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Abstract
Nature-inspired optimization algorithms have received more and more attention from the researchers due to their several
advantages. Genetic algorithm (GA) is one of such bio-inspired optimization techniques, which has mainly three operators,
namely selection, crossover, and mutation. Several attempts had been made to make these operators of a GA more efficient in
terms of performance and convergence rates. In this paper, a directional crossover (DX) has been proposed for a real-coded
genetic algorithm (RGA). As the name suggests, this proposed DX uses the directional information of the search process for
creating the children solutions. Moreover, one method has been suggested to obtain this directional information for identifying
the most promising areas of the variable space. To measure the performance of an RGAwith the proposed crossover operator
(DX), experiments are carried out on a set of six popular optimization functions, and the obtained results have been compared to
that yielded by the RGAs with other well-known crossover operators. RGA with the proposed DX operator (RGA-DX) has
outperformed the other ones, and the same has been confirmed through the statistical analyses. In addition, the
performance of the RGA-DX has been compared to that of other five recently proposed optimization techniques on
the six test functions and one constrained optimization problem. In these performance comparisons also, the RGA-
DX has outperformed the other ones. Therefore, in all the experiments, RGA-DX has been found to yield the better
quality of solutions with the faster convergence rate.

Keywords Evolutionary algorithm . Real-coded genetic algorithm . Directional crossover . Exponential crossover . Convergence
rate

1 Introduction

An optimization is the process of searching the best feasible
solution among several possibilities. Most of the real-world
optimization problems are generally non-linear in nature and
they have one or more number of design variables and con-
straints. The need for optimizing the design of a product or a
process is to reduce the total cost, material consumption, waste
and time, or to make an improvement in performance, profit
and benefit [1–6]. The traditional deterministic approaches do
not involve any randomness in the algorithm and

consequently, they behave in a mechanical deterministic
way. These techniques are not suitable to solve complex opti-
mization problems, especially when the objective functions
are found to be non-smoothed or ill-conditioned. Therefore,
researchers had looked to the Mother Nature to get innovative
ideas for problem-solving. Since then, various stochastic ap-
proaches, inspired by several natural phenomena, have been
designed and successfully applied to solve a variety of prob-
lems in different spheres of engineering and industrial appli-
cations [7–18]. These techniques utilize random numbers and
due to which, different optimized results can be obtained in
several runs with the same initial population. Furthermore,
there are several advantages of stochastic approaches over
the deterministic ones, such as flexibility in defining objective
and constraint functions, ability to avoid local optima prob-
lem, can be implemented for solving any kind of optimization
problems, and others. Due to several benefits of the stochastic
methods, researchers have made their efforts to contribute not
only to the application related problems but also to the theo-
retical studies of the same.
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In literature, the theoretical studies on the stochastic
methods have been broadly grouped into three major catego-
ries. The first one deals with the improvement in performances
of the current algorithms using the modified or newly devel-
oped stochastic operators [19–23], while several optimization
techniques are hybridized to obtain the better performances
[24–27] compared to the individual ones in the second cate-
gory. In the third one, researchers have proposed several new
metaheuristic techniques inspired by various natural phenom-
ena and others. Cricket Algorithm (CA) [28], Grasshopper
Optimization algorithm (GOA) [29], Sine Cosine
Algorithm (SCA) [30], Social Spider Optimization
(SSO) [31], Search Group Algorithm (SGA) [32], etc.
are a few worth-mentioning examples of the newly-
proposed optimization techniques.

Among several stochastic techniques, Genetic algorithm
(GA) is one of the most widely used optimization techniques
and it has been implemented to solve a variety of problems in
various domains [33–36]. GAwas proposed by Holland [37]
and it imitates the basic principle of natural selection, which is
nothing but the survival of the fittest. It is a population-based
global optimization technique and it has several advantages,
such as it is easy and straight-forward to apply, capable of
tackling a large search space and there is no need of the de-
tailed mathematical derivations for defining the objective and
functional constraints of the problem. There are several coding
schemes available for a GA (binary-coded GA [38], gray-
coded GA [39], integer genes [40], and real-coded GA [20,
41]) in the literature. However, the real-coded genetic algo-
rithm (RGA) has been found to be more popular [42] com-
pared to the other ones for its inherent capability to provide the
solutions in the numeric form directly and there is no need to
code and decode the solutions. Moreover, many real-world
applications of RGA (especially, for high accuracy problems
with very large search spaces) [43, 44] have demonstrated the
superiority of using the same compared to that of the other
coding schemes.

A standard GA mainly consists of three stochastic opera-
tors, such as selection, crossover, and mutation. Each of these
has its own operating mechanism to search for the optimal
solution. In the selection scheme, more potential candidates
in terms of their fitness values are chosen in the mating pool,
while during the crossover, the properties of the parents are
transformed into the newly created offspring. After the cross-
over, mutation is applied to bring a sudden change in the
properties of the created offspring and this helps a GA to avoid
the local minimum trapping problem. A standard GA operates
in a cyclic manner with these three mentioned operators, until
it satisfies the stopping criterion. In the literature of GA, sev-
eral contributions have been made to improve the perfor-
mance of this optimization technique and among them, a
greater focus has been seen in proposing new crossover
schemes or improving the existing ones. This said fact

signifies that the crossover is the most important recombina-
tion operator [45], which greatly helps a GA to reach the
globally optimum point. In the present study, a new crossover
operator has been proposed to improve the overall perfor-
mances of a real-coded genetic algorithm (RGA).

2 Literature review

To make the GA more efficient, several new crossover
schemes had been developed by various researchers. Wright
[46] introduced a heuristic mating approach, where an off-
spring is yielded from two mating parents with a biasness
towards the better one. The concept of flat crossover was
proposed by Radcliffe [47], where the offspring is created
randomly between a pair of solutions. The arithmetical cross-
over was proposed byMichalewicz [48] with its two versions,
namely uniform and non-uniform arithmetical crossover. The
idea of a blend crossover (BLX-α) was proposed by Eshelman
and Schaffer [49]. In this case, the positions of the offspring
are determined by the value of the parameter α and the rec-
ommended value for the parameter was found to be equal to
0.5. A fuzzy recombination operator was introduced by Voigt
et al. [50], where the algorithm converged linearly for a large
class of unimodal functions.

The concept of the Simulated Binary Crossover (SBX) was
proposed by Deb and Agrawal [51]. This mimics the idea of a
single-point crossover operation on binary chromosomes in
continuous search space. It creates two children solutions
out of two mating parents. A unimodal normally distributed
crossover (UNDX) operator was designed by Ono and
Kobayashi [52], where two or more offsprings were supposed
to be generated using three mating solutions. A steady-state
GAwith the said operator was implemented on three difficult-
to-solve problems. Furthermore, an effort was made to im-
prove the performance of the UNDX by Ono et al. [53] with
the aid of a uniform crossover scheme. However, only three
problems were used to demonstrate the performance of the
improved UNDX operator. Later, this work was further ex-
tended and presented as a multi-parental UNDX [54], where
more than three parent solutions were supposed to participate
in a crossover. However, there was no significant improve-
ment reported in the performance of a GAwith the extended
version of the UNDX compared to the original one.

Herrera and Lozano [55] developed a real-coded crossover
mechanism with the help of a fuzzy logic controller to avoid
the premature convergence issue of a GA. The extension of
this work was also found in [56], where the performance of an
RGAwith the proposed operator was found to be reasonable.
However, the number of problems in the experiment was not
sufficient to conclude anything deterministically. The theory
of a simplex crossover (SPX) was given by Tsutui et al. [57],
in which the children solution vector was generated by the
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uniformly sampling values deduced from simplex formed by
the parent vectors. It was reported that this method works fine
on the multimodal problems having more than one local opti-
mum basins.

Apart from these, Deb et al. [58] introduced a parent-
centric crossover (PCX) and its performance was tested on a
set of three optimization problems. The results were compared
to that of the other two crossover operators, such as SPX and
UNDX and a few metaheuristic algorithms. The Laplace
crossover (LX), proposed by Deep and Thakur [59], uses the
Laplace distribution to determine the positions of the newly
created offspring. In that paper, the performance of the LX
was compared only to that of heuristic crossover (HX).
Later, a directed crossover was proposed by Kuo and Lin
[60] and the mechanism of this operator was developed utiliz-
ing the reflection and expansion searching approach of
Nelder-Mead’s simplex method. Lim et al. [61] proposed the
idea of a Rayleigh crossover (RX) based on the Rayleigh
distribution. The performance of an RGAwith this crossover
operator was found to be better, when it was compared to that
of an RGAwith LX operator. However, this comparison was
not sufficient enough to establish the superiority of this operator.
Recently, Chuang et al. [45] introduced a parallel-structured
RGA. They called it RGA-RDD and this is an ensemble of
three evolutionary operators, such as Ranking Selection (RS),
Direction-Based Crossover (DBX), and Dynamic Random
Mutation (DRM). From the various results yielded by the
RGA-RDD, it was concluded that this was more suitable in
solving high-dimensional and multi-modal optimization prob-
lems. Das and Pratihar [41] developed a direction-based ex-
ponential crossover operator, which was influenced by the
directional information of the problem and it used exponential
functions to create offspring.

From the above literature survey of the GA, it has been
observed that there exist a number of crossover schemes with
their inherent advantages and disadvantages. However, it is to
be noted that in most of the crossover operators (except DBX
in RGA-RDD), the concept of obtaining the most promising
search direction and utilizing this information for creating the
children solutions is missing. In DBX, one procedure had
been developed to use the directional information. However,
there is no concept of using directional probability (pd) term,
which helps the GA to maintain a proper balance between the
selection pressure and population diversity. These concepts
are introduced in a more efficient way in this study and these
are the novelties of this proposed DX operator. Furthermore, it
is all accredited that there is no end of improvements. In ad-
dition, considering the insights of the theorem BNo Free
Lunch^ [62], it can be stated that it is impossible for an algo-
rithm to provide the best results for all types of problems. In
another way, it can be said that a superior performance of an
algorithm on a specific set of problems does not guarantee an
equal performance in solving all other problems. This fact

motivates the researchers to contribute by either improving
the existing algorithms or proposing new kind of algorithms.
Moreover, this fact is also the source of motivation for the
present study, where a new directional crossover (DX) has
been proposed for a real-coded genetic algorithm. It is to be
noted that the present work is quite different from the previous
work of the authors [41] related to crossover operation. The
rest of the text has been arranged as follows: Section 3 pro-
vides the details of the proposed crossover operator, while the
results and discussion are included in Section 4. A constrained
engineering problem has been solved using an RGAwith the
proposed DX operator in Section 5 and finally, some conclud-
ing remarks are made in Section 6.

3 The proposed directional crossover
operator

Here, we present a new directional crossover (DX) operator
for the real-coded genetic algorithm (RGA). Figure 1 shows
the flowchart of an RGA. As the name suggests, the proposed
crossover scheme is guided by the directional information of
the optimization problem during an evolution. The directional
information is nothing but the prior knowledge about the
most-promising areas in the search space, where the probabil-
ity of finding a better solution is more. In this proposed cross-
over operator, two new children solutions are created after
exchanging the properties of two mating parents.
Furthermore, the directional information is obtained for a
crossover operation by comparing the mean position of the
two mating parents with the position of the current best solu-
tion. The details of this proposed crossover operator are de-
scribed in Section 3.1.

3.1 Detailed descriptions of DX

Let us consider, the population size of an optimization algo-
rithm is N and the number of variables of the problem is d.
After the selection process is over, N2 number of mating pairs
are formed randomly from the N selected solutions. Now, a
particular pair of solutions is allowed to participate in
crossover, if a random number, created between 0 and
1, is found to be either less than or equal to the cross-
over probability (pc). Otherwise, there will be no mod-
ification in those two mating parents.

Now, assume two mating parents, say p1 and p2, are
allowed to participate in the crossover. As the proposed oper-
ator is implemented variable-wise, another probability, name-
ly variable-wise crossover probability (pcv), is used to deter-
mine the occurrence of the crossover for a certain variable
position. Moreover, the concept of the parameter pcv is used
in the algorithm for a variable in the same way as in the case of
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pc. This means that the ith-variable of the mating solutions p1
and p2 (i.e., pi1 and pi2, respectively), are going to participate
in crossover, only when a random number, ranging from 0 to
1, is seen to be either less than or equal to that of pcv.
Otherwise, no changes are made in the ith-variable of the mat-
ing parents. Here, i varies from 1 to d.

Next, if the two mating solutions (pi1 and pi2 ) are allowed
to participate in the crossover, there can be two distinct situa-
tions and depending upon the situations, the crossover mech-
anisms are going to be different. The first situation occurs,
when the pair of solutions (pi1 and pi2 ) is found to be unequal,
while in the second situation, the said solutions are seen to
have the same values. The crossover mechanisms of both the
situations are explained as follows:

First situation: In this case, the two mating parents (pi1
and pi2 ) are seen to have different values. Themean of the
two mating parents (say, pimean ) is calculated.
Considering pbest as the current best solution of the pop-
ulation in terms of the fitness value, pimean is compared to
that of the ith-variable of the pbest (i.e., pibest ) to obtain the
directional information. It is assumed that in the direction
of the pibest, the chances of creating good solutions from
the mating parents are more. Now, the locations of the
newly created children solutions are influenced by this
prior information of direction with a probability value,
namely directional probability (pd). Due to fact that there
is no guarantee to get the better offspring in the obtained
direction, the parameter pd is introduced in the proposed
operator. Now, two intermediate parameters, such as val

and β, are calculated using Eqs. (1) and (2). Moreover,
when the value of the pibest is found to be either greater
than or equal to pimean, the children solutions (say, c1 and
c2) are created as follows:

val ¼ 1− 0:5ð Þe
jpi
1
−pi

2
j

viu−v
i
lð Þ

� �
; ð1Þ

β ¼ r
α2

; ð2Þ

c1 ¼ val � pi1 þ pi2
� �þ αr � e 1−βð Þ � 1−valð Þ � jpi1−pi2j

c2 ¼ 1−valð Þ � pi1 þ pi2
� �

−α 1−rð Þ � e −βð Þ � val � jpi1−pi2j
o

if r1≤pd;

ð3; 4Þ

c1 ¼ val � pi1 þ pi2
� �

−αr � e 1−βð Þ � 1−valð Þ � jpi1−pi2j
c2 ¼ 1−valð Þ � pi1 þ pi2

� �þ α 1−rð Þ � e −βð Þ � val � jpi1−pi2j
o

if r1 > pd;

ð5; 6Þ
where r and r1 are the two different random numbers generat-
ed in the range of 0 and 1. Vi

u and V
i
l are the upper and lower

limits of the ith-variable, respectively. α is the multiplying
factor and it is a user-defined parameter. In another case,
where pibest is seen to be less than pimean, the offsprings are
generated as follows:

c1 ¼ val � pi1 þ pi2
� �

−αr � e 1−βð Þ � 1−valð Þ � jpi1−pi2j
c2 ¼ 1−valð Þ � pi1 þ pi2

� �þ α 1−rð Þ � e −βð Þ � val � jpi1−pi2j
o

if r1≤pd;

ð7; 8Þ

Fig. 1 Flowchart of a standard
RGA
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c1 ¼ val � pi1 þ pi2
� �þ αr � e 1−βð Þ � 1−valð Þ � jpi1−pi2j

c2 ¼ 1−valð Þ � pi1 þ pi2
� �

−α 1−rð Þ � e −βð Þ � val � jpi1−pi2j
o

if r1 > pd;

ð9; 10Þ

Second situation: In this case, the values of pi1 and p
i
2 are

found to be the same. Therefore, the value of pimean is
going to be equal to that of either pi1 or pi2. In certain
cases, where pimean is found to have the equal value com-
pared to pibest, no crossover takes place between these two
mating solutions. Otherwise, new children solutions are
yielded using the following equations:

val ¼ 1− 0:5ð Þe
jpi
best

−pimean j
Viu−V

i
lð Þ

� �
; ð11Þ

β ¼ r
α2

; ð12Þ
c1 ¼ val � pibest þ pimean

� �þ αr � e 1−βð Þ � 1−valð Þ � pibest−p
i
mean

� �
c2 ¼ 1−valð Þ � pibest þ pimean

� �
−α 1−rð Þ � e −βð Þ � val � pibest−p

i
mean

� � o if r1≤pd;

ð13; 14Þ
c1 ¼ val � pibest þ pimean

� �
−αr � e 1−βð Þ � 1−valð Þ � pibest−p

i
mean

� �

c2 ¼ 1−valð Þ � pibest þ pimean
� �þ α 1−rð Þ � e −βð Þ � val � pibest−p

i
mean

� �
o
if r1 > pd;

ð15; 16Þ
where r and r1 are again two different random numbers creat-
ed in between 0 and 1. Moreover, similar to the first situation,
val and β are the two intermediate parameters used to obtain
the two children solutions. It is to be noted that the calculated
numerical value of the parameter val is found to be always
either greater than or equal to 0.5.

Moreover, during the initial stages of an evolution where
the mating solutions are more likely to be far from each other,
the obtained value of the parameter val is found to be on the
higher side and consequently, the exploration phenomenon of
an RGA is promoted during these stages. On the other hand,
the measured values for the parameter val are seen to have the
lower values (close to 0.5), when the mating parents are found
to be relatively close to one another during the later stages of
evolution, and due to this reason, the algorithm is able to
converge after exploiting the optimum solution.

Boundary constraint handling technique: If a child
solution is seen to exceed the upper boundary of the var-
iable (Vi

uÞ or lie below the lower boundary of the variable

(Vi
l ), then it is assigned a value equal to Vi

u or Vi
l,

respectively.
Child identification conditions: This step is used to
identify or recognize the two offsprings (c1 and c2) as
the first and second child of the created pair of new solu-
tions.When a random number, produced in the range of 0

and 1, is found to have a value either greater than or equal
to 0.5, c2 and c1 are identified as the first and second
children of the yielded pair of solutions. On the other
hand, c1 and c2 are considered as the first and second
members of the generated pair of offsprings, whenever
a random number (ranging from 0 to 1) is found to be less
than 0.5. These conditions are named as child identifica-
tion conditions. This is done to incorporate diversity in
the population.

A pseudo-code of the proposed DX operator is provided in
Fig. 2. Moreover, the basic mechanism of DX is illustrated in
Fig. 3 in a two-dimensional variable space.When the direction
probability (pd) is taken to be equal to 1.0, the children solu-
tions follow the current best solution of the population. On the
other hand, the offspring are observed to go far from the cur-
rent best solution, when pd is found to be equal to 0.0.
However, with a value of pd lying between (0, 1), the children
solutions may or may not follow the current best solution.

3.2 Settings and influence of the parameters of DX

There are four user-defined parameters in the proposed direc-
tional crossover operator, such as crossover probability (pc),
variable-wise crossover probability (pcv), multiplying factor
(α), and directional probability (pd).

Crossover probability (pc): Theoretically, pc can vary
from 0 to 1. However, the selection of a suitable value
for this parameter depends on the nature of the objective
function.

Variable-wise crossover probability (pcv): Similarly
to pc, this parameter has also the range of (0, 1).
However, finding a suitable value for it is again seen
to be dependent on the nature of the objective
function.

Multiplying factor (α): This is the one of the factors to
control the distances among children solutions and the
mating parents. Theoretically,α can be set to a value from
zero to a large positive number. However, the best work-
ing range for this parameter is found to be from 0.5 to 2.5.
Furthermore, it is recommended to assign values less than
or equal to 1.0 and greater than or equal to 1.0 to solve
relatively simple and complex optimization problems, re-
spectively. It is to be noted that with the increase in the
value of α, diversification power of the algorithm is ex-
pected to be more, as the children solutions are going to
be created far from the parent solutions. On the contrary,
intensification capability of an RGA is found to be en-
hanced, whenα is set to a comparatively smaller value, as
the children solutions are expected to be generated closer
to the parents.
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Directional probability (pd): As discussed earlier, the
obtained directional information may not be always cor-
rect to identify the promising areas in the search space,
where the better solutions in terms of the fitness values
are present. Due to this reason, it is assumed that the
collected directional information is correct probabilisti-
cally and in general, it has the higher probability value.
Although this parameter pd has the theoretical range of (0,
1), normally, it is set between 0.5 and 1. For the higher
value (close to one) of pd, the exploitation ability of an
RGA is expected to be increased, as most of the solutions
are directed to follow the best-obtained solution so far.

On the other hand, the exploration power is seen to be
more for the lower value (close to 0.5) of pd, as
most of the children solutions are going to be gen-
erated in random directions. Therefore, to solve a
unimodal and simpler optimization problem, the
higher value (close to one) of pd is recommended,
whereas a small value (near to 0.5) should be
assigned for this parameter to solve multimodal
and difficult functions. It is also to be noted that
the appropriate values of the above parameters are
decided through some trials experiments carried out
in a systematic approach.

Input: Two mating solutions ( and ) with number of variables, DX parameters
Output: Two children solutions ( and )

≤

= 1

≤

| − | > 0

. (1) . (2)

( ≥ )

≤

. (3) . (4)

. (5) . (6)

≤

. (7) . (8)

. (9) . (10)

=

( ≠ )
. (11) . (12)

≤

. (13) . (14)

. (15) . (16)

=

=

=

=

=

=

Fig. 2 The pseudo-code of the
proposed DX operator
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In Fig. 4, the positions of the newly created children
solutions (c1 and c2) from two mating parents (such as,
p1 = 2.0, and p2 = − 2.0) with different random numbers
(r) have been shown, when (a) pd = 1.0, and (b) pd =
0.0. Here, pbest (current best solution’s position) has
been considered either greater or equal to pmean (mean
position of the two parents). Moreover, the upper and
lower limits of the variable have been taken as 10 and
− 10, respectively, and the value of the multiplying fac-
tor (α) has been considered as 1.0. From the figure, it
is obvious that the positions of the children solutions
are following non-linear exponential distributions (as
the equations for generating children solutions involve
exponential terms). Furthermore, the maximum distances
between Parent 1 (p1) and Child 1 (c1) are found to be
more than that between Parent 2 (p2) and Child 2 (c2)
in both the cases. In addition, with the increase of

random numbers from 0 to 1, a converging trend has
been seen in the distributions of children solutions (c1
and c2) with respect to the mean position of the parent
solutions (pmean). This denotes that the distance between
two offsprings is found to be more for the low value of
random number (near to zero), while for the high value
of random number (close to one), this distance is going
to be reduced. However, the above mentioned trend of
the children’s positional distribution is dependent on the
value of the multiplying factor (α).

In summary, a few points regarding how the proposed DX
operator theoretically helps an RGA to reach the globally op-
timum solution are presented as follows:

& The proposed crossover operator is influenced by the di-
rectional information of the problem, which helps the al-
gorithm to conduct its search in the most potential areas of
the variable space.

& The directional probability (pd) is used to keep a proper
balance between exploration and exploitation phenomena
of an RGA.

& In addition, a suitable value of the multiplying factor (α) is
also responsible to maintain a proper balance between
diversification and intensification processes of the
algorithm.

& Other parameters, such as pc and pcv are used to make the
search process more efficient probabilistically.

& Furthermore, the intermediate parameter val promotes the
exploration capability of the algorithm at the earlier stages
of the evolution, while exploitation power is seen to be
increased at the later stages.

& The use of random numbers in the proposed DX operator
benefits in exploring the search space more efficiently.

& Finally, the developed directional crossover scheme is a
parent-centric crossover operator, which utilizes the direc-
tional information to yield the children solutions.

Fig. 4 With the condition pbest ≥ pmean, positions of the children solutions with different random numbers, when (a) pd = 1.0, and (b) pd = 0.0

Fig. 3 A schematic view to illustrate the basic mechanism ofDX operator
in a 2-D variable space
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4 Results and discussion

The performance of a real-coded genetic algorithm (RGA)
with the proposed directional crossover operator has been ex-
amined through several experiments and the obtained results
have been compared to other state-of-the art crossover
schemes. The details of these experiments are described as
follows:

4.1 The first experiment

In the first experiment, we have chosen six well-known opti-
mization functions with different attributes. The mathematical
expressions and the variables’ boundaries of the test functions
are provided in Table 1, where d indicates the dimensionality
of a problem. Among the functions, three (F01, F02, and F03)
are the unimodal type and the rests (F04, F05, and F06) are
having the characteristics of multimodality. A unimodal func-
tion (refer to Fig. 5a) consists of only one globally optimum
basin with no other locally optimum point, while several local
optimum basins along with a globally optimum point have
been found in the objective space of a multimodal problem
(see Fig. 5b). To test the exploitation power and convergence
rate of an algorithm, unimodal problems are suitable, whereas
multimodal functions are generally used to check the explora-
tion ability of an algorithm, as it has to overcome the local
optima trapping problem [63]. An RGA equipped with a tour-
nament selection scheme having a tournament size equal to 2,
the proposed DX operator, polynomial mutation scheme [64],
and the replacement operation introduced by Deb [65] has
been used in the experiment. Each of the functions with 30
variables (i.e., d = 30) has been solved for 25 times and the
optimum results are recorded for all the runs. From these

obtained results, the best, mean, median, worst and standard
deviation are calculated. To compare the results obtained
using the proposed DX operator, three other popular crossover
operators, such as Simulated Binary Crossover (SBX) [51],
Laplace Crossover [59], and Rayleigh Crossover (RX) [61]
are also used to solve the test functions in a similar kind of
RGA’s framework, as in case of the previous one except for
the crossover scheme. In addition, a parallel-structured RGA,
namely RGA-RDD [45] has also been applied to solve the
selected functions. In this RGA-RDD, a ranking selection,
direction-based crossover (DBX), dynamic random mutation
(DRM), and a generational replacement (GR) with an elitism
strategy have been used as the stochastic operators.

4.1.1 Parameters’ settings

The values of the parameters for all the RGAs are chosen after
some trial experiments. The common parameters for the first
four RGAs are kept the same and these are as follows: popu-
lation size (N = 5 × d), maximum number of generations (max
_ gen = 1500), crossover probability (pc = 0.9), mutation prob-
ability (pm ¼ 1

d ), and distribution index for the polynomial
mutation (ηm = 20). Other algorithm-specific parameters are
as follows:

& RGA-DX: pcv = 0.9, α = 0.95, and pd = 0.75.
& RGA-SBX: Distribution index for SBX (ηc = 1).
& RGA-LX: Location parameter (a = 0) and scale parameter

(b = 0.2).
& RGA-RX: Scale parameter (s = 1).
& RGA-RDD: Population size (N = 5 × d), maximum num-

ber of generations (max _ gen = 1500), proportional pa-
rameter for ranking selection (p = 0.1), crossover

Table 1 A set of six test functions with their mathematical expressions

Name of the function Mathematical expression Variable
bounds

F01: Sphere f xð Þ ¼ ∑
d

i¼1
x2i [−100,100]d

F02: Sum of different powers f xð Þ ¼ ∑
d

i¼1
xij jiþ1 [−100,100]d

F03: Rotated hyper-ellipsoid f xð Þ ¼ ∑
d

i¼1
∑
i

j¼1
x2j [−65, 65]d

F04: Griewank f xð Þ ¼ ∑d
i¼1x

2
i

4000 − ∏
d

i¼1
cos xi=

ffiffi
i

p� �þ 1 [−600, 600]d

F05: Rastrigin f xð Þ ¼ 10d þ ∑
d

i¼1
x2i −10cos 2πxið Þ� �

[−5.12,5.12]d

F06: Levy
f xð Þ ¼ sin2 πw1ð Þ þ ∑

d−1

i¼1
wi−1ð Þ2 1þ 10sin2 πwi þ 1ð Þ� �þ

wd−1ð Þ2 1þ 10sin2 πwdð Þ� �
;where wi

¼ 1þ xi−1ð Þ=4
[−5.12,5.12]d
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probability (λ = 0.1), random perturbation factor (ϕ0 =
0.5), parameter to control decay rate of mutation step size
(b = 1), and a very small positive number (ε = 1e−300).

An algorithm stops when it reaches the maximum number
of generations (max _ gen). The selected parameters are found
to yield the better results in most of the cases during the pres-
ent experiments. However, the authors are not claiming the
fact that these are the best optimal parameters for the algo-
rithms to perform in all the cases. It is to be noted that, in all
the experiments, we have used these selected values of param-
eters as mentioned above. Therefore, whenever the dimension
(d) of a problem changes, the population size (N) andmutation
probability (pm) also vary accordingly. The obtained results
using the five RGAs have been reported in Table 2 (best re-
sults are in bold).

From the results, it is easy to understand that the RGAwith
the proposed DX operator (RGA-DX) has outperformed all
other RGAs equipped with other popular crossover mecha-
nisms in this experiment. Furthermore, in Fig. 6, the
evolutions of the average current best finesses of all
the runs have been shown for all five RGAs. From
the figure, it is obvious that the RGA with the proposed
crossover exhibits the faster convergence rate compared
to others, as it is able to reach near the globally opti-
mum solution in less number of generations. In addi-
tion, the trajectories of the average values of the 1st
variable in the population have been given in Fig. 7
for all six test functions to observe the exploration and
exploitation phenomena during the evolutions.

In a similar way, the five RGAs are also applied to solve the
same six benchmark functions with the increased number of
variables (d), such as 60, 90, and 120. This is done to verify
and compare the performance of RGA-DX in the larger vari-
able space with that of the other ones. The parameters for all
the RGAs are taken in a similar fashion, as mentioned in
Section 4.1.1. The obtained results are provided in Tables 3,

4, and 5, respectively. In these cases also, the RGA-DX is able
to yield the better results compared to that of the other RGAs.

4.1.2 Exploration analysis

It is debated [63] that multimodal optimization problems,
where there exist several locally optimal basins along with
the global one, are preferable to examine the exploration abil-
ity of an optimization method. In our experiment, three func-
tions, namely Griewank (F04), Rastrigin (F05), and Levy
(F06) are multimodal functions and these benchmark func-
tions have been tested on varying numbers of variables, where
the difficulty levels to solve the problems increase with the
increase of dimensions of the functions. The results given in
Tables 2, 3, 4, and 5 establish the fact that the RGAwith the
proposed DX operator has the better exploration capability
compared to others. The proposed crossover mechanism has
been designed so wisely that the algorithm may able to ex-
plore the variable space in a better way. During the earlier
stages of an evolution, the calculated parameter val,
multiplying factor (α), and the child identification con-
ditions help to spread the search process in the wider
regions of the variable space and due to which, the
search process becomes more diversified.

4.1.3 Exploitation analysis

The unimodal functions, such as Sphere (F01), Sum of
different powers (F02), and Rotated hyper-ellipsoid
(F03) are seen to have one global basin with no other
locally optimum points and therefore, these are recom-
mended for testing the exploitation power of an optimi-
zation algorithm [63]. The yielded results (refer to
Tables 2, 3, 4, and 5) confirm that the RGA with the
developed DX operator has superior exploitation or in-
tensification strength compared to the other ones. The
use of directional information obtained from the

Fig. 5 Plots of objective functions with two variables: a Sphere (F01), and b Rastrigin (F05)

A directional crossover (DX) operator for real parameter optimization using genetic algorithm 1849



problem dynamically, variable-wise crossover probability
(pcv) and the higher directional probability (pd > 0.5) in-
fluence the search process to intensify in the most
promising areas of the variable space and thus, promote
the exploitation phenomenon in the later stages of an
evolution.

4.1.4 Convergence analysis

During the initial steps of an evolution, abrupt modula-
tions in the values of the search agents are usually ob-
served and gradually, these modulations are found to be
reduced over the generations [66]. This is due to the fact

that the exploring factor of an optimization approach is
seen to be dominating at the beginning of an evolution,
whereas the algorithm is found to exploit the solutions to
reach the globally optimum point afterward. In Fig. 7, the
evolutions of the average values of the 1st variable in the
population have been depicted. From the figure, it is easy
to comprehend that during the initial generations, changes
in the average values of the 1st variable are more
unpredictable, and this highlights the state, where the ex-
ploration power of the algorithm is found to be dominat-
ing in nature. However, in the later stages, these changes
are gradually reduced and the algorithm is seen to con-
verge to a globally optimum solution. This characteristic

Table 2 Comparison of results for the test functions (F01-F06) with 30 dimensions

Function RGA-DX RGA-
SBX

RGA-LX RGA-RX RGA-
RDD

F01 Best 3.447E-39 3.700E-10 2.114E-04 1.393E-21 6.815E-31

Mean 1.012E-37 1.143E-09 1.112E-03 1.782E-20 3.596E-29

Median 6.516E-38 9.543E-10 9.944E-04 1.078E-20 1.121E-29

Worst 3.499E-37 3.370E-09 4.056E-03 9.960E-20 2.715E-28

SD 8.946E-38 7.111E-10 7.704E-04 2.121E-20 6.532E-29

F02 Best 2.677E-56 1.717E-17 5.482E-07 1.035E-46 9.721E-14

Mean 9.894E-49 1.463E-14 8.330E-05 4.195E-40 1.664E+02

Median 2.171E-51 2.848E-15 3.817E-05 1.256E-43 2.611E+01

Worst 9.819E-48 1.507E-13 3.672E-04 8.248E-39 7.844E+02

SD 2.349E-48 3.183E-14 1.141E-04 1.654E-39 2.523E+02

F03 Best 8.082E-38 2.378E-10 1.493E-03 2.952E-21 1.600E-16

Mean 1.514E-36 6.867E-09 5.804E-03 9.239E-20 4.371E-12

Median 3.731E-37 5.366E-09 4.805E-03 5.986E-20 4.154E-13

Worst 2.473E-35 2.309E-08 1.370E-02 3.552E-19 2.788E-11

SD 4.868E-36 5.077E-09 3.114E-03 8.713E-20 8.218E-12

F04 Best 0.000E+00 5.780E-10 8.472E-04 0.000E+00 1.110E-16

Mean 2.958E-04 8.076E-03 1.248E-02 3.841E-03 1.604E-02

Median 0.000E+00 7.396E-03 1.243E-02 0.000E+00 1.478E-02

Worst 7.396E-03 3.691E-02 4.076E-02 2.952E-02 4.671E-02

SD 1.479E-03 9.621E-03 1.123E-02 7.554E-03 1.469E-02

F05 Best 0.000E+00 5.295E-09 6.284E-04 0.000E+00 2.985E+01

Mean 0.000E+00 1.856E-07 3.162E-03 6.088E-06 9.471E+01

Median 0.000E+00 6.207E-08 2.037E-03 4.218E-11 6.567E+01

Worst 0.000E+00 7.728E-07 1.078E-02 1.521E-04 2.900E+02

SD 0.000E+00 2.499E-07 2.795E-03 3.043E-05 7.384E+01

F06 Best 1.500E-32 2.674E-13 1.956E-07 2.465E-24 1.056E-26

Mean 1.500E-32 1.368E-12 1.114E-06 4.405E-12 1.074E-02

Median 1.500E-32 8.472E-13 9.397E-07 2.561E-23 6.084E-23

Worst 1.500E-32 3.581E-12 2.583E-06 1.101E-10 8.953E-02

SD 0.000E+00 9.979E-13 6.682E-07 2.203E-11 2.969E-02

Best results are marked in bold
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of the RGA with the proposed DX is matching with the
convergence criterion mentioned in [66] and hence, it can
be claimed that the RGA-DX converges to an optimum
solution in the variable space.

4.1.5 Statistical analysis

To analyze the obtained results statistically, pairwise and mul-
tiple comparisons have been performed. These tests are non-

Fig. 6 Evolutions of average current best fitness values of all the runs using RGAswith five different crossover operators for the functions: a F01, b F02,
c F03, d F04, e F05, and f F06
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parametric in nature and the mean results provided in Tables 2,
3, 4, and 5 are considered as the raw data, onwhich the present
analyses have been carried out. For the pairwise comparisons,
two separate tests, namely Sign test and Wilcoxon’s test [67],

have been considered. On the other hand, Friedman’s test,
aligned Friedman’s test and Quade test with four post-hoc
procedures, such as Holland, Rom, Finner and Li [67, 68],
have been selected for the multiple comparisons.

Fig. 7 Evolutions of the average value of the 1st variable in the population for the functions: a F01, b F02, c F03, d F04, e F05, and f F06
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The results of the pairwise comparisons between the
RGA with the proposed DX operator and other RGAs
have been reported in Table 6, where the first row con-
tains the number of wins and losses of the proposed
approach compared to the others. An optimization

technique is assumed to be the winner, if the average
result of the total runs is seen to be better than the
other one. As we have a total of 24 cases for compar-
isons, an algorithm should win at least in 18 cases, so
that it can be declared as the overall winner compared

Table 3 Comparison of results for the test functions (F01-F06) with 60 dimensions

Function RGA-DX RGA-SBX RGA-LX RGA-RX RGA-
RDD

F01 Best 8.937E-22 1.935E-04 2.892E-01 4.951E-08 3.634E-15

Mean 1.832E-21 4.386E-04 5.182E-01 1.435E-07 2.315E-14

Median 1.472E-21 4.285E-04 5.125E-01 1.368E-07 2.102E-14

Worst 4.128E-21 9.009E-04 8.872E-01 2.915E-07 5.913E-14

SD 8.990E-22 1.473E-04 1.537E-01 5.979E-08 1.229E-14

F02 Best 7.859E-38 1.833E+
03

3.394E+
25

2.216E-14 1.495E+08

Mean 1.248E-29 1.011E+06 3.150E+
33

2.712E-09 4.954E+18

Median 4.138E-32 1.298E+
05

3.897E+
29

2.067E-10 9.497E+13

Worst 1.421E-28 1.065E+
07

4.422E+
34

5.699E-08 1.236E+20

SD 3.469E-29 2.244E+
06

9.792E+
33

1.133E-08 2.472E+19

F03 Best 9.123E-21 1.684E-03 2.623E+
00

7.781E-07 2.194E-05

Mean 2.596E-20 4.168E-03 7.147E+
00

1.574E-06 1.394E-03

Median 2.043E-20 4.120E-03 7.314E+
00

1.402E-06 6.719E-04

Worst 5.527E-20 9.122E-03 1.164E+
01

3.559E-06 5.592E-03

SD 1.338E-20 1.545E-03 2.142E+
00

7.429E-07 1.813E-03

F04 Best 0.000E+
00

2.771E-04 2.121E-01 5.130E-08 1.478E-09

Mean 0.000E+
00

4.299E-03 3.487E-01 1.084E-03 3.943E-03

Median 0.000E+
00

5.749E-04 3.356E-01 1.615E-07 4.882E-09

Worst 0.000E+
00

1.505E-02 5.919E-01 1.232E-02 1.477E-02

SD 0.000E+00 5.079E-03 9.041E-02 3.107E-03 5.227E-03

F05 Best 3.752E-12 1.600E-03 7.718E+
00

7.543E+
00

7.064E+01

Mean 9.661E-07 3.928E-01 1.453E+
01

1.576E+
01

1.518E+02

Median 3.927E-09 3.016E-02 1.247E+
01

1.514E+
01

1.174E+02

Worst 2.081E-05 4.527E+
00

2.445E+
01

2.497E+
01

5.604E+02

SD 4.145E-06 1.031E+
00

4.449E+
00

4.705E+
00

1.237E+02

F06 Best 2.044E-23 2.671E-07 1.997E-04 1.251E-10 1.219E-14

Mean 6.456E-23 4.833E-07 6.889E-04 5.626E-10 2.507E-02

Median 5.687E-23 4.141E-07 7.262E-04 5.443E-10 1.920E-13

Worst 1.194E-22 9.095E-07 1.432E-03 1.481E-09 8.953E-02

SD 2.903E-23 1.921E-07 2.917E-04 3.436E-10 4.103E-02

Best results are marked in bold
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Table 4 Comparison of results for the test functions (F01-F06) with 90 dimensions

Function RGA-DX RGA-SBX RGA-LX RGA-RX RGA-
RDD

F01 Best 2.738E-14 4.308E-02 1.171E+
01

2.055E-03 2.172E-09

Mean 5.272E-14 5.967E-02 2.076E+
01

4.130E-03 5.204E-09

Median 5.030E-14 5.543E-02 2.035E+
01

3.820E-03 4.521E-09

Worst 8.763E-14 7.912E-02 3.165E+
01

7.400E-03 1.146E-08

SD 1.239E-14 1.232E-02 5.839E+
00

1.247E-03 2.285E-09

F02 Best 8.311E-16 3.439E+
23

7.661E+
68

7.248E+
09

5.575E+29

Mean 1.232E-08 4.153E+
33

4.424E+
83

2.675E+
15

2.396E+42

Median 5.705E-12 1.751E+
28

2.780E+
79

1.671E+
12

1.707E+38

Worst 2.071E-07 1.035E+
35

6.541E+
84

2.432E+
16

3.823E+43

SD 4.282E-08 2.070E+
34

1.496E+
84

6.881E+
15

7.983E+42

F03 Best 3.490E-13 5.256E-01 1.701E+
02

3.293E-02 3.703E-02

Mean 8.046E-13 8.578E-01 2.995E+
02

6.032E-02 4.749E-01

Median 7.776E-13 8.239E-01 2.733E+
02

5.647E-02 4.315E-01

Worst 1.445E-12 1.441E+
00

4.974E+
02

1.100E-01 1.798E+00

SD 2.925E-13 2.328E-01 9.303E+
01

1.950E-02 4.012E-01

F04 Best 1.288E-14 2.072E-02 1.107E+
00

1.390E-03 3.708E-06

Mean 3.220E-14 3.652E-02 1.187E+
00

3.782E-03 2.870E-03

Median 2.787E-14 3.385E-02 1.183E+
00

2.384E-03 1.284E-05

Worst 6.062E-14 5.488E-02 1.285E+
00

1.133E-02 1.233E-02

SD 1.388E-14 1.033E-02 5.225E-02 3.172E-03 4.367E-03

F05 Best 7.865E-04 2.535E-01 4.647E+
01

4.114E+01 1.224E+02

Mean 2.610E+
00

1.017E+
01

6.416E+
01

5.898E+
01

3.066E+02

Median 6.017E-02 7.111E+00 6.343E+
01

6.010E+
01

1.871E+02

Worst 1.172E+
01

2.939E+
01

8.038E+
01

7.251E+
01

8.538E+02

SD 4.131E+00 8.444E+
00

8.567E+
00

7.351E+
00

2.604E+02

F06 Best 7.728E-16 2.208E-05 1.204E-02 9.838E-06 4.645E-11

Mean 1.492E-15 5.737E-05 2.473E-02 3.303E-01 4.655E-02

Median 1.262E-15 6.075E-05 2.308E-02 2.020E-05 1.667E-09

Worst 4.051E-15 7.787E-05 4.376E-02 5.856E+
00

2.686E-01

SD 7.239E-16 1.341E-05 8.062E-03 1.247E+
00

7.805E-02

Best results are marked in bold
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to the other one with a significance level equal to 0.05
(refer to Table 4 of [67]). Therefore, the proposed
RGA-DX is observed to be the winner in all the
pairwise comparisons. Furthermore, p-values obtained
using the Sign test are found to be less than 0.05. It
means that there has been a significant difference in

performance between the RGA-DX and others. It is ob-
served that all the p-values of the Sign test are identical
in nature. It may be due to the fact that in all the
pairwise comparisons, the RGA-DX has won with the
considerable differences for the 24 cases. Similar find-
ings have also been observed during the pairwise

Table 5 Comparison of results for the test functions (F01-F06) with 120 dimensions

Function RGA-DX RGA-SBX RGA-LX RGA-RX RGA-
RDD

F01 Best 5.710E-10 3.948E-01 9.647E+01 2.458E-01 1.330E-06

Mean 9.379E-10 7.045E-01 1.698E+02 4.878E-01 2.742E-06

Median 9.532E-10 7.049E-01 1.685E+02 4.765E-01 2.548E-06

Worst 1.435E-09 8.856E-01 2.571E+02 7.319E-01 5.548E-06

SD 2.355E-10 1.265E-01 3.986E+01 1.281E-01 1.008E-06

F02 Best 1.121E+
03

2.108E+48 1.025E+
124

7.078E+
38

4.355E+75

Mean 5.995E+
08

6.402E+64 7.005E+
137

2.970E+
49

6.617E+90

Median 3.962E+
06

4.706E+58 1.012E+
130

4.111E+44 3.131E+83

Worst 6.658E+
09

1.218E+66 1.750E+
139

6.903E+
50

1.654E+92

SD 1.728E+09 2.497E+65 3.501E+
138

1.378E+
50

3.307E+91

F03 Best 1.080E-08 1.069E+01 1.860E+03 4.995E+
00

9.599E-01

Mean 1.752E-08 1.384E+01 4.148E+03 8.738E+
00

6.769E+00

Median 1.760E-08 1.365E+01 4.054E+03 8.894E+
00

3.918E+00

Worst 2.729E-08 1.807E+01 6.933E+03 1.182E+
01

3.797E+01

SD 3.847E-09 2.086E+00 1.345E+03 1.898E+
00

7.747E+00

F04 Best 2.589E-10 2.043E-01 1.868E+00 9.750E-02 3.384E-04

Mean 4.096E-10 2.806E-01 2.528E+00 1.876E-01 3.973E-03

Median 4.205E-10 2.797E-01 2.517E+00 1.851E-01 5.762E-04

Worst 6.046E-10 3.551E-01 3.314E+00 2.641E-01 1.788E-02

SD 9.245E-11 4.432E-02 3.587E-01 4.751E-02 5.935E-03

F05 Best 8.146E+00 1.675E+
00

1.151E+02 9.592E+
01

1.423E+02

Mean 2.648E+
01

2.851E+01 1.481E+02 1.227E+
02

2.768E+02

Median 2.739E+
01

2.799E+01 1.515E+02 1.242E+
02

1.960E+02

Worst 4.997E+
01

5.594E+01 1.713E+02 1.527E+
02

1.167E+03

SD 1.171E+01 1.429E+01 1.771E+01 1.502E+
01

2.640E+02

F06 Best 7.932E-12 4.400E-04 1.136E-01 1.002E-03 1.539E-08

Mean 1.772E-11 6.495E-04 1.816E-01 4.876E-01 7.520E-02

Median 1.692E-11 6.460E-04 1.682E-01 2.536E-03 8.953E-02

Worst 2.620E-11 8.028E-04 2.937E-01 3.476E+
00

2.686E-01

SD 4.465E-12 9.860E-05 5.121E-02 1.063E+
00

8.833E-02

Best results are marked in bold
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comparisons of results using the Wilcoxon’s test. These
analyses ensure that the performance of the proposed
RGA-DX is significantly better than that of the others.

In connection to the multiple comparisons, the statistical
tests have been carried out using a CONTROLTEST java
package [67], downloaded from the SCI2S website (http://
sci2s.ugr.es/sicidm). The relative ranks of the RGAs
according to the Friedman, Aligned Friedman and Quade
tests are given in Table 7. A lower rank indicates a superior
in performance compared to others. For all of the three tests,
the RGA-DX has achieved the lowest rank. This implies that it
is the best performer among all the RGAs considered in this
experiment. In addition, the statistics and p-values of the tests
have been provided in the last two rows of Table 7, respec-
tively. The statistics for both the Friedman and the Aligned
Friedman are distributed following the chi-square distribution
with 4 degrees of freedom. In case of the Quade test, this
distribution is found to be in line with the F-distribution with
4 and 92 degrees of freedom. Moreover, the p-values for all
the three tests are observed to be less than 0.05. This shows
that the RGAwith the proposed DX technique is performing
significantly better compared to the other ones.

Table 8 provides the results of the contrast estimation,
which is supposed to quantify the difference in performance
between two algorithms. This method is considered as the
safer metric in performance comparisons between the algo-
rithms and this can be helpful to determine, how much an
algorithm is superior to another one [67]. Each row of
Table 8 gives the comparison results between the correspond-
ing approach of the 1st column and rest of the methods. If the
estimated quantity is found to be positive, the algorithm pres-
ent in the 1st column is assumed to be a better one and the

reverse is true, when the result is observed to be a negative
one. In addition, the more the estimated value, the more will
be the difference in performance between the algorithms. For
RGA-DX, all the estimated values are found to be positive and
this implies that the RGA-DX outperforms all other RGAs
participated in the experiments.

Furthermore, to deduce the significant differences between
the RGA-DX and others, z-values, unadjusted p-values and ad-
justed p-values using four post-hoc procedures of the Friedman,
Aligned Friedman, and Quade tests have been reported in
Table 9. The proposed RGA-DX technique has been considered
as the control method for this comparison. Utilizing correspond-
ing z-value on a normal distribution N (0,1) [67], the unadjusted
p-value is obtained for a test. The unadjusted p-values (refer to
the 5th column of Table 9) for the Friedman and the Quade test
indicate significant differences between the RGA-DX and other
RGAs, whereas the unadjusted p-values yielded using the
Aligned Friedman test claim that the RGA-DX is significantly
better than the RGA-LX and RGA-RDD only.

Due to some family error accumulation in the process of
obtaining unadjusted p-values, adjusted p-values obtained
through post-hoc procedures are recommended to be used in
the analysis. Among several techniques, we have chosen four
powerful post-hoc procedures, namely Holland, Rom, Finner
and Li [67], and the results are given in Table 9. According to
the Friedman and Quade tests, RGA-DX is able to produce the
significantly better results compared to the other RGAs, while
it shows a significant difference in performances only with the
RGA-LX at the significance level equal to 0.05, according to
the Aligned Friedman test.

Furthermore, a non-parametric convergence performance
analysis has been carried out using the Page’s trend test [69].
This method had been proposed to test the convergence per-
formance of evolutionary algorithms pairwise and it assumes
that an algorithm with the better convergence rate should
move faster towards the optimum solution compared to that
of another algorithm having the worse convergence perfor-
mance. This method is supposed to consider the differences
between the objective function values of the two evolutionary
approaches at various points of the run (cut points) in its cal-
culations. In our case, we have selected 15 cut-points starting

Table 7 Friedman, Aligned Friedman and Quade ranks of the RGAs

Algorithm Friedman Aligned Friedman Quade

RGA-DX 1.000 44.271 1.000

RGA-SBX 3.167 46.792 3.127

RGA-LX 4.500 91.792 4.567

RGA-RX 2.792 53.542 2.697

RGA-RDD 3.542 66.104 3.610

Statistic 63.500 17.932 26.010

p- value 4.83E-11 0.00127 1.96E-14

Table 8 Contrast estimation results of the first experiment

RGA-
DX

RGA-
SBX

RGA-
LX

RGA-
RX

RGA-
RDD

RGA-DX 0 0.04702 1.311 0.2129 0.3492

RGA-SBX −0.04702 0 1.264 0.1658 0.3022

RGA-LX −1.311 −1.264 0 −1.098 −0.9614
RGA-RX −0.2129 −0.1658 1.098 0 0.1364

RGA-RDD −0.3492 −0.3022 0.9614 −0.1364 0

Best results are marked in bold

Table 6 Pairwise comparison results: RGA-DX vs. other RGAs

RGA-DX vs. RGA-SBX RGA-LX RGA-RX RGA-RDD

Wins/Losses 24/0a 24/0a 24/0a 24/0a

Sign test p-value 1.19E-07 1.19E-07 1.19E-07 1.19E-07

Wilcoxon p-value 1.82E-05 1.82E-05 1.82E-05 1.82E-05

a Level of significance = 0.05
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from 100th generation to 1500th generation with a gap of 100.
There are two versions of this test, namely the basic version
and the alternative version. However, the latter is considered
to be more efficient compared to the former [69]. Therefore,
the results of the alternative version of the test are summarized
in Table 10, where the p-values are determined as the proba-
bility of rejection of the hypothesis of equal convergence, in
support of the alternative hypothesis, i.e., the technique pres-
ent in the row converges faster than that appeared in the col-
umn. The rejected hypotheses (at a significance level of 0.1)
are written in bold. From the p-values, the following conclu-
sions can be made: RGA-DX has the best convergence per-
formance, followed by RGA-RDD, RGA-RX, and RGA-
SBX. RGA-LX is found to have the worst convergence per-
formance in this study.

4.2 The second experiment

It is argued that it incorporates more difficulty to solve an
optimization problem (especially, for the multi-modal func-
tions), when the initial population does not bracket the

globally optimum point [70]. Based on this idea, the second
experiment has been performed with an initial population
away from the actual globally optimum solution for all the
six test functions mentioned in Table 1. Here, we have created
the initial solutions in the range of (−5,-10) for all the test
functions to ensure that the initial population should not cover
the global optimum. These six test functions with 30 variables
have been solved using five RGAs and the parameters’ set-
tings are kept the same, as mentioned in Section 4.1.1. It is to
be noted that the variable boundary constraint handling tech-
niques have not been applied to the algorithms in this exper-
iment. All the functions have been solved by each algorithm 25
times and the average of the obtained best results are reported
in Table 11 (best results are marked in bold). From the results,
it is clear that the RGA-DX has outperformed the other four
RGAs for all the test functions in this experiment.

4.3 The third experiment

To see the sole effect of the crossover operation, we
have excluded the mutation operation in the third exper-
iment and redone the 1st experiment with only 30 di-
mensions of the test functions. Moreover, in this exper-
iment, we have excluded RGA-RDD algorithm, as the
mutation operation is attached with the directed cross-
over operation in this case. The parameters’ settings
have been considered the same as narrated in
Section 4.1.1 except the mutation probability (pm),
which is kept equal to 0.0. The average values of the
optimum results obtained in 25 runs have been given in
Table 12. In this experiment also, the RGA-DX has
retained its excellent performance for all six test func-
tions except for the case of F05, where RGA-SBX has

Table 9 Statistical results of post-hoc procedures over all RGAs with RGA-DX as control method at a significance level equal to 0.05

Procedure i Algorithm z-value Unadjusted p-value Adjusted p-value

pHoll pRom pFinn pLi

Friedman 1 RGA-LX 7.668116 1.75E-14 6.97E-14 6.66E-14 6.97E-14 1.75E-14

2 RGA-RDD 5.568513 2.57E-08 7.71E-08 7.71E-08 5.14E-08 2.57E-08

3 RGA-SBX 4.746929 2.07E-06 4.13E-06 4.13E-06 2.75E-06 2.07E-06

4 RGA-RX 3.925345 8.66E-05 8.66E-05 8.66E-05 8.66E-05 8.66E-05

Aligned Friedman 1 RGA-LX 4.732406 2.22E-06 8.87E-06 8.46E-06 8.87E-06 1.12E-05

2 RGA-RDD 2.174293 0.029683 0.086432 0.08905 0.058485 0.130247

3 RGA-RX 0.923244 0.35588 0.585109 0.71176 0.443725 0.642271

4 RGA-SBX 0.25104 0.801784 0.801784 0.801784 0.801784 0.801784

Quade 1 RGA-LX 4.833767 1.34E-06 5.36E-06 5.11E-06 5.36E-06 1.37E-06

2 RGA-RDD 3.537233 4.04E-04 0.001213 0.001213 8.09E-04 4.13E-04

3 RGA-SBX 2.88219 0.003949 0.007883 0.007898 0.005262 0.00402

4 RGA-RX 2.299428 0.021481 0.021481 0.021481 0.021481 0.021481

Table 10 Convergence results (p-values) of the first experiment

RGA-
DX

RGA-
SBX

RGA-
LX

RGA-
RX

RGA-
RDD

RGA-DX – 0 0 0 0

RGA-SBX 1 – 0 0.999897 1

RGA-LX 1 1 – 1 1

RGA-RX 1 0.000106 0.000008 – 0.993395

RGA-RDD 1 0 0 0.006726 –

Best results are marked in bold
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been able to yield a slightly better result compared to
the RGA-DX.

4.4 Performance comparisons of RGA-DX with other
recently proposed optimization algorithms

To check the state-of-the-art, the performance of the proposed
RGA-DX has also been compared to that of five recently
proposed optimization algorithms, such as Cricket
Algorithm (CA) [28], Grasshopper Optimization Algorithm
(GOA) [29], Social Spider Optimization (SSO) [31], Sine
Cosine Algorithm (SCA) [30], and Search Group Algorithm
(SGA) [32]. This experiment has been carried out on the six
benchmark functions (refer to Table 1) in a similar way, as in
case of the 1st experiment conducted with 30 dimensions (d =
30). Therefore, the common parameters, such as the maxi-
mum number of generations (max _ gen = 1500)) and popula-
tion size (N = 5 × d = 150) are kept the same as mentioned in
Section 4.1.1. The algorithm-specific parameters for the opti-
mization techniques are set through some trial experiments
and these are as follows:

RGA-DX: the same as those mentioned in Section 4.1.1.

CA: minimum frequency (Qmin = 0), βmin = 0.2.
GOA: Maximum and minimum values for the coefficient
to shrink the comfort, repulsion, and attraction zones are
1 and 0.00004, respectively.
SSO: Lower and upper female percent factors are taken to
be equal to 0.65 and 0.9, respectively.
SCA: The value of the constant to determine the range of
the sine and cosine has been considered to be equal to 2.
SGA: Initial value for perturbation factor, minimum val-
ue of the perturbation factor, global iteration ratio, search
group ratio, and the number of mutated individuals of the
search group are taken to be equal to 2, 0.01, 0.3, 0.1, and
5, respectively.

Table 13 shows the average of the obtained best fitness
results of 25 runs yielded using RGA-DX and the other five
algorithms for each of the test functions (best results are writ-
ten in bold). Here, it is to be noted that the results obtained
using the RGA-DX (refer to Table 13) are the same, with those
of the 1st experiment carried out with 30 dimensions (see
Table 2). This is due to the fact that the parameters used for
the RGA-DX are kept the same in both the experiments. From
the results, it can be concluded that the proposed RGA-DX
has outperformed all other recent optimization algorithms in
terms of accuracy in solution. The proper balance between the
population diversity and selection pressure along with the use
of the directional information helps the proposed RGA-DX to
perform in the better way.

4.5 Scalability analysis

We carry out a scale-up study for the proposed RGA-DX with
the increasing number of variables (d). Here, we have varied d
from 20 to 200 with an increment of 20. The parameters’
settings have been taken in a similar way, as mentioned in
Section 4.1.1 except the stopping criterion of the RGA-DX.
The algorithm stops, when it reaches the objective function
value equal to 0.1. The required number of function evalua-
tions (fe) to reach the mentioned solution accuracy for each of
the function dimensionality levels has been recorded.

Table 11 Comparison of average results of 25 runs for the test functions (F01-F06) with different variable boundaries

Function RGA-DX RGA-
SBX

RGA-LX RGA-RX RGA-
RDD

F01 4.298E-39 1.453E-10 9.058E-06 9.696E-22 6.164E-31

F02 1.452E-55 1.316E-16 5.748E-08 1.920E-41 1.289E-15

F03 6.119E-38 2.106E-09 1.319E-04 1.519E-20 6.161E-13

F04 2.958E-04 9.860E-04 8.759E-03 1.478E-03 4.731E-03

F05 0.000E+00 3.066E-05 5.750E-03 4.633E-04 1.056E+02

F06 1.425E-31 8.669E-11 1.607E+00 1.536E-19 2.051E+00

Best results are marked in bold

Table 12 Comparison of average results of 25 runs for the test functions
(F01-F06) without mutation operation

Function RGA-DX RGA-
SBX

RGA-LX RGA-RX

F01 1.36E-87 4.64E-21 1.25E+
04

2.21E-52

F02 5.62E-96 2.30E-12 7.67E+
36

1.71E-102

F03 4.37E-87 2.17E-20 6.91E+
04

2.19E-51

F04 5.92E-04 8.96E-03 1.13E+
02

3.55E-03

F05 2.70E+
01

2.44E+01 1.19E+
02

5.41E+01

F06 1.50E-32 5.23E-24 5.68E+
00

5.45E-02

Best results are marked in bold
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Next, a log-log curve has been plotted for each of the test
functions, where the X and Y-axis are represented by the
values of ln(d) and ln(fe), respectively. With the increase of
the variable space, it is a bit difficult to trace the globally
optimum solution for an optimization technique [70].
Therefore, the purpose of this scale-up study is to see, whether
the RGA-DX is able to either hit or come to near the globally
optimum point in a larger variable space. In addition, another
aim for this analysis is to get an idea of how the parameter fe is
varying with the increasing number of variables (d). Figure 8
depicts the linearly fitted curves between ln(d) and ln(fe) along
with their slopes for the six benchmark functions. From the
figure, it is evident that the RGA-DX is able to reach the
mentioned objective function’s accuracy level even for a very
large variable space for all six test functions. Moreover, the
required number of function evaluations (fe) increases
polynomially (O(dSlope)) with d over the whole range of the
variables considered in this experiment. From the values of the
slopes, it is observed that for function F02, the number of
required function evaluations is higher than that of the other
ones. This may be due to the inherent nature of the problem
(F02), for which it becomes more difficult to solve in a very
large variable space.

4.6 Time study

Finally, we have performed a time study to make a
comparison among the five RGAs on the aspects of
computationally expensiveness and convergence rates.
To do this, each algorithm has been run for 25 times
to solve a single test function, till the time it reaches
the objective function value equal to 0.001. The dimen-
sions of all six test functions have been considered as
30 and the parameters’ settings are kept the same as in the
case of the first experiment, except the stopping criteri-
on. After each run, the required CPU time and the
number of function evaluations have been measured
and at the end of 25 runs, the average CPU time

(tavg) in seconds and the average number of function
evaluations (feavg) have been calculated. This experi-
ment has been carried out using MATLAB 2017a soft-
ware on an Intel Core i5 Processor with 3.20 GHz
speed and 16GB RAM under Windows 10 platform.
The obtained results are provided in Table 14 for all
the test functions solved by the five RGAs (the best
results are marked in bold).

It is to be noted that, for a certain run, if an algorithm
is not able to reach the mentioned function value up to
a maximum number of function evaluations equal to
3E5, we have marked the values of tavg and feavg for
that particular function solved by that algorithm as not
available (NA) in Table 14. From the comparisons, it is
easy to understand that the RGA-DX requires minimum
CPU time and number of function evaluations to
achieve the desired objective value compared to the
other ones. This observation confirms that the RGA-
DX has the fastest convergence rate among the five
RGAs.

5 Design problem of cantilever beam

After successfully implementing the RGA with the pro-
posed DX operator to solve a set of six benchmark
optimization functions, we have used the RGA-DX to
solve a constrained engineering problem. This problem
is related to the design of a cantilever beam with dis-
crete rectangular cross-sections (refer to Fig. 9). The
objective of this design is to minimize the volume of
the said cantilever beam with optimal combinations of
the five different cross-sectional areas. The problem
contains ten design variables, such as width (bi) and
height (hi) of each cross-section (i = 1, …, 5). At the
free end of the beam, an external load (P) is applied
with the magnitude equal to 50,000 N. Moreover, at the
left end of each section, the maximum allowable stress

Table 13 Comparisons of average results of 25 runs for the test functions (F01-F06) among the proposed RGA-DX and other recent optimization
algorithms

Function RGA-DX CA GOA SSO SCA SGA

F01 1.012E-37 1.385E-03 3.973E-06 5.648E-02 9.844E-10 3.119E-04

F02 9.894E-49 4.601E+34 4.040E+36 5.648E-02 1.257E-01 1.996E-07

F03 1.514E-36 6.579E+02 5.474E-01 8.737E-01 5.118E-10 1.560E-02

F04 2.958E-04 5.699E-03 2.022E-02 1.395E-02 3.067E-02 2.310E-03

F05 0.000E+00 6.579E+02 1.101E+02 4.313E+01 1.917E+00 2.834E+01

F06 1.500E-32 7.909E+00 4.868E+00 2.890E-02 1.843E+00 6.800E-01

Best results are marked in bold
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(σmax) is found to be equal to 14,000 N/cm2. In addi-
tion, the length of each section li (i = 1, …, 5), material
elasticity (E) and maximum allowable deflection (Ymax)
are seen to be equal to 100 cm, 200 GPa and 2.715 cm,

respectively. The height-to-width aspect ratio of each
cross-section is limited to less than 20 and there are
11 functional constraints. The problem can be mathe-
matically expressed as follows:

Fig. 8 Scalability study for the functions: a F01, b F02, c F03, d F04, e F05, and f F06

1860 A.K. Das, D.K. Pratihar



Take;X ¼ b1; h1; b2; h2; b3; h3; b4; h4; b5; h5½ �T ¼ x1; x2;…; x10½ �T
Minimize f Xð Þ ¼ 100 x1x2 þ x3x4 þ x5x6 þ x7x8 þ x9x10ð Þ
subject to

g1 xð Þ ¼ 10:7143−
x1x22
1000

≤0;

g2 xð Þ ¼ 8:5714−
x3x24
1000

≤0;

g3 xð Þ ¼ 6:4286−
x5x26
1000

≤0;

g4 xð Þ ¼ 4:2957−
x7x28
1000

≤0;

g5 xð Þ ¼ 2:1429−
x9x210
1000

≤0;

g6 xð Þ ¼ 104
244

x1x32
þ 148

x3x34
þ 76

x5x36
þ 28

x7x38
þ 4

x9x310

	 

−10:86≤0;

g7 xð Þ ¼ x2−20x1≤0;
g8 xð Þ ¼ x4−20x3≤0;
g9 xð Þ ¼ x6−20x5≤0;
g10 xð Þ ¼ x8−20x7≤0;
g11 xð Þ ¼ x10−20x9≤0;
and
1≤xi≤5; i ¼ 1; 3; 5; 7; 9; and 30≤x j≤65; j ¼ 2; 4; 6; 8; 10:

ð17Þ

In the literature, this problem had already been solved using
several techniques, such as Sequential Directed Genetic
Algori thm Including Memory with Local Search
(SDGAMINLS) [60], Mathematical Programming Neural
Network (MPNN) [60] and Sequential Unconstrained

Minimization Techniques (SUMT) [60]. In our case, the prob-
lem has been solved using the RGA-DX with a penalty func-
tion method [60], where the penalty factor is assigned to be
equal to 107. Moreover, it is important to note that the opti-
mum solution obtained using the RGA-DX has the precision
of four digits after the decimal point. From the results given in
Table 15, it is easy to say that the RGA-DX has been able to
generate the best feasible results compared to the others. In
addition, contents of Table 16 show that except MPNN, the
results obtained using the other three algorithms are feasible.

This design problem has also been solved using the five
recently proposed optimization techniques, such as CA, GOA,
SSO, SCA, and SGA. These algorithms have been run for
several times and the best obtained solutions are reported in
Table 17 with a precision level up to 4 digits after the decimal
point. From the results, it is observed that all the results are
feasible and the amount of constraint violations (CV) are
found to be zero. Moreover, the proposed RGA-DX has
yielded the best optimized results for this problem of interest.

The directional information guides the search process to
concentrate on the most potential areas of the variable space,
where the chance of getting good solutions is more. However,
the search process can be directed randomly also with the use

Table 14 Comparisons of the results of the time study

RGA-DX RGA-SBX RGA-LX RGA-RX RGA-RDD

Function tavg (in Sec.) feavg tavg (in Sec.) feavg tavg (in Sec.) feavg tavg (in Sec.) feavg tavg (in Sec.) feavg

F01 0.8041 32,700 1.8857 100,902 3.9594 224,280 1.1716 56,874 2.5138 45,864
F02 1.0146 34,200 2.5502 107,100 4.4469 196,038 1.3968 54,432 14.0907 241,122
F03 0.9477 36,408 2.3431 114,906 5.9038 294,690 1.4142 63,336 3.9501 88,110
F04 0.6021 24,150 1.2725 63,102 2.3350 119,994 0.9239 40,734 1.8959 34,038
F05 2.0698 90,900 2.6857 141,582 4.6862 248,388 3.5038 161,454 NA NA
F06 0.5969 17,250 1.1043 41,544 2.1708 83,088 0.9364 31,698 NA NA

Best results are marked in bold

Table 15 Comparison of optimization results for the cantilever beam
design problem

Variables RGA-DX SDGAMINLS [60] MPNN [60] SUMT [60]

b1 3.0471 3.0459 3.0606 2.17

h1 60.9417 60.8969 61.2115 42.74

b2 2.8094 2.8018 2.8161 2.27

h2 56.1876 56.0168 56.3214 44.99

b3 2.5238 2.5251 2.5216 2.82

h3 50.4757 50.4643 50.429 50.47

b4 2.2063 2.2252 2.2136 2.79

h4 44.1250 44.4745 44.2759 55.42

b5 1.7498 1.7678 1.7503 3

h5 34.9951 34.8462 35.0141 59.77

f(x) 62,952.6883 63,044.17 63,240.67 65,678
Fig. 9 Schematic view of a cantilever beam with the design parameters
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of lower directional probability (pd). The calculated parameter
val, the multiplying factor (α), and the children identification
conditions promote the search process to focus over a wider
range in the variable space, while the higher value of pd helps
the search process to constrict over the relatively smaller re-
gion. These two conflicting forces actually support to main-
tain a proper balance between the diversification and intensi-
fication powers of the RGA-DX, due to which the proposed
method is able to show the better performance compared to
others.

6 Conclusions

In this paper, a novel recombination operator, namely direc-
tional crossover (DX) has been proposed and implemented in
a real-coded genetic algorithm (RGA). The working principle
of the developed crossover operator is dominated by the di-
rectional information of the optimization problem to be
solved. This obtained information helps the search process
to be directed towards the most potential areas of the variable

space. However, to maintain a proper balance between the
exploration and the exploitation abilities of an RGA, a param-
eter, called directional probability (pd), has been introduced.
The performance of an RGAwith the proposed DX operator
(RGA-DX) has been tested on a set of six well-known single-
objective optimization functions with the varying number of
variables and the results are compared to that yielded result
using the RGAs with four other popular crossover operators.
Moreover, comparisons are made among the obtained results
of five RGAs on the said test functions with initial variables’
boundaries, which do not contain the globally optimum solution.
In addition, a performance comparison is done among the results
obtained using RGAs without any mutation operation. In all
the experiments, the RGA-DX has outperformed the other
RGAs. Furthermore, several non-parametric statistical analy-
ses, such as pairwise and multiple comparisons have been
carried out on the obtained results. From the study, it is obvi-
ous that the RGA-DX has yielded significantly superior per-
formance compared to the others. Moreover, the convergence
analysis using the Page’s trend test has revealed that the RGA-
DX provides the fastest convergence rate among the five

Table 16 Comparison of constrained values for the cantilever beam design problem using four different methods

Constrained values RGA-DX SDGAMINLS [60] MPNN [60] SUMT [60]

g1 −0.6023 −0.5814 −0.0703 −0.465
g2 −0.29801 −0.2205 −0.0422 −0.068
g3 −0.00153 −0.0020 0.0025 −0.003
g4 −5.73E-07 −0.1158 −0.0125 −0.0002
g5 −4.86E-06 −0.00370 −0.0014 −0.0003
g6 −2.8E-07 −0.00074 −0.0094 −0.002
g7 −0.0003 −0.02241 −0.0006 −0.524
g8 −0.0004 −0.02071 −0.0005 −0.442
g9 −0.0003 −0.03804 −0.0030 −0.0007
g10 −0.001 −0.03109 0.0039 −0.375
g11 −0.0009 −0.51026 0.0081 −0.222

Table 17 Comparison of results
of RGA-DX and that of recently
developed optimization algo-
rithms for the cantilever beam
design problem

Variables RGA-DX CA GOA SSO SCA SGA

b1 3.0471 3.6522 3.9108 3.0105 3.4054 3.0504

h1 60.9417 54.2181 56.1624 60.1166 65.0000 61.0076

b2 2.8094 2.8268 4.1213 2.7962 3.7089 2.8056

h2 56.1876 55.3007 48.2459 55.6789 52.2143 56.1091

b3 2.5238 2.6474 2.8667 2.5453 2.6129 2.5242

h3 50.4757 52.9474 49.2895 50.5066 51.2293 50.4787

b4 2.2063 2.2644 2.5772 2.2979 2.7031 2.2065

h4 44.1250 45.1759 40.8266 45.7166 42.7503 44.1283

b5 1.7498 2.0275 4.4926 1.8095 2.4297 1.7498

h5 34.9951 40.5027 30.0000 36.1427 31.8199 34.9952

CV 0.0 0.0 0.0 0.0 0.0 0.0

f(x) 62,952.6883 67,892.7843 79,977.0265 63,167.0697 74,173.6802 62,953.9303
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RGAs and it is followed by the other algorithms, such as
RGA-RDD, RGA-RX, RG-SBX, and RGA-LX. This fact of
having the better convergence rate compared to others has
been again established through the time study, where the
RGA-DX has taken the minimum CPU time and number of
function evaluations to reach a particular accuracy of the ob-
jective function value for all six test functions. Moreover, a
performance comparison of the proposed RGA-DX with five
other recently developed optimization algorithms for all the
test functions proves its supremacy over the others. Finally,
the proposed RGA-DX has been implemented to the realm
of engineering applications, where a constrained cantilever
beam design problem has been solved using the RGA-DX
and the results are compared with that of the obtained ones
using other approaches. In this case, the proposed RGA-
DX is able to find the better design of the cantilever beam
compared to the others.

The use of the directional information helps the algorithm
to search in more potential regions of the variable space, while
the calculated parameter val, the parameter multiplying factor
(α), and the child identification conditions promote the search
process to spread over the undiscovered regions of the vari-
able space. These are the reasons due to which a proper bal-
ance between the diversification and intensification powers of
the proposed algorithm is maintained and consequently, the
RGA-DX is able to produce superior results compared to
others. In the future, the RGA-DX will be applied to solve
other optimization functions and real-world problems to es-
tablish its supremacy in the broader sense.
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