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Abstract
Skyline queries have been extensively incorporated in various contemporary database applications. The list includes but is not
limited to multi-criteria decision-making systems, decision support systems, and recommendation systems. Due to its great
benefits and wide application range, many skyline algorithms have already been proposed in numerous data settings.
Nonetheless, most researchers presume the completion of data meaning that all data item values are available. Since this
assumption cannot be sustained in a large number of real-world database applications, the existing algorithms are rather inad-
equate to be directly applied on a database with incomplete data. In such cases, processing skyline queries on incomplete data
incur exhaustive pairwise comparisons between data items, which may lead to loss of the transitivity property of the skyline
technique. Losing the transitivity property may in turn give rise to the problem of cyclic dominance. In order to address these
issues, we propose a new skyline algorithm called Sorting-based Cluster Skyline Algorithm (SCSA) that combines the sorting
and partitioning techniques and simplifies the skyline computation on an incomplete dataset. These two techniques help boost the
skyline process and avoid many unnecessary pairwise comparisons between data items to prune the dominated data items. The
comprehensive experiments carried out on both synthetic and real-life datasets demonstrate the effectiveness and versatility of
our approach as compared to the currently used approaches.
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1 Introduction

For the past decade, the interest in designing and developing
more flexible query operators in database management sys-
tems has increased dramatically. These query operators have
changed the way of retrieving data from the database.
Preference queries return data items of the database if (and
only if) they meet the user’s given preferences. Skyline
queries constitute one of the most practical and predominant
types of preference queries. They were first introduced in

database systems by [1]. Skyline queries return only those
non-dominant data items from the database that best meet
the user’s given preferences in the submitted query [1–10].
For instance, someone is looking for a house in a specific area,
and each house available on the market possesses different
features (number of rooms, number of bathrooms, type of
bedrooms, location, and distance from the workplace).
Browsing a house rental website can be quite time-
consuming and tedious as the interested user has to choose
from among the many houses available and advertised on the
website. In this scenario, submitting a skyline query will result
in eliminating all those houses that do not fulfil the user’s
stated preferences and narrowing the results that best suit his
or her interest.

In order to gain a better understanding of processing sky-
lines queries in a given database, the following example of a
hotel finder database will clarify how the skyline technique
works. It is assumed that a researcher is looking for a hotel in
proximity to his conference venue. He is looking for a hotel
located closest to the conference venue and has been given the
best ratings. Figure 1a represents the data in a relation form.
This relation contains the details of ten hotels. The first attri-
bute represents the hotel ID, the second attribute indicates the
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rating of the hotels, and lastly, the third attribute denotes the
distance to the conference venue. Figure 1b illustrates the
representation of the hotel-finder database example in 2-D
space. Based on the definition of skyline queries and consid-
ering the existing constraints, it can be learned that hotels h1,
h2, h4, h5, and h7 are fully dominated by h9 and h8. This is due
to the fact that h9 and h8 have better ratings than the other
hotels (h1, h2, h4, h5, and h7) and are similar in terms of
distance. Hotels h3, h6, and h10 are partially dominated by h9
based on distance. However, these hotels are dominated by h8
in both dimensions (better rating and shortest distance). The
dominated hotels (h1, h2, h3, h4, h5, h6, h7, h10) are not con-
sidered as skylines. It can also be observed that hotel h9 par-
tially dominates h8 in dimension three (shortest distance), and
similarly, hotel h8 partially dominates hotel h9 in the second
dimension (better rating). According to the skyline definition,
these two hotels (h8, and h9) are the skylines of this hotel-
finder database.

Due to their immense benefits, skyline queries are being
widely utilized in many domains such as multi-criteria decision
making, decision support [11–15], hotel recommender [16],
restaurant finder [2, 16], temporal databases [17],
crowdsourcing databases [18–20], and cloud databases [21].
Since the first introduction of a skyline operator into a database
system by Borzsony et al. [1], researchers in the database com-
munity have been striving to improve the performance of sky-
line process by reducing the searching space and minimizing
the number of pairwise comparisons, which in turn lowers the

processing time of any skyline computation. Many skyline ap-
proaches have been proposed in the literature [11–13, 15,
22–24] concentrating on skyline issues over complete databases
where values of all the dimensions are present in the database.
The completeness of the data renders it easier to identify the
skylines among all data items present in the database which fit
the user’s preference. However, in the real-world databases,
which are mostly large and multidimensional databases, it is
rather unlikely that the database is complete. In other words,
values of some data items are not present (missing) in one or
more dimensions. Thus, the assumption of data completeness in
any given skyline process cannot be sustained.

The incompleteness of data in databases has given rise to
many challenges in evaluating skyline queries and made it
quite difficult to identify the skylines of the database. Due to
the incompleteness of the data, the approaches proposed for
complete databases are not recommended to be directly ap-
plied on incomplete databases. Incomplete data results in un-
necessary pairwise comparisons that eventually lead to the
cost of processing skyline queries being prohibitive. Most
importantly, an incomplete database also means losing the
transitivity property of the skyline, which in turn may lead
to the problem of cyclic dominance [2]. Furthermore, in large
incomplete databases, the size of skylines may increase due to
the incompleteness of data in many dimensions and render
many data items as incomparable. Besides, a high number of
skylines does not necessarily provide any insight to the user
and may not assist him or her in making the right choice [2].

In order to further clarify the issue of incomplete data and
its impact on processing skyline queries, the following exam-
ple is given. A house-rental website possesses a database to
allow users to rent houses, and a customer wants to rent a
house whose features should be as follows: 1) It should have
the maximum number of bedrooms; 2) It should be closest to
his workplace; and 3) the rent should be the lowest among the
houses available in the database. Let it be assumed that the
database contains three houses and that some dimensions are
missing: h1 (2, *, 600), h2 (*, 5, 700) and h3 (3, 6, *). The first
dimension contains the number of rooms, the second dimen-
sion the distance (in km) from the workplace, and the third
dimension the price of the rent. The symbol * denotes that the
value of a particular dimension is not present (missing). In
order to evaluate the skylines for this kind of incomplete
dataset, we need to compare all houses with one other and
identify the best house according to the user’s preferences.
When comparing h1 with h2 from the given dataset, we find
that the h1 dominates h2 in the third dimension. When com-
paring h2 with h3, we find that h2 is better than h3 in the second
dimension. In respect to the transitivity property where h1
dominates h2 and h2 dominates h3, so h1 should dominate
h3. However, this is not the case in the given dataset.
Instead, we find that h3 dominates h1. Hence, we lose the
transitivity property and also encounter the issue of cyclic

   Restaurant ID Rating Distance 

h1 1 8 

h2 2 8 

h3 6 7 

h4 1 6 

h5 2 5 

h6 7 4 

h7 3 3 

h8 9 3 
h9 5 1 
h10 6 3 

(b)

(a)

Fig. 1 Skylines of hotel recommendation database
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dominance. In consequence, the process ends with no result as
all houses are dominated by one other.

& Transitivity: Given ai, aj, ak ∈ R, if ai ≻ aj, and aj ≻ ak,
according to transitivity property ai ≻ ak holds for com-
plete data. However, it may not hold for incomplete data.

& Cyclic dominance: Given ai, aj, ak ∈ R, ai ≻ aj, aj ≻ ak,
and , ak ≻ ai may hold over incomplete data.

The research work presented in this paper focuses on
sorting the data items based on the available data in each
dimension in descending order. This is followed by accumu-
lating the domination power of each data item denoting the
number of dominated data items by scanning the sorted lists.
Subsequently, filtration is applied to begin with the initial
pruning for the dominated data items before applying the sky-
line technique. Then, the remaining data items are partitioned
in disjoint sets called clusters based on their domination
power. These clusters are further divided into smaller groups,
where each group contains data items with the same bitmap
representation. Dividing the clusters into smaller groups sim-
plifies the skyline process and helps sustain the transitivity
property of the skyline technique. In addition, it also helps
reduce the searching space and minimizes the domination
tests. In order to accelerate the process, it is run parallel on
each group to eliminate the unwanted data items effectively.
Lastly, the approach ends by comparing the local cluster sky-
lines and returns only non-dominated data items as the
skylines.

The following points summarize the contributions of this
paper:

& We re-introduce the problem of identifying skylines in a
database with incomplete data and justify the need to form
a new and more efficient solution.

& We conduct a comprehensive review examining the most
notable work done in the area of skyline queries in data-
base systems. This covers the previous approaches de-
signed for complete and incomplete databases. The focus
is given on examining and summarizing the strengths and
the weaknesses of each approach.

& We propose a new skyline algorithm processing skyline
queries on incomplete data called Sorting-based Cluster
Skylines Algorithm (SCSA) that efficiently answers sky-
line queries in incomplete databases by exploiting the
sorting and clustering in simplifying the skyline
computation.

& We develop an innovative method that helps sort initial
data items into distinct clusters based on the domination
power of the data items.

& We incorporate the two optimization techniques of filtration
and optimization that help reduce the number of pairwise
comparisons between data items. Filtration prunes the

initial incomplete database and eliminates the dominated
data items before applying the skyline technique.

& We evaluate the efficiency and the effectiveness of the
proposed solution through experiments using both real
and synthetic datasets. These experiments demonstrate
the effectiveness of the proposed solution.

The remainder of the paper is organized as follows: In
Section 2, the previous works related to this research are re-
ported and discussed. The basic definitions and notations used
in the rest of the paper are set out in Section 3. The proposed
approach is explained and illustrated in Section 4, and the
experimental results are illustrated and explained in
Section 5. The conclusion is described in Section 6.

2 Related work

Skyline queries were initially examined for maximal vector
[25–27] or Pareto set computation [28, 29]. Borzsonyi et al.
[1] was the first who presented the skyline operator in data-
base management systems. Following this example, a number
of works were proposed to improve the efficiency and perfor-
mance of the skyline process in database management sys-
tems. Therefore, the proposed algorithms in the literature fo-
cus on reducing the searching space, minimizing the pairwise
comparisons between the data items to declare the skylines,
and reducing the execution time. In this section, we review
and investigate the existing algorithms designed for complete
databases as described in Subsection 2.1. Subsection 2.2 con-
centrates on examining the existing skyline solutions formed
for incomplete databases.

2.1 Skyline queries for complete databases

Borzsonyi et al. [1] proposed the two algorithms BNL and
D&C. Block Nested-Loop (BNL) reads data items one by
one and compares them to the other data items in the window.
The data items that are dominated will be removed from the
window leaving the rest of data items in the window for next
iterations. Divide and Conquer (D&C) divides the initial
dataset into two main sections, computes the local skylines
of both sections separately, and then identifies the final sky-
lines by computing local skylines of both sections together. A
numerous number of algorithms have been offered after BNL
and D&C and applied two methods (sorting and partitioning)
on initial data to evaluate skylines.

Sorting approaches The main goal of sorting is to reorganize
the data items in such a way that the dominated data items will
be pruned as soon as possible, which also reduces domination
tests. As in BNL, the data items are accessed in the initial
(input) state. In order to enhance the efficiency of BNL, other
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algorithms like SFS [23], LESS [30] and SaLSa [31] have
been proposed. These algorithms use the sorting concept and
rearrange the data items to eliminate those data items at the
early stages of the skyline process that possess the least po-
tential. SFS sorts entire database in non-ascending order to
eliminate non-skyline data items early, whereas LESS com-
bines the advantages of SFS and BNL and reorders the data
items. SalSa uses another function and keeps dominant data
items on top that helps to prune more data items and reduces
domination tests.

Partitioning approaches The main idea behind partitioning
datasets is to increase the efficiency of the algorithm. It also
reduces the domination tests between the data items. As stated
earlier in the literature, D&C divides the dataset into two main
subsets and then retrieves the skylines by recursively
partitioning the subsets. Several other algorithms such as
INDEX [11], NN [22], BBS [24], OSPS [32], ZSearch [33],
BSkyTree [34] have been proposed based on the D&C con-
cept by dividing the dataset into small partitions before re-
trieving the local skylines from all partitions, combining all
local skylines and producing the final skyline.

2.2 Skyline queries for incomplete databases

While Borzsonyi et al. [1] first introduced skyline queries in
complete data, Khalefa et al. [2] first proposed skyline queries
for incomplete data. They proposed the ISkyline algorithm to
identify skylines in incomplete data. In the ISkyline algorithm,
he optimized his own proposed algorithm called the
Bucket algorithm [2] using the two optimizing techniques
virtual points and shadow skylines. Instead of comparing all
data items of bucket Bi with Bi++, virtual points Pk are created
for each bucket (Bi-Bn), and the virtual point of Bi is used to
compare the data items present in another group Bi++. The
objective here is to reduce the maximum number of unwanted
domination tests and prune unwanted data items. In order to
identify the correct skylines, a set of data items represented as
shadow skylines are used to dominate some data items across
the buckets. This set of data items, however, is dominated by
virtual points. Regardless of the enhanced Bucket algorithm,
ISkyline’s performance is affected by the order of initial data.
Using the virtual point technique may produce incorrect re-
sults. It may be that the data item in bucket Bi++ should be in
the final skyline, yet due to using the virtual point of bucket Bi

the data item is dominated or vice versa. Moreover, ISkyline
involves n number of virtual points which are derived from the
local skylines of the buckets to be placed on top of each bucket
to prune the dominated local skylines. However, the number
of virtual points increases when the number of local skylines
increases, which in turn increases the number of pairwise
comparisons. The performance of ISkyline is highly influ-
enced by the number of virtual points.

RSSSQ [35] uses the same concept of Khalefa et al. [2] by
replacing missing values with certain numbers that are larger
than the domain value in order to avoid losing the transitivity
property of the skyline and the issue of cyclic dominance.
Miao et al. [36] proposed three algorithms known as baseline,
virtual point (VP) and k-iSkyband (kISB). Their baseline al-
gorithm requires a high number of pairwise comparisons to
retrieve the skylines. In addition, the correction of data items
in the buckets is ignored. The VP algorithm overcomes the
issue of data item correction. Lastly, kISB further optimizes
VP by reducing the domination test process and eliminating
redundant data storage.

Based on [2], Bharuka and Kumar [37] proposed the SIDS
algorithm (Sorting-based Incomplete Data Skyline) to im-
prove the ISkyline algorithm. SIDS uses the pre-sorting ap-
proach on input data to rearrange the position of data items.
This rearrangement helps place those data items on the top of
the list that are most likely to dominate other data items. SIDS
uses the sorting technique of [13, 38] where values of each
dimension are sorted in a descending order without counting
the missing dimensions. Domination tests are done by
selecting a data item P from each dimension according to
the round-robin method and comparing it with the data items
C present in the same dimens ion. The var iable
ProcessedCount (pc) keeps the record of domination tests of
the data item P. Dominated data items are subsequently re-
moved from the candidate set. If the value pc of P is equal
to the number of non-missing dimensions of P, then P will be
moved to ResultSet. When all candidate skylines (data items)
are processed at least once, the domination process stops and
the remaining data items in the candidate set are also moved to
ResultSet. The ResultSet consists of the final skylines.
However, in this SIDS approach, the lists have to be accessed
in a sequential order, and the system has to receive the results
of all lists before moving to the next phase. Thus, the increas-
ing the number of lists may degrade the performance of the
skyline process and delay generating the skylines for the end
user.Moreover, SIDS is not fully efficient in handling all types
of incomplete datasets as it is based on datasets used in [13,
38]. SIDS lacks any optimization that could simplify the pro-
cess of identifying the skylines. It identify skylines by
accessing each data item in a sequential order. This sequential
access renders the process of pairwise comparisons very te-
dious and exhausting as many unnecessary pairwise compar-
isons are needed to eliminate the dominated data items.

[39] has discussed the issue of processing skyline queries in
incomplete datasets by proposing an approach named
Incomplete Data Frequent Skyline or IDFS. IDFS adopts the
top-k frequent skyline technique suggested in [12] in order to
control the size of the skyline results. It utilizes the concept of
top-k to derive superior skylines based on the fractional sky-
line frequency of each data item, which enables it to identify
the superior skylines for a database with missing values.

SCSA: Evaluating skyline queries in incomplete data 1639



Experimental results have reportedly shown the efficiency of
IDFS using real and synthetic datasets. However, its perfor-
mance becomes highly degraded if the examined space for
determining the frequent skylines data items is very large.

A number of alternative approaches have been proposed
for processing skyline queries in incomplete data such as the
COBO framework [40] and SOBA [41]. Based on the COBO
framework, Zhang et al. [40] proposed an algorithm (ISSA)
that identifies skylines in two phases. In the first phase the
bucket technique from [2] is adopted to eliminate most of
the dominated data items at an early stage. In the second phase
a function is utilized that aggregates the values of non-missing
dimensions of data items and sorts those data items in de-
scending order to prune dominated data items. SOBA, on
the other hand, uses the same approach of partitioning the data
items into subsets based on the same namespace. For optimi-
zation of data items, SOBA uses a technique whereby data
items are sorted in ascending order for each subset to identify
local skylines. Unlike ISSA, SOBA compares data items with
one another across buckets without considering to prune the
dataset by eliminating the dominated data items before apply-
ing the skyline technique. This, however, necessitates many
unwanted pairwise comparisons among data items during the
skyline process.

To the best of our knowledge, the latest works on the issue
of processing skyline queries on incomplete databases are
authored by Alwan et al. [42] and Wang et al. [43]. Alwan
et al. [42] has developed the Incoskyline algorithm for pro-
cessing skyline queries in multidimensional and incomplete
databases. Incoskyline has improved ISkyline by using a dif-
ferent way of reducing pairwise comparisons and pruning
non-skyline data items as early as possible. In the
Incoskyline algorithm, the initial dataset is divided into a dif-
ferent set of clusters Cn, each cluster containing data items of
the same namespace (same bitmap representation). Each clus-
ter is divided into two groups Ci.G1, Ci.G2. The first groups
contain all the data items that possess the highest values in any
dimension while the other group contains the data items with
the second highest values. Subsequently, the local skylines are
found by comparing the data items with one another in each
group. After combining the local skylines of each group in one
list, domination tests are carried out to determine the local
skylines of each cluster (Ci-Cn). A virtual data item called k-
dom is created by selecting the highest values of all dimen-
sions of any data item in cluster Ci and Ci+ 1. k-dom is used to
compare data items of Ci + 1 instead of comparing all data
items of Ci with Ci+ 1. Thus, for cluster C1 k-dom is created
fromC2 andC3, for clusterC2 k-dom is created from clusterC3

and C4. Likewise, for Cluster Cn k-dom is created from cluster
Cn-1 and C1. Although Incoskyline has improved Iskyline in
terms of execution time and pairwise comparisons, yet it lacks
result accuracy due to its use of a virtual data item (k-dom),
which is similar to Iskyline as explained earlier.

Wang et al. [43] has recently introduced the SPQ approach
(Skyline Preference Query). SPQ adopts the SIDS [37] ap-
proach. However, it divides the initial data into two subsets
based on preference. The first subset contains all those dimen-
sions given high priority by the user. The SIDS approach is
implemented on the first subset to retrieve the local skylines.
However, for another subset the D&C [2] technique is imple-
mented to divide the data items based on their bitmap repre-
sentation and identify the local skylines. In order to retrieve
the final skylines, the local skylines of the first subset are
compared to the local skylines of the second subset.
Although SPQ has improved SIDS, both approaches include
the crestion of multiple arrays, each array being processed
sequentially, which slows down the processing time.
Furthermore, many unwanted pairwise comparisons are per-
formed in order to identify the local skylines of each subset
since filtration is not done to prune the unwanted data items as
early as possible.

In clear contrast, our proposed algorithm (SCSA) uses a
new hybrid approach that combines the power of sorting and
partitioning to prune the unwanted data items before further
processing. Unlike SPQ and SIDS, the proposed approach
uses several optimization techniques that allow the pruning
of the dominated data items before applying the skyline oper-
ation. This is achieved during the sorting and filtering and
selecting superior local skylines phases. We attempt to identi-
fy those data items that are most likely to be contained in the
final skyline result by identifying the domination power of
each data item. Also, partitioning the data items based on their
domination power value enhances the performance of our
solution.

3 Definitions and notations

In this section, a number of definitions and notations are pro-
vided related to skylines queries in incomplete databases.
These definitions and notations help clarify our proposed
approach.

Table 1 summarizes the symbols used throughout the pa-
per. These terms are further explained below. Our approach
has been developed in the context of incomplete relational
databases, D. A relation of the database D is denoted by R
(d1, d2..., dm) where R is the name of the relation with m-arity
and d = (d1, d2, ..., dm) is the set of dimensions.

& Definition 1 Skyline: The skyline technique retrieves the
skyline S, in a way such that any skyline in S is not dom-
inated by any other data items in the database.

& Definition 2 Dominance: Given two data items pi and
pj∈D database with d dimensions, pi dominates pj (the
greater is better) (denoted by pi ≻ pj) if (and only if) the
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following condition holds: ∀ dk∈d, pi.dk ≥ pj.dk ∧∃dl, ∈d,
pi.dl > pj.dl.

& Definition 3 Skyline Queries: Select a data item pi from
the set of D database if (and only if) pi is as good as pj
(where i ≠ j) in all dimensions (attributes) and strictly bet-
ter than pj in at least one dimension (attribute). We use
Sskyline to denote the set of skyline data items,
Sskyline = (pi ∀ pi, pj ∈ D, pi ≻ pj).

& Definition 4 Incomplete Database: given a database D
(R1, R2, ..., Rn), where Ri is a relation denoted by Ri (d1, d2,
..., dm), D is said to be incomplete if (and only if) it con-
tains at least a data item pj with missing values in one or
more dimensions dk (attributes); otherwise, it is complete.

& Definition 5 Comparable: Let the data items ai and aj ∈
R, ai and aj be comparable (denoted by ai ε aj) if (and only
if) they have no missing values in at least one identical
dimension; otherwise ai is incomparable to aj (denoted by
ai ε/ aj).

4 SCSA algorithm

We have proposed a new efficient algorithm called Sorting-
based Cluster Skyline Algorithm (SCSA) for deriving skylines
in a database with incomplete data. The proposed algorithm
consist of the five phases of Sorting and Filtering, Clustering
and Grouping, Identifying Local Skylines, Selecting Superior
Local Skylines, and Retrieving Final Skylines as illustrated in
Fig. 2. These five phases are further explained in following
subsections.

In order to illustrate the function of SCSA a sample run on
an incomplete database has been conducted as demonstrated
in Fig. 3. The database example contains 40 data items with

seven dimensions in which some values are not present
(marked as *).

4.1 Sorting and filtering

In this phase the data items of the initial dataset are sorted in
descending order based on the values of each non-missing
dimension before eliminating the dominated data items with
a low value of domination power and discarding them. Data
items with low domination power value are unlikely to con-
tribute in forming the skyline results and thus, removing them
before applying the skyline technique saves a large amount of
unnecessary pairwise comparisons and reduces the overhead
of the skyline computation process. The process starts by
sorting the data items in each distinct list according to the
values of each dimension. It is worth noticing here that only
the id dimension of data items is stored in the lists, which are
scanned in a round-robin fashion to count the domination
power of each data item. This process continues until all
the data items of the initial dataset have been read at least
once. Those data items with a domination power value less
than the user-defined threshold (th) are removed as they
may be dominated by other data items in one single dimen-
sion. Hence, it is ascertained that the eliminated data items
will not be part of the skyline result as they are most likely
to be dominated by other data items with a domination
power value greater than th. This filtration process helps
simplify the skyline operation by reducing the number of
pairwise comparisons between data items.

Table 1 Symbols and description

D Dataset

dt, a Data item (tuple)

n Number of data items

d Dimension

dp Domination power

m Total no. of dimensions

u Non-missing dimensions

C Cluster(s) created based on domination power

G Group(s) created based on bitmap representation of dt

CLS Cluster Local Skyline(s)

SLS Superior Local Skyline(s)

R Relation

th Threshold to eliminate some data items based on dp

dp-list Domination power list

Fig. 2 The phases of the proposed algorithm (SCSA)
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As part of the sample run, the initial dataset D is sorted in
descending order for each dimension d1 – d6. A set of lists u1 –
u6 is constructed to store the sorted data items based on the
corresponding dimension. Figure 4 depicts the sorted data
items according to each dimension in the dataset. It can be
observed that the six constructed lists u1 – u6 correspond with
the number of dimensions d1 – d6 in the dataset D.

The data items of the constructed lists are scanned in a
round-robin fashion to calculate the domination power for
each data item. This process continues until all the data items
of the dataset have been read at least once. The following
equation demonstrates the formula of computing the domina-
tion power (dp) of the data item.

dp ¼ ∑
u

k¼1
dti; iff dti:k≻dt j:k

As part of our experimental sample run of the database, the
process works as follows: the first data item m8 in list u1 is
read and its domination power dp has increased by 1 which
indicates the appearance ofm8. In the second iteration, the first
data item m30 in list u2 is read and its dp has also increased by
1. In the third iteration, the data item m30 has been read again
in list u3 and its dp value has further increased by 1 and
becomes 2. This process continues until the reading of all data
items of the dataset to compute their dp is complete. Based on
the example (Fig. 4), the process terminates at the 104th iter-
ation where m27 in list u2 is read. The process has been termi-
nated after reading m27 as the termination conditions have
become true (number of scanned data items = number of data
items in the dataset).

The scanning process helps facilitate the filtration process
by utilizing the domination power value of each data item.
Figure 5 illustrates the scanned data items and their domina-
tion power.

During the filtration process, all data items with a domina-
tion power lower than the user-defined threshold (th) are elim-
inated from further processing as all data items with dp < th
are not likely to be part of the skyline result given that they are
good only in one dimension. The main idea of filtering lies in
exploiting the domination power value to further simplify the
skyline process in incomplete databases with multiple

u1 u2 u3 u4 u5 u6
m8 m30 m30 m3 m2 m6

m9 m31 m32 m21 m6 m32

m7 m29 m8 m29 m9 m0

m18 m39 m12 m30 m0 m5

m21 m19 m3 m6 m1 m20

m39 m22 m7 m20 m37 m25

m16 m1 m21 m31 m38 m29

m32 m4 m0 m32 m39 m31

m10 m26 m9 m0 m4 m21

m13 m34 m22 m1 m11 m24

m20 m35 m29 m12 m13 m7

m23 m37 m34 m33 m15 m15

m26 m3 m37 m36 m22 m17

m34 m14 m13 m9 m31 m18

m38 m15 m17 m23 m7 m30

m17 m16 m26 m38 m17 m8

m28 m23 m4 m2 m18 m10

m29 m27 m5 m15 m25 m11

m37 m38 m10 m28 m16 m12

m15 m0 m31 m37 m19 m19

m33 m6 m38 m39 m20 m23

m36 m11 m39 m5 m27 m27

m25 m25 m2 m7 m3 m28

m35 m5 m18 m11 m10 m33

m2 m20 m24 m13 m24 m34

m12 m32 m25 m17 m35 m13

m14 m21 m27 m19 m36 m14

m24 m28 m26 m9

m33 m34 m26

m1 m35 m4

m11 m8 m1

m23 m10 m3

m36 m14 m16

m18 m22

Fig. 4 List of sorted arrays

ID d1 d2 d3 d4 d5 d6
m0 * 4 6 7 6 8 

m1 * 6 2 7 6 1 

m2 1 * 3 5 9 * 

m3 * 5 7 9 1 1 

m4 * 6 4 * 4 2 

m5 * 2 4 4 * 8 

m6 * 4 * 8 7 9 

m7 7 * 7 4 3 6 

m8 9 * 8 3 * 5 

m9 9 * 6 6 7 3 

m10 5 * 4 3 1 5 

m11 * 4 2 4 4 5 

m12 1 * 8 7 * 5 

m13 5 * 5 4 4 4 

m14 1 5 * 2 * 4 

m15 3 5 * 5 4 6 

m16 6 5 * * 2 1 

m17 4 * 5 4 3 6 

m18 7 * 3 2 3 6 

m19 * 7 * 4 2 5 

m20 5 2 * 8 2 8 

m21 7 1 7 9 * 7 

m22 * 7 6 * 4 1 

m23 5 5 2 6 * 5 

m24 1 * 3 * 1 7 

m25 2 4 3 * 3 8 

m26 5 6 5 4 * 3 

m27 * 5 3 * 2 5 

m28 4 * 3 5 * 5 

m29 4 8 6 9 * 8 

m30 * 9 9 9 * 6 

m31 * 9 4 8 4 8 

m32 6 2 9 8 * 9 

m33 3 * 3 7 * 5 

m34 5 6 6 4 * 5 

m35 2 6 * 4 1 * 

m36 3 * 1 7 1 * 

m37 4 6 6 5 6 * 

m38 5 5 4 6 5 * 

m39 7 8 4 5 5 * 

Fig. 3 An example of incomplete database
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dimensions and large dataset size. These data items can thus
be safely removed since the elimination of these data items
will not affect the skyline results. We represent the dp-list set
using the following formula.

dp−list ¼ ∀dti : iff dp of dti >¼ thf g:
where i = 1, …, n and th is the minimum defined threshold
value of dp.

For instance, if th is set as 2, the data item m25 has to be
removed as its dp < 2. It is clear that m25 will be dominated
based on the comparable common non-missing dimension
data items m29, m30, and m32. Hence, m25 should be re-
moved before conducting unnecessary pairwise compari-
sons between data items. Similarly, the data items m5, m19,
m25, m11, m24, m35, m33, m36, m14, m28, and m27 have been
removed since their dp is <2. A sizeable number of data
items has been removed prior to applying the skyline tech-
nique, which means that unnecessary pairwise compari-
sons have been avoided. Figure 6 depicts the remaining

data items sorted in descending order based on their dom-
ination power.

We argue that this sorting and filtering process simplifies
the skyline process by eliminating unwanted data items before
applying the skyline technique. In our running database ex-
ample, 11 out of 40 data items are deleted before commencing
with the skyline process, which translates into reducing 27%
of the pairwise comparison process of the skyline. For the sake
of simplicity and without losing generality, we assume that all
data items with dp value <2 must be removed from further
processing. However, our approach can also accommodate
cases where the user may chose a minimum th value to be
set to remove the dominated data items. For instance, in cer-
tain cases where the number of dimensions is large (meaning
here more than eight dimensions) we can set the filtration
condition to remove all data items with dp < 3 or 4.
Therefore, a large number of dominated data items can be
removed, which reduces the number of pairwise comparisons
between data items in the skyline process.

Figure 7 illustrates the detail steps of sorting and filtering
algorithm. In this algorithm, the data items of dataset D are
sorted in descending order for each dimension and stored in
the constructed lists (steps 1–4). In step 5, a 2D array or dp-list
is constructed to store the ID of all data items present inD and
their domination power value. Avariable AllDataItemsRead is

Data item ID Domination power (dp) 
m8 3 

m30 4 

m3 3 

m2 2 

m6 3 

m9 4 

m31 4 

m32 4 

m21 4 

m7 4 

m29 5 

m0 4 

m18 3 

m39 3 

m12 2 

m5 1 

m19 1 

m1 3 

m20 3 

m22 3 

m37 3 

m25 1 

m16 2 

m38 3 

m4 3 

m10 2 

m26 3 

m13 3 

m34 3 

m11 1 

m24 1 

m35 1 

m23 3 

m33 1 

m15 3 

m36 1 

m17 4 

m14 1 

m28 1 

m27 1 

Fig. 5 Domination power of each data item

Data item ID Domination power (dp) 
m29 5 

m30 4 

m9 4 

m31 4 

m32 4 

m21 4 

m7 4 

m0 4 

m17 4 

m8 3 

m3 3 

m6 3 

m18 3 

m39 3 

m1 3 

m20 3 

m22 3 

m37 3 

m38 3 

m4 3 

m26 3 

m13 3 

m34 3 

m23 3 

m15 3 

m2 2 

m12 2 

m16 2 

m10 2 

Fig. 6 Data items after filtration
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initialized to denote the total number of data items in D
(step 6). In step 8 for each row dri of List is selected. If
DimCountDone is true the scanning process terminates
(step 9), and if not the data item index of column ui of
dri is read (step 12). If AllDataItemsRead is greater than
0 (step 13), then uj is checked to determine whether it has
been read before or not (step 14). If it has been read before,
the dp of uj is incremented by 1 (step 15) and if not, uj is
added to dp-list (step 17) and its dp is set to 1 (step 18)
before AllDataItemsRead is decremented by 1 (step 19). If
AllDataItemsRead is not greater than 0, DimCountDone is
set as true (step 22) and the process is terminated (step 25).
Steps 8–26 are repeated in order to read all the data item
from List at least once.

The scanning process is executed in a round-robin fash-
ion. By the end of the scanning process, the dp-list contains
all the data items present in D and their domination power
value (dp). The dp indicates how many times a data item
(dt) has been read. The maximum value of dp for each data
item is equal to the number of non-missing dimensions for
that particular data item. Steps 27–31 represent the filtra-
tion process, which starts by reading each data item present
in dp-list (step 27). If dp of dti is <2 (step 28), then it is
removed from the dp-list (step 29). The process ends by
returning the filtered dp-list (step 32).

4.2 Clustering and grouping

This phase aims at further simplifying the skyline process in a
database with incomplete data by partitioning the data items
into smaller clusters based on their domination power gener-
ated in the previous phase. The idea of clustering relies on
grouping data items with similar domination power in one
cluster. This is achieved by scanning the list of the remaining
data items after filtration and placing the data items with sim-
ilar domination power in one cluster. The number of created
clusters equals to (d-d`- dpmin) where d is the total number of
dimensions in a database excluding the primary key dimen-
sion and d` is the number of dimensions with missing values.
In addition, dpmin denotes the minimum value of dp for those
removed dominated data items. Distributing filtered data
items into different clusters based on their domination power
significantly reduces the number of pairwise comparisons
necessary to generate the final skylines. This is due to the fact
that clustering essentially applies the divide and conquer tech-
nique, which has been proven as an effective way of process-
ing skyline queries in database systems [1, 2, 41–43].

Hence, this process helps reduce the number of data items
to be compared with each other, which in turn helps avoid
many unwanted pairwise comparisons without compromising
the correctness of the skyline result.

The detail steps of clustering are further elaborated as fol-
lows. Firstly, the list of filtered data items is scanned to iden-
tify the highest domination power or dp value in the list before
creating a new cluster Ci that contains all data items with the
highest dp value. Another new cluster Cj may be created on
the next highest dp value and contains the data items that have
a value equal to the next highest dp value. This process con-
tinues until the dp value of the remaining data items is below
the user-defined threshold value th. The following formula
translates the process of creating clusters based on the domi-
nation power dp of the data items.

C j ¼ ∀dti : iff dp dtið Þ ¼ hdpf g

Where hdp is the highest dp value in dp-list.
Data items in each cluster may have different bitmap

representation which makes it very difficult to apply the sky-
line technique due to the incompatibility of the bitmap repre-
sentation of data items in one cluster. This problem is caused
by values missing in one or more dimension of data items,
which makes it impractical to perform pairwise comparisons
between data items that ensure that the transitivity property of
skylines will always hold. Most importantly, it is inevitable to
encounter the issue of cyclic dominance. Thus, these large
clusters need to be further divided into smaller manageable
groups to avoid the above-mentioned problems. The purpose
of grouping is to create groups from each cluster based on the
common bitmap representation of data items. We employed

Algorithm 1 
Input: d-dimensional Incomplete Dataset D 

Output: A set of DataItems dt with their domination power, 

dp-list

1.   foreach dimension di in D do
2. sort DataItems in descending order based on 

available values in di
3.  add the indices of the sorted DataItems dt based on di

to List List.ui

4.   end
5.   Construct 2D array called dp-list // dp-list stores the ID of 

the DataItem dt and its domination power, dp
6.    set AllDataItemsRead = total number of DataItems in D
7.  DimCountDone= false 

8.   foreach DataRow dri of List.ui do
9.       if DimCountDone then 
10.    break 
11.       end 
12.       foreach Column uj of dri do  
13.    if AllDataItemsRead > 0 then
14.        if uj read before then
15.    Increment dp of uj

16. else 
17.    add ID of uj to dp-list
18.    set dp of uj=1 

19.    decrement AllDataItemsRead
20. end 
21.   else  
22.       DimCountDone = true 

23.       break 
24.    end 
25.      end 
26.  end  
27.   foreach dataItem dti in dp-list do
28. if dp of dti < 2 then
29. remove dti from dp-list 
30. end 
31.   end 
32.   return dp-list 

Fig. 7 The algorithm for sorting and filtering
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the principle of bitmap representation that indicates the mem-
bership of the data items to the appropriate group. For in-
stance, given a set of data items a1, a2, a3 ∈ a cluster Ci we
assume that each data item has three dimensions in total and
one dimension with missing value a1 (4, 5, *), a2 (4, *, 9) and
a3 (1, 3, *). Based on the given data of item a1, its bitmap
representation is 110 where value 1 denotes that the value is
present in that particular dimension while 0 indicates the value
is missing for that particular dimension. Similarly, the bitmap
representation of a2 and a3 is 101 and 110 respectively.
Therefore, according to the bitmap representation of the above
data items 2 groups, G1 and G2 must be created where G1

contains a1 and a3 while G2 contains a2. Aggregating data
items with the same subspace allow for smooth pairwise com-
parisons, thus sustaining the transitivity property of the sky-
line and excluding the problem of cyclic dominance [2, 4, 41,
42]. The following formula demonstrates the process of
adding data items to their corresponding groups.

Gj ¼ ∀dti : iff dti:bitmap ¼ Gj:bitmap
� �

Grouping also helps reduce the number of pairwise com-
parisons by limiting the number of data items to be compared
against each other in one group rather than comparing the
entire data items in one cluster. This simplifies the skyline
process by decreasing the number of pairwise comparisons,
which in turn reduces the execution time of the skyline pro-
cess.We believe clustering and grouping significantly contrib-
utes to improving the performance of the skyline process by
eliminating a large number of unnecessary pairwise
comparisons.

Figure 8 demonstrates the result of the clustering process
conducted on our running database example. From the figure
it can be observed that four distinct clusters have been created
(C1, C2, C3, C4). Cluster C1 contains one data item m29 with

dp = 5, which means that m29 has appeared five times in the
list of sorted arrays. Likewise, clusters C2, C3, and C4 contain
data items with the next highest dp values of 4, 3 and 2 re-
spectively. Furthermore, the data items belonging to each clus-
ter are further separated and distributed in distinct groups
based on similar bitmap representation.

Figure 9 depicts the output of the grouping process applied
on the created clusters of our database sample run. It can be
observed that only one group with the bitmap representation
(111101) has been created from cluster C1. Similarly, four
groups (G1, G2, G3, G4) with different bitmap representations
have been created based on the data items of cluster C2. It
should be obvious that creating smaller groups further sim-
plifies the skyline process. This divide and conquer technique
further lowers the number of data items to be compared
against each other.

Figure 10 details the steps of employing the data clustering
algorithm. The input of the algorithm includes the dp-list and
the initial dataset with incomplete data, while the output con-
sists of a list of distinct clusters. The algorithm works as fol-
lows: Initially, each data item dti in the dp-list is read. If the dp
value of the data item dti is equal to the dp value of any created
cluster Cj (step 2), the data item is inserted in the correspond-
ing cluster Cj (step 3). A new cluster Ck is created (step 5) and

Fig. 9 List of clusters divided into groups

Cluster C1
dp = 5 

Cluster C2
dp = 4 

Cluster C3
dp = 3 

Cluster C4
dp = 2 

m29 5 m30 4 

m9 4 

m31 4 

m32 4 

m21 4 

m7 4 

m0 4 

m17 4 

m8 3 

m3 3 

m6 3 

m18 3 

m39 3 

m1 3 

m20 3 

m22 3 

m37 3 

m38 3 

m4 3 

m26 3 

m13 3 

m34 3 

m23 3 

m15 3 

m2 2 

m12 2 

m16 2 

m10 2 

Fig. 8 Data items after clustering
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the data item dti inserted into cluster Ck (step 6). This process
continues until each data item in the dp-list is read and inserted
into one of the created clusters. Finally, the algorithm returns a
list of distinct clusters, each cluster containing data items with
similar dp value (step 9).

Figure 11 clarifies the steps of creating groups from the
constructed clusters. The algorithm input consists of a cluster
containing data items with different bitmap representation
whereas the output of the algorithm includes a list of distinct
groups based on bitmap representation. Each data item dti
belonging to cluster Cj is read (step 1). If the bitmap represen-
tation of the data item dti is equivalent to the bitmap represen-
tation of any previously created group Gk (step 2) before
inserting the data item into group Gk (step 3). Else, create a
new group Gk (step 5) and insert the data item dti into the
corresponding group Gk (step 6).

Eventually, a set of groups with distinct bitmap representa-
tion is returned (step 9). It should be noted that this process is
running simultaneously on all clusters since they are indepen-
dent of each other and creating groups from one cluster bears
no effect on the other cluster relationships. Therefore, this
process can be conducted in parallel, which speeds up the
skyline process in a database with incomplete data.

We noticed that the idea of generating the domination
power and clustering data items based on their domination
power values is very beneficial. It significantly reduces the

complexity of the skyline process in incomplete data by low-
ering the number of data items to be considered for pairwise
comparison. Therefore, the number of pairwise comparisons
that need to be conducted is further decreased, which in turn
results in less processing time. Constructing groups based on
bitmap representation also further simplifies the skyline pro-
cess in incomplete data, which ensures that the transitivity
property of the skyline technique is kept and that the problem
of cyclic dominance issue is avoided.

4.3 Identifying local skylines

In this phase the local skylines of each cluster are identified
and all the dominated data items removed and excluded from
further processing. This helps reduce the number of pairwise
comparisons that need to be made in order to identify the final
skyline of the dataset. The process begins with identifying the
skylines of each group that belong to each created cluster. This
step is important as it ensures the smooth execution of the
pairwise comparison process between data items since all
group data items have similar bitmap representation. Thus,
the issue of losing transitivity property and cyclic dominance
can be avoided. The skylines of the groups are further com-
pared with each other to derive the local skylines of the cluster.
This process reduces the number of data items to be consid-
ered in the subsequent phases to that of the non-dominated
data items. Hence, the complex skyline process is consider-
ably simplified. Its process runs parallel whereby the local
skylines of each cluster are generated simultaneously.
Therefore, exploiting the parallel execution intensifies the
skyline process and shortens the total execution time.

In our database sample running, data items present in each
group of the constructed clusters are compared to each other in
order to identify group skylines. In Fig. 9 is shown group
C1.G1 of the cluster where C1 contains only one data item
m29 and is thus considered as the skyline of group C1.G1.
Similarly, there are the four groups C2.G1, C2.G2, C2.G3 and
C2.G4 created from cluster C2. The skylines of each group are
identified by comparing all data items in one group to another.
The dominated data items in each group are discarded and
eliminated from further processing. In a similar fashion the
group skylines of clusters C3 and C4 are identified. It is
important to notice here that the process of identifying
group skylines of all clusters are performed simultaneous-
ly. This is possible as all the data items in the groups are
independent of each other. This parallel execution speeds
up the process of identifying the group skylines of the
clusters. These group skylines of the clusters are then com-
pared to each other in order to determine the local skyline
of each cluster. Figure 12 shows the local skylines of clus-
ters for our database running sample. We can conclude that
most dominated data items have been removed and exclud-
ed from further processing.

Algorithm 3    
Input: A cluster Cj.  
Output: List of Groups of cluster Cj [ (Cj.G1, … Cj.Gm)] 

1.   foreach DataItem dti of Cj do
2.  if bitmap representation of dti == bitmap 

representation of any existing group Gk of Cj then
3.    insert dti into Gk 

4.  else 
5.   create new group Gk
6.   insert dti to Gk 

7.  end 
8.   end  
9.   return list of clusters of each cluster  

Fig. 11 The algorithm for grouping

Algorithm 2  
Input: dp-list, Initial Dataset D.

Output: List of Clusters based on domination power (dp)
 1.   foreach dataItem dti in dp-list do 
 2.   if dp of dti == dp of any existing cluster Cj then 
 3.    insert dti into Cj 

 4.   else 
 5.    create new cluster Cj 
6. insert dti into Cj 

 7.    end 
 8.   end 
 9.   return list of distinct clusters  

Fig. 10 The algorithm for clustering
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Figure 13 describes the detail steps of identifying the group
skylines process. The algorithm input constitutes a set of data
items in groupGjwhile the output of the algorithm constitutes
a set of group skylines. The algorithm works as follows: In
step 1 each data item dti of a group Gj is read. A pointer ptr
indicate a data item dti (step 2). Each data item dtk is read
where k = i + 1 inGj (step 4). A pointer cw points to dtk (step
5). The values of non-missing dimensions between ptr and
cw are compared by calling algorithm 6 (step 6). If the
comparison results return 1 (step 7), the data item pointed
by cw from Gj is removed (step 8) and if the comparison
results return 2 (step 9), the set IsDominated is true (step
10). This process is repeated until all the data items of Gj

are compared to the data item pointed to by ptr. If a data
item of ptr is dominated by any data item of cw (step 13),
the data item pointed by ptr is removed from Gj (step 14).
This process continues until all the remaining data items of
the group are compared to each other. The algorithm ends
by returning the group skylines.

Figure 14 details the steps of an algorithm that is used to
identify the local cluster skylines. The input of the algorithm
consists of a set of groups of a cluster, while the output con-
sists of a set of local skylines of a cluster. The algorithm works
as follows: In step 1 a group Gi of clusters Cj is selected. The
data item dtk ofGi is read (step 2). A pointer ptr denotes a data
item dtk (step 3). Then, a new group Gj++ of Cj is selected
(step 5) before each data item dtl of groupGj++ is read (step 6)
followed by setting a pointer cw that indicates the data item dtl
(step 7). A pairwise comparison between data items pointed to
by ptr and cw is conducted (step 8). If the result returned from
the comparison is 1 (step 9), the data item pointed to by cw is
removed from Gj++ (step 10) and if the result of the compar-
ison is 2 (step 11), then IsDominated is true (step 12). This
process is repeated until all data items ofGj++ are compared to
the data item pointed to by ptr (steps 6–14). The process
continues by comparing ptr with the data items of the other
groups of Cj (steps 5–15). If a data item pointed to by cw of
any group dominates the data item pointed to by ptr (step 16),
the data item pointed to by ptr is removed from Gj (step 17).
This process continues until all the remaining data items of
group Gj are compared to the data items of the other groups
(steps 2–19). This process ends once all groups have been
compared to each other and the skylines of the cluster have
been identified (step 1–20). The process ends by returning the
local skylines of the cluster (step 21).

Figure 15 presents the steps of the pairwise comparison
algorithm. The input for the algorithm consists of two differ-
ent data items while the output constitutes an integer value that
denotes the result of the comparison. The process begins with
reading the values of all dimensions of dti (step 1). If the value
of a dimension dk of dti or dtj is missing or the value of dk of dti
and dtj is equal (step 2), it is continued by skipping the next
statements and jump to step 1 (step 3) and if the value of dk of
dti is better than the value of dk of dtj (step 5), then PDom is
true (step 6). However, if the value of dk of dti is worse than the
value of dk of dtj (step 7), then CDom is true (step 8). If PDom
and CDom are true (step 9), then the return is 0 (step 10). This
process continues until all dimensions of dti and dtj are com-
pared to each other (steps 1–13). If only PDom is true (step

Fig. 12 Local skylines of each
cluster

Algorithm 4  
Input: A group of data items Gi
Output: Group Skylines  

1.   foreach dti of Gj do  
 2.  let a pointer ptr = dti    //i =0, …, n, where n is the 

size of group 
3.  IsDominated = false 

4. foreach dtk of Gj do // k=i+1, …, n
5.       let a pointer cw = dtk
6. DomValue = Compare (ptr, cw) //Algorithm 6

 7. if DomValue == 1 then
 8.   remove cw from Gj
 9.     else if DomValue == 2 then
10.           IsDominated = true 

11. end  
12. end 
13.    if IsDominated then
14.  remove p from Gj 

15. end 
16.   end 
17.   return group skylines 

Fig. 13 Algorithm for group skylines
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14), then the return is 1 (step 15). However, if only CDom is
true (step 16), then the return is 2 (step 17).

We can conclude at this point that applying the skyline
technique during the local skyline identification phase helps
eliminate many dominated data items. As evident from our
database example, only 15 data items out of the remaining
29 data items of the dataset are left for further processing.
This represents up to 50% reduction in the dataset.

4.4 Selecting superior local skylines

The main purpose of this phase is to further optimize the
process of identifying the skylines in the incomplete database.
This is achieved by eliminating some of the local cluster sky-
lines produced during the previous phase before comparing
them to the local skylines of other clusters. This step is neces-
sary in order to avoid many unwanted pairwise comparisons
while identifying the final skylines. Removing the local sky-
lines of a cluster before comparing them to the local sky-
lines of other clusters allows scanning the available values
in all dimensions and retain only the data items with the
highest value in any of non-missing dimensions. In other
words, we first read the value of each data item in sequence
by accessing only one dimension and mark each data item
with the highest value in that particular dimension. This
process continues by accessing the remaining non-
missing dimensions belonging to each data item and mark-
ing the data items with the highest value. This means that
all unmarked data item(s) are eventually removed from the
local skyline of the cluster. This optimization step can
greatly reduce the number of local skylines of the clusters
that need to be considered in deriving the final skylines and
also reduces the number of pairwise comparisons that need
to be conducted in order to identify the final skylines. This
process is carried out concurrently on all clusters and
makes the skyline process more efficient. The following
formula generalizes the process of identifying the superior
local skyline of each cluster.

SLS Cið Þ ¼
n

dti : max dti:d j
� �

whrer 0≥d j≤u
o

Figure 16 details the process of deriving superior sky-
lines of clusters. The data items with shaded cells represent
the superior skyline of clusters. Here, m30, m31, m32, and
m21 constitute the superior skylines of cluster, C2, and m0

should be removed from C2 since it has no highest value in
any of its non-missing dimensions and will be dominated
by the local skyline m29 of cluster C1. Therefore, unneces-
sary pairwise comparisons between m29 and m0 are
avoided, which in turn accelerates the skyline process.
Similarly, data items m1, m37, m38, and m34 are removed
since their values in the non-missing dimensions are not
the highest and will be dominated by the local skylines of
the other clusters, C1 and C2.

Figure 17 illustrates the superior local skylines of each
cluster. We can conclude that m29 is the superior skyline of
cluster C1. Similarly, m30, m31, m32 and m21 are the supe-
rior skylines of cluster C2, m3, m6, and m39 are the superior
skylines of C3, and m12 and m16 are the superior skylines of
cluster C4.

Algorithm 5  
Input: Set of groups of a cluster, Cj [Cj.G1, Cj.G2, …, Cj.Gn]. 

Output: Local skylines of a cluster, CLSj

1.   foreach Group Gi of Cj do
 2.      foreach dtk of Gi do
 3.         let a pointer ptr= dtk
 4.  IsDominated == false 

 5. foreach Group Gi++ do
 6. for (int l= 0; l < n; l++)    //n = number of data 

 items in Gi++

 7.     let a pointer cw = dtl
8. DomValue = Compare (ptr, cw) //Algorithm 6

 9. if DomValue == 1 then
10.       remove cw from Gi++ 
11.         else if DomValue == 2 then
12.       IsDominated = true 

13. end  
14. end 
15. end 
16.        if IsDominated then
17.  remove ptr from Gi 

18.        end 
19.      end 
20.   end 
21.   return local skylines of a cluster 

Fig. 14 Algorithm for cluster local skylines

Algorithm 6  
Input: two data items (dti, dtj)

Output: integer value

 1.   foreach dk of dti do
2. if dti.dk == 0 || dtj.dk == 0 || dti.dk == dtj.dk then // 0 

 denotes missing value  

3. continue 
 4. else  
 5.   if dti.dk > dtj.dk then
6. PDom = true 

 7. else if dti.dk < dtj.dk then
 8. CDom = true  

 9. if PDom && CDom == true then
10. return 0;  

11. end
12. end
13. end 
14.   if PDom == true then
15. return 1 
16.   else if CDom == true then
17. return 2 
18.   end  

Fig. 15 Comparison algorithm
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Figure 18 details the steps of selecting the superior local
skylines of the cluster algorithm. The input of the algorithm
includes the local skylines of a cluster while the output con-
sists of a list of superior local skylines of a cluster. The algo-
rithm starts by selecting a dimension di (step 4) followed by
setting d_max as the highest available value in di (step 5).
Each value in dimension di is read (step 6), and if the value
is equal to d_max and the corresponding data item dtj is un-
marked (step 8), the data item dtj is marked (step 9). This
process continues until all the data items of the cluster Ci are
read. The unmarked data items are removed from the list of the
cluster of the local skylines (step 14). Eventually, the remain-
ing data items inCLS are retrieved as the superior local skyline
of cluster Ci (step 15).

The phase of selecting the superior local skyline includes a
new optimization technique that significantly reduces the
number of data items to be considered in the skyline process.
The idea is novel and attempts to exploit the maximum avail-
able value in any dimension when selecting the superior local
skylines. Therefore, we believe that this optimization tech-
nique significantly simplifies the skyline process in incom-
plete datasets. From our database example it can be learned
that out of 15 data items, five data items are eliminated from
further processing. This represents a 33% reduction of the
entire dataset.

4.5 Retrieving final skylines

In the final phase of our proposed approach to processing the
skyline queries in incomplete data, we identify the global sky-
lines of the entire dataset. In other words, we retrieve the final
skylines that are not dominated by any data item in the whole
dataset. This objective is accomplished by comparing the su-
perior local skylines of each cluster to each other and deter-
mining the final skylines. The process of this phase is identical
to the process of identifying the local skylines of each cluster
as already described in Section 4.3. In order to derive the final
skylines, algorithm 5 is used. The input consisting of the list of
superior local skylines of each cluster, whereas the output
consists of a set of final skylines, final_S.

In our database running sample, the superior local skylines
of clusterC1 are compared to the superior local skylines ofC2,
C3, and C4. If the local skyline of cluster C1 dominates the
superior local skylines of C2, C3, and C4, the superior local
skylines are removed, and if the superior local skyline of C2,
C3, and C4 dominates the superior local skyline of C1, it will
be removed at the end of the iteration. Similarly, the superior
local skylines of C2 are compared to the remaining superior
local skylines ofC3 andC4. Finally, the superior local skylines
of C3 are compared to the remaining superior local skylines of
C4. Eventually, the remaining superior local skylines of all

Fig. 17 Superior local skylines of
each cluster

Fig. 16 The process of selecting
superior local skylines
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clusters are reported as the final skylines, final_S of the
dataset. Figure 19 depicts the final skylines of given datasetD.

5 Experimental environment

In order to evaluate the efficiency and the performance of our
proposed approach (SCSA) developed for processing skyline
queries in incomplete databases, we have compared our ap-
proach to the most recent skyline approaches designed for
incomplete databases such as SPQ [43] Incoskyline [42],
SIDS [37], and Iskyline [2].

All approaches considered in this research work have been
implemented using C# programming language. A comprehen-
sive and intensive set of experiments has been conducted on i3
1.6GHz PC with 3GB memory and Windows 7 32bit plat-
form. Since it is argued that the skyline queries is a CPU
exhaustive process [1, 2, 12, 13, 35, 37, 39, 42], the experi-
ments of this research work involved the two performance
metrics of the number of pairwise comparisons between the
data items and the processing time. In all experiments these

two metrics are measured by varying the number of dimen-
sions that belong to the database, the number of dimensions
with incomplete data, and the total size of the database.
Synthetic and real datasets are used in this paper. Two types
of synthetic datasets are generated and chosen to run the ex-
periments. First, an independent dataset is generated whose
values in one dimension are unrelated to the values of other
dimensions. The second synthetic dataset is a correlated
dataset whose values in one dimension are influenced by the
values of the other dimensions. Another three types of the real
dataset are selected, which include NBA, MovieLens, and
CoIL 2000 insurance company datasets. These datasets are
more realistic and are frequently used by researchers in the
area of processing skyline queries in complete and incomplete
database systems [1, 2, 4, 12, 13, 15, 37, 39, 42]. Also, some
of them suit our experimental conditions as they are initially
incomplete (MovieLens and CoIL 2000 insurance company).
We opted for the query statement when retrieving the skylines
with the highest values for the sake of simplicity and without
losing generality. Table 2 summarizes the range of parameter
values for the synthetic and real datasets used to evaluate the
proposed approach for handling skylines queries in incom-
plete databases presented in this paper.

5.1 Experimental results

This section highlights the experimental results performed
on the synthetic and real datasets for our proposed ap-
proach of processing skyline queries in incomplete data-
bases. In this section, we attempt to investigate the impact
of database dimensionality (number of dimensions) and the
influence of database cardinality (dataset size) on the pro-
cess of pairwise comparison and the processing time for
skyline evaluation. We argue that these are the most crucial
parameters that influence the skyline query processing [1,
2, 12, 15, 24, 37, 42, 44–46].

5.1.1 Effect of number of dimensions

It has been evidenced in the literature of skyline queries that
the number of dimensions highly influences the skyline query
process [2, 37, 42]. Therefore, the first set of experiments
examine in particular the impact of the number of dimensions
on the process of pairwise comparison in order to derive the
skylines for a database with incomplete data. In this section,
we illustrate the experimental results for the synthetic and real
datasets used throughout the paper. Figure 20a and b illustrate
the results for the independent and correlated synthetic dataset
in which the number of dimensions vary from 4 to 12 and the
dataset size is fixed to 300 KB. From the figures, it is obvious
that our approach consistently outperforms the SPQ,
Incoskyline, SIDS, and Iskyline for both types of synthetic
datasets. Furthermore, Fig. 20c presents the experimental

Algorithm 7 
Input: Cluster Local Skylines, CLS = {LS1, …, LSn}, of Ci
Output: Superior Local Skylines, SLS = {SLS1, …, SLSn}, of

Ci

1.   let no_of_dim = 1  

2.   while (no_of_dim != m) // m = total number of 

dimensions 

3.    { 

4.         select a dimension, di // i = 1, …, m
5.         let d_max = highest value in di
6. for (j= 1, j< n , j++)  // n= total number of data items 

in Ci
7.  { 

8. if (dtj.di == d_max && dtj is unmarked ) then
9.                         mark dtj 

10. end
11.   } 

12. no_of_dim++;  

13.     } 

14.    Remove all unmarked data items from CLS of Ci
15.    return SLS of Ci

Fig. 18 Algorithm for identifying superior local skylines

Fig. 19 Final skylines
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results on the NBA real dataset depicting the number of
pairwise comparisons between data items executed during
the skyline process. For this set of experiments, the dataset
size is fixed at 120 KB, while the number of dimensions varies
between five to 17, including the dimensions with missing
values.

From the NBA dataset, we conclude that our approach is
superior to that of SPQ, Incoskyline, SIDS, and Iskyline. We
can also observe that the performance of our approach is better
than SPQ and SIDS as the number of dimensions increases to
more than 9. Figure 20d illustrates the experiment result on the
CoIL 2000 insurance company real dataset. This set of exper-
iments evaluates the existing approaches by varying the num-
ber of dimensions in the range of 3 to 21 and fixing the dataset
size to 150 KB. We can observe that our approach is superior
in all cases in terms of the number of executed pairwise com-
parisons. Since the MovieLens dataset consists of only four
dimensions it is not used in this experiment.

It can be observed that SCSA shows that the number of
pairwise comparisons in correlated, NBA and CoI is fewer
than in independent datasets since most of the dominated data
items are eliminated after filtration or during the identification
of the group skylines, which helps reduce most of the pairwise
comparisons across groups and clusters.

As for the experiment results, we observed that the SCSA is
best compared to the other approaches (SPQ, Incoskyline,
SIDS, and Iskyline) in terms of raising the number of dimen-
sions and its minor influence on the number of pairwise com-
parisons. Our proposed method prunes the initial dataset by
applying the sorting and filtration processes before applying
the skyline process, which leads to eliminating many unwant-
ed data items. The idea of filtration relies on exploiting the
concept of generating domination power (dp) meaning the
number of dimensions in which the data items is counted as
a skyline. Furthermore, selecting superior local skylines by
exploiting the highest value found in each dimension to help
eliminating the dominated data items is employed in our ap-
proach. These two techniques have significantly contributed
towards reducing the number of pairwise comparisons while
identifying the final skylines. We also observed that Iskyline
constitutes the least efficient technique due to its complicated

process that results in deriving many local skylines in each
distinct cluster. Furthermore, Iskyline also derives a large
number of virtual skylines from different local skylines, which
are compared to the local cluster skylines to identify the can-
didate skylines. These processes culminate in exhaustive
pairwise comparisons among the entire dataset in order to
retrieve final skylines. Nevertheless, the other three ap-
proaches, SPQ, Incoskyline and SIDS perform better than
Iskyline for all datasets. However, these two approaches are
worse than our proposed approach, SCSA.

Figure 21a, b, c, and d depict the processing time of all the
different approaches to generate the skylines on the indepen-
dent, correlated, NBA, and CoIL 2000 insurance company
datasets. The parameter settings of this set of experiments
are the same as the previous experiments for the synthetic
dataset (independent and correlated) and the real dataset
(NBA and CoIL 2000 insurance company). Figure 21a and
b demonstrate that SCSA requires less processing time to iden-
tify the final skylines for both synthetic datasets. We have
eliminated the dominated data items before applying the sky-
line technique in order to lessen the number of pairwise com-
parisons, which in turn decreases the processing time of com-
puting the skylines. Most importantly, our approach incorpo-
rates the simultaneous run when evaluating the skylines of
groups and clusters in order to accelerate the skyline identifi-
cation process. From the figures we also learn that Iskyline
underperforms in all cases, and its performance deteriorates
when the number of dimension increases to six for the inde-
pendent dataset (Fig. 21a) and increases to eight for the cor-
related dataset (Fig. 21b). However, Incoskyline performs only
slightly worse than our approach on an independent dataset,
and its performance declines when the number of dimensions
is larger than eight on the correlated dataset. For NBA and
CoIL 2000 insurance company real datasets, the parameter
settings (dataset size and number of dimensions) are same as
the previous experiment (Fig. 21c and d). Both figures show
that our approach is superior to the other approaches in all the
given cases.

It is obvious that the increasing number of dimensions has
an insignificant impact on the performance of our approach.
This is due to the fact that applying the sorting and data

Table 2 The parameter settings of the synthetic and real datasets in the experiments for incomplete database

Dataset Name Parameter settings

No. of dimensions (d) No. of dimensions with missing values (d`) Dataset Size (KB)

Synthetic Independent 5, 7, 9, 11, 13 4, 6,8,10, 12 100, 200, 300, 400, 500, 600

Correlated 5, 7, 9, 11, 13 4, 6,8,10, 12 100, 200, 300, 400, 500, 600

Real NBA 6, 8, 10, 12, 14, 16, 18 3, 5, 7, 9, 11, 13, 15 40, 80, 120, 160, 200

CoIL 2000 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 50, 100, 150, 200, 250, 300

MovieLens 4 3 400, 800, 1200, 1600, 2000
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filtration techniques helps prune the initial dataset and elimi-
nates many dominated data items from further processing.
Furthermore, the optimization process embedded in SCSA

helps prune many dominated local skylines before applying
the skyline process. Therefore, a significant reduction in num-
ber of pairwise comparisons to identify the final skylines can

a) Independent 

b) Correlated 

c) NBA 

d) CoIL Insurance Company 

0

20

40

60

80

100

120

4 D 6 D 8 D 10 D 12 D

Co
m

pa
ris

on
s

(M
)

Dimensions

SCSA SPQ INCOSKYLINE SIDS ISKYLINE

0

5

10

15

20

25

30

35

40

4 D 6 D 8 D 10 D 12 D

Co
m

pa
ris

on
s

(M
)

Dimensions

SCSA SPQ INCOSKYLINE SIDS ISKYLINE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5D 7D 9D 11D 13D 15D 17D

Co
m

pa
ris

on
s

(M
)

Dimensions

SCSA SPQ INCOSKYLINE SIDS ISKYLINE

0

50

100

150

200

250

3D 5D 7D 9D 11D 13D 15D 17D 19D 21D

Co
m

pa
ris

on
s(

M
)

Dimensions

SCSA SPQ INCOSKYLINE SIDS ISKYLINE

Fig. 20 The effect of number of dimensions on the number of pairwise
comparisons
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Fig. 21 The effect of number of dimensions on the processing time
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be obtained. From Fig. 21 we conclude that our proposed
approach (SCSA) outperforms all the other approaches de-
signed to process skyline queries in incomplete datasets
(SPQ, Incoskyline, SIDS, and Iskyline). For instance, while
SCSA takes only less than two seconds to produce the skylines
of a 300 KB dataset with 12 dimensions, SPQ, Incoskyline,
SIDS and Iskyline require more than 10 s as shown in
Fig. 21b).

The idea of constructing clusters based on the data items’
domination power and divining data items of clusters into
smaller groups makes each cluster and each group within a
cluster independent. Thus, this allows to process clusters and
groups while simultaneously identifying the local skylines.
This highly efficient technique allows SCSA to consume less
processing time when identifying the final skylines, which

makes SCSA efficient and highly effective compared to other
approaches (SPQ, Incoskyline, SIDS and Iskyline).

5.1.2 Effect of dataset size

Figure 22a, b, c, d and e explain the results of the number of
pairwise comparisons that have been executed on the data
items during the skyline process for the independent, correlat-
ed, NBA, CoIL 2000 insurance company, and MovieLens
datasets. This set of experiments examines the impact of the
dataset size on the skyline computation process. For the syn-
thetic dataset (independent and correlated), the number of di-
mensions is fixed to six while the dataset size varies from
100 KB to 600 KB (Fig. 22a and b). From the result presented
in the figure, we conclude that the dataset size has a significant
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Fig. 22 The effect of dataset size on the number of pairwise comparisons
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impact on the skyline process, as the number of pairwise com-
parisons is gradually raised when the dataset size is increased.
We also notice that SCSA outperforms SPQ, Incoskyline,
SIDS, and Iskyline in all cases since it makes use of the dom-
ination power (dp) for each data item. The dp denotes that a
data item with low dp value is eliminated before applying the
skyline technique. Figure 22c demonstrates the number of
pairwise comparisons performed in order to identify the sky-
lines for the NBA dataset. In this experiment, the number of
dimensions is fixed to 17, while the dataset size varies from 40
to 200 KB. From the figure, we can conclude that our ap-
proach consistently outperforms SPQ, Incoskyline, SIDS,
and Iskyline in all cases and that the performance of Iskyline
dramatically deteriorates when the dataset size gradually

increases. We also notice that SPQ, Incoskyline and SIDS ap-
proaches perform slightly worse than our approach in all
cases. The main reason behind the slight improvement by
SCSA is that the size of the dataset for synthetic datasets,
CoIL 2000 insurance company and MovieLens, is far larger
than the size of NBA, which significantly influences the per-
formance of Incoskyline, SIDS, and Iskyline. Hence, these
approaches generate more local skylines and execute more
pairwise comparisons between data items. In contrast, SCSA
generates a lower number of local skylines as compared to
Iskyline, SIDS, and Incoskyline.

Figure 22d elaborates the results of the experiment on the
real dataset, CoIL 2000 insurance company. In this experi-
ment, 13 dimensions have been considered, and the dataset
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size varies from 50 to 300 KB. The experiment result shows
that the size of the dataset has a marginal impact on the per-
formance of our approach. This is because many unwanted
data items are removed during the filtration process performed
before applying skyline technique, which helps avoid many
unnecessary pairwise comparisons. Figure 22e depicts the ex-
perimental result obtained for the MovieLens real dataset. In
this experiment, the number of dimensions is four, and the
dataset size varies from 400 to 2000 KB. From this figure,
we notice that the performance of our approach is marginally
better than that of SPQ and SIDS if the dataset size is less than
1200 KB. However, there is a gap between the performance of
our approach, SQP and SIDS,which gradually increases when
the dataset size is larger than 1200 KB.

Figure 23a, b, c, d and e describe the processing time of
identifying the skylines on an incomplete database for the
independent, correlated, NBA, CoIL 2000 insurance compa-
ny, and MovieLens datasets. The parameter settings of this set
of experiments are the same as that of the previous experi-
ments described in Fig. 22. Figure 23a and b describe the
processing time of the skyline query operation in an incom-
plete database on the synthetic dataset (independent, correlat-
ed). From the figure, it is clear that our approach is better than
SPQ, Incokyline, SIDS, and Iskyline in all cases as it requires
less processing time as the sorting and filtration and selecting
superior local skylines phase significantly contributes to re-
moving many dominated data items while identifying the sky-
lines in a database with incomplete data.

Figure 23c demonstrates the experiment result that was
conducted on the NBA dataset. We notice that our approach
outperforms the previous approaches in all cases and that
SPQ, Iskyline and SIDS perform worse by requiring more
processing time if the dataset size increases. Our approach
performs slightly better than Incoskyline if the dataset size is
less than 120 KB as it is not easy to find many dominated data
items in a small dataset, as compared to a dataset with a large
number of data items. This causes unnecessary pairwise com-
parisons between the data items, which further increases the
processing time. This connection can also be observed in the
synthetic dataset (independent and correlated).

The processing time result for the skyline operation on the
CoIL 2000 insurance company dataset has been demonstrated
in Fig. 23d and indicates that our approach steadily outper-
forms SPQ, Iskyline, SIDS, and Incoskyline in all cases. This
can be explained by the fact that our approach avoids many
unwanted pairwise comparisons among the data items, which
in turn reduces the processing time. Lastly, Fig. 23e presents
the experimental results obtained from theMovieLens dataset.

We can conclude that SCSA requires less processing time as
compared to Iskyline, SIDS, Incoskyline, and SPQ during the
skyline operation for the different dataset sizes. This is due to
the fact that our approach successfully excludes many domi-
nated data items from the process of pairwise comparison,

which in consequence shortens the processing time consider-
ably. The figure also demonstrates that Iskyline, SIDS,
Insoskyline and SPQ perform worst if the dataset size keeps
increasing, which forces them to scan the entire dataset more
than once. Hence, multiple data scans generates a high num-
ber of pairwise comparisons to identify the skylines.

The experiment results presented throughout the paper
show that our proposed technique outperforms the most recent
techniques proposed for processing skyline queries in incom-
plete databases (Iskyline, Incoskyline, SIDS and SPQ). The
experimental results prove the effectiveness and the efficiency
of our proposed solution in managing the skyline query pro-
cess in incomplete databases. Our proposed approach utilized
the idea of sorting the data items based on the non-missing
values before the skyline process unlike the Iskyline and
Incoskyline techniques that apply the skyline process without
first filtering the data items. Prior filtering of the initial data
helps avoid unnecessary exhaustive pairwise comparison [37,
39, 43]. Most importantly, the new idea of generating the
domination power for each data item also eliminates many
unnecessary data items from further processing before apply-
ing the skyline operation. Moreover, the concept of creating
clusters based on the domination power values of the data
items also significantly contributes to simplifying the skyline
process and avoiding unnecessary and unwanted pairwise
comparisons. This stands in contrast to the examined SIDS
and SPQ techniques that perform a sequential scan to all
sorted data items without considering the value of the domi-
nation power in order to exclude unnecessary data items.
Lastly, the concept of creating smaller groups from clusters
based on the bitmap representation has greatly improved the
efficiency of our proposed approach and minimizes the num-
ber of pairwise comparisons and the processing time of the
skyline process.

6 Conclusion

Skyline queries are generally considered as an expensive pro-
cess given their extensive domination tests when determining
the skylines. The dataset size and the number of dimensions
have a critical impact on the searching space and affect the
computation process. This paper proposes a novel hybrid al-
gorithm (SCSA) that derives skylines from incomplete data by
minimizing the searching space and reducing the domination
tests. SCSA processes the skylines by removing the dominat-
ed data items before applying skyline technique. The cluster-
ing of data items is achieved by implementing the highly
efficient technique of generating the domination power of
each data item. Furthermore, the idea of dividing clusters into
smaller groups based on bitmap representation allows to pro-
cess all clusters and groups within clusters simultaneously.
These two preprocessing steps simplify the skyline process
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involving incomplete databases. In order to prove the efficien-
cy and the effectiveness of our proposed approach, several
experiments have been run on real and synthetic datasets.
The results have shown that our algorithm is superior and
outperforms the most recent skyline algorithms proposed to
process skyline queries in incomplete datasets.
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