation
of the effective forwarding area or re-transmission mecha-
nism. Although RSARwas less affected by topology changes,
the path with maximum Q-value is bound to have the largest
bandwidth, the most reliable link, and the shortest routing
length in this algorithm. The time delay of GPSR was the
shortest because it only uses the greedy forwarding mode.
The packet delivery ratio of GPSR had the lowest value be-
cause it only uses the greedy mechanism, so that it immedi-
ately drops packets when they fail to arrive. QLAODV also
uses the Q-Learning model, but increasing speed made it
switch paths frequently to maintain the effective routing path.
This meant that the time delay of packet delivery was greatly
increased. From Fig. 7, the packet delivery ratio of RSAR was
between 0.1 and 0.2 under the rapidly changing topology en-
vironment. From Fig. 6, its packet delivery ratio was greater
than 90%. It is necessary for these applications to transfer
large amounts of data.

Figure 8 shows the relationship between average route
length and speed, where the route length was calculated by

the average number of hops taken for valid data packets to
reach the destination. Figure 8 shows that the route length in
RSARwas less than that of QLAODV because it does not use
the path transformation mechanism to maintain the whole
path, and the forwarding decision is used only to choose the
node with maximum Q-value, so that its time delay is much
shorter than that of QLAODV, as shown in Fig. 7. Figure 8
also shows that the RSAR proposed in this paper has a stable
route length. This can be achieved because of the store-and-
forward mechanism and the maximum Q-value selection
mechanism, which ensures that each path selected is the
shortest one. SLBF and GPSR both use a greedy approach
to forward packets, but when the speed exceeds 60 km/h,
under the influence of topology changes, the route length of
SLBF increases; although GPSR does not use a reliable mech-
anism, the number of hops reached the minimum value.

Fig. 11 Average route length versus number of nodesFig. 9 Packet delivery ratio versus number of nodes

Fig. 10 End-to-end time delay versus number of nodes
Fig. 12 NTO comparison among different methods: a the method
proposed here, b [22], c [24], d [26]
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Figure 9 shows the relationship between the packet de-
livery ratio and the number of nodes. As the number of
nodes increases, the packet delivery ratio in all four algo-
rithms shows a rising trend. When the number of nodes is
90, the packet delivery ratio of RSAR is greater than 90%,
whereas that of QLAODV is 85%. Although these two
algorithms are both based on the idea of Q-Learning,
RSAR fully considers link stability between nodes so that
the packet delivery ratio is greatly increased. Due to the
store-and-forward mechanism, the packet delivery ratio of
RSAR is much higher than that of SLBF and GPSR as the
number of nodes increases. Because SLBF uses the re-
transmission mechanism, its packet delivery ratio is greater
than that of GPSR; but because it is greatly affected by
topology and the vehicle and the sending node are usually
not on the same path, its packet delivery ratio is seriously
affected and becomes lower than that of RSAR.

Figure 10 shows the relationship between end-to-end
time delay and the number of nodes. The packet delivery
ratio of RSAR gradually draws close to that of GPSR. The
reason for this is that as the number of nodes increases, the
number of learning nodes in RSAR also increases, so that
the path to the destination node is shorter and the time
delay is less. As the number of nodes increases, the time
delay of QLADOV gradually draws close to that of RSAR,
but with fewer nodes, it is much larger than that of RSAR.
This behavior occurs because QLAODV spends much
time on route maintenance. As the number of nodes in-
creases, SLBF decreases slowly because it uses a timed
broadcast mechanism that increases time delay. The time
delay of all four algorithms shows a downward trend as
the number of nodes increases.

Figure 11 shows the relationship between the average route
length and the number of nodes. As the number of nodes
increases, the average route length of all four algorithms
shows a downward trend. This occurs mainly because the
number of effective forwarding nodes increases. The length
of the path found by RSAR is shorter than that of QLAODV.
The path lengths of RSAR, SLBF, and GPSR are close be-
cause SLBF and GPSR both use a greedy approach. As the
number of nodes increases, the next hop selected by RSAR is
closer to the farthest node.

To show comprehensive comparative results for recent al-
gorithms, extensive simulations and experiments have been
conducted in this study to examine the performance of the
proposed method. The Normalized Transmission Overhead
(NTO) was defined to analyze the complexity of the proposed
method and its cost. The metrics for the degree of complexity
of the proposed method include context gathering overhead
(Ocg) for VANET, transmission overhead (Ot) of data packets
among VANET nodes, and others. According to classical
computational complexity analysis methods [29–31], from
the equations previously given in this paper, the degree of

computational complexity of the proposed method can be de-
termined as O(n):

NTO ¼ ∑
MC

i¼1
∑
MC

j¼1
ξOcg

i; jð Þ þϖOt
i; jð Þ þ 1−ξ−ϖð ÞCde

i; jð Þ
� �

; ð21Þ

where MC is the number of vehicle nodes in each evaluation
group inVANET, such asMC= 10, 20, 30, 40, 50, or 60, which
means that there is a related number of vehicle nodes in a
certain evaluation group in VANET. The integer parameters i
and j are the node indices of each evaluation group in VANET.
Parameters ξ,ϖ are real weighting values, ξ,ϖ∈ [0, 1] and ξ +
ϖ ≤ 1, such that the default real values are ξ = 0.6, ϖ =

0.4.Ocg
i; jð Þ;O

t
i; jð Þ;C

de
i; jð Þ are the normalized real overhead values

of vehicle nodes i and j for each evaluation group in VANET.
Based on Eq. (21), from the relative results comparison of

existing methods and the method proposed here as shown in
Fig. 12 ((a) the proposedmethod, (b) [22], (c) [24], (d) [26]), it
is evident that the method proposed here has better perfor-
mance than those proposed in Refs. [22, 24, 26]. This guaran-
tees high QoS (such as lower overhead, less complexity,
shorter delays, and transmission reliability) of VANET.
Therefore, according to the above results, the method pro-
posed here has certainly improved on routing overhead, trans-
mission delays, rate of packet delivery, rate of losing packets,
throughput, and other performance metrics for VANET.

In addition, many relative comparisons have been per-
formed with the methods proposed in [33, 37, 39]. These
relative comparison figures were not reported in this paper
because the effects were similar to those shown in Fig. 12.

6 Conclusions

The routing service algorithm is a very important part of
VANET. An efficient routing algorithm can greatly improve
the data transmission rate, so that many applications can be
run in VANET. To overcome the problems of dramatic topol-
ogy changes and unreliable links caused by fast vehicle move-
ments in VANET, a reliable adaptive routing service algorithm
is proposed in this paper. First, the properties of vehicle mo-
tion and the factors that make links unreliable were studied,
and the duration of a link was proved to have a log-normal
distribution. Second, on the basis of this, a link reliability
calculation model was developed. The link reliability between
nodes was evaluated as a parameter and applied in the Q-
Learning algorithm, following which the RSAR algorithm
was proposed. Finally, simulation experiments were conduct-
ed to evaluate the performance of four routing algorithms,
including packet delivery ratio, end-to-end time delay, and
number of hops. The results showed that RSAR had a higher
packet delivery ratio under various conditions and a low trans-
mission time delay. RSAR can effectively solve the problems
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caused by changes in topology through self-learning.
However, because the learning process is a kind of local dif-
fusion and there can be very many nodes participating in
selecting the route, the routing expense in a large network
environment will be enormous. Hence, future work by the
authors will be focused on the problem of routing expense.
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