
https://doi.org/10.1007/s10489-018-1343-7

A novel dynamic assignment rule for the distributed job shop
scheduling problem using a hybrid ant-based algorithm

Imen Chaouch1,2 ·Olfa Belkahla Driss1,3 · Khaled Ghedira1,4

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Distributed scheduling problems are among the most investigated research topics in the fields of Operational Research, and
represents one of the greatest challenges faced by industrialists and researchers today. The Distributed Job shop Scheduling
Problem (DJSP) deals with the assignment of jobs to factories and with determining the sequence of operations on each
machine in distributed manufacturing environments. The objective is to minimize the global makespan over all the factories.
Since the problem is NP-hard to solve, one option to cope with this intractability is to use an approximation algorithm that
guarantees near-optimal solutions quickly. Ant based algorithm has proved to be very effective and efficient in numerous
scheduling problems, such as permutation flow shop scheduling, flexible job shop scheduling problems and network
scheduling, etc. This paper proposes a hybrid ant colony algorithm combined with local search to solve the Distributed Job
shop Scheduling Problem. A novel dynamic assignment rule of jobs to factories is also proposed. Furthermore, the Taguchi
method for robust design is adopted for finding the optimum combination of parameters of the ant-based algorithm. To
validate the performance of the proposed algorithm, intensive experiments are carried out on 480 large instances derived
fromwell-known classical job-shop scheduling benchmarks. Also, we show that our algorithm can process up to 10 factories.
The results prove the efficiency of the proposed algorithm in comparison with others.

Keywords Ant Colony · Job shop · Multi-factory · Scheduling · Swarm intelligence · Taguchi

1 Introduction

Following [5], scheduling problems can be broadly defined
as ”the problems of the allocation of resources over time
to perform a set of tasks”. The scheduling literature is full

� Imen Chaouch
imen.chaouch@ensi.rnu.tn

Olfa Belkahla Driss
Olfa.belkahla@isg.rnu.tn

Khaled Ghedira
khaled.ghedira@isg.rnu.tn

1 COSMOS Laboratory, Université de la Manouba,
Manouba, Tunisia

2 Ecole Nationale des Sciences de l’Informatique,
Université de la Manouba, Manouba, Tunisia

3 Ecole Supérieure de Commerce, Université de la Manouba,
Manouba, Tunisia

4 Institut Supérieur de Gestion de Tunis, Université de Tunis,
Tunis, Tunisia

of very diverse scheduling problems [7, 25]. The Job shop
Scheduling Problem (JSP) is one of the most important and
complex problems in machine scheduling.

The classical JSP is NP-hard in the strong sense [27]
and it represents probably one of the most computationally
intractable combinatorial problems considered so far. A
practical proof of this intractability comes from the fact that
a small example with 10 jobs and 10 machines proposed
by Muth and Thompson [43] remained open for over 15
years. It was solved in 1980 by Carlier and Pinson [9] as
the achievement of a considerable amount of research. A
feasible schedule is obtained by permuting the processing
order of operations on the machines (operations sequence)
without violating the technological constraints. Since each
operation sequence can be permuted independently of the
operation sequences of other machines, we have a maximum
of (n!)m different solutions to a problem instance, where n
denotes the number of jobs and m denotes the number of
machines involved [31]. The explosive exponential growth
in the number of alternative schedules with the size of the
problem increases the difficulty of identifying one of these
as the solution of the JSP problem. In the JSP, there are

Applied Intelligence (2019) 49:1903–1924

Published online: 15 December 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-018-1343-7&domain=pdf
http://orcid.org/0000-0003-3849-4950
mailto: imen.chaouch@ensi.rnu.tn
mailto: Olfa.belkahla@isg.rnu.tn
mailto: khaled.ghedira@isg.rnu.tn


I. Chaouch et al.

n jobs and m machines to be scheduled; each job consists
of a predetermined sequence of operations, which have to
be processed on a set of m machines, and each operation
is characterized by the required machine and the fixed
processing time.

The JSP, as a field of research, has displayed exponential
growth during the last six decades and a vast amount of
literature that has been published in this area. Roy and
Sussmann [50] were the first to propose the disjunctive
graph representation and Balas [3] was the first to apply
an enumerative approach based on the disjunctive graph.
Since, various strategies over the years have been applied
trying to solve the problem: exact methods, heuristic and
meta-heuristic algorithms. Exact methods, such as branch
and bound [62], guarantee to find an optimal solution
for the problem, but have an exponential computational
complexity, so that the time to solve the problem may
grow exponentially with its size. Therefore, the use
of approximate methods and heuristics is inevitable for
solving NP-hard problems. Unlike heuristics, which usually
find reasonably ”good” solutions in a reasonable time,
approximation algorithms provide provable solution quality
and provable run-time bounds. For instance, dispatching
rules were adapted in Grabot’s work [14, 60], bottleneck-
based heuristics [11, 67], neural networks [64], expert
systems and constraint satisfaction [57]. Within the local
search category, many methods have been applied to the
JSP since its appearance. They include algorithms such
as Simulated Annealing (SA) [54], Genetic Algorithms
(GA) [2, 28, 48, 63], Tabu Search (TS) [12, 24, 49], ant
optimisation [68], scatter search, path relinking (SS& PR)
[32] and Invasive Weed Optimization algorithm (IWO)
[69]. Swarm intelligence and bio-inspired algorithms were
widely used to solve the JSP. Heinonen and Pettersson
[30] developed a hybrid approach based on an Ant Colony
Optimization algorithm (ACO) and a post-processing
algorithm to enhance the ACO performance for solving the
JSP. Tasgetiren et al. [59] presented a hybrid method (PSO-
VNS) based on the Particle Swarm Optimization (PSO) and
the Variable Neighborhood Search (VNS) to improve the
solution quality in JSP. To further improve efficiency of
PSO, a new hybrid swarm intelligence algorithm (MPSO)
consisting of particle swarm optimization, Simulated
Annealing (SA) and a multi-type individual enhancement
scheme was developed by Lin et al. [38]. Inspired by the
decision making capability of bee swarms, Chong et al.
[15] explored an evolutionary computation based on Bee
Colony Optimization (BCO) to solve the JSP. Yao et al.
[65] presented an Improved Artificial Bee Colony algorithm
(IABC) to enhance the search performance of the original
ABC for solving the JSP.

As can be seen, the JSP problem has been extensively
discussed in the literature and has had several extensions

[46, 53]. In the majority of studies, we have noticed a
common assumption is that all jobs are processed in the
same factory which is not always the case when it comes
to model real-life problems. In fact, in today’s globalization
economy, many companies have turned from traditional
single-factory production to multi-factory production to
remain competitive and for closer proximity to the market.
This will allow companies to save time and reduce
costs, hence, respond effectively to customer demands.
Consequently, researchers have been increasingly attracted
by the distributed scheduling problems which deal with
the assignment of jobs to various factories geographically
distributed and their scheduling over machines. In this
context, the JSP has evolved from the classical version to
the Distributed Job shop Scheduling Problem (DJSP) and
becomes, increasingly, one of the most important issues to
raise.

The DJSP is much more complicated than the JSP
since other decisions have to be taken. The difficulty is
two fold: first, there is the problem of allocating jobs to
suitable factories and second, sequencing the operations on
machines with the objective of minimizing one or more
predefined performance criteria. Garey et al. [24] proved
that the JSP is strongly NP-hard. Hence, the DJSP is
ordinarily NP-hard and the case of the simple JSP can be
obtained when the number of factories is equal to 1.

In this paper, we propose to solve the DJSP with
makespan criterion using a novel Dynamic Assignment
method of jobs to factories with a Hybrid Ant Colony
Optimization algorithm (DAHACO). Our intention is to
increase the diversity of the population and the portion of
the search space that is explored. In fact, in the field of
DJSP, researches have neglected communication between
factories, and all works in the literature have considered
the case of static assignment of jobs to factories. In other
words, once the job is assigned to a factory, it is frozen
and cannot be moved to another one. This limits the
search for a better solution and reduces the problem to a
classical one that comes to solving a scheduling problem
in each factory separately and neglects the overall aspect
of the problem. This is why we propose to develop a
novel dynamic assignment method which apply a first
allocation of job to factories using the workload method
introduced in [44], then improve the results generated by
applying numerous jobs-permutations between factories in
order to have several combinations of assignments. These
combinations will serve to broaden the initial population for
the algorithm and offer a large research space to explore.
Our proposed algorithm is combined with a local search in
order to reduce the idle time of machines and improve the
solution.

So, this study is the first attempt in the literature to solve
the DJSP with a dynamic assignment of jobs to the factories.

1904



A novel dynamic assignment rule for the distributed job...

A comparative study between static assignment rule and
dynamic one is presented. Furthermore, we investigate on
the influence of the different parameters by using the
Taguchi method, and the best parameter setting is suggested.
480 benchmark instances have been used to evaluate the
performance of the proposed DAHACO. The experimental
results prove that the proposed DAHACO algorithm is both
effective and efficient. In essence, the contributions of this
paper are threefold as follows:

– It proposes a novel assignment rule of jobs to factories
in distributed environment;

– It proposes a hybrid ant-based algorithm for solving the
DJSP;

– It adopts the Taguchi method for parameter design in
determining the optimum level of parameters used in
the algorithm.

The rest of the paper is organized as follows. In Section 2,
the distributed job shop scheduling problem is formally
defined. Then, a comprehensive literature review of the
problem is provided in Section 3. In Section 4, the original
framework of the ant colony algorithm is presented in detail.
Section 5 introduces the proposed DAHACO to solve the
DJSP with makespan criterion. The Taguchi Method is
introduced in Section 6. Parameter setting and numerical
testing results are provided in Section 7. Conclusions are
finally drawn in Section 8, along with recommendations for
future researches.

2 The distributed job shop scheduling
problem

A typical Distributed Job shop Scheduling Problem (DJSP)
can be stated as a set of n jobs, which have to
be processed on a set of m machines geographically
distributed on f identical factories. The main objective of
the DJSP is to find an optimal scheduling minimizing a
specified criterion which is generally time related such as
makespan, maximum tardiness or total tardiness. The most
widely adopted criteria among literature is minimizing the
makespan which can be set as the maximum of completion
times needed for processing all jobs. Distributed Scheduling
problems in multi-factory production are much more
complicated than classical scheduling problems since two
decisions have to be taken: assign jobs to suitable factories
and generating a feasible scheduling while minimizing a
predefined performance criterion.

A job consists of a set of operations which have to be
processed on machines in a predetermined order. These
operations are subject to various assumptions in the DJSP.
All factories should be able to process all jobs and once a job
is assigned to a factory, it cannot be moved to another one

until all its operations are proceeded in the same plant. At
the starting time, all jobs and machines are available. Jobs
are independent and there are no precedence constraints
among the operations of different jobs. A job can be
processed by at most one machine at a time and a machine
can process at most one job at a time. It is assumed that
every job has to be processed on every machine exactly once
and neither the release times nor due dates are specified.
Each operation is characterized by the required machine
and the fixed processing time. Setup times of machines
and transit times between operations are negligible in our
problem.

As discussed in the introduction, the DJSP is strongly
NP-hard since we have more decisions to be taken and the
global objective becomes the minimization of the makespan
among several factories. For clarity’s sake, we give an illus-
trative example of DJSP representation. Given an instance
with six jobs, two machines and two factories, the process-
ing times of the jobs on each machine is given in Table 1
(let us remind that factories are identical). A Distributed
Job shop Problem instance can be visualized by a directed
graph D = (N, A, E), where N represents the set of nodes
corresponding to all operationsO processed in the same fac-
tory, A the set of conjunctive directed arcs, based on the
precedence rules and E the set of disjunctive directed edges
that connect two operations from two different jobs exe-
cuted on the same machine and factory. Figure 1 shows the
disjunctive graph of the example and a feasible Gantt chart
of this problem is shown in Fig. 2. Makespan in factory 1 is
8 and makespan in factory 2 is 10, leading to the conclusion
that the makespan of this DJSP is equal to the maximum
makespan between the two factories, which is 10.

3 Related works

In recent years, considerable attention has been given to
the DJSP, but the literature is still relatively limited since
the issue is recent. So far, the methods that have dealt
with the DJSP can be divided into two categories: exact

Table 1 Processing time matrix

Job Machine Processing route

1 2

1 2 3 {1,2}
2 1 4 {2,1}
3 4 2 {2,1}
4 2 2 {1,2}
5 3 5 {1,2}
6 3 2 {2,1}

1905



I. Chaouch et al.

Fig. 1 Directed graph representation for the DJSP with f = 2; n = 6 and m = 2

methods and metaheuristics. For the exact methods, we
can find [44] that have mathematically formulated the
DJSP with two different Mixed Integer Linear Programming
models (MILP). The first model dealt with the problem as
a sequencing decision while the second one dealt it as a
positional one. The authors have proposed another MILP
model in their next paper [45]. In order to evaluate the
developed MILP models, the authors used two performance
measures: size and computational complexities. All other
studies applied metaheuristics to solve the DJSP. Indeed,
Jia et al. [34] presented the first attempt to solve the
problem. In their study, they proposed a web-based system
to enable production scheduling with the utilization of
the World Wide Web technology, in order to facilitate
collaboration between geographically distributed plants. A
Genetic Algorithm (GA) approach was adopted to deal with
the distributed scheduling problems. In their next paper,
authors in [36] presented a Modified Genetic Algorithm
(MGA) in which a two-step encoding method was used.
The first one to encode the factory candidates and the
second one, to affect jobs and operations. To evaluate the
performance of their MGA, the authors used benchmark

instances (10 jobs/10 machines and 20 jobs/5 machines)
proposed by [43]. In fact, MT1963 are instances for simple
job shop problems which are adapted to the DJS by
distributing different jobs on the factories. Later, Jia et
al. [35] refined their previous approach and proposed a
GA integrated with Gantt Chart (GC) to derive the factory
combination and schedule. The experimental results showed
that the application of the GC is able to facilitate the
chromosome evaluation procedures and thus improve the
computational performance algorithm. Recently, in [44],
three well-known heuristics were applied; these are Shortest
Processing Time first (SPT), Longest Processing Time first
(LPT) and Longest Remaining Processing Time (LRPT).
Finally, three Greedy Heuristics have been developed and
adopted to solve the problem (GH1, GH2 and GH3). The
performance of the two proposed mathematical models and
six heuristics (SPT, LPT, LRPT, GH1, GH2 and GH3) are
evaluated and tested. With regards to the obtained optimal
solutions, it is concluded that the developed GH3 performs
better than the other algorithms. In their next paper [45],
the authors applied three different versions of Simulated
Annealing (SA) and designed two different local search

Fig. 2 Gantt Chart of the DJSP with f = 2; n = 6 and m = 2

1906



A novel dynamic assignment rule for the distributed job...

engines to improve operation sequence for the factories.
The first local search aims to decrease the makespan
and the second one aims to increase the makespan. The
first version of the proposed algorithms, called SA, is
implemented without any local search. The second one,
called hybridized simulated annealing (HSA), is hybridized
with local search type 1 which assumes that the job number
is first inserted into m random positions. Then, the position
of one randomly selected job number is shifted to a random
position. Finally, the third version, called greedy simulated
annealing (GSA), employs the greedy local search 2 which
assumes that job number is added into permutation one
by one. To evaluate the proposed algorithms, three sets
of instances were generated. The first set is for parameter
tuning, the second one is for the experiment with small
instances, and finally, the last one is for the experiment
with larger instances. The solutions proposed in this article
obtained promising results and outperformed the other
tested algorithms. Chaouch et al. [10] surveyed the literature
related to the DJSP. They presented papers dealing with the
problem and a classification of the employed techniques is
well established. As we can see, researchers have in recent
years attempted to resolve the DJSP using various methods
and producing different results compared to each others.
Hence, trying to apply new and leading edge approaches is
a growing challenge in order to find better results. Table 2
summarizes all papers dealing with the DJSP and provides
a clear classification of them in term of year of publication,
objective function, employed techniques for resolution and
scheduling type (dynamic or static). In the next section, we
present an overview of ant colony optimization algorithm as
well as the main motivation to employ it as a solution for
the DJSP with makespan criterion.

4 Ant colony optimization

Imitating natural evolutionary processes of living beings
to solve hard optimization problems have received a great
interest which gave rise to Evolutionary Algorithms (EAs)

Table 2 Classification of distributed job shop scheduling problem
papers

Paper Proposed method Objective function Scheduling type Method

• • Static Dynamic Exact Approx.

[34] GA Multiple criteria � − − �
[36] GA Multiple criteria � − − �
[35] GA Multiple criteria � − − �
[44] MILP + Heuristics Minimize Makespan � − � �
[45] MILP + SA Minimize Makespan � − � �
[10] Survey − − − − −

Table 3 Some of the most used ACO algorithms

Algorithm Source

Ant System (AS) [16]

ASElite (EAS) [22]

ASRank [8]

Ant Colony System (ACS) [20]

Max–Min Ant System (MMAS) [52]

Best–Worst Ant System (BWAS) [18]

in the late 1960s. Since that, we witnessed the emergence
of many metaheuristic algorithms belonging to EAs that
can often outperform classical optimization methods when
applied to difficult real world problems. Swarm Intelligence
is a collection of nature-inspired algorithms under the
big umbrella of evolutionary computation [47], among
them, Ant Colony Optimization (ACO) [19] is perhaps the
most widely known type of swarm intelligence algorithms
used. Marco Dorigo and colleagues introduced the first
ACO algorithms in the early 1990s [19, 21, 22]. Then,
several studies have applied the ACO to solve different
problems, such as Traveling Salesman Problem [20], vehicle
routing [26], quadratic assignment problems [42], graph
coloring [23] and scheduling problems [6]. Ant colony-
based algorithms have been shaped by a number of people
who have made valuable contributions to the development
of the field. Table 3 summarizes some of the proposed ACO
algorithms in the literature.

The inspiring source of ACO algorithms was the
observation of the collective behaviour of ants and more
specifically, the ants’ foraging behaviour. When searching
for food, ants are able to find the shortest path between
a food source and their nest according to their indirect
communication by means of chemical pheromone trails.
Initially, ants follow different paths surrounding their nest
in a random way. As soon as an ant finds a food source, and
while walking from food sources to the nest, ant lays down
a chemical pheromone on the ground, forming a pheromone
trail which guides other ants towards best path. When

1907



I. Chaouch et al.

choosing their way, ants tend to choose, probabilistically,
paths marked by strong pheromone concentrations which
may depend on the quantity and quality of the food. In
the literature, several studies have considered the ACO
algorithm in the resolution of the Job shop Scheduling
Problem and led to good results.

In a paper by Colorni et al. [17] Ant System (AS)
was applied to job shop scheduling problem and proved
to be a noteworthy candidate when faced with the task
of choosing a suitable algorithm for scheduling problems.
The paper concluded that the AS is one of the most
easily adaptable population-based heuristics so far proposed
and that its computational paradigm is indeed effective
under very different conditions. Lu and Romanowski
[39] have also achieved good results when applying
the ACO to the dynamic job shop problem. As an
example of ACO robustness, Jayaraman et al. [33] used
an ACO algorithm in solving a combinatorial optimization
problem of multiproduct batch scheduling as well as the
continuous function optimization problem for the design
of multiproduct plant with single product campaigns and
horizon constraints. Further real world applications with
regard to ACO algorithms would be using ACO to solve an
established set of vehicle routing problems as done by Bell
and McMullen [4] and a dynamic regional nurse-scheduling
problem in Austria by Gutjahr and Rauner [29]. The former
paper concluded that the results were competitive and in
the latter paper ACO was compared to a greedy assignment
algorithm and achieved highly significant improvements.
Ying et al. [66] applied the ant colony system to permutation
flow-shop sequencing and effectively solved the problem
n/m/P/Cmax, and commented that the ant colony system
metaheuristic is well worth exploring in the context of
solving different scheduling problems.

Motivated by the effectiveness of the ant algorithms in
solving different kinds of optimization problems, our app-
roach, presents in the first part, a novel dynamic assignment
method of jobs to factories, then, the ant colony optimiza-
tion algorithm combined with a local search is applied to
solve the Distributed Job shop Scheduling Problem.

5 The proposed DAHACO algorithm
for the DJSP

In the field of DJSP, researches have overlooked the
communication between factories which is a fundamental
aspect to consider when solving distributed scheduling
problems. Allocating jobs to suitable factories have a
significant influence over the quality of the scheduling and
so on the value of the makespan. This is why we propose
to develop, in the assignment phase, a novel dynamic
assignment method which apply the workload method

introduced in [44], then improve the results generated by
applying numerous jobs-permutations between factories in
order to have several combinations of assignments. These
combinations will serve to broaden the initial population for
DAHACO and offer a large research space to explore.

Our choice to develop an ant-based algorithm is highly
motivated by the distributed aspect of the ACO algorithm as
we are dealing with a distributed scheduling problem. The
coordinated behaviour of real ant is exploited to organize
populations of artificial agents, which are artificial ants,
that communicate with each other to solve computational
problems. If we take a closer look, we can find several
similarities between the foraging process of ant colonies and
the DJSP. Consider the operations as ants, they must find
the best order of processing on the machines minimizing the
makespan. By analogy, ants want to search the best path for
food while minimizing the length of the path. The start and
dummy operation are like an ants’ nest and a food source,
respectively. And finally, the link of any two operations can
be seen as an alternative route for ant when considering an
operation as an ant’s path for foraging food. Our proposed
DAHACO is combined with a local search in order to reduce
the idle time of machines. In fact, despite the performance
of ant colony algorithms, they can easily be trapped in a
local optimum due to their stochastic aspects (for example,
random solution construction). This is what leads us to think
that implementing a local search procedure to improve the
solution is strongly recommended, and this will be proven
in the experimental part.

In order to adapt the ant colony optimization algorithm
to solve the DJSP, a number of elements have to be defined:

– The way in which jobs should be assigned to factories
– Sequencing of jobs assigned to each factory

5.1 Job factory assignment phase

An important step in solving theDistributed Job shop Schedul-
ing Problem is the allocation of jobs to factories. The
objective is to partition jobs on factories so as to equilibrate
the workloads. In other words, the aim is to have near values
of workloads between factories. The job factory assignment
phase will be divided in two steps. In the first one, we will
use the job-facility assignment rule introduced in [44] with
the static assignment of jobs: once jobs are allocated, they
cannot be moved from one factory to another. Then, we pro-
pose a novel dynamic assignment rule allowing movement
of jobs which has proved its effectiveness in most cases.

5.1.1 Workload rule

Let us consider n jobs that will be assigned to f factories.
The workload on each machine is separately calculated

1908



A novel dynamic assignment rule for the distributed job...

using the following rule [44], which is defined for each job
j on each machine i as follows:

workload(j, i) =
⎛
⎝ ∑

k∈Rj,i

pj,k

⎞
⎠ + pj,i , ∀i,j (1)

Where Rj,i is the set of all machines preceding machine i

in the processing of job j and Pj,i is the processing time
of job j on machine i. The workload of each operation
is calculated and regarding the total workloads, the jobs
are ranked in descending order, from highest workload to
the lowest ones. The f first jobs are assigned to factories
1...f , respectively. The workload of machines in different
factories becomes equal to those of the assigned jobs and
the maximum workload in the f factories is determined. To
assign the next job, the maximum workload is recalculated
if the job is assigned to a factory. All the possibilities
should be enumerated and the workload is calculated at
each time. Then, the job is assigned to the factory with a
minimum of the maximumworkload. The procedure repeats
for subsequent jobs until all jobs are assigned.

5.1.2 The proposed assignment procedure

The Workload Rule method [44] proved to be efficient to
well equilibrate workloads in different factories. But the
main disadvantage of this method is that jobs are allocated
in a static way, once they are assigned to factories, they
can’t be moved from one factory to another and only one
assignment combination is explored.

This is what prompted us to think about making the
assignment phase dynamic by allowing jobs to move from
one factory to another based on the workload method.
Our proposed approach takes the result of the workload
assignment and performs a set of jobs permutations between
factories while maintaining a certain balance in terms of
the number of jobs in each factory. Our approach performs
better for large instances with large number of jobs and
machines. It has allowed to generate new combinations, thus
exploiting new possibilities. To illustrate this concept, it is

applied to Tai15x15 instance from well-known benchmarks
for the Job shop Scheduling proposed by Taillard [55].
The two methods are implemented and ran 100 times,
on Tai15x15 with 5 factories, 15 machines and 15 jobs.
Figure 3 shows the obtained results and as we can see, in
almost all cases, our proposed dynamic assignment method
gives better values of makespan.

5.2 Sequencing phase

Once all jobs are assigned to their corresponding factory,
they need to be sequenced. To do this, a hybrid ant-based
algorithm is proposed aiming to explore more search space
and potentially finding better possible solutions for the
problem. In nature, ants are able to find the shortest path
between a food source and their nest according to their
collective behaviour. In DJSP, the aim is to find the best path
giving the minimum makespan among all possible paths.

In this section, the main steps of our proposed algorithm
DAHACO will be detailed. The basic principle of the
DAHACO is to improve the solution generated by the Ant
Colony System (ACS) by applying a local search procedure
in order to explore more search space and found better
results. The main steps of proposed DAHACO are listed
below:

Step 1: At the beginning of the algorithm, all parameters
are initialized including the initial pheromone value of
edges τ0 > 0. Initially, ants choose their paths randomly
and therefore, search the solution space more effectively.

Step 2: Ants are placed on the first operation of each job.
Step 3: This procedure consists of a probabilistic con-

struction of solutions by all the ants according to the State
Transition Rule as follows:

P(i, s)(t) =

⎧⎪⎪⎨
⎪⎪⎩

[τi,s (t)]α×
[

1
di,s

]β

∑
j∈AllowedNodes[τi,j (t)]α×

[
1

di,j

]β

0, otherwise

(2)

With:

Fig. 3 Comparison between static and dynamic assignment

1909



I. Chaouch et al.

– τi,j quantity on pheromone between the nodei and
nodej

– di,j heuristic distance between nodei and nodej . In
our case, di,j is the processing time of the operation.

– P(i, s) probability to branch from nodei to nodes

– The parameters α and β tune the relative importance
in probability of the amount of pheromone versus the
heuristic distance.

The probability for an ant to choose the next operation
is directed by both the amount of pheromone on the route
and heuristic distance from its current position to the next
one. Artificial ants can be considered as stochastic greedy
procedures that construct a solution in a probabilistic
manner by adding solution components to partial ones
until a complete solution is derived [56]. In the general
ACS, the set of next operations for an ant in nodei is
all not visited nodes. Which is not the case in the DJSP,
choosing the next operation should respect the operation
precedence constraints. Therefore, for each transition
from a nodei to nodej , the ant has to build its allowed
list containing the operation that can visit.

Step 4: While constructing its solution, an ant will modify
the amount of pheromone on the visited edges by
applying the local updating pheromone rule:

τi,s(t + n) = (1 − ρ) × τi,s(t) + ρ × τ0(t + n) (3)

Where ρ is the coefficient representing pheromone
evaporation (0 < ρ < 1). The purpose of the local
pheromone update rule is to make the visited edges less
and less attractive as they are visited by ants, indirectly
favouring the exploration of not yet visited edges. As
a consequence, ants tend not to converge to a common
path.

Step 5: Once all ants have generated a solution, the global
updating rule (7) is applied in two phases:

– An evaporation phase where a fraction of the
pheromone evaporates and decreases automatically,
so as to diversify the search procedure into larger
solution spaces.

– A reinforcement phase where each ant deposits an
amount of pheromone which is proportional to the
generated solutions

τi,s(t + n) = (1 − ξ) × τi,s(t) + ξ × Δτi,s(t + n) (4)

Δτi,s(t + n) = Q

BestCmaxant

(5)

Here: 0 < ξ < 1 is the pheromone decay parameter and
Q is a constant. The global updating pheromone is only
applied on the best solution found by the algorithm. The
process is repeated until a termination condition has been
reached which is a fixed number of iterations in our case.

Step 6 : local search procedure Once all ants have gen-
erated a solution, a local search procedure is applied in
order to explore more search space and found better result
if it is possible. First of all, the last scheduled job over
all machines is determined and selected to make the first
improvement moves. The method consists of finding all
inactive time intervals of machines and tries to insert the
operations of the selected job in those intervals while
respecting DJSP constraints. To place the operation on
the inactive interval, the following constraints should be
verified:

– The end time of the selected operation > End time of
the inactive interval

– Processing time of the selected operation ≤ The
length of the interval

– Precedence constraints of the DJSP = True

The main steps of the proposed method are represented
in the following diagram, cf. Figure 4 and the two
pseudo-codes below:

1910



A novel dynamic assignment rule for the distributed job...

Fig. 4 The flowchart of the
proposed DAHACO

In order to show the relevance and the influence of each
implemented part of the algorithm, namely the dynamic
assignment rule and the local search procedure, three
versions are implemented, cf. Figure 5. In the next section,
we conduct extensive computational experiments to analyse
and validate the efficiency of our model.

6 Robust parameter design - parameter
tuning

The time required to complete an experiment is extremely
long, especially, for evaluating large numbers and various

Fig. 5 A diagram outlining the
3 implemented versions

1911



I. Chaouch et al.

Table 4 Parameters and their levels

Parameter α β ρ Q

Level 1 0 0 0.3 1

Level 2 0.5 1.0 0.5 100

Level 3 1.0 2.0 0.7 1,000

Level 4 2.0 3.0 0.9 5,000

Level 5 5.0 5.0 0.999 10,000

factors (parameters). The difficulties are even more
complicated when experiments have to be repeated for
several times until accurate and validated result is obtained.
Considering these difficulties, Dr. Genichi Taguchi has
developed a new experimental strategy, Taguchi method, for
an experiment in the late 1940s [37, 51]. The application of
Taguchi method has attracted more attention in the literature
for the past 20 years and nowadays the Taguchi method has
been widely applied to various fields, such as manufacturing
systems [41]. Taguchi method is a powerful design of

experiments which provide effective and efficient approach
to optimize designs for performance, quality and cost. The
most important difference between classical experimental
design and Taguchi method is that the former tends to focus
solely on the mean of the quality characteristic while the
latter considers the minimisation of the variance of the
characteristic of interest. In the present research, Taguchi
method is used for parameter design. The purpose is to
determine the factors (parameters) and their settings that
will provide the best result. The two major tools used in
Taguchi methodology are:

– Orthogonal arrays which accommodate many design
factors (parameters) simultaneously

– Signal-to-noise ratio (S/N ratio) which measures quality
with emphasis on variation

Using Orthogonal Array technique significantly reduces
the number of experiments and a more reliable estimation
of the effect of parameters can be obtained. The signal
to noise ratio provides a measure of the impact of noise
factors on performance. The larger the S/N, the more robust

Table 5 L25 Orthogonal array
Experiment No. Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

1 1 1 1 1 1 1

2 1 2 2 2 2 2

3 1 3 3 3 3 3

4 1 4 4 4 4 4

5 1 5 5 5 5 5

6 2 1 2 3 4 5

7 2 2 3 4 5 1

8 2 3 4 5 1 2

9 2 4 5 1 2 3

10 2 5 1 2 3 4

11 3 1 3 5 2 4

12 3 2 4 1 3 5

13 3 3 5 2 4 1

14 3 4 1 3 5 2

15 3 5 2 4 1 3

16 4 1 4 2 5 3

17 4 2 5 3 1 4

18 4 3 1 4 2 5

19 4 4 2 5 3 1

20 4 5 3 1 4 2

21 5 1 5 4 3 2

22 5 2 1 5 4 3

23 5 3 2 1 5 4

24 5 4 3 2 1 5

25 5 5 4 3 2 1

1912



A novel dynamic assignment rule for the distributed job...

the product is against noise. The S/N ratio is expressed
in decibel (dB) units. Based on the type of performance
characteristics, different categories of S/N ratios have
been defined. Three main categories are: nominal-the-
better, smaller-the-better, and larger-the-better. In this study,
smaller-the-better (STB) is considered to minimize the
objective function value. For this case, the corresponding
loss function for the objective of smaller-the-better can be
expressed as follows:

LST B = RPD (6)

where,

– LST B is the loss function for smaller-the better
– RPD is the Relative Percentage Deviation used as

performance measure in this study. It can be calculated
as follows:

RPD = Alg − Min

Min
× 100 (7)

where: Alg is the makespan obtained by a given algorithm
alternative on a given instance and Min is the lowest

makespan obtained for the same instance. The objective is
to maximize the S/N ratio. For minimization objectives, the
S/N ratio is:

S/Nratio = −10 × log10(RPD)2 (8)

An analysis is carried out to identify which levels of the
parameters are used which brings us closer to the desired
value (Orthogonal arrays) and which maximize the S/N
ratio. Taguchi methodology for parameter design can be
applied in other algorithms such as genetic algorithm [13],
particle swarm optimisation [1], and artificial bee colony
algorithm [61] for NP-hard problems. They provide a cost-
effective way of studying many factors in one experiment, at
the expense of ignoring some high-order interactions. This
is considered to be low risk, as high order interactions are
usually insignificant and difficult to interpret anyway [58].

7 Experimental evaluation

Experimental results are conducted over two phases. We
first performed parameter tuning using the Taguchi method

Table 6 Modified L25
Orthogonal array Experiment No. α β ρ Q

1 0 0 0.3 1

2 0 1 0.5 100

3 0 2 0.7 1,000

4 0 3 0.9 5,000

5 0 5 0.999 10,000

6 0.5 0 0.5 1,000

7 0.5 1 0.7 5,000

8 0.5 2 0.9 10,000

9 0.5 3 0.999 1

10 0.5 5 0.3 100

11 1 0 0.7 10,000

12 1 1 0.9 1

13 1 2 0.999 100

14 1 3 0.3 1,000

15 1 5 0.5 5,000

16 2 0 0.9 100

17 2 1 0.999 1,000

18 2 2 0.3 5,000

19 2 3 0.5 10,000

20 2 5 0.7 1

21 5 0 0.999 5,000

22 5 1 0.3 10,000

23 5 2 0.5 1

24 5 3 0.7 100

25 5 5 0.9 1,000

1913



I. Chaouch et al.

Table 7 Average of response and S/N ratio for different experiments

Experiment No. Average RPD S/N Ratio

1 2,59 −8,25

2 2,50 −7,97

3 2,86 −9,12

4 2,83 −9,02

5 1,28 −2,13

6 1,99 −5,99

7 1,42 −3,07

8 2,10 −6,43

9 1,62 −4,17

10 1,72 −4,71

11 1,15 −1,19

12 2,40 −7,62

13 4,28 −12,63

14 2,31 −7,26

15 2,33 −7,33

16 2,21 −6,89

17 1,99 −5,99

18 2,34 −7,38

19 2,77 −8,84

20 2,72 −8,71

21 2,05 −6,22

22 2,41 −7,64

23 2,22 −6,94

24 1,36 −2,64

25 2,04 −6,19

Average 2,22 −6,57

and then experiments were conducted on well-known
benchmarks with different level of f , proposed by Taillard
[55]. The results described in the following sections have

been obtained on a personal computer with 3.4 GHz Intel
Core i7 and 8 GB of RAM memory.

7.1 Parameter design for DAHACO using Taguchi
method

The choice of parameter values for metaheuristics highly
influences the performance. Thus, an experiment is first
conducted to fine tune the parameters of the proposed
DAHACO. The algorithm includes four parameters, namely,
α, β, ρ, and Q. In this work, five levels or values are
considered for each parameter applied to Tai01 (15 jobs,
15 machines) proposed by Taillard [55]. The levels tested
in this study are fixed based on Dorigo et al. [22] and are
shown in Table 4. The number of ants is taken as 100 and
the number of iterations in a cycle is fixed at 500. When five
levels for each of the four parameters are considered, then
the total number of experiments to be carried out for finding
the optimum level of parameters results in 45 experimental
settings, i.e., 1,024. If each experiment is repeated five
times, the total number of experiments required is 5,120.
Obviously, this design becomes inefficient since it requires
a large number of required trials. By applying the Taguchi
method for robust design, the total number of experiments
needed can be reduced to 125, i.e., 25 experiments, each
with five replications as shown in Table 5.

This experimental design of Taguchi is based on the tech-
nique of matrix experiments [40]. In matrix experiments,
there is a set of experiments where the user changes
the settings of various parameters. Orthogonal arrays are
used to study the effect of various factors efficiently. The
columns of orthogonal array are pairwise orthogonal, i.e.,
for every pair of columns, all combinations of factor levels
occur an equal number of times. The columns represent
the parameters to be studied and the rows represent the
individual experiments. The number of rows gives the total
number of experiments and the number of columns gives the

Table 8 Results of level
average response analysis Experiment No. α β ρ Q

Level 1 − 3,65 − 2,88 − 3,52 − 3,57

Level 2 − 2,44 − 3,23 − 3,71 − 3,48

Level 3 − 3,63 − 4,25 − 2,50 − 2,88

Level 4 − 3,78 − 3,19 − 3,62 − 3,30

Level 5 − 2,96 − 2,91 − 3,14 − 2,65

Max S/N − 2,44 − 2,88 − 2,50 − 2,65

Min S/N − 3,78 − 4,24 − 3,71 − 3,56

Range 1,34 1,36 1,20 0,91

Rank 2 1 3 4

1914



A novel dynamic assignment rule for the distributed job...

Fig. 6 Graphical representation of the effect of parameters

maximum number of parameters that can be studied using
the orthogonal array. Based on the number of parameters to
be analysed and their levels, orthogonal arrayL25 is selected
in the present study. The assigned experimental array is
shown in Table 6.

From Table 7, the overall mean for S/N ratio is found
to be -6,57 dB. The level average response analysis is
based on averaging the experimental results achieved at
each level for each parameter. In the present study, each
level of the parameter is contained in five experiments. The
level-average response analysis is carried out by calculating
the average of the results (i.e., S/N ratio) from the five
experiments corresponding to each level of the parameter as
shown in Table 8. Figure 6 shows graphically the effect of
the four parameters on the objective function value. Since
S/N ratio has the characteristic of the larger the better, the
analysis of the results leads to the conclusion that the best
combination of each parameter is α at level 2, β at level 1,
ρ at level 3, and constant Q at level 5. The corresponding
values are as follows: α2 = 1, β1 = 0, ρ3 = 0.7, Q5 =
10000. From the responses for the experiments, the range of
S/N ratio is calculated as follows:

Range = max S/N − min S/N (9)

Table 9 Confirmation Experiment data

Parameter combination S/N ratio

Predicted value ηpredicted − 1,08

Actual value ηactual − 1,19

where max S/N is the maximum of S/N ratio and min S/N
is the minimum of S/N ratio for the parameter considered.
A ranking of parameters is made based on the range values.
It can be seen that parameter β has the largest effect on the
response of the experiment and parameter Q has the least
effect.

7.2 Confirmation experiment

The purpose of the confirmation experiment is to validate
the conclusions drawn from the experiments. Once the
optimal level of the parameters is selected, the final step is
to predict and verify the improvement of the performance
characteristics using the optimal level of the parameters.
The estimated value of the S/N ratio ηpredicted with the
optimal levels of parameter combination can be calculated
with the help of following prediction equation:

ηpredicted = ηm+(ηα2−ηm)+(ηβ1−ηm)+(ηρ3−ηm)+(ηQ5−ηm)

(10)

Table 10 The three implemented algorithms

Workload assignment Local
search

Dynamic assignment

ACO + − −
HACO + + −
DAHACO + + +

1915



I. Chaouch et al.

Ta
bl
e
11

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

D
A
H
A
C
O
,H

A
C
O
an
d
A
C
O

Pr
ob
le
m

si
ze

2F
3F

4F
5F

6F
7F

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

Ta
i0
1

15
×

15
13
81

14
33

17
08

11
41

11
41

13
69

10
47

10
53

11
54

97
7

99
6

10
25

96
3

96
3

96
3

96
3

96
3

96
3

Ta
i0
2

15
×

15
12
13

11
95

15
70

11
38

11
38

12
64

10
33

11
12

10
51

98
7

10
43

10
12

94
2

99
9

98
6

94
2

94
2

99
9

Ta
i0
3

15
×

15
13
76

14
84

16
16

11
02

11
02

14
49

10
15

10
62

11
04

96
2

10
15

10
81

93
4

10
38

10
46

92
7

93
3

93
3

Ta
i0
4

15
×

15
12
46

14
06

17
40

10
90

11
79

13
83

98
0

10
11

10
61

92
4

98
0

10
38

93
0

93
0

10
09

91
1

91
1

93
0

Ta
i0
5

15
×

15
13
80

15
05

21
88

11
06

11
23

13
92

10
14

11
37

11
87

94
0

10
76

11
37

94
0

94
0

10
04

94
0

94
0

94
0

Ta
i0
6

15
×

15
13
47

14
67

16
27

10
63

11
41

14
04

10
54

10
63

13
33

94
4

96
9

10
17

91
3

92
0

10
17

90
3

90
9

99
1

Ta
i0
7

15
×

15
14
02

15
61

18
11

11
79

12
30

13
42

10
42

10
79

12
46

97
6

10
23

10
66

95
6

99
4

99
5

94
2

96
1

96
1

Ta
i0
8

15
×

15
12
95

14
94

17
13

11
67

11
86

12
16

10
77

10
77

11
59

97
7

97
6

99
7

97
0

98
5

98
5

96
3

96
3

96
3

Ta
i0
9

15
×

15
14
34

14
45

19
47

11
99

12
07

14
43

11
12

11
71

12
48

10
21

10
76

11
32

98
2

98
2

10
01

98
2

98
2

98
2

Ta
i1
0

20
×

15
12
59

15
94

18
86

11
49

11
75

12
47

10
44

11
59

11
33

96
9

98
8

10
87

92
6

95
3

98
8

90
1

94
4

96
6

Ta
i1
1

20
×

15
14
44

16
41

19
76

13
52

13
56

15
28

11
65

11
95

12
99

11
14

11
21

12
84

98
0

11
19

15
46

95
6

95
6

95
6

Ta
i1
2

20
×

15
14
83

16
96

21
17

12
75

15
31

16
63

11
99

14
95

12
79

11
42

11
43

11
70

10
13

10
12

10
77

10
12

10
12

10
43

Ta
i1
3

20
×

15
15
11

16
47

22
53

12
19

15
93

15
48

11
35

11
41

12
78

10
67

11
08

11
19

10
28

10
83

11
19

97
5

10
47

10
47

Ta
i1
4

20
×

15
14
50

14
77

22
07

12
19

13
34

15
22

11
34

12
02

13
12

10
18

10
65

12
17

99
0

99
0

10
60

99
0

99
0

99
1

Ta
i1
5

20
×

15
15
71

18
52

21
38

13
32

14
48

17
85

11
47

12
00

13
35

10
45

11
54

11
92

98
4

98
4

11
72

94
8

96
8

96
8

Ta
i1
6

20
×

15
15
64

15
35

22
57

13
51

13
84

16
63

12
28

13
08

14
76

11
02

12
17

12
35

10
83

11
14

11
46

98
2

10
73

10
73

Ta
i1
7

20
×

15
16
18

16
81

21
74

13
04

14
19

15
32

11
61

12
54

13
53

10
90

12
03

11
89

98
8

10
94

11
44

97
9

97
9

10
31

Ta
i1
8

20
×

15
15
05

16
64

22
09

13
06

13
87

15
27

12
16

12
07

14
33

10
59

11
38

12
39

10
49

10
01

10
53

97
3

98
5

10
49

Ta
i1
9

20
×

15
15
55

16
04

21
57

12
94

13
25

15
80

11
06

11
06

12
68

10
09

10
22

11
62

10
06

10
20

11
34

94
0

10
20

10
66

Ta
i2
0

20
×

20
15
43

17
59

21
08

12
86

15
30

16
21

11
42

13
28

13
66

10
36

11
77

11
95

10
03

11
41

10
76

98
3

10
33

10
63

Ta
i2
1

20
×

20
19
86

20
60

25
09

16
26

18
83

22
00

14
41

16
85

17
96

13
19

14
05

16
08

12
32

12
32

16
76

12
32

12
17

13
46

Ta
i2
2

20
×

20
18
76

20
12

27
90

15
11

18
51

21
63

14
34

16
09

17
10

13
30

14
17

18
27

13
10

13
87

16
54

12
40

12
24

13
31

Ta
i2
3

20
×

20
16
84

17
59

27
49

15
28

15
98

19
49

14
40

14
92

17
44

13
69

14
11

15
70

13
27

13
36

15
60

12
53

12
87

13
55

Ta
i2
4

20
×

20
18
32

23
09

25
90

16
14

18
83

21
74

13
96

16
59

19
88

13
77

14
28

17
22

12
91

13
22

16
37

12
12

12
12

13
95

Ta
i2
5

20
×

20
18
74

22
40

26
90

15
82

17
54

21
55

13
81

15
63

18
66

12
86

14
65

15
14

12
75

13
33

14
96

12
15

12
28

13
55

Ta
i2
6

20
×

20
18
95

21
12

31
03

15
76

18
02

21
87

14
26

15
58

18
71

13
49

16
65

18
55

12
94

13
86

16
78

12
82

13
48

14
24

Ta
i2
7

20
×

20
19
67

21
73

30
79

17
17

18
49

22
41

15
38

16
32

19
45

14
22

15
43

17
59

13
45

14
07

16
36

13
31

13
87

14
65

Ta
i2
8

20
×

20
19
64

26
86

28
09

15
85

16
98

21
05

15
16

14
86

17
46

13
74

13
75

18
40

13
22

13
87

16
74

12
93

13
36

14
32

Ta
i2
9

20
×

20
19
45

19
69

29
31

17
61

18
85

19
88

14
73

15
09

17
02

14
70

15
12

16
43

14
00

14
00

15
21

13
00

13
17

13
17

Ta
i3
0

20
×

20
17
53

20
91

24
92

15
99

18
13

22
64

14
34

14
34

17
32

13
45

13
98

17
92

12
83

14
40

14
21

12
46

13
65

14
20

Ta
i3
1

30
×

15
22
96

23
62

30
12

16
69

16
60

21
86

14
15

14
81

17
96

12
23

14
18

14
99

12
10

13
93

14
88

11
32

11
14

12
46

Ta
i3
2

30
×

15
19
83

21
79

32
12

16
49

21
55

24
15

14
10

14
30

18
47

13
19

14
25

18
20

12
66

14
07

16
38

11
03

11
64

13
10

Ta
i3
3

30
×

15
20
37

23
31

34
21

15
37

17
31

22
78

14
80

15
70

19
24

12
67

14
90

15
76

11
33

14
68

15
45

11
51

11
51

13
61

1916



A novel dynamic assignment rule for the distributed job...

Ta
bl
e
11

(c
on
tin

ue
d)

Pr
ob
le
m

si
ze

2F
3F

4F
5F

6F
7F

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

Ta
i3
4

30
×

15
21
61

28
67

28
76

15
74

19
34

22
65

14
57

14
37

18
31

13
58

14
55

18
18

12
30

13
48

14
38

11
73

13
47

13
93

Ta
i3
5

30
×

15
19
69

30
15

29
33

15
98

18
23

23
45

13
97

17
77

18
76

13
23

13
28

14
89

11
67

14
09

14
08

11
85

11
85

13
05

Ta
i3
6

30
×

15
20
46

23
54

32
32

16
72

18
09

23
44

14
36

16
38

17
98

13
22

13
57

16
34

12
39

13
86

13
59

11
99

12
14

13
09

Ta
i3
7

30
×

15
21
87

22
66

31
94

16
19

17
59

23
04

14
82

14
50

18
75

12
90

14
95

17
71

12
31

14
37

15
76

12
25

12
25

14
33

Ta
i3
8

30
×

15
19
15

21
64

28
50

15
79

18
88

20
48

14
09

13
21

17
98

12
85

12
56

15
78

12
07

12
93

15
15

10
75

12
79

14
06

Ta
i3
9

30
×

15
19
04

19
74

27
17

15
18

16
16

20
04

13
67

14
44

17
83

11
92

14
63

14
77

10
74

12
95

14
04

11
63

12
05

13
13

Ta
i4
0

30
×

15
19
92

24
04

25
44

16
04

16
38

20
14

14
30

14
74

17
45

12
81

13
36

15
92

11
59

12
88

14
07

11
34

12
33

13
58

Ta
i4
1

30
×

20
22
49

26
68

43
88

20
27

21
55

29
95

17
56

18
68

23
82

15
89

16
76

20
67

15
28

16
25

21
05

13
94

14
07

18
89

Ta
i4
2

30
×

20
23
28

24
00

39
70

19
04

21
02

25
61

17
79

17
29

22
53

14
39

16
42

19
93

14
07

14
71

18
36

13
61

14
39

18
12

Ta
i4
3

30
×

20
24
67

25
62

40
99

18
96

20
42

25
70

16
84

17
69

22
76

15
47

16
75

20
01

13
80

14
68

17
78

13
61

13
61

16
78

Ta
i4
4

30
×

20
22
28

24
39

42
52

19
33

22
76

29
81

17
13

20
56

24
03

15
71

19
46

20
55

15
15

16
03

19
29

14
08

15
99

19
52

Ta
i4
5

30
×

20
23
64

29
74

43
07

19
62

21
49

29
05

17
25

18
24

24
57

15
43

17
51

20
62

14
47

15
66

19
28

14
08

14
69

17
18

Ta
i4
6

30
×

20
22
15

33
71

45
74

17
96

21
58

31
04

18
47

20
57

22
64

15
92

16
93

19
43

15
62

15
52

18
27

14
08

13
66

17
49

Ta
i4
7

30
×

20
21
63

23
95

41
95

19
32

20
67

28
42

17
04

17
04

22
69

15
46

15
80

20
57

15
43

15
63

19
00

14
72

15
43

17
33

Ta
i4
8

30
×

20
22
50

30
05

39
74

19
32

20
13

26
96

17
54

18
75

23
51

15
66

18
15

19
87

14
21

16
71

18
50

13
88

14
09

16
34

Ta
i4
9

30
×

20
22
56

30
58

42
91

19
63

21
97

29
98

16
25

17
48

23
90

15
09

17
45

20
02

15
01

15
21

18
90

13
61

15
13

16
75

Ta
i5
0

30
×

20
22
39

24
51

39
57

18
69

19
09

29
30

16
85

18
67

25
59

14
81

17
57

20
46

14
81

15
61

18
04

14
15

15
46

17
46

Ta
i5
1

50
×

15
28
24

35
99

58
04

20
95

21
66

41
77

19
23

20
95

29
29

16
24

17
43

27
42

15
12

16
57

21
40

14
15

16
27

18
62

Ta
i5
2

50
×

15
30
47

37
14

58
04

21
63

24
91

39
17

18
46

18
81

27
82

16
12

18
23

25
13

15
35

15
75

20
33

13
78

16
05

17
07

Ta
i5
3

50
×

15
27
95

40
37

62
69

22
31

22
37

40
62

19
30

22
28

29
77

16
56

18
93

25
00

15
42

16
20

21
74

14
24

16
48

18
14

Ta
i5
4

50
×

15
27
45

27
45

54
08

20
76

21
81

37
24

18
92

20
30

28
70

16
40

17
51

22
74

15
04

15
55

20
72

13
57

15
48

18
10

Ta
i5
5

50
×

15
30
77

29
69

56
74

21
27

24
51

41
45

18
85

23
38

33
60

16
88

19
36

25
98

15
03

17
62

21
87

13
98

15
68

18
39

Ta
i5
6

50
×

15
26
99

30
74

60
61

22
28

22
28

39
33

20
41

21
78

30
38

16
55

18
93

25
65

16
28

15
65

20
10

14
37

15
01

18
13

Ta
i5
7

50
×

15
28
29

32
38

59
33

22
41

22
41

42
11

20
12

20
12

32
77

17
21

18
68

26
35

16
29

17
80

24
17

15
87

17
46

19
46

Ta
i5
8

50
×

15
26
90

46
04

57
20

21
51

26
05

39
36

19
32

20
33

31
57

16
47

17
20

26
43

15
79

15
77

23
77

14
24

15
12

18
89

Ta
i5
9

50
×

15
28
94

32
50

54
27

21
73

27
42

36
99

21
13

20
50

31
44

15
96

17
79

25
27

14
48

15
44

21
32

14
08

17
79

17
97

Ta
i6
0

50
×

15
27
17

33
86

57
47

23
26

22
41

39
18

19
32

22
26

30
74

16
48

17
46

26
54

15
99

15
88

22
25

14
99

15
21

18
62

Ta
i6
1

50
×

20
33
38

33
38

74
03

24
70

24
75

44
32

22
90

20
92

39
56

22
14

18
71

29
87

18
71

22
14

27
99

17
37

22
14

24
37

Ta
i6
2

50
×

20
68
84

65
22

79
53

35
35

48
11

55
00

24
71

25
69

41
51

20
88

21
43

35
42

17
96

19
20

26
32

17
54

17
73

17
77

Ta
i6
3

50
×

20
53
90

53
90

78
64

26
44

26
44

53
40

22
34

22
95

38
96

19
02

20
07

34
59

18
39

17
97

29
27

16
70

16
74

17
28

Ta
i6
4

50
×

20
59
29

61
93

79
32

24
22

24
75

51
72

21
86

21
86

41
97

19
39

19
60

31
21

17
50

17
65

24
44

17
29

17
50

17
51

Ta
i6
5

50
×

20
60
71

66
03

75
83

28
28

48
11

53
40

21
47

21
89

38
77

19
06

19
06

33
89

17
52

16
96

29
16

16
43

17
12

16
57

Ta
i6
6

50
×

20
52
34

52
34

77
55

25
21

26
44

53
97

23
21

22
68

42
06

20
76

19
37

34
02

16
82

20
17

29
83

16
32

16
32

19
71

1917



I. Chaouch et al.

Ta
bl
e
11

(c
on
tin

ue
d)

Pr
ob
le
m

si
ze

2F
3F

4F
5F

6F
7F

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

D
A
H
A
C
O

H
A
C
O

A
C
O

Ta
i6
7

50
×

20
43
48

43
48

76
95

24
07

35
88

49
79

21
53

21
78

41
22

19
70

21
78

33
07

18
52

18
24

29
65

18
24

17
56

27
12

Ta
i6
8

50
×

20
44
29

44
29

81
09

27
20

31
03

54
33

24
18

22
17

40
49

19
21

21
52

34
18

18
73

18
09

29
38

16
42

16
88

18
31

Ta
i6
9

50
×

20
68
17

61
39

82
87

23
83

23
83

52
62

22
36

26
35

42
97

21
15

20
72

35
06

20
08

20
41

31
91

16
90

18
03

16
48

Ta
i7
0

50
×

20
48
29

58
40

84
29

27
53

24
68

51
85

22
85

23
49

37
22

21
29

20
36

31
99

18
69

18
51

25
01

16
52

16
52

15
95

Ta
i7
1

10
0

×
20

12
75
9

12
75
9

19
21
6

98
34

12
29
9

11
95
8

62
39

79
63

85
90

49
83

49
50

71
81

47
63

48
16

55
66

37
74

41
88

49
72

Ta
i7
2

10
0

×
20

13
88
6

14
19
7

18
18
9

93
02

93
02

11
57
8

74
46

74
35

84
40

61
86

68
31

78
01

50
68

48
79

55
28

39
65

39
65

46
28

Ta
i7
3

10
0

×
20

13
46
2

14
66
8

20
09
8

93
29

12
54
9

13
13
8

77
73

88
10

86
15

59
42

59
42

77
52

54
65

60
00

59
64

47
48

50
09

48
89

Ta
i7
4

10
0

×
20

12
49
2

13
77
1

18
63
4

90
39

11
02
4

12
03
9

74
82

84
35

82
21

55
48

54
60

70
47

50
97

51
34

56
36

33
96

33
96

46
85

Ta
i7
5

10
0

×
20

12
95
5

15
77
5

19
17
4

95
42

10
93
5

11
85
8

67
43

70
29

88
12

59
39

55
87

74
49

48
15

51
59

54
90

37
15

42
72

47
74

Ta
i7
6

10
0

×
20

14
99
9

16
73
4

19
59
3

97
18

93
25

11
80
0

81
61

79
63

88
16

63
46

66
64

71
96

50
74

51
82

55
11

48
89

46
97

50
09

Ta
i7
7

10
0

×
20

15
98
1

14
86
1

19
20
7

10
13
5

10
13
5

11
99
4

74
35

74
35

86
29

64
42

65
46

74
02

55
31

53
81

56
39

44
29

41
91

48
85

Ta
i7
8

10
0

×
20

16
02
9

16
76
3

18
56
6

10
25
4

10
93
5

11
17
2

76
80

74
06

85
98

54
87

54
87

68
25

41
49

45
60

55
48

39
83

39
83

46
03

Ta
i7
9

10
0

×
20

14
09
7

17
56
3

19
30
6

10
06
1

11
00
4

11
52
8

84
60

86
44

88
02

63
03

63
41

68
18

54
16

51
00

53
82

37
22

37
22

47
34

Ta
i8
0

10
0

×
20

11
57
4

12
18
0

17
53
0

75
04

76
88

11
31
6

54
61

54
61

83
53

52
82

55
26

65
89

38
76

39
10

54
29

27
20

35
14

45
60

T
he

sy
m
bo
ls
in

bo
ld

sh
ow

th
e
be
st
re
su
lts

ob
ta
in
ed

Where:
ηm: overall mean for S/N ratio
ηα2 : S/N ratio for parameter α at designated level 2
ηβ1 : S/N ratio for parameter β at designated level 1
ηρ3 : S/N ratio for parameter ρ at designated level 3
ηQ5 : S/N ratio for parameter Q at designated level 5
A confirmation experiment is executed five times with

the optimal combination of parameters. The actual value
of the S/N ratio (ηactual) is calculated based on this
experiment. The predicted value which is calculated using
Eq. (10) and the actual value of S/N ratio are provided in
Table 9.

The predicted value of the S/N ratio with the optimal
level of parameters is very close to the S/N ratio of the actual
value. This validates the experiment for predicting the best
levels of the parameters using the Taguchi method.

7.3 Evaluation of the DAHACO algorithm

The novelty of the proposed approach is twofold. The
first contribution lies in the dynamic assignment of jobs to
factories and the second offers a hybrid ant-based algorithm
which integrates a local search in order to improve the
solutions. To evaluate our proposed DAHACO and prove
the effectiveness of introducing local search on the one
hand and the dynamic assignment on the other hand,
we have developed three different variants of ant-based
algorithms to show the relevance and the influence of each
improvement made on our DAHACO. Table 10 summarizes
the 3 implemented versions:

– The first one, called ”ACO”, uses the ant colony
system algorithm without any hybridization and a static
assignment procedure (workload).

– The second one, called ”HACO” uses a hybrid
ant colony system algorithm that integrates a local
search procedure and a static assignment procedure
(workload).

– The third one, called ”DAHACO” uses a dynamic
assignment of jobs to factories and the hybrid ant
colony system algorithm for the scheduling.

The three algorithms were implemented and ran a certain
number of times experimentally determined using the best
parameters set determined previously α2 = 1, β1 = 0, ρ3 =
0.7, Q5 = 10000. We used instances from well-known
benchmarks proposed by [55]. This benchmark includes
8 combinations for n and m, and 10 instances for each
combination. Each instance is solved with different level
of f (f = 2, 3, 4, 5, 6, 7) summing up 480 instances. The
computational results are depicted from Tables 11, 12,
13, 14, and 15. Table 11 presents the value of makespan

1918



A novel dynamic assignment rule for the distributed job...

Table 12 Relative Percentage Deviation (RPD) of the 3 algorithms grouped by n and m

Problem (n x m) DAHACO HACO ACO Problem (n x m) DAHACO HACO ACO

Tai01 15 × 15 0,00 1,54 9,80 Tai41 30 × 20 0,00 7,35 46,98

Tai02 15 × 15 0,25 3,23 9,57 Tai42 30 × 20 0,48 6,31 39,58

Tai03 15 × 15 0,00 4,96 13,79 Tai43 30 × 20 0,00 5,21 36,39

Tai04 15 × 15 0,00 5,04 16,29 Tai44 30 × 20 0,00 15,08 47,02

Tai05 15 × 15 0,00 6,20 21,54 Tai45 30 × 20 0,00 11,18 43,60

Tai06 15 × 15 0,00 3,53 18,04 Tai46 30 × 20 0,62 15,01 44,95

Tai07 15 × 15 0,00 5,01 12,98 Tai47 30 × 20 0,00 4,34 41,35

Tai08 15 × 15 0,02 3,09 7,97 Tai48 30 × 20 0,00 13,28 37,50

Tai09 15 × 15 0,00 2,02 13,53 Tai49 30 × 20 0,00 13,86 45,28

Tai10 15 × 15 0,00 8,26 15,49 Tai50 30 × 20 0,00 9,29 44,79

Tai11 20 × 15 0,00 5,22 22,40 Tai51 50 × 15 0,00 11,95 66,53

Tai12 20 × 15 0,02 9,87 15,30 Tai52 50 × 15 0,00 11,85 55,75

Tai13 20 × 15 0,00 9,46 18,30 Tai53 50 × 15 0,00 15,88 63,33

Tai14 20 × 15 0,00 3,65 19,92 Tai54 50 × 15 0,00 6,10 56,32

Tai15 20 × 15 0,00 7,29 20,04 Tai55 50 × 15 0,61 13,89 65,87

Tai16 20 × 15 0,32 5,25 19,58 Tai56 50 × 15 0,67 6,57 59,92

Tai17 20 × 15 0,00 6,97 16,43 Tai57 50 × 15 0,00 7,05 64,10

Tai18 20 × 15 0,93 4,24 18,74 Tai58 50 × 15 0,02 18,02 67,15

Tai19 20 × 15 0,00 2,79 19,00 Tai59 50 × 15 0,51 13,82 57,39

Tai20 20 × 15 0,00 13,62 18,84 Tai60 50 × 15 1,26 8,42 62,66

Tai21 20 × 20 0,21 7,17 25,80 Tai61 50 × 20 4,63 3,09 73,31

Tai22 20 × 20 0,22 9,06 30,58 Tai62 50 × 20 0,93 8,45 43,84

Tai23 20 × 20 0,00 3,18 25,38 Tai63 50 × 20 0,39 1,42 61,75

Tai24 20 × 20 0,00 11,28 30,91 Tai64 50 × 20 0,00 1,63 56,87

Tai25 20 × 20 0,00 10,52 26,91 Tai65 50 × 20 0,55 14,17 57,49

Tai26 20 × 20 0,00 11,79 35,33 Tai66 50 × 20 1,59 4,13 70,24

Tai27 20 × 20 0,00 6,93 28,15 Tai67 50 × 20 0,90 9,94 76,69

Tai28 20 × 20 0,34 8,70 27,44 Tai68 50 × 20 2,10 4,82 69,55

Tai29 20 × 20 0,00 2,48 16,81 Tai69 50 × 20 2,61 4,82 62,68

Tai30 20 × 20 0,00 9,73 27,08 Tai70 50 × 20 3,44 4,55 56,63

Tai31 30 × 15 0,36 6,43 24,53 Tai71 100 × 20 0,11 10,80 33,93

Tai32 30 × 15 0,00 11,12 37,59 Tai72 100 × 20 0,67 2,11 20,85

Tai33 30 × 15 0,00 13,38 37,53 Tai73 100 × 20 0,00 12,02 23,92

Tai34 30 × 15 0,23 14,52 28,99 Tai74 100 × 20 0,27 7,61 28,31

Tai35 30 × 15 0,00 19,25 28,89 Tai75 100 × 20 1,05 10,46 29,80

Tai36 30 × 15 0,00 8,85 27,64 Tai76 100 × 20 2,02 2,76 16,32

Tai37 30 × 15 0,37 7,48 33,33 Tai77 100 × 20 2,67 0,27 16,65

Tai38 30 × 15 1,50 9,78 32,77 Tai78 100 × 20 0,62 3,52 19,25

Tai39 30 × 15 0,00 10,45 28,78 Tai79 100 × 20 1,03 6,12 16,08

Tai40 30 × 15 0,00 8,34 23,46 Tai80 100 × 20 0,00 7,06 47,95

The symbols in bold show the best results obtained

Table 13 Average relative percentage deviation of the 3 algorithms
grouped by n and m

DAHACO HACO ACO

Average RPD 0,43 7,95 35,42

obtained by the 3 algorithms with the 480 instances. First,
we notice that the total execution time of jobs on machines
decreases when the number of plants increases. This is
naturally explained by the fact that executing n jobs on f
factories is faster than executing them on f/2 factories. This
brings us directly back to thinking about the usefulness of

1919



I. Chaouch et al.

Table 14 Average RPD of the three algorithms grouped by f

F DAHACO HACO ACO

2 0,39 13,12 57,08

3 0,25 10,67 46,53

4 0,58 6,39 34,85

5 0,59 6,93 32,03

6 0,44 5,76 26,07

7 0,34 4,85 15,97

Average 0,43 7,95 35,42

factory distribution and its significant role in time saving.
Table 12 summarizes the calculated Relative Percentage
Deviation for the 480 instances, such as each value is the
average value between different levels of f compared with
the best value found by the three algorithms. As can be
witnessed, the DAHACO outperforms the HACO and the
ACO in almost all instances. Table 13 shows the Average
Relative Percentage Deviation of the 3 algorithms grouped
by n and m. As it can be seen, DAHACO beats the two
other algorithms clearly, bringing down the average RPD
to just 0.43 compared to a deviation of 7.95 for HACO
algorithm and 35.42 for ACO. The smaller Average Relative
Percentage Deviation shows that the proposed DAHACO
is more robust and competitive than the HACO and ACO.
Table 14 shows the average RPD of the three considered
algorithms grouped by the number of factories f, i.e., each
cell of the table contains the average RPD of 80 instances.
It can be seen that DAHACO outperforms the other 2
algorithms in different factories levels and gets the best
results for all combinations.

Figure 7 shows the average RPD of the tested algorithms
vs. the number of factories. We can see that DAHACO
algorithm outperforms the other algorithms regardless of the
number of factories. As we can see, the DAHACO is stable
with some factory as with several factories which is not
the case for the other algorithms. But it is clear that when
the number of factories increases, the performance of all
algorithms is getting better. This observation is predictable

because its logic that scheduling n jobs on two factories is
costlier in terms of time than scheduling n jobs on three
factories and so on. And this is what makes the distribution
of factories a necessity in our days for the considerable gain
of time.

The data in Table 15 show the influence of the number
of factories on the computational time of the proposed
DAHACO. We can notice that the computational time
is interestingly reduced when we increase the number
of factories. Our DAHACO is perfectly adapted to the
distributed job shop scheduling problem and performs
better in a distributed environment. It is important to
mention that this is the first study that can deal with 10
factories in the DJSP. Figure 8 illustrates the curve of the
computational time versus the number of factories. The
efficiency compared to the 2 other algorithms is visible,
especially, in the case of a small number of factories where
job scheduling is more complicated because we have a
larger number of jobs to execute in each factory. When the
number of plants increases, the execution time is reduced
considerably until reaching 0.07 sec for the 15x15 instance
with 10 factories.

To sum up, we can confirm that the proposed DAHACO
outperforms two other algorithms in solving the DJSP.
In fact, there are two important reasons for the rapid
convergence and the good scheduling solutions of the
proposed algorithm. The first is the variety of the
assignment combinations, which offers more diversification
thus exploiting new possibilities. The second is due to the
local search procedure which enhances the capability of the
algorithm to escape from local minimum and quickly guide
the search to different regions of the solution space.

8 Conclusions and perspectives

This study proposed a novel dynamic assignment of jobs
to factories, applied to a hybrid ant colony optimization
algorithm combined with local search to solve the
distributed job shop scheduling problem with makespan
criterion. Firstly, the effective workload rule for assignment

Table 15 The computational time of the DAHACO (sec)

2f 3f 4f 5f 6f 7f 8f 9f 10f

15 × 15 7,21 1,31 0,53 0,23 0,16 0,11 0,08 0,07 0,07

20 × 15 18,93 4,73 1,75 0,72 0,47 0,27 0,23 0,16 0,12

20 × 20 44,46 10,96 3,86 1,77 0,91 0,50 0,38 0,26 0,16

30 × 15 208,39 35,52 11,95 5,71 2,87 1,98 1,11 0,78 0,49

30 × 20 351,52 85,14 25,57 10,81 5,89 3,60 2,16 1,55 0,79

1920



A novel dynamic assignment rule for the distributed job...

Fig. 7 The average RPD of the tested algorithms versus the number of factories

phase was combined with random permutations to create
a dynamic assignment of jobs to factories. This step is
very important to generate a diverse population for the
ant-based algorithm. Moreover, a local search procedure
is associated with ant-based algorithm in order to explore
more search space and find better results. Furthermore, the
Taguchi method for robust design is adopted for finding
the optimum combination of parameters of the DAHACO
algorithm. By applying the Taguchi method, the total
number of experiments carried out for finding an optimum
level of parameters has been reduced considerably. From the
confirmation tests, a good agreement between the predicted
S/N ratio and the actual S/N ratio is observed. This validates
the proposed experiment based on the Taguchi method for
parameter design.

The intensive experiments have been performed to evaluate
our novel algorithm. Results proved that the effectiveness
of the proposed DAHACO is able to reach best solutions.
Besides, in order to verify the superiority of DAHACO,
we have compared it with two ant-based algorithms with

the use of the well-known instances proposed by Taillard
[55]. Comparisons have proved that DAHACO can usually
produce better solutions than other algorithms.

Even though this study proposed an effective DAHACO
algorithm for the DJSP, there are some impediments that
should be improved in future research work. In fact, this
study has just considered the case when all factories are
identical. This can be an idealization to the real problem,
since it is rarely the case. On the basis of the satisfactory
results obtained from this work and the limitations presented
above, we plan to explore the following issues:

– Combining the proposed DAHACO algorithm with
other methods in order to better explore the search space
and improve the solution.

– Considering more complex real world constraints such
as setup times and maintenance considerations.

– Investigating the applicability of the proposed approach
to the multi-objective DJSP.

– Considering the case with non-identical factories.

Fig. 8 The curve of the computational time versus the number of factories

1921



I. Chaouch et al.

References

1. Akjiratikarl C, Yenradee P, Drake PR (2007) Pso-based algorithm
for home care worker scheduling in the uk. Comput Ind Eng
53(4):559–583

2. Asadzadeh L, Zamanifar K (2010) An agent-based parallel
approach for the job shop scheduling problem with genetic
algorithms. Math Comput Model 52(11):1957–1965

3. Balas E (1969) Machine sequencing via disjunctive graphs: an
implicit enumeration algorithm. Oper Res 17(6):941–957

4. Bell JE, McMullen PR (2004) Ant colony optimization techniques
for the vehicle routing problem. Adv Eng Inform 18(1):41–48

5. Blazewicz J, Ecker KH, Pesch E, Schmidt G, Weglarz J (1997)
Scheduling computer and manufacturing processes. J Oper Res
Soc 48(6):659–659

6. Blum C, Sampels M (2004) An ant colony optimization algorithm
for shop scheduling problems. J Math Model Algorithm 3(3):285–
308

7. Brucker P, Brucker P (2007) Scheduling algorithms, vol 3.
Springer, Berlin

8. Bullnheimer B, Hartl RF, Strauss C (1997) An improved ant
system algorithm for the vehicle routing problem

9. Carlier J, Pinson É (1989) An algorithm for solving the job-shop
problem. Manag Sci 35(2):164–176

10. Chaouch I, Belkahla Driss O, Ghedira K (2017) A survey of
optimization techniques for distributed job shop scheduling prob-
lems in multi-factories. In: Silhavy R, Senkerik R, Kominkova
Oplatkova Z, Prokopova Z, Silhavy P (eds) Cybernetics and math-
ematics applications in intelligent systems. Springer International
Publishing, Cham, pp 369-378

11. Chen CL, Chen CL (2009) Bottleneck-based heuristics to
minimize total tardiness for the flexible flow line with unrelated
parallel machines. Comput Ind Eng 56(4):1393–1401

12. Chen L, Bostel N, Dejax P, Cai J, Xi L (2007) A tabu search
algorithm for the integrated scheduling problem of container
handling systems in a maritime terminal. Eur J Oper Res
181(1):40–58

13. Cheng BW, Chang CL (2007) A study on flowshop scheduling
problem combining taguchi experimental design and genetic
algorithm. Expert Syst Appl 32(2):415–421

14. Chiang TC, Fu LC (2007) Using dispatching rules for job
shop scheduling with due date-based objectives. Int J Prod Res
45(14):3245–3262

15. Chong CS, Low MYH, Sivakumar AI, Gay KL (2006) A
bee colony optimization algorithm to job shop scheduling. In:
Proceedings of the 2006 winter simulation conference, pp 1954–
1961

16. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimiza-
tion by ant colonies, actes de la première conférence européenne
sur la vie artificielle (pp 134–142). Elsevier Publishing, France

17. Colorni A, Dorigo M, Maniezzo V, Trubian M (1994) Ant
system for job-shop scheduling. Belg J Oper Res Stat Comput Sci
34(1):39–53

18. Cordon O, De Viana IF, Herrera F, Moreno L (2000) A new
aco model integrating evolutionary computation concepts: The
best-worst ant system

19. Dorigo M (1992) Optimization learning and natural algorithms.
PhD Thesis, Politecnico di Milano

20. Dorigo M, Gambardella LM (1997) Ant colony system: a
cooperative learning approach to the traveling salesman problem.
IEEE Trans Evol Comput 1(1):53–66

21. Dorigo M, Maniezzo V, Colorni A, Maniezzo V (1991) Positive
feedback as a search strategy

22. Dorigo M, Maniezzo V, Colorni A (1996) Ant system:
optimization by a colony of cooperating agents. IEEE Trans Syst
Man Cybern B Cybern 26(1):29–41

23. Dowsland KA, Thompson JM (2008) An improved ant colony
optimisation heuristic for graph colouring. Discret Appl Math
156(3):313–324

24. Eswaramurthy VP, Tamilarasi A (2009) Hybridizing tabu search
with ant colony optimization for solving job shop scheduling
problems. Int J Adv Manuf Technol 40(9):1004–1015

25. French S (1982) Sequencing and scheduling, mathematics and its
applications

26. Gambardella LM, Taillard É, Agazzi G (1999) Macs-vrptw: A
multiple colony system for vehicle routing problems with time
windows. In: New ideas in optimization, Citeseer

27. Garey MR, Johnson DS, Sethi R (1976) The complexity of
flowshop and jobshop scheduling. Math Oper Res 1(2):117–129

28. Gonçalves JF, de Magalhães Mendes JJ, Resende MG (2005) A
hybrid genetic algorithm for the job shop scheduling problem. Eur
J Oper Res 167(1):77–95

29. Gutjahr WJ, Rauner MS (2007) An aco algorithm for a dynamic
regional nurse-scheduling problem in austria. Comput Oper Res
34(3):642–666

30. Heinonen J, Pettersson F (2007) Hybrid ant colony optimization
and visibility studies applied to a job-shop scheduling problem.
Appl Math Comput 187(2):989–998

31. Hoitomt DJ, Luh PB, Pattipati KR (1993) A practical approach to
job-shop scheduling problems. IEEE Trans Robot Autom 9(1):1–
13. https://doi.org/10.1109/70.210791

32. Jain AS, Meeran S (2002) A multi-level hybrid framework applied
to the general flow-shop scheduling problem. Comput Oper Res
29(13):1873–1901

33. Jayaraman V, Kulkarni B, Karale S, Shelokar P (2000) Ant colony
framework for optimal design and scheduling of batch plants.
Comput Chem Eng 24(8):1901–1912

34. Jia H, Fuh J, Nee A, Zhang Y (2002) Web-based multi-functional
scheduling system for a distributed manufacturing environment.
Concurr Eng 10(1):27–39

35. Jia H, Fuh J, Nee A, Zhang Y (2007) Integration of genetic
algorithm and gantt chart for job shop scheduling in distributed
manufacturing systems. Comput Ind Eng 53(2):313–320

36. Jia HZ, Nee AYC, Fuh JYH, Zhang YF (2003) A modified genetic
algorithm for distributed scheduling problems. J Intell Manuf
14(3):351–362

37. Kamaruddin S, Khan ZA, Foong S (2010) Application of taguchi
method in the optimization of injection moulding parameters for
manufacturing products from plastic blend. Int J Eng Technol
2(6):574

38. Lin TL, Horng SJ, Kao TW, Chen YH, Run RS, Chen RJ, Lai JL,
Kuo IH (2010) An efficient job-shop scheduling algorithm based
on particle swarm optimization. Expert Syst Appl 37(3):2629–
2636

39. Lu MS, Romanowski R (2012) Multi-contextual ant colony
optimization of intermediate dynamic job shop problems. Int J
Adv Manuf Technol 60(5):667–681

40. Madahav SP (1989) Quality engineering using robust design. New
Jersey

41. Mahfouz A, Hassan SA, Arisha A (2010) Practical simulation
application: Evaluation of process control parameters in twisted-
pair cables manufacturing system. Simul Model Pract Theory
18(5):471–482

42. Maniezzo V, Colorni A (1999) The ant system applied to the
quadratic assignment problem. IEEE Trans Knowl Data Eng
11(5):769–778

1922

https://doi.org/10.1109/70.210791


A novel dynamic assignment rule for the distributed job...

43. Muth JF, Thompson GL (1963) Industrial scheduling. Prentice-
Hall

44. Naderi B, Azab A (2014) Modeling and heuristics for scheduling
of distributed job shops. Expert Syst Appl 41(17):7754–7763

45. Naderi B, Azab A (2015) An improved model and novel simulated
annealing for distributed job shop problems. Int J Adv Manuf
Technol 81(1):693–703

46. Nouri HE, Belkahla Driss O, Ghedira K (2016) Hybrid
metaheuristics for scheduling of machines and transport robots in
job shop environment. Appl Intell 45(3):808–828

47. Panigrahi BK, Shi Y, Lim MH (2011) Handbook of swarm
intelligence: concepts, principles and applications, vol 8. Springer
Science & Business Media, Berlin

48. Perez E, Posada M, Herrera F (2012) Analysis of new niching
genetic algorithms for finding multiple solutions in the job shop
scheduling. J Intell Manuf 23(3):341–356

49. Pezzella F, Merelli E (2000) A tabu search method guided by
shifting bottleneck for the job shop scheduling problem. Eur J
Oper Res 120(2):297–310

50. Roy B, Sussmann B (1964) Problème d’ordonnancement avec
contraintes disjonctives. Technical Report DS No 9

51. Singha H, Kumarb P (2005) Optimizing cutting force for turned
parts by taguchi’s parameter design approach. Indian J Eng Mater
Sci 12:97–103

52. Stützle T, Hoos HH (2000) Max–min ant system. Futur Gener
Comput Syst 16(8):889–914

53. Sundar S, Suganthan PN, Jin CT, Xiang CT, Soon CC (2017) A
hybrid artificial bee colony algorithm for the job-shop scheduling
problem with no-wait constraint. Soft Comput 21(5):1193–1202

54. Suresh R, Mohanasundaram K (2006) Pareto archived simulated
annealing for job shop scheduling with multiple objectives. Int J
Adv Manuf Technol 29(1):184–196

55. Taillard E (1993) Benchmarks for basic scheduling problems. Eur
J Oper Res 64(2):278–285

56. Talbi EG (2009) Metaheuristics: from design to implementation,
vol 74. Wiley, New York

57. Tan Y, Liu S, Wang D (2010) A constraint programming-based
branch and bound algorithm for job shop problems. In: 2010
Chinese control and decision conference, pp 173–178

58. Tanco M, Viles E, Pozueta L (2009) Comparing different
approaches for design of experiments (DoE). Springer, Dordrecht,
pp 611–621

59. Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G (2006)
Particle swarm optimization and differential evolution for the
single machine total weighted tardiness problem. Int J Prod Res
44(22):4737–4754

60. Tay JC, Ho NB (2008) Evolving dispatching rules using
genetic programming for solving multi-objective flexible job-shop
problems. Comput Ind Eng 54(3):453–473

61. Wang L, Zhou G, Xu Y, Liu M (2012) An enhanced pareto-based
artificial bee colony algorithm for the multi-objective flexible
job-shop scheduling. Int J Adv Manuf Technol 60(9):1111–1123

62. Wang S, Liu M, Chu C (2015) A branch-and-bound algorithm for
two-stage no-wait hybrid flow-shop scheduling. Int J Prod Res
53(4):1143–1167

63. Watanabe M, Ida K, Gen M (2005) A genetic algorithm with
modified crossover operator and search area adaptation for
the job-shop scheduling problem. Comput Ind Eng 48(4):743–
752

64. Weckman GR, Ganduri CV, Koonce DA (2008) A neural network
job-shop scheduler. J Intell Manuf 19(2):191–201

65. Yao BZ, Yang CY, Hu JJ, Yin GD, Yu B (2010) An improved
artificial bee colony algorithm for job shop problem. In: Applied
mechanics and materials, trans tech publ, vol 26, pp 657-660

66. Ying KC, Liao CJ (2004) An ant colony system for permutation
flow-shop sequencing. Comput Oper Res 31(5):791–801

67. Zhang R, Wu C (2010) A hybrid approach to large-scale job shop
scheduling. Appl Intell 32(1):47–59

68. Zhou R, Nee A, Lee H (2009) Performance of an ant colony
optimisation algorithm in dynamic job shop scheduling problems.
Int J Prod Res 47(11):2903–2920

69. Zhou Y, Chen H, Zhou G (2014) Invasive weed optimization
algorithm for optimization no-idle flow shop scheduling problem.
Neurocomputing 137:285–292

Imen Chaouch received her
Engineer degree in Indus-
trial Computing and Auto-
matic from Institut National
des Sciences Appliquées et
de Technologie (INSAT), Uni-
versity of Carthage, Tunisia
in 2014. She is currently a
PhD candidate in computer
science and a member of
COSMOS Laboratory at Ecole
Nationale des Sciences de
l’Informatique, University of
Manouba, Tunisia. She is also
a teacher assistant in Faculté
des Sciences de Tunis, Tunis -

El Manar University, Tunisia. Her main research interest centres on
Distributed manufacturing systems, optimization, metaheuristics and
multiagent systems.

Olfa Belkahla Driss received
the B.Sc., M.Sc., Ph.D. and
HdR degrees in computer sci-
ence from Institut Supérieur
de Gestion de Tunis, Univer-
sity of Tunis, Tunisia, in 1997,
2000, 2006 and 2018 respec-
tively. She is an Assistant Pro-
fessor with the Department of
Computer Science at Ecole
Supérieure de Commerce de
Tunis, University of Manouba
from 2003. She is actually
a supervisor of the Research

Master in Computational Intelligence and Decision Making applied to
Management from 2010. Her main research interests are in the field
of industrial engineering, scheduling, transport and production logis-
tics, smart cities, e-government, data analysis, artificial intelligence,
multi-agent systems, and optimization. She has authored more than
60 research papers. She is member of technical committee of many
international conference and reviewer for many ranked journals.

1923



I. Chaouch et al.

Khaled Ghedira has received
the Engineer degree in hydrau-
lic (ENSEEIHT-France); the
specialized Engineer degree in
computer science and applied
mathematics (ENSIMAGFran-
ce), both the M.Sc and the
Ph.D degrees in Artificial Inte-
lligence (ENSAE-France) and
the HdR in computer science
from Ecole Nationale des Sci-
ences de l’Informatique (ENSI-
Tunisia). He was Research
Fellow at Institut d’Informa-

tique et d’Intelligence Artificielle (IIIA-Switzerland 1992-96), expert
consultant at British Telecom (England 1995), the head of ENSI
(2002-2008), the general managing director of the Tunis Science
City (2011-2014), and the general director of the Tunisian National
Agency for scientific Research Promotion (2014-2017). He is also the
president of the administration council of Institut de la Francophonie
pour l’Ingénierie de la Connaissance et la formation á distance (AUF-
IFIC). He is Professor at ISG (University of Tunis), the founding
president of the Tunisian Association of Artificial Intelligence (ATIA-
Tunisia), the founder and director of both the research Unit URIASIS
(1999-2011) and the SOIE laboratory (2011-2013). He is member
of several international scientific committees and is often invited as
keynote speaker/visiting professor at national and international level.
He is/was also member of the think national committee for higher
education and member/president of several committees: evaluation
of higher education institutions, research projects reviewing, teachers
recruiting, LMD. His research areas include MAS, CSP, transport
and production logistics, mono and multi-objective optimization,
metaheuristics and security in M/Egovernment. He has led several
national and international research projects. He has supervised more
than fourty PhD thesis and fifty master thesis. He has co/authored
about 360 journal/conference/book research papers. He has written
four books in ICT at the international level and co-authored some
others.

1924


	A novel dynamic assignment rule for the distributed job...
	Abstract
	Introduction
	The distributed job shop scheduling problem
	Related works
	Ant colony optimization
	The proposed DAHACO algorithm for the DJSP
	Job factory assignment phase
	Workload rule
	The proposed assignment procedure

	Sequencing phase

	Robust parameter design - parameter tuning
	Experimental evaluation
	Parameter design for DAHACO using Taguchi method
	Confirmation experiment
	Evaluation of the DAHACO algorithm

	Conclusions and perspectives
	References




