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Abstract
In this paper, a many-objective evolutionary algorithm, named as a hybrid evolutionary algorithm based on knee points and
reference vector adaptation strategies (KnRVEA) is proposed. Knee point strategy is used to improve the convergence of
solution vectors. In the proposed algorithm, a novel knee adaptation strategy is introduced to adjust the distribution of knee
points. KnRVEA is compared with five well-known evolutionary algorithms over thirteen benchmark test functions. The
results reveal that the proposed algorithm provides better results than the others in terms of Inverted Generational Distance
and Hypervolume. The computational complexity of the proposed algorithm is also analyzed. The statistical testing is
performed to show the statistical significance of proposed algorithm. The proposed algorithm is also applied on three real-
life constrained many-objective optimization problems to demonstrate its efficiency. The experimental results show that the
proposed algorithm is able to solve many-objective real-life problems.

Keywords Evolutionary multi-objective optimization · Many-objective optimization · Convergence · Diversity

1 Introduction

In the last few decades, researchers have developed a num-
ber of new Evolutionary based Multiobjective Optimization
(EMO) algorithms for solving problems that have two or
three objectives [3–5]. Evolutionary Algorithms (EA) are
population based heuristic algorithms that are capable for
obtaining the set of solutions [63–68, 72]. However, many
real-life problems such as automotive engine calibration
[6], water distribution systems [7], fuzzy systems [69, 70,
73], software engineering [71], and land use management
[8] problems, often require a number of objectives. There-
fore, Multiobjective Evolutionary Algorithms (MOEA) face
some challenges to handle large number of objectives. Most
of MOEAs are unable to produce optimal solution due to
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their selection strategies. This strategy is helpful to converge
the solutions towards the Pareto front. When the number of
objectives increases, it is difficult to maintain the diversity
as the solutions will allocate very sparsely in the objective
search space.

The two well-known multi-objective evolutionary algo-
rithms are Non-dominated Sorting Genetic Algorithm 2
(NSGA-II) [9] and Strength Pareto Evolutionary Algorithm
2 (SPEA2) [42]. Both of these algorithms use dominance
based selection strategy which fails to solve more than
three objective problems because the non-dominated candi-
date solutions lie in limited range of population. To solve
this problem, researchers have developed new optimization
algorithm named as Many-objective Optimization (MaOP)
to handle a large number of objectives [50]. The main
challenges in MaOP are as follows:

– The visualization of Pareto front in a given search space
requires special techniques [54].

– The number of solutions has increased exponentially to
describe the Pareto front of multi dimensional problems
[1, 2].

Diversity maintenance and convergence improvement are
the main focus of MOEAs. However, these algorithms do
not consider the use of preferences for many-objective

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-018-1365-1&domain=pdf
http://orcid.org/0000-0002-6343-5197
mailto: gdhiman0001@gmail.com
mailto: vijaykumarchahar@gmail.com


KnRVEA 2435

problems. This is so because the researchers may be focused
on Pareto optimal solutions and less computational efforts
to achieve a demonstrative subset of the Pareto front using
evolutionary approaches [50].

Apart from this, there are various performance indicator
based algorithms that have been developed to improve the
efficiency of algorithms for many-objective optimization
problems [10–12]. One of the most popular hypervolume
indicator based algorithms is the Hypervolume Estimation
Algorithm (HypE) [13] which uses Monte Carlo simulation
to estimate the exact hypervolume values. Unfortunately,
when the number of objective increases, then computational
complexity of the algorithm also increases [15].

The main contribution of this paper is to propose a hybrid
algorithm that utilizes the concepts of Knee Point Driven
Evolutionary Algorithm (KnEA) and Reference Vector
Guided Evolutionary Algorithm (RVEA). The algorithm
is named as a hybrid evolutionary algorithm based on
knee points and reference vector adaptation strategies
(KnRVEA). The proposed KnRVEA algorithm has five
main strategies namely mating selection, variation, finding
knee point, environmental selection, and knee adaptation
strategy. The mating selection strategy is used to exchange
the information between individuals and pick the most
promising optimal solution from the current population. The
variation utilizes simulated binary crossover (SBX) [59]
and the polynomial mutation [60] operators to produce new
offspring. The knee points are helpful to improve the search
ability of the algorithm. The solutions are decomposed
and merged into non-dominated fronts using environmental
selection strategy. The knee adaptation strategy is used to
decompose the many-objective optimization problem into a
sub-problems for handling irregular Pareto front.

The performance of KnRVEA has been evaluated on
thirteen well established benchmark test problems with
respect to two performance measures namely Inverted
Generational Distance (IGD) and Hypervolume (HV).

The results have been compared with five well-known
techniques such as Reference Vector Guided Evolutionary
Algorithm (RVEA) [14], Hypervolume Estimation Algorithm
(HypE) [13], Niche-elimination Operation based Non-
dominated Sorting Genetic Algorithm (NSGA-III-NE) [56],
Improved many-objective Optimization Algorithm based on
Decomposition (I-MOEA/D) [44], and Knee Point Driven
Evolutionary Algorithm (KnEA) [31]. KnRVEA has further
been applied on three real-life many-objective problems.

The rest of the paper is structured as follows: Section 2
presents the related work done in the field of many-objective
optimization techniques. Brief description of KnEA and
RVEA is presented in Section 3. Section 4 presents moti-
vation and description of proposed KnRVEA algorithm.

Section 5 discusses benchmark test problems, experimental
setup, and results. Section 6 discusses the performance of
KnRVEA on three real-life problems followed by conclu-
sions in Section 7.

2 Related work

In the last few decades, the number of the evolutionary
algorithms have been developed to solve multi-objective
optimization problems. These algorithms are broadly
classified into two categories such as decomposition based
algorithms and performance indicator based algorithms.

2.1 Decomposition based approaches

Ishibuchi and Murata [40] proposed a Multi-objective
Genetic Local Search (MOGLS) algorithm which was
further improved by Jaszkiewicz [41]. MOGLS algorithm
transformed the optimization problem into the collection of
weighted Tchebycheff functions. However, the performance
of MOGLS is greatly affected from recombination operator.
The another popular algorithm is Non-dominated Sorting
Genetic Algorithm 2 (NSGA-II) [9]. NSGA-II has been
widely used in many real-life applications with small
number of objectives. Hence, it is unable to solve the
problems that have a large number of objectives. ∈-NSGA-
II utilized the concepts of NSGA-II and epsilon-dominance
for solving multi-objective problems [16, 18]. Bi and Wang
[56] proposed an improved version of NSGA-III based on
niche-elimination operation. In the proposed algorithm, an
adaptive penalty distance (APD) function is presented to
consider the importance of convergence and diversity in the
different stages of the evolutionary process. MOEA/D [23]
used a decomposition approach to divide the optimization
problem into a number of sub-problems. These problems
are further optimized using an evolutionary approach. Li
et al. [39] proposed an extended version of MOEA/D
which is based on the combination of dominance and
decomposition approaches. However, the performance of
MOEA/DD is greatly affected from neighborhood size and
selection probability. Zheng et al. [44] proposed a new
decomposition based approach that uses weighted mixture
style method. It utilized two approaches namely weighted
sum decomposition and Tchebycheff decomposition. This
approach is known as I-MOEA/D that improves the
effectiveness of the algorithm.

Hadka and Reed [19, 20] proposed a multi-objective evo-
lutionary algorithm for handling many-objective problems
using auto-adaptive recombination operators to improve the
search process. Asafuddoula et al. [25, 26] proposed a
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evolutionary technique based on decomposition with adap-
tive epsilon (DBEA-Eps) that employs the reference direc-
tions to adjust the search space and maintain the balance
between convergence and diversity. However, DBEA-Eps’s
performance is greatly depends upon input parameters and
adaptive rules. Xiao et al. [49] proposed a novel immune
dominance selection multi-objective optimization algorithm
(IDSMOA) to solve multi-objective problems. The main
idea of IDSMOA is to promote two populations, i.e., pop-
ulation B and population T to co-evolve through immune
selection, immune clone, immune gen, and memory selec-
tion operators to produce a satisfying Pareto front.

Deb and Jain [24] proposed NSGA-III algorithm which
utilizes a reference point based approach for many-objective
optimization. These reference points are same as the
population size in which each population member is assisted
with a reference point. There are number of improved
versions has been proposed for NSGA-III. Jain and Deb [28]
proposed an adaptive-NSGA-III (A-NSGA-III) technique
that has an ability to add and remove the reference points.
The same authors also presented an improved version of
adaptive-NSGA-III algorithm (A2-NSGA-III) to remove
the limitations of A-NSGA-III [27] with improvements in
replacement strategy of reference points. Another extension
of NSGA-III is the unified evolutionary algorithm (U-
NSGA-III) [29] which is able to solve single-objective,
multi-objective, and many-objective optimization problems.

Zhang et al. [31] proposed a knee point driven evolu-
tionary algorithm (KnEA) which adopts a neighbor pun-
ishment density estimation strategy. An adaptive strategy
was proposed for identifying the knee points in a small
neighbourhood. The purpose of this strategy is to com-
bine the parent and offspring populations to improve the
convergence and promote diversity. The main drawback
of KnEA is that the knee points are sensitive towards the
given problem. Recently, Roy et al. [51] proposed an Evo-
lutionary Path Control Strategy (EPCS) based algorithm to
handle many-objective optimization problems. A reference
vector strategy was introduced to reduce the number of non-
dominated solutions. A novel fitness assignment procedure
was proposed for survival selection which uses classical
methods, aggregation methods or combination of these two
methods. The main advantages of EPCS algorithm are low
computational complexity and better diversity. Cheng et
al. [14] proposed a Reference Vector Guided Evolutionary
Algorithm (RVEA) for many-objective optimization prob-
lems. In RVEA, Angle Penalized Distance (APD) is used to
balance both convergence and diversity. APD used adaptive
strategy to adjust the reference vectors that ensure uniform
distribution of solution in the given search space. Therefore,
RVEA is able to handle irregular Pareto fronts.

2.2 Indicator based approaches

Zitzler and Künzli [43] proposed an Indicator-based
Evolutionary Algorithm (IBEA) which utilizes a binary
performance indicator in selection process. The main
drawback of IBEA is high computational cost. There are
several extended versions of IBEA such as IBMOLS that
uses local search operator [45]. Wagner et al. [46] reported
that IBEA algorithm is able to solve MaOPs. Emmerich
et al. [47] proposed S Metric Selection based Evolutionary
Multi-objective Algorithm (SMS-EMOA) that uses non-
dominated sorting as a ranking criterion. They used
hypervolume indicator to remove the individuals that have
lowest hypervolume. The computational cost of S-Metric
is high for large number of objective functions. Bader
and Zitzler [13] proposed a fast hypervolume indicator
based evolutionary algorithm known as Hypervolume
Estimation Algorithm (HypE). The main concept of behind
this algorithm is the ranking of solutions done through
hypervolume. It uses Monte-Carlo simulation to estimate
the hypervolume values. Three main components of HypE
are mating selection, variation, and environmental selection.
The binary tournament selection is proposed to select the
offsprings. The variation used mutation and recombination
operators to produce offspring. In environmental selection,
the parent and children population are combined and
decomposed into non-dominated fronts. Thereafter, the best
fronts are included in new population. HypE suffers from
overhead of maintaining necessary information. Bringmann
et al. [21] proposed a Approximation-Guided Evolution
(AGE) technique which uses the concept of approximation.
However, it suffers from high computational cost. To
reduce this problem, Wagner et al. [22] proposed fast
approximation-guided evolutionary algorithm (AGE-II).
AGE-II used archive for storing additive ∈-approximation
of non-dominated solutions. Gomez and Coello Coello [48]
introduced a Many-objective Metaheuristic based on R2
Indicator (MOMBI) algorithm. The fundamental concept
behind this algorithm is utility functions. These are used
to group the solutions and provide them rank. The whole
process is run until each member of the population is
ranked. The ranking procedure is done by R2-ranking
strategy. They used binary tournament selection to select
the individuals based on their ranks. However, it suffers
from loss of diversity for high dimensionality problems.
Wang et al. [30] proposed an improved version of two-
archive algorithm known as Two-Arch2 for handling many-
objective optimization. They used Convergence Archive
(CA) and Diversity Archive (DA). I∈+ indicator and Pareto
dominance concepts are used to improve the convergence
and diversity. However, it does not provide optimal solution
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for some WFG test instances because it does not consider
extreme points.

3 Background

The basic concepts of Multi-objective Problems (MOPs) are
presented in this section. Thereafter, the brief description of
KnEA and RVEA algorithms are presented.

3.1 Basic concepts

Multi-objective Optimization Problems (MOPs) involve
more than one objective which is to be optimized. The
MOPs can be formulated as follows [17]:

Minimize : F(z) = [f1(z), f2(z), . . . , fn(z)] (1)

Subject to:
gi(z) ≥ 0, i = 1, 2, . . . , m

(2)

hi(z) = 0, i = 1, 2, . . . , p (3)

where z = [z1, z2, . . . , zk]T is the vector of decision
variables, m is the number of inequality constraints, p is
the number of equality constraints, gi is the ith inequality
constraints, hi is the ith equality constraints, and n is the
number of objective functions fi : Rn → R.

There is a possibility that an optimal solution may not
optimize all the objectives simultaneously. Whereas, Pareto
optimal solutions representing the trade-offs between the
objectives. In objective search space, the Pareto solutions
are known as Pareto front (PF) and these solutions are
known as Pareto set (PS) [55, 57] in the decision space.

Definition 1 Pareto Dominance: Assume there are two
vectors such as: y=(y1, y2, . . . , yr ) and x=(x1, x2, . . . , xr ).
Vector y is said to dominate vector x (such as y � x) if and
only if:

∀i ∈ {1, 2, . . . , r},
[f (yi) ≥ f (xi)] ∧ [∃i ∈ 1, 2, . . . , r : f (yi)] (4)

Definition 2 Pareto Optimality:

A solution x ∈ X is called Pareto optimal if and only if:

�x ∈ X | f (x) � f (y) (5)

Definition 3 Pareto optimal set:

The set of all Pareto-optimal solutions including all non-
dominated solutions of a problem is called Pareto optimal
set if and only if:

Ps = {y, x ∈ X | ∃f (x) � f (y)} (6)

Definition 4 Pareto optimal front: A set containing the
objective values corresponding to Pareto optimal solutions
in Pareto optimal set is called Pareto optimal front and it is
defined as follows:

Pf = {f (y) | y ∈ Ps} (7)

Definition 5 Knee point:

It is defined as the Pareto-optimal point that have
maximum reflex angle computed from its neighbors. It
means that if small improvement is done in one objective,
then there will be severe degradation in at least one other
objective [37]. Figure 1 shows the knee points and boundary
points.

3.2 Knee Point Driven Evolutionary Algorithm
(KnEA)

Multi-objective Evolutionary Algorithms (MOEAs) suffers
from two major problems. These speed up the convergence
performance and enhance the diversity. To resolve these
problems, several evolutionary algorithms have been pro-
posed. Knee Point Driven Evolutionary Algorithm (KnEA)
is a recently developed many-objective evolutionary algo-

Fig. 1 Relation between Knee point and Boundary point
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rithm [31]. The knee points are used as secondary selection
criteria to improve the search ability in MOEAs. The main
components of KnEA are described as follows:

– An initial population is randomly generated of size N .
– A binary tournament selection strategy is used to select

the individuals and generate N number of individual
offsprings using variation method. The selection
strategy adopts three tournament metrics such as
dominance relationship, knee point, and a weighted
distance measure.

– The non-dominated sorting method is applied on popula-
tion to identify the solutions located in knee regions.

– An environmental selection strategy is performed to
select N number of individuals.

The above-mentioned components of KnEA are described
in Algorithm 1.

Algorithm 1 KnEA

Input: Population , Population size , Set of knee
points , Rate of knee points , Initial iteration 0,
Maximum number of iteration
Output: Non-dominated solutions

1: procedure KNEA
2:

3:

4: while do
5:

6:

7:

8:

9:

10:

11: return

The mating selection in KnEA uses binary tournament
selection strategy that comprises of three tournament strate-
gies such as dominance comparison, knee point criterion,
and weighted distance (see Algorithm 2). Two individuals
are randomly selected from the given population. If one
solution dominates the other, then the dominated solution
is selected. If both solutions are non-dominated, then deter-
mine whether they are knee points or not. If one of them
is knee point, then the knee points is selected. If both of
these are knee points or neither of them is a knee point, then

a weighted distance method is used to compare the solu-
tions. A weighted distance DW is used to select a winner
solution if neither the knee point criterion nor dominance
comparison can differentiate the two solution participated
in selection strategy [31]. An efficient non-dominated sort-
ing (ENS) algorithm [61] is used to sort the non-dominated
solutions present in the population.

Algorithm 2 Matingselection(P,K,N)

Input: Population , Knee points , Population size
Output:

1:

2: while do
3: Choose the value of and from
4: if then
5:

6: else if then
7:

8: else
9: if and then

10:

11: if and then
12:

13: else
14: if then
15:

16: else if then
17:

18: else
19: if 0.5 then
20:

21: else
22:

23: end if
24: end if
25: end if
26: end if
27: end while
28: return L

An adaptive strategy is used to find knee points present
in the population. Algorithm 3 describes the main steps
of adaptive strategy for finding knee points. The same
procedure is repeated for all non-dominated fronts in the
combined population until knee points are detected for all
non-dominated fronts.
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Algorithm 3 FindingKneePoint(F,T,r,t)

Input: Sorted population , Knee points rate ,
Adaptive parameters
Output:

1:

2: for each do
3: Find extreme solution from the set of solution

4: Compute extreme hyperplane from
5: Update the value of
6: Maximum value of objectives in
7: Minimum value of objectives in
8: Compute the value of
9: Compute the distance between solutions in and

10: Sort population in a descending order
11: Compute the size of population as
12: for each do
13:

14:

15:

16: end for
17:

18: end for
19: return and

Environmental selection process is used to select fitter
solutions as parents for the next generation. KnEA selects
parents for next generation from the combination of parent
and offspring populations of this generation. The main
steps of environmental selection in KnEA are presented in
Algorithm 4.

Algorithm 4 Environmentalselection(F,K,N)

Input: Sorted population , Set of knee points ,
Population size
Output:

1:

2:

3:

4: if then
5: Discard solutions from
6: if then
7: Add solutions to
8: end if
9: return

3.3 Reference Vector Guided Evolutionary Algorithm
(RVEA)

Reference Vector Guided Evolutionary Algorithm (RVEA)
is a recently developed evolutionary algorithm for solving
many-objective optimization problems [14]. The main
components of RVEA are offspring creation, reference
vector guided selection, and reference vector adaptation.
The genetic operators are used to generate the offspring
population. The reference vector guided selection has four
sub-steps such as objective value translation, population
partitions, computation of Angle Penalized Distance (APD),
and elitism selection [14]. It adopts a set of reference vectors
for their selection strategy. In RVEA, Angle Penalized
Distance (APD) is used to balance the both convergence
and diversity dynamically. It uses adaptive strategy to adjust
the reference vectors that ensure uniform distribution of
solution in the search space. The preference articulation
approach is used to generate the distributed Pareto optimal
solution in a search space. Algorithm 5 describes the main
components of RVEA [14].

Algorithm 5 RVEA

Input: Set of reference vectors 0

, Maximum number of iteration

Output: Non-dominated solutions
1: procedure RVEA
2: Initialize the population and set counter 0
3: while do
4: from parent populationCreate offspring
5: Combine the parent and offspring populations,

( )
6: ReferenceVectorGuidedSelection

( )
7: 1 ReferenceVectorAdaptation

( 1 0)
8: c c + 1
9: return

3.3.1 Reference vector guided selection

Reference vector guided selection strategy consists of four
main steps. These are objective value translation, population
partition, angle penalized distance calculation, and elitism
selection. The objective values of individuals in population
are translated into RVEA to guide the search process. To
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generate a uniformly distributed set of reference vectors, a
set of uniformly distributed reference points is generated on
a unit hyperplane using the canonical simplex lattice design
method [58].

3.3.2 Assignment of individuals to reference vectors

After the generation of the reference vectors, individuals are
assigned to them. An individual is assigned to a reference
vectors if and only if the angle between it and the reference
vector is minimum among all reference vectors. In this way,
assignment of individuals to the reference vectors partitions
the population into sub-populations.

3.3.3 Selection mechanism in each sub-population

After the generation of reference vectors and the assignment
of individuals then, one individual is selected from each
sub-population. The selection criterion consists of two
sub-criteria that are meant for managing convergence and
diversity, respectively. Convergence is taken care of by the
distance between the translated objective vector and the
origin. Diversity is accounted by the angle between the
translated objective vector and the reference vector. The
individual with the smallest angle is preferred over other
individuals.

3.3.4 Adaptation of reference vectors

For some optimization problems where objective functions
are scaled to different ranges, a uniformly distributed set of
reference vectors is not best suited as shown in Fig. 2.

To tackle this issue, one possible solution is to adapt the
reference vectors. In RVEA, reference vectors are adaptive.

Fig. 2 Uniformly distributed reference vectors in 3D search space. In
this case, nine uniformly distributed reference points are generated and
then mapped to generate the nine reference vectors

In other words, they change their position according to the
location of individuals in the objective space.

4 Proposed Knee Point and Reference Vector
Adaptation based Evolutionary Algorithm
(KnRVEA)

This section first describe the motivation behind proposed
algorithm followed by a detailed description of proposed
algorithm.

4.1 Motivation

The main contribution of this paper is to propose a hybrid
many objective optimization algorithm that utilizes the knee
points and reference vector adaption strategies. The primary
intention to combine these strategies is to minimize the
each other’s weakness and promote respective strengths. It
is worth mentioning that the knee points are designated for
exploratory search and reference vector adaption strategy
is assigned for uniform distribution of solutions even the
objective functions are not normalized same range. In
the proposed algorithm, only reference vector adaption
strategy is used for uniform distribution of knee points.
The collaboration between knee point and reference vector
adaption strategy enhances the exploratory search capability
such that reference vector adaptation strategy tune the knee
points according to the distribution of candidate solutions
which makes the exploration process more directive. Hence,
a novel knee adaption strategy is proposed which is inspired
from reference vector adaption strategy.

4.2 Proposed algorithm

The basic procedure of proposed KnRVEA algorithm is
described in Algorithm 6. KnRVEA algorithm is inspired
from knee points and reference vector adaptation strategies.
KnRVEA consists of six main steps such as mating selection,
variation, non-dominated sorting, identifying knee points,
environmental selection, and knee adaptation strategy. Ini-
tially, parent population P is randomly initialized with N

number of individuals. The mating selection procedure is
used to select the promising solutions in a given search
space. The variation uses simulated binary crossover (SBX)
[59] and polynomial mutation [60] operators to generate N

offspring individuals. Non-dominated sorting is applied on
both parent and offspring population followed by a search
strategy to identify knee points in each non-dominated front.
The environmental selection is used to select N individu-
als. Finally, knee adaptation strategy is performed to obtain
uniformly distributed Pareto optimal solutions set.
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Algorithm 6 KnRVEA

Input: Population , Population size , Set of knee
points , Rate of knee points , Initial iteration
0, Set of knee points 0 ,
Control parameter , Maximum number of iteration

Output: Non-dominated solutions
1: procedure KNRVEA
2:

3:

4: while do
5:

6:

7:

8:

9:

10:

11:

12: return

4.2.1 Binary tournament mating selection

There are three tournament selection strategies are employed
in KnEA algorithm such as dominance comparison, knee
point criterion and a weighted distance.

The two random solutions are selected in binary tourna-
ment selection. If one solution dominates the other one then
the former solution is selected. If both of these two solutions
are non-dominated with each other, then the proposed algo-
rithm check if they are knee points or not. If only one solution
is knee point, then the knee point is chosen. If both of these
solutions are knee point or none of them is a knee point then
a weighted method is used for comparing these solutions.
The solution which has the large weighted distance can win the
tournament. If both of these solutions have the same distance
then the solution will be chosen randomly for reproduction.

An important component of KnEA algorithm is a weighted
distance measurement for choosing a winning solution in
the binary tournament mating selection if both the dominance
comparison and the knee points criterion are not able to
distinguish the two solutions in the tournament. The weighted
distance of a solution is described as follows based on the
k−nearest neighbors:

DW(p) =
k∑

i=1

wpi
dppi

(8)

wpi = rpi∑k
i=1 rpi

(9)

rpi
= 1

| dppi
− 1

k

∑k
i=1 dppi

| (10)

where pi indicates the ith neighbor of population p, wpi

represents the weight of pi , dppi
is the Euclidean distance

between p and pi , and rpi
represents the rank of distance

dppi
.

4.2.2 Variation

The proposed approach uses simulated binary crossover
(SBX) [59] and polynomial mutation [60] operators for
variation to generate N offspring individuals. These opera-
tors are responsible for better exploration and exploitation
between the individuals. The normal boundary insertion
method is used for offsprings which lies outside the bound-
ary [62].

4.2.3 Non-dominated sorting

KnRVEA performs non-dominated sorting to select the non-
dominated solutions from the first front, i.e., PF1. If the
number of solutions in PF1 is greater than the size of
population N , then knee points in PF1 are firstly selected
as parents for the next population. Let the number of knee
points in PF1 be NPF1. In case NPF1 is larger than N , then
the knee points that have larger distance to the hyperplane
are selected. Otherwise, NPF1 knee points are selected
together with other solutions in PF1 that have a larger
distance to the hyperplane of PF1.

4.2.4 Adaptive strategy for identifying knee points

In KnEA, an adaptive strategy is proposed for finding the
knee points in a population. There is a extreme lineL having
the maximum of f1 and f2 functions. Then, the distance of
each solution is identified as a knee point if its distance is
maximumwith respect to the extreme line (see Fig. 1). Here,
L can be defined by ax + by + c = 0 for a bi-objective
minimization problem. The solution is also considered as a
knee point if there is only one solution in its neighbourhood.
The distance from a solution A(xA, yA) to extreme line L

with more than two objectives is computed as follows:

ds(A, L) =
⎧
⎨

⎩

|axA+byA+c|√
a2+b2

, if axA + byA + c < 0

−|axA+byA+c|√
a2+b2

, otherwise
(11)

A strategy to tune the size of neighborhood solutions is
proposed in KnEA algorithm if all the solutions lie in a same
neighbourhood. However, the proposed adaptive strategy is
able to find the knee points in its neighbourhood.

4.2.5 Environmental selection

KnEA uses elitist approach to selects the parents for the
next generation. KnEA prefers knee points rather than
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the non-dominated solutions in environmental selection.
It performs non-dominated sorting before environmental
selection to select the non-dominated solutions in the first
non-dominated front. If these solutions are larger than the
population size, then knee points are selected first for the
next generation of population.

4.2.6 Knee adaptation strategy

The proposed knee adaptation strategy utilizes the concept
of reference vector adaptation [14] strategy to obtain a
set of Pareto optimal solutions. This strategy is mentioned
in Algorithm 7. These solutions are the points that are
intersection between knee points and Pareto front. However,
these knee points will not produce uniformly distributed
solutions when the objective function values are normalized
in the same range. To remove this conflict, the range of the
knee points will be adapted as follows:

vk+1,j = v0,j ◦ (Omax
k+1 − Omin

k+1)

|| v0,j ◦ (Omax
k+1 − Omin

k+1) || (12)

where j = 1, 2, . . . , N , vk+1,j represents the j th knee
point adapted for generation k + 1, v0,j represents the
j th uniformly distributed knee point. Omin

k+1 and Omax
k+1 are

the minimum and maximum values of objective function,
respectively. The ◦ operator indicates the Hadamard product
that element-wise multiply the two knee points of same
size [14]. The knee adaptation strategy has obtained
the uniformly distributed solutions even if the objective
functions are not normalized.

Algorithm 7 Knee adaptation strategy

Input: Generation index , Population , Current unit
tinulaitinI,testniopeenk

knee point set 0 , Control
parameter
Output: Next generation knee point set 1

1: procedure KNEEADAPTATION ( 0 )

2: if mod 0 then

3: Compute the minimal and maximal
objective values, respectively

4: for j = 1 to N do

5:

6: end for
7: else
8:

9: end if

There is a controlling parameter Fc that control the
frequency of employing the adaptation strategy. It ensures
that knee adaptation strategy have to be performed in

selected generation because there is no need to employ
this strategy very frequently [52]. Example 2 illustrates the
workings of control parameter Fc in adaptation strategy.
Example 2: (Control parameter) For instance, the value
of Fc is set to 0.4. The knee point will be adapted only at
k = 0, k = 0.4×Maxiteration, k = 0.8×Maxiteration, k =
0.12 × Maxiteration and so forth.

4.3 Computational complexity

In this subsection, the computational complexity of
proposed algorithm is discussed. Both time and space
complexities of the proposed algorithm are given below.

4.3.1 Time complexity

1. Initialization of KnRVEA population needs O(M × N)

time whereM andN represent the number of objectives
and population size, respectively.

2. Mating selection procedure requires O(M × N × N),
i.e., O(M × N2) time.

3. Variation procedure uses O(N) time.
4. Non-dominated sorting procedure requires O(MN2).
5. Knee point identification requires O(MN2).
6. Environmental selection needs O(NlogN).
7. Knee adaptation strategy requires O(MN/Fc ×

Maxiteration), where Fc represents control parameter
and Maxiteration represents the maximum number of
iterations.

Therefore, summing up the complexities of all the above
steps and the total time complexity of KnRVEA for
maximum number of generations is O(M × N2 ×
Maxiteration).

4.3.2 Space complexity

The space complexity of KnRVEA algorithm is the
maximum amount of space which is considered at any one
time during its initialization process. Thus, the total space
complexity of KnRVEA algorithm is O(M × N).

5 Experimentation and results

In order to demonstrate the effectiveness of proposed
KnRVEA, thirteen benchmark test problems have been
used for experimentation which are taken from two well-
known test suites such as DTLZ [32] and WFG [33].
The performance of KnRVEA has been compared with
five well-established algorithms such as Reference Vector
Guided Evolutionary Algorithm (RVEA) [14], Hypervol-
ume Estimation Algorithm (HypE) [13], Niche-elimination
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Table 1 The characteristics of benchmark test problems

Problems Objectives Properties

DTLZ1 3, 5, 10, 15 Linear, multi-modal

DTLZ2 3, 5, 10, 15 Concave

DTLZ3 3, 5, 10, 15 Concave, multi-modal

DTLZ4 3, 5, 10, 15 Concave, biased

WFG1 3, 5, 10, 15 Mixed, flat biased

WFG2 3, 5, 10, 15 Convex, disconnected, non-separable

WFG3 3, 5, 10, 15 Linear, degenerate, non-separable

WFG4 3, 5, 10, 15 Concave, multimodal

WFG5 3, 5, 10, 15 Concave, deceptive

WFG6 3, 5, 10, 15 Concave, nonseparable

WFG7 3, 5, 10, 15 Concave, parameter dependant biased

WFG8 3, 5, 10, 15 Concave, non-separable, parameter

dependant biased

WFG9 3, 5, 10, 15 Concave, non-separable, deceptive,

parameter dependant biased

Operation based Non-dominated Sorting Genetic Algorithm
(NSGA-III-NE) [56], Improved many-objective Optimiza-
tion Algorithm based on Decomposition (I-MOEA/D) [44],
and Knee Point Driven Evolutionary Algorithm (KnEA)
[31]. The results are evaluated and compared with two well-
known performance measures such as Inverted Generational
Distance (IGD) [36] and Hypervolume (HV) [38].

5.1 Benchmark test problems

All the algorithms have been tested over four DTLZ
test problems (DTLZ1-DTLZ4) [32] and nine WFG test
problems (WFG1-WFG9) [33]. For each benchmark test
suite, the number of objectives is to be varied from 3 to 15,
i.e., {3, 5, 10, 15}. Table 1 represents the description of these
test problems. According to [32], the decision variables are
set to n = m + r − 1 for DTLZ test problems. The value of
r is fixed for DTLZ1 (r = 5) and for DTLZ2-DTLZ4(r =
10). The decision variables are set to n = k + l for WFG
test problems, where variable k = 2 × (m − 1) and l is set
to 20 as suggested by [33].

5.2 Parameter setting

The parameters of the above-mentioned algorithms are
set as they are recommended in their original work. The
parameters setting of these algorithms are reported in
Table 2. In addition to these parameters, the population size
and maximum iterations for all above-mentioned algorithms
are set to 100 and 3000, respectively. Due to the stochastic
nature of these algorithms, the results are averaged over 30
independent runs under 30 random seeds. The mean and
median solutions obtained in final iteration are reported in
tables. The simulations are carried out in Matlab R2017a
environment operating on Core i5 processor and 2.40 GHz
processor with 4 GB RAM.

Table 2 Parameters values of
algorithms # Algorithms Parameters Values

1 KnRVEA Simulated Binary Crossover probability 1

Polynomial mutation probability 1/n

Distribution index of crossover operator (nc) 20

Distribution index of mutation operator (nm) 20

Threshold (T ) 0.5

1 RVEA Simulated Binary Crossover probability 1

Polynomial mutation probability 1/n

Distribution index of crossover operator (nc) 20

Distribution index of mutation operator (nm) 20

2 HypE Sampling points 10,000

3 NSGA-III-NE Simulated Binary Crossover probability 1

Polynomial mutation prob. 1/n

Distribution index of crossover operator (nc) 30

Distribution index of mutation operator (nm) 20

4 I-MOEA/D Simulated Binary Crossover probability 1

Polynomial mutation prob. 1/n

Distribution index of crossover operator (nc) 20

Distribution index of mutation operator (nm) 20

5 KnEA Threshold (T ) 0.5
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5.3 Experimentation 1: Performance evaluation
on DTLZ test suite

Tables 3 and 4 show the values of IGD and HV obtained
from above-mentioned six algorithms on DTLZ test suite
with 3, 5, 10, and 15 objectives (i.e., 16 test instances). It
can be seen from these tables that KnRVEA provides better
values of IGD and HV for DTLZ1 test instances. After
the proposed KnRVEA, RVEA and I-MOEA/D provide
the better value of IGD and HV than the others. RVEA
and I-MOEA/D are the second best performing algorithms.
NSGA-III-NE performs almost similar to HypE algorithm
in all the test instances of DTLZ1.

For DTLZ2 test instances, KnRVEA provides better
value of IGD for 3- and 15-objective test instances. After
the proposed KnRVEA, RVEA provides better results than
the other algorithms for these test instances. For 5- and
10-objective test instances, KnRVEA is the second best
algorithm in terms of IGD. For these instances, RVEA
provides better results than KnRVEA. For HV, KnRVEA
provides better results for all test instances of DTLZ2.
While, the performance of RVEA and HypE algorithms is
similar to each other for HV measure.

For DTLZ3 test instances, KnRVEA is significantly
better than other competitor algorithms in terms of IGD and
HV. For IGD, I-MOEA/D and NSGA-III-NE are the second

Table 3 The IGD values obtained by proposed KnRVEA and other competitor algorithm in DTLZ test suite

F M Analysis KnRVEA RVEA HypE NSGA-III-NE I-MOEA/D KnEA

DTLZ1 3 Mean 4.81E-05 4.69E-04 1.53E-04 4.90E-04 3.20E-04 4.78E-03

Median 5.09E-05 4.99E-04 2.08E-01 1.40E-03 5.90E-04 2.31E-04

5 Mean 2.72E-05 3.11E-05 1.85E-01 5.25E-04 2.65E-04 1.32E-03

Median 3.17E-05 3.57E-05 2.20E-01 9.91E-04 2.96E-04 7.00E-02

10 Mean 6.19E-05 1.50E-04 1.50E-01 2.25E-03 1.90E-03 4.47E-03

Median 2.29E-04 6.69E-04 1.92E-01 3.53E-03 2.26E-03 5.11E-03

15 Mean 2.00E-05 1.77E-04 1.82E-01 2.95E-03 2.90E-03 3.11E-03

Median 1.14E-04 2.04E-04 2.60E-01 5.15E-03 4.25E-03 1.50E-06

DTLZ2 3 Mean 1.01E-04 1.71E-04 6.80E-02 1.35E-03 6.81E-04 4.12E-02

Median 1.10E-04 1.90E-04 6.98E-02 1.42E-03 8.10E-04 3.81E-02

5 Mean 1.03E-03 1.11E-04 2.80E-01 4.35E-03 1.18E-03 2.32E-03

Median 1.91E-03 2.01E-04 2.92E-01 5.15E-03 1.40E-03 4.60E-04

10 Mean 1.39E-03 1.11E-03 6.90E-01 1.40E-02 3.30E-03 1.15E-02

Median 2.11E-02 2.17E-03 7.01E-01 1.61E-02 3.81E-03 4.62E-03

15 Mean 2.93E-04 5.03E-04 6.35E-01 1.40E-02 4.60E-03 5.23E-03

Median 3.67E-04 5.95E-04 7.62E-01 1.83E-02 5.90E-03 3.90E-03

DTLZ3 3 Mean 2.73E-05 1.11E-04 1.70E-02 9.80E-04 5.90E-04 2.35E-02

Median 6.15E-05 2.20E-04 1.82E-02 4.11E-03 1.95E-03 2.79E-02

5 Mean 2.39E-04 1.33E-02 1.19E-02 3.15E-03 6.25E-04 2.01E-02

Median 1.16E-03 1.87E-02 1.93E-02 6.01E-03 1.36E-03 2.94E-02

10 Mean 1.15E-03 2.01E-01 1.86E-02 8.90E-03 1.95E-03 2.38E-02

Median 2.18E-03 2.71E-01 2.93E-02 1.25E-02 2.35E-03 2.93E-02

15 Mean 2.97E-04 1.98E-01 4.35E-02 1.43E-02 5.90E-03 1.11E-02

Median 5.93E-03 2.90E-01 6.93E-02 2.20E-02 7.50E-03 2.04E-02

DTLZ4 3 Mean 1.03E-04 5.03E-04 8.49E-02 2.94E-04 1.10E-04 2.23E-02

Median 1.60E-04 6.84E-04 9.40E-02 6.11E-04 1.71E-04 2.48E-02

5 Mean 6.72E-05 1.00E-01 2.80E-01 9.90E-04 1.11E-04 1.04E-02

Median 7.16E-05 1.69E-01 2.93E-01 1.37E-03 1.37E-04 1.54E-02

10 Mean 1.02E-03 1.94E-03 6.81E-01 5.80E-03 1.32E-03 2.30E-02

Median 1.67E-03 2.31E-03 6.93E-01 6.43E-03 1.70E-03 2.83E-02

15 Mean 1.13E-04 1.96E-04 6.08E-01 7.87E-03 1.50E-03 3.02E-02

Median 2.01E-04 2.31E-04 6.41E-01 3.11E-02 1.90E-03 3.73E-02

The obtained best results are in bold
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Table 4 The HV values obtained by proposed KnRVEA and other competitor algorithm in DTLZ test suite

F M Analysis KnRVEA RVEA HypE NSGA-III-NE I-MOEA/D KnEA

DTLZ1 3 Mean 7.55E-02 4.69E-05 4.98E-03 3.15E-04 4.81E-02 4.11E-02

Median 2.81E-01 4.13E-06 2.57E-05 3.00E-04 4.11E-03 3.50E-03

5 Mean 5.64E-02 4.42E-04 3.49E-05 3.73E-04 3.09E-02 2.00E-02

Median 2.55E-01 2.03E-05 2.99E-05 1.63E-04 2.00E-03 1.05E-02

10 Mean 4.55E-02 1.39E-03 3.08E-03 2.15E-04 1.49E-02 4.11E-03

Median 1.11E-01 1.69E-04 4.18E-04 1.15E-05 2.80E-03 1.79E-04

15 Mean 3.19E-04 6.69E-05 4.18E-05 2.15E-05 1.81E-06 3.97E-07

Median 9.75E-05 3.00E-06 3.19E-07 3.97E-07 1.03E-06 2.97E-07

DTLZ2 3 Mean 3.51E-02 2.69E-05 3.99E-03 4.05E-04 3.85E-02 2.90E-02

Median 2.87E-01 3.03E-06 2.67E-05 2.97E-04 3.19E-03 3.57E-02

5 Mean 3.66E-01 3.40E-04 2.09E-05 2.77E-04 2.91E-02 3.87E-02

Median 1.96E-02 2.03E-05 1.09E-05 1.67E-04 2.01E-03 1.07E-02

10 Mean 3.05E-02 1.19E-03 3.09E-03 3.17E-04 1.57E-02 3.10E-03

Median 2.12E-03 1.59E-04 3.18E-04 1.05E-05 2.73E-03 2.70E-04

15 Mean 4.10E-04 5.60E-05 3.85E-05 3.37E-05 3.01E-06 2.97E-07

Median 4.55E-05 3.97E-06 2.19E-07 3.06E-07 1.19E-06 2.00E-07

DTLZ3 3 Mean 7.06E-02 5.57E-03 3.98E-03 2.05E-04 5.83E-02 2.90E-02

Median 3.83E-03 4.13E-04 3.07E-04 3.78E-05 3.11E-04 3.97E-04

5 Mean 3.61E-01 3.47E-02 2.39E-03 1.77E-03 2.49E-02 1.37E-02

Median 1.50E-02 2.57E-03 2.00E-04 1.95E-04 2.33E-03 1.69E-03

10 Mean 5.50E-01 2.30E-02 3.18E-03 4.09E-03 2.33E-02 3.03E-02

Median 2.31E-02 1.23E-03 4.26E-04 3.37E-04 2.49E-03 2.70E-04

15 Mean 3.11E-02 4.60E-03 3.08E-03 2.67E-03 2.98E-02 1.23E-03

Median 1.70E-03 3.01E-04 2.10E-04 3.92E-04 2.50E-05 2.67E-04

DTLZ4 3 Mean 3.71E-02 3.48E-03 3.00E-03 2.02E-03 3.69E-04 4.57E-05

Median 2.11E-03 4.49E-04 4.07E-04 2.84E-05 1.66E-04 2.39E-05

5 Mean 3.60E-02 4.24E-03 2.49E-04 4.58E-03 2.43E-03 3.47E-04

Median 1.51E-03 3.01E-04 1.90E-05 4.61E-04 5.17E-04 6.69E-05

10 Mean 9.50E-02 2.30E-04 3.57E-03 3.79E-03 2.08E-04 3.96E-03

Median 1.63E-03 1.63E-04 4.10E-04 1.15E-05 2.81E-04 1.39E-04

15 Mean 4.49E-03 6.17E-05 3.58E-04 2.99E-05 3.02E-04 3.43E-05

Median 5.05E-04 1.00E-05 3.10E-06 4.69E-07 1.13E-05 2.90E-06

The obtained best results are in bold

and third best algorithm after KnRVEA, respectively. For
HV performance measure, NSGA-III-NE is the second best
algorithm after KnRVEA.

For DTLZ4 test instances, the results obtained from
KnRVEA are better than the competitor algorithms in terms
of IGD and HV. The I-MOEA/D and NSGA-III-NE are the
second and third best algorithms after KnRVEA for IGD and
HV performance measures.

It has been observed from the results presented in Tables 3
and 4 that KnRVEA is able to find the optimal solution
for most of test instances. For IGD, KnRVEA provides
best results on 12 out of 16 test instances. For HV values,
KnRVEA provides best results on all test instances.

For the visualization of solutions distribution, Figs. 3 and
4 show the non-dominated fronts obtained from KnRVEA
and other competitor algorithms for 15- and 3-objective
DTLZ test functions, respectively. For 15-objective DTLZ
test functions, RVEA and I-MOEA/D provide uniform
convergence but fails to reach some regions of Pareto front.
HypE, NSGA-III-NE, and KnEA provide good convergence
over all Pareto front. It can be seen from Fig. 3 that the
non-dominated front obtained from KnRVEA provides
better convergence and diversity than the other competitor
algorithms. For 3-objective DTLZ test functions, it is observed
that the Pareto front obtained from KnRVEA, RVEA,
NSGA-III-NE, and I-MOEA/D has uniform convergence
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Fig. 3 The non-dominated fronts obtained from six algorithms on 15-objectives for DTLZ1, DTLZ2, DTLZ3, and DTLZ4 test instances

and better diversity (see Fig. 4). However, HypE and KnEA
fail to provide a good coverage over the Pareto front.

5.4 Experimentation 2: Performance evaluation
onWFG test suite

Table 5 shows the IGD values obtained from KnRVEA
and other algorithms for WFG test suite with 3, 5, 10,
and 15 objectives (36 test instances). For WFG1 test
function, KnRVEA provides better results than the other five
algorithms for all test instances. I-MOEA/D is the second
best algorithm. The results obtained from KnEA are better
than HypE algorithm.

For WFG2 benchmark test function, the best IGD value
is obtained from KnRVEA for all test instances. RVEA and
I-MOEA/D are the second and third best algorithms for this
benchmark test function, respectively. KnEA outperforms
HypE in terms of IGD for all test instances.

The results obtained from KnRVEA are better than other
algorithms for WFG3 benchmark test function. For 5-, 10-,
and 15-objective test instances, I-MOEA/D is the second
best algorithm. For 3-objective test instance, RVEA is the
second best performing algorithm after KnRVEA. For 3-
and 5-objective test instances, HypE performs better than

KnEA. Whereas, KnEA performs better than HypE for 10-
and 15-objective test instances.

For WFG4 test function, KnRVEA performs better
results as compared to the other algorithms for all test
instances. After KnRVEA, the results obtained from I-
MOEA/D are better than others for 3-, 5-, and 10-objective
test instances. For 15-objective test instance, RVEA is the
second best algorithm. KnEA performs better than HypE
algorithm.

The results obtained from KnRVEA for WFG5 test
problem are superior than the other competitor algorithms
for all test instances. For 3- and 5-objective test instances,
I-MOEA/D provides better results than other algorithms
except KnRVEA. For 10- and 15-objective test instances,
RVEA is the second best algorithm after KnRVEA. The
results obtained from HypE and KnEA are not competitive
for this test problem.

WFG6 is a non-separable problem. For this problem,
NSGA-III-NE outperforms the other algorithms in all test
instances. The results obtained from RVEA and I-MOEA/D
are very much similar. Therefore, these are the second best
algorithms. KnRVEA is the third best algorithm for all test
instances while the results obtained from KnEA are better
than HypE.
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Fig. 4 The non-dominated solutions obtained from six algorithms on 3-objectives for DTLZ1, DTLZ2, DTLZ3, and DTLZ4 test instances

For WFG7 test problem, KnRVEA outperforms the other
algorithm in terms of IGD for all test instances. For 3-
objective test instance, RVEA is the second best algorithm.
For 5−, 10−, and 15-objective test instances, I-MOEA/D
provides better results after KnRVEA. Whereas, KnEA
performs better than HypE for all test instances.

For WFG8 test problem, KnRVEA performs better
than the above-mentioned algorithms for all WFG8 test

instances. For 3-, 5-, and 10-objective test instances, I-
MOEA/D is the second best algorithm. For 15-objective test
instance, RVEA is the second best optimization algorithm.
KnEA performs better than HypE for all test instances.

For WFG9 test problem, KnRVEA outperforms the other
competitor algorithms for all test instances. RVEA is the
second best algorithm for all instances. KnEA provides
better results than HypE for 5-, 10-, and 15-objective
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Table 5 The IGD values obtained by proposed KnRVEA and other competitor algorithm in WFG test suite

F M Analysis KnRVEA RVEA HypE NSGA-III-NE I-MOEA/D KnEA

WFG1 3 Mean 3.11E-05 3.19E-05 1.43E-04 2.90E-04 1.21E-04 4.51E-02

Median 3.79E-05 3.99E-05 2.61E-01 3.41E-03 2.93E-04 3.90E-02

5 Mean 2.93E-05 3.34E-05 1.99E-01 3.03E-04 2.38E-04 2.14E-02

Median 3.07E-05 3.68E-05 2.39E-01 6.67E-04 4.60E-04 2.33E-02

10 Mean 6.11E-05 1.51E-04 1.51E-01 2.24E-03 1.99E-03 3.67E-02

Median 1.19E-04 1.70E-04 1.69E-01 3.69E-03 2.99E-03 4.02E-02

15 Mean 2.39E-05 1.71E-04 1.12E-01 2.91E-03 2.00E-03 1.73E-02

Median 1.67E-04 2.39E-04 3.60E-01 4.15E-03 3.21E-03 2.18E-02

WFG2 3 Mean 1.11E-04 2.75E-04 4.81E-02 3.35E-03 3.01E-04 1.73E-02

Median 2.04E-04 2.90E-04 5.98E-02 4.62E-03 4.12E-04 2.22E-02

5 Mean 2.03E-04 3.11E-04 3.80E-01 3.45E-03 2.10E-03 1.25E-02

Median 2.91E-04 3.67E-04 3.92E-01 4.13E-03 2.76E-03 1.59E-02

10 Mean 1.67E-04 2.61E-03 5.50E-01 2.42E-02 4.90E-03 3.22E-02

Median 2.64E-03 2.98E-03 6.00E-01 2.82E-02 5.23E-03 3.47E-02

15 Mean 2.46E-04 4.03E-04 5.33E-01 2.40E-02 3.10E-03 3.42E-02

Median 3.44E-04 5.09E-04 6.49E-01 2.89E-02 4.40E-03 4.34E-02

WFG3 3 Mean 2.24E-05 1.10E-04 1.60E-02 9.70E-04 5.00E-04 2.45E-02

Median 6.05E-05 2.30E-04 1.88E-02 4.02E-03 1.06E-03 2.09E-02

5 Mean 2.19E-04 1.13E-02 1.29E-02 3.25E-03 6.15E-04 2.61E-02

Median 1.11E-03 1.81E-02 1.91E-02 5.00E-03 1.31E-03 3.93E-02

10 Mean 2.15E-03 3.01E-01 4.86E-02 8.60E-03 3.97E-03 4.69E-02

Median 3.30E-03 3.70E-01 5.93E-02 8.98E-02 4.05E-03 4.57E-02

15 Mean 2.67E-04 2.96E-01 3.33E-02 2.13E-02 4.90E-03 2.52E-02

Median 4.67E-03 3.92E-01 5.92E-02 3.69E-02 6.54E-03 2.97E-02

WFG4 3 Mean 1.85E-04 4.96E-04 7.39E-02 3.64E-04 2.20E-04 4.42E-02

Median 2.25E-04 5.88E-04 8.40E-02 5.01E-04 3.73E-04 5.70E-02

5 Mean 5.67E-05 2.34E-01 3.20E-01 7.74E-04 3.53E-04 3.36E-02

Median 6.35E-05 3.61E-01 4.70E-01 8.88E-03 4.67E-04 5.50E-02

10 Mean 1.12E-03 2.51E-03 5.81E-01 6.70E-03 2.33E-03 3.40E-02

Median 2.07E-03 4.32E-03 7.83E-01 7.53E-03 5.70E-03 4.74E-02

15 Mean 1.76E-04 2.95E-04 5.28E-01 6.37E-03 2.52E-03 4.12E-02

Median 2.93E-04 3.33E-04 6.94E-01 4.67E-02 4.94E-03 4.99E-02

WFG5 3 Mean 3.81E-05 4.69E-04 3.53E-04 3.50E-04 2.20E-04 2.55E-02

Median 5.19E-05 5.99E-04 4.08E-01 3.84E-03 3.93E-04 3.15E-02

5 Mean 3.12E-05 4.68E-05 2.57E-01 4.25E-04 3.73E-04 3.08E-02

Median 3.85E-05 4.99E-05 2.98E-01 5.28E-04 4.60E-04 4.70E-02

10 Mean 5.19E-05 2.98E-04 3.00E-01 3.63E-03 2.57E-03 2.74E-02

Median 1.22E-04 2.85E-04 3.92E-01 4.24E-03 3.20E-03 3.39E-02

15 Mean 2.11E-05 2.62E-04 2.17E-01 3.11E-03 3.55E-03 2.93E-02

Median 2.34E-04 3.04E-04 3.33E-01 5.00E-03 4.59E-03 3.95E-02

WFG6 3 Mean 2.61E-03 2.70E-04 5.35E-02 1.31E-04 5.00E-04 3.67E-02

Median 3.80E-03 3.99E-04 6.18E-02 2.10E-04 6.13E-04 3.97E-02

5 Mean 4.67E-03 1.85E-04 2.74E-01 1.78E-04 1.21E-03 1.07E-02

Median 5.47E-03 2.79E-04 2.99E-01 2.31E-04 1.63E-03 1.68E-02

10 Mean 1.84E-02 1.34E-03 6.33E-01 2.39E-04 3.02E-03 2.22E-02

Median 2.92E-02 2.96E-03 7.52E-01 2.71E-03 4.01E-03 3.90E-02

15 Mean 1.48E-02 5.25E-04 6.42E-01 2.11E-04 4.46E-03 2.00E-02

Median 2.83E-02 6.99E-04 7.02E-01 3.07E-04 5.01E-03 3.35E-02
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Table 5 (continued)

F M Analysis KnRVEA RVEA HypE NSGA-III-NE I-MOEA/D KnEA

WFG7 3 Mean 2.37E-05 1.67E-04 1.25E-02 7.75E-04 5.69E-04 2.11E-02

Median 4.10E-05 2.34E-04 1.95E-02 8.23E-03 8.99E-03 2.23E-02

5 Mean 1.19E-04 1.69E-02 2.19E-02 3.45E-03 5.97E-04 3.13E-02

Median 2.16E-03 2.07E-02 2.93E-02 4.47E-03 6.98E-03 5.37E-02

10 Mean 2.15E-03 3.71E-01 4.06E-02 4.67E-03 3.19E-03 4.11E-02

Median 2.98E-03 4.96E-01 4.93E-02 5.37E-02 5.55E-03 4.07E-02

15 Mean 2.17E-03 2.67E-01 4.05E-02 2.33E-02 5.52E-03 1.37E-02

Median 2.81E-03 3.90E-01 5.49E-02 3.67E-02 6.50E-03 2.76E-02

WFG8 3 Mean 1.19E-04 3.03E-04 7.67E-02 3.40E-04 2.00E-04 3.97E-02

Median 2.06E-04 5.84E-04 8.40E-02 5.10E-04 3.71E-04 3.92E-02

5 Mean 5.02E-05 1.57E-01 2.67E-01 9.96E-04 1.03E-04 2.47E-02

Median 7.00E-05 2.61E-01 3.90E-01 9.01E-03 2.37E-04 3.51E-02

10 Mean 2.12E-03 3.67E-03 6.81E-01 5.27E-03 3.30E-03 3.17E-02

Median 2.60E-03 4.31E-03 7.92E-01 6.53E-03 4.71E-03 4.81E-02

15 Mean 1.11E-04 2.76E-04 5.08E-01 4.86E-03 2.41E-03 1.12E-02

Median 1.97E-04 3.31E-04 5.41E-01 5.10E-02 3.91E-03 3.73E-02

WFG9 3 Mean 2.31E-04 3.70E-04 4.05E-02 4.51E-03 3.55E-04 4.60E-02

Median 2.77E-04 4.99E-04 5.17E-02 4.87E-03 5.13E-04 6.90E-02

5 Mean 1.08E-04 1.80E-04 2.67E-01 4.49E-03 1.70E-03 4.99E-02

Median 2.01E-04 2.45E-04 2.78E-01 5.13E-03 1.88E-03 2.01E-02

10 Mean 2.91E-04 2.34E-03 5.42E-01 2.84E-02 4.27E-03 6.09E-02

Median 1.37E-03 4.96E-03 6.52E-01 3.52E-02 5.67E-03 4.99E-02

15 Mean 2.39E-04 4.25E-04 5.02E-01 3.68E-02 5.87E-03 3.57E-02

Median 3.17E-04 5.99E-04 6.02E-01 4.83E-02 5.99E-03 4.25E-02

The obtained best results are in bold

test instances. Whereas, I-MOEA/D performs better than
NSGA-III-NE for all test instances.

Figures 5, 6, 7, 8 and 9 show the non-dominated fronts
obtained from KnRVEA and other competitor algorithms
for 15- and 3-objective WFG benchmark test functions,
respectively. For 15-objective WFG test functions, RVEA,
NSGA-III-NE, and MOEA/ DD provide uniform conver-
gence while HypE and KnEA provide good convergence
over all Pareto front. For 3-objective WFG test functions,
KnRVEA, RVEA, and NSGA-III-NE algorithms provide
good Pareto front while the Pareto fronts of HypE, I-
MOEA/D, and KnEA provide good uniform distribution. The
results reveal that the KnRVEA, RVEA, and NSGA-III-NE
provide better coverage over the Pareto front. On the other
hand, the performance of HypE, I-MOEA/D, and KnEA are
challenging but they fail to provide better converge in most
test instances. After analysing the results, it has been con-
cluded that KnRVEA outperforms on high dimensional
objective search space in terms of performance measures.

5.5 Experimentation 3: Wilcoxon signed-rank test

In the literature [51], it has been observed that IGD and HV
do not provide any guarantee for better convergence and
diversity because sometimes the obtained solutions are not
close to the Pareto optimal front. To resolve this problem,
Wilcoxon signed-rank test [53] has been conducted on
the average value of IGD and HV. It is used to compare
KnRVEA with other algorithms in pair-wise manner. The
positive rank is given to proposed algorithm if it is better
than the competitor algorithms with respect to a particular
metric measure (i.e., IGD and HV). Otherwise, the negative
rank is assigned. For comparison, a significance level is
set to 0.10 and summed up all the positive and negative
rank [53]. The T H should be less than or equal to 100
to reject the null hypothesis. The results of Wilcoxon test
are tabulated in Table 6 where +, -, and = indicate that
the performance of KnRVEA is superior (+), inferior (-),
and equal (=) to the competitor algorithms, respectively. It
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Fig. 5 The non-dominated fronts obtained from six algorithms on 15-objectives for WFG1, WFG2, WFG3, WFG4, WFG5, and WFG6 test
instances

is observed from Table 6 that the KnRVEA outperforms
over all the competitor algorithms in terms of IGD and HV
performance measures except NSGA-III-NE.

5.6 Experimentation 4: Statistical significance test

Besides the basic statistical analysis (i.e., mean and
median), ANOVA test has been performed for comparison
of RVEA, HypE, NSGA-III-NE, I-MOEA/D, KnEA, and
proposed KnRVEA. ANOVA is used to test whether the
results obtained from proposed KnRVEA differ from the
results of other competitive algorithms in a statistical
significant way. A p−value determines the statistical

significance level of KnRVEA. The 95% confidence
interval is used for ANOVA testing. Therefore, algorithm is
statistically significant if and only if the p−value is less than
0.05. ANOVA test results for DTLZ benchmark test suite
on performance measures, i.e., IGD and HV, are reported
in Tables 7 and 8. It is observed from these tables that
KnRVEA is statistically different from the other algorithms.
p−value obtained from KnRVEA is much smaller than
0.05. Table 9 shows the ANOVA test results for WFG
test suite on performance measure IGD. The p−value
obtained from KnRVEA is much smaller than 0.05 for
all WFG test instances. The results demonstrate that the
p−value obtained from KnRVEA is much smaller than 0.05
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Fig. 6 The non-dominated fronts obtained from six algorithms on 15-objectives for WFG7, WFG8, and WFG9 test instances

for all benchmark test problems. Therefore, KnRVEA is
statistically different from the other competitor algorithms.

5.7 Sensitivity analysis

The parameter tuning of many-objective algorithms is one
of the major challenge. Different values of parameter
might yield different results as reported from the exiting
literature. KnRVEA algorithm involves three parameters
namely Threshold (T ), Crossover (nc), and Mutation (nm).
The sensitivity investigation of these parameters has been
discussed by varying their values.

1. Threshold (T ): KnRVEA algorithm was run for
different value of T . The values of T used in
experimentation are 0.2, 0.5, 0.8, and 1.0. Figure 10a
reveals that KnRVEA converges towards the optimum
when the value of T is 0.5.

2. Crossover (nc): To investigate the effect of crossover,
KnRVEA algorithm was executed for 10, 20, 30, and
40. For brevity, the DT LZ1 test function is chosen for
analysis. Figure 10b shows the effect of number of search
agents on the performance of the above-mentioned
algorithms. For most of these functions, it was found
that KnRVEA provides best optimal solutions when the
number of search agent is set to 20.

3. Mutation (nm): KnRVEA algorithm was run for
different values of parameter nm. The values of nm used
in experimentation are 10, 20, 30, and 40. Figure 10c
shows that the function DT LZ1 obtains best optimal
solution when the value of nm is set to 20.

5.8 Discussion

This subsection explains why KnRVEA provides bet-
ter results than the other algorithms. KnRVEA maintains
diversity among solutions. This is achieved by utilizing
hypervolume indicator. It is evident from results that the
solutions are very close to Pareto optimal solution. The
solutions are distributed in whole region of Pareto front.
Whereas, the above-mentioned algorithms do not maintain
uniform Pareto front solutions (i.e., diversity). Besides this,
KnRVEA also converges the solutions very fast. Figure 11
shows the evolutionary progress over number of genera-
tions. It can be seen that the number of non-dominated
solutions decrease with an increase in number of objectives.
This shows applicability of KnRVEA on many-objective
optimization problems.

KnRVEAmaintains the information about non-dominated
solutions. This can be achieved by utilizing the knee adapta-
tion strategy. This strategy adjusts the solutions according
to objective functions. It ensures uniform distribution of
solution, even if objective functions are not well normalized
or Pareto fronts are in irregular shape.

6 Real-life applications

In this section, the performance of the proposed KnRVEA
has been tested on three real-life problems such as Multi-
objective Travelling Salesman Problem (MOT SP ), Multi-
objective 0/1 Knapsack Problem (MOKP ), and Water
Resource Planning Problem (WRPP ). These problems are
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Fig. 7 The non-dominated solutions obtained from six algorithms on 3-objectives for WFG1, WFG2, WFG3, and WFG4 test instances

used to show the effectiveness of proposed KnRVEA in
real-life problems.

6.1 Multi-objective travelling salesman problem

The mathematical formulation of multi-objective travelling
salesman problem (MOT SP ) is as follows [34]: Given a set
n cities and p cost ck

ij , k = 1, 2, . . . , p (travel from city

i to j ). The main objective of this problem is to find a tour,
i.e., a cyclic permutation R of n cities.

Minimize
n−1∑

i=1

ck
R(i),R(i+1) + ck

R(n),R(1), k = 1, 2, . . . , p

(13)

In this paper, p is set to 3, 5, 10, and 15.
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Fig. 8 The non-dominated solutions obtained from six algorithms on 3-objectives for WFG5, WFG6, WFG7, and WFG8 test instances

Table 10 shows IGD value obtained from KnRVEA and
and other competitor algorithms on MOT SP . It can be
seen that KnRVEA performs better than other algorithms for
all test instances (i.e., 3, 5, 10, 15). For 3- and 5-objective
instances, KnRVEA provides best IGD value. RVEA is the
second best algorithm for 3-objective test instance. For

5-objective test instance, I-MOEA/D is the second best per-
forming algorithm. For 10- and 15-objective test instances,
KnRVEA outperforms the other five algorithms. RVEA is
the second best algorithm for these test instances. It is worth
mentioning that KnRVEA consistently performing better
than other algorithms for all four MOT SP instances.
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Fig. 9 The non-dominated solutions obtained from six algorithms on 3-objectives for WFG9 test instance

6.2 Multi-objective 0/1 knapsack problem

Multi-objective 0/1 knapsack problem (MOKP ) is a
combinatorial optimization problem. In multi-objective 0/1
knapsack problem, there are q knapsacks and a set of n

items. The objective of this problem is to find the vector
z = (z1, z2, . . . , zn) ∈ {0, 1}n, where zk = 1 indicates the
item k is in all knapsacks and zk = 0 represents the item k is
not in any knapsacks [38]. The mathematical formulation of
multi-objective 0/1 knapsack problem is defined as follows
[38]:

Maximizefk(z) =
n∑

j=1
pkj × zj , k = 1, 2, . . . , q

Subject to:
(14)

n∑

j=1

wkj × zj ≤ ck (15)

where pkj is the profit of item j placed in knapsack k, wkj

is the weight of item j placed in knapsack k, and ck is
the capacity of knapsack k. zq is the selected item q in the
knapsack. According to [38], the value of pkj and wkj lies
in the interval of [10, 100].

Table 11 shows the results obtained from KnRVEA and
other competitive algorithms on MOKP . It is observed
from table that KnRVEA provides better results than the
other algorithms for 3- and 5-objective test instances.
KnRVEA always provides lower IGD value than the other
algorithms. For these instances, RVEA is the second
best performing algorithm. For 10- and 15-objective test
instances, KnRVEA provides lowest value of IGD as
compared to other algorithms. RVEA and KnEA are the
second best algorithm for these instances. The results

reveal that KnRVEA maintains a good balance between
convergence and diversity.

6.3Water resource planning problem

Water resource planning (WRPP ) involves optimal plan-
ning for storm drainage systems in urban area which is
described by Musselman and Talavage [35]. It consists of
three variables such as local detention storage capacity
(z1), maximum treatment rate (z2), and maximum allowable
overflow rate (z3). It uses five objectives functions (f1−f5)
and seven constraints (g1 − g7).

Table 12 shows the IGD values obtained from six
algorithms on four WRPP instances. From this table,
it is observed that KnRVEA provides better results than
other algorithms for 3- and 5-objective test instances. The
IGD value obtained from KnRVEA is much smaller than
the others. RVEA is the second best algorithm for these
test instances. For 10- and 15-objective test instances, the
proposed KnRVEA always provides smaller value of IGD.
The results reveal that KnRVEA is able to solve a problem
with many objectives and constraints.

Table 6 Wilcoxon signed-rank test results between proposed KnRVEA
and other algorithms based on average IGD and HV

Algorithms IGD HV

RVEA = +

HypE + +

NSGA-III-NE + -

I-MOEA/D + +

KnEA + +
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Table 7 ANOVA results for IGD values on DTLZ benchmark test functions

F p−value KnRVEA RVEA HypE NSGA-III-NE I-MOEA/D KnEA

DTLZ1 1.02E-14 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

DTLZ2 1.92E-36 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

DTLZ3 3.71E-04 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEANSGA-
III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
I-MOEA/D

DTLZ4 2.26E-11 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

HypE, NSGA-
III-NE,
I-MOEA/D,
KnEA

KnRVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

Table 8 ANOVA results for HV values on DTLZ benchmark test functions

F p−value KnRVEA RVEA HypE NSGA-III-NE I-MOEA/D KnEA

DTLZ1 6.77E-11 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D

KnRVEA,
RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

DTLZ2 1.02E-47 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
NSGA-III-NE,
I-MOEA/D

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

DTLZ3 3.69E-17 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, KnEA

KnRVEA,
RVEA, HypE,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
I-MOEA/D

DTLZ4 8.80E-23 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

HypE, NSGA-
III-NE, KnEA

KnRVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D
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Table 9 ANOVA results for IGD values on WFG benchmark test functions

F p−value KnRVEA RVEA HypE NSGA-III-NE I-MOEA/D KnEA

WFG1 2.02E-54 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

WFG2 3.34E-26 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D

WFG3 2.37E-31 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

WFG4 3.39E-40 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
I-MOEA/D,
KnEA

RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

WFG5 5.01E-19 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

HypE, NSGA-
III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

WFG6 3.34E-23 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

WFG7 2.11E-06 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

WFG8 1.32E-43 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE, NSGA-
III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
I-MOEA/D

WFG9 2.61E-39 RVEA, HypE,
NSGA-III-NE,
I-MOEA/D,
KnEA

KnRVEA,
HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
I-MOEA/D,
KnEA

KnRVEA,
RVEA, HypE,
NSGA-III-NE,
KnEA

KnRVEA,
RVEA,
NSGA-III-NE,
I-MOEA/D
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(a) (b) (c)

Fig. 10 Sensitivity analysis of proposed KnRVEA algorithm

Fig. 11 The convergence analysis of non-dominated solutions on 3-, 5-, 10-, and 15-objectives for DTLZ2 and DTLZ4 test functions in terms of
HV and IGD

Table 10 The IGD values
obtained by proposed
KnRVEA and other competitor
algorithms on MOT SP

F M Analysis KnRVEA RVEA HypE NSGA-III-NE I-MOEA/D KnEA

3 Mean 6.11E-05 7.60E-05 2.51E-04 3.90E-04 2.10E-04 1.52E-02

Median 6.39E-05 3.11E-04 1.05E-03 2.52E-03 4.71E-03 2.90E-01

5 Mean 3.72E-05 2.01E-04 2.80E-02 4.23E-03 4.15E-05 1.30E-03

Median 4.10E-04 2.57E-03 4.25E-02 7.91E-02 6.76E-04 1.80E-02

10 Mean 9.09E-04 3.49E-03 2.70E-02 7.26E-02 2.20E-02 8.60E-01

Median 2.70E-03 6.61E-02 1.99E-01 4.00E-01 2.20E-01 9.89E-01

15 Mean 1.00E-05 4.37E-04 7.08E-03 3.49E-02 6.66E-02 2.06E-03

Median 4.14E-04 7.77E-03 4.39E-02 8.10E-02 9.05E-02 5.97E-02

The obtained best results are in bold

Table 11 The IGD values
obtained by proposed
KnRVEA and other competitor
algorithms on MOKP

F M Analysis KnRVEA RVEA HypE NSGA-III-NE I-MOEA/D KnEA

3 Mean 6.81E-05 7.66E-05 2.66E-04 3.47E-04 2.22E-04 1.50E-02

Median 1.99E-04 2.90E-04 7.49E-03 3.39E-03 4.33E-03 9.95E-02

5 Mean 1.72E-05 4.10E-05 2.89E-02 4.65E-04 1.60E-03 6.33E-02

Median 3.13E-04 3.66E-04 2.26E-01 7.97E-03 2.77E-02 9.89E-02

10 Mean 1.11E-05 3.94E-04 5.40E-02 4.25E-03 3.47E-02 4.77E-02

Median 2.20E-04 2.79E-03 3.90E-01 5.55E-02 4.40E-02 5.80E-01

15 Mean 5.01E-02 8.78E-02 5.59E-01 4.47E-01 3.34E-01 7.07E-02

Median 7.74E-02 9.90E-02 7.77E-01 6.75E-01 4.26E-01 8.50E-01

The obtained best results are in bold
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Table 12 The IGD values
obtained by proposed
KnRVEA and other competitor
algorithms on WRPP

F M Analysis KnRVEA RVEA HypE NSGA-III-NE I-MOEA/D KnEA

3 Mean 8.80E-07 3.00E-06 4.37E-05 5.09E-04 6.49E-03 3.47E-05

Median 7.00E-06 5.90E-05 3.11E-04 4.37E-03 3.19E-02 2.47E-04

5 Mean 2.12E-05 4.69E-04 5.05E-03 3.20E-04 6.37E-03 3.44E-03

Median 3.00E-04 6.56E-04 2.47E-02 6.69E-03 3.72E-02 3.80E-02

10 Mean 9.10E-05 3.66E-04 3.49E-03 4.11E-02 2.91E-03 1.47E-03

Median 6.20E-04 7.09E-04 1.92E-02 4.50E-01 1.16E-02 4.89E-02

15 Mean 1.00E-05 1.77E-04 1.81E-03 4.05E-02 2.91E-02 1.83E-03

Median 1.02E-04 2.56E-03 2.60E-02 9.10E-02 7.25E-02 1.50E-02

The obtained best results are in bold

7 Conclusions

In this paper, a hybrid many-objective optimization algo-
rithm, named KnRVEA, has been proposed. KnRVEA uti-
lizes the features of knee points and reference vector adap-
tation strategies. The knee points are used to improve the
search performance when the number of objectives increases.
The knee points are used to increase the selection pressure
for improving the convergence performance of proposed
algorithm. The proposed knee adaption strategy is used to
obtain a set of uniformly distributed solutions. KnRVEA
has been implemented and tested on thirteen benchmark
test functions. On comparing the results of KnRVEA with
other algorithms, it has been observed that KnRVEA out-
performes five recently developed MOEAs such as RVEA,
HypE, NSGA-III-NE, I-MOEA/D, and KnEA. KnRVEA
has further been applied on three well-known real-life
problems. The results reveal that KnRVEA provides better
results among all the competitive algorithms.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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