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Abstract
In spite of some attempts at improving the quality of the clustering ensemble methods, it seems that little research has been
devoted to the selection procedure within the fuzzy clustering ensemble. In addition, quality and local diversity of base-
clusterings are two important factors in the selection of base-clusterings. Very few of the studies have considered these two
factors together for selecting the best fuzzy base-clusterings in the ensemble. We propose a novel fuzzy clustering ensemble
framework based on a new fuzzy diversity measure and a fuzzy quality measure to find the base-clusterings with the best
performance. Diversity and quality are defined based on the fuzzy normalized mutual information between fuzzy base-cluster-
ings. In our framework, the final clustering of selected base-clusterings is obtained by two types of consensus functions: (1) a
fuzzy co-association matrix is constructed from the selected base-clusterings and then, a single traditional clustering such as
hierarchical agglomerative clustering is applied as consensus function over the matrix to construct the final clustering. (2) a new
graph based fuzzy consensus function. The time complexity of the proposed consensus function is linear in terms of the number
of data-objects. Experimental results reveal the effectiveness of the proposed approach compared to the state-of-the-art methods
in terms of evaluation criteria on various standard datasets.
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1 Introduction

Clustering has been used for exploration, analysis and pattern
discovery in an unsupervised manner in machine learning,
image segmentation (e.g. dental x-ray image segmentation
[1] and weather nowcasting from satellite image sequences
by hybrid forecast methods based on picture fuzzy clustering
[2]) and data mining.

The objective of clustering is to place similar data-objects
based on a similarity criterion in groups called clusters, which

have the minimum intra-grouping distances and the maximum
inter-grouping distances.

Based on the relationship of each data-object to the clus-
ters, the clustering algorithms can also be categorized into
crisp and fuzzy clustering algorithms. In crisp-clustering, a
data-object definitely belongs to one cluster. But some data
are inherently fuzzy (i.e. the ones that will not be definitively
assigned to a cluster), and are doubtful. For example, in gene-
expression data clustering, genes may belong to different bi-
ological processes and thus they are part of different collec-
tions. In fuzzy clustering, data-objects are assigned to every
cluster with a membership degree. Crisp-clustering is a special
case of fuzzy clustering, in which the membership degree of a
data-object to a cluster is equal to one and zero to other clus-
ters. The basic FCM clustering algorithm proposed by Don
and completed by Bezdek [3] is the foundation of the fuzzy
clustering analysis. In due time, the famous fuzzy clustering
algorithms have been developed based on the FCM in order to
increase its performance and adapt it to different datasets.
Gustafson-Kessel algorithm (GK) [4], Gath-Geva algorithm
(GG), [5], Kernel-based fuzzy clustering (KFCM) [6],
MKFC [7], modified fuzzy ant clustering (MFAC) [8] and
FCM–IDPSO [9] algorithms can be mentioned as some
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examples. It is worth mentioning that some extensions of
FCM such as FC-PFS [10], DPFCM [11], AFC-PFS [12]
and HPC [13] are developed for picture fuzzy clustering to
resolve the limitations of FCM in terms of membership repre-
sentation, the determination of hesitancy and the vagueness of
prototype parameters.

In the clustering context, various clustering algorithms
have emerged, each using a different similarity criterion and
consequently, having different objective functions. By apply-
ing different algorithms or a fixed algorithm with different
parameters, one can obtain a set of varying clustering results.
In specific conditions, some of these algorithms might
outperform others. For example, some algorithms have high
computational complexity, some others have good accuracy
rate, and the others suit the datasets with special characteristics
(e.g. k-means fits the datasets with circular-shape clusters). In
other words, a single clustering algorithm cannot be found to
learn from every dataset [14]. Hence, an alternative solution is
to combine some of these algorithms for managing all the
objectives regarding the clustering, some of which might be
contradictory. This idea is named combining clusterings and is
called cluster ensemble in many scientific contexts [15], and
has recently become popular in the scientific community
[16–23]. Clustering ensembles generally outperform the sin-
gle clustering in several respects, such as robustness, novelty,
quality enhancement, knowledge reusability, multi-view clus-
tering, stability, parallel/distributed data processing [24], and
data privacy protection [25]. In addition, it provides heteroge-
neous data clustering (e.g. clustering popular music [26]).

Cluster ensemble involves following two phases [15]:

1) Base-clustering generation phase: Produce base-
clusterings through single clustering algorithms (in this
study single clustering is used versus ensemble cluster-
ing). Given a dataset, the ensemble of diverse base clus-
terings can be produced via initialization by running a
clustering algorithm with different parameters [27], run-
ning different “clustering” algorithms [23, 28], clustering
via different subsets of the features [19, 29], clustering via
different subsets of data-objects [30, 31], and clustering
via a projection of the data-object subsets [16, 21]. In this
study this phase is not addressed. However, in the exper-
iments section (Section 4.1), we generate base-clusterings
using different algorithms with different cluster-numbers.

2) Base clustering combination phase: Our study focuses on
this phase. In this phase the base-clusterings produced in
phase 1 must be combined in order to generate the final
clustering, which is the objective of this phase. The job is
done through a consensus function. Generally, consensus
ensemble methods can be categorized into: (1) intermedi-
ate space clustering ensemble methods [19, 32], (2) co-
association matrix based clustering ensemble methods
[29, 33, 34], (3) hyper-graph based clustering ensemble

methods [15, 17, 34], (4) expectation maximization clus-
tering ensemblemethods [23], (5) mathematical modeling
clustering ensemble methods (median partition) [35], (6)
voting-based approach [36–38], and (7) quadratic mutual
information approach [30].

Considerable work has been performed in the field of
crisp-cluster ensemble. The researches of Fred and Jain
[33] and also Strehl and Ghosh [15] can be assumed as
the starting points in the cluster ensemble. These re-
searchers proposed a consensus method which does not
require accessing the features and algorithms comprising
the base-clusterings. They formulated the cluster ensemble
problem in the form of a combinatorial optimization prob-
lem based on the mutual information. Here we can con-
sider the studies related to ensemble selection, especially
when the ensemble consists of fuzzy clusterings, among
which the following are briefed:

& Alizadeh et al. transformed the fuzzy ensemble clustering
problem to a 0–1 bit string problem [39]. Their proposed
model consists of a constrained nonlinear objective func-
tion, named fuzzy string data-objective function (FSOF).
FSOF simultaneously maximizes the agreement and min-
imizes the disagreement between the ensemble members.
They solved this nonlinear model using genetic algorithm
by applying two modified crossover operators and one
modified mutation operator. Based on these operators,
two consensus functions named FSCEOGA1 and
FSCEOGA2 were proposed. It is worth noting that in this
method the base-clusters must be crisp.

& Bedalli et al. proposed a heterogeneous cluster ensemble
to increase the stability of fuzzy cluster analysis [40]. First,
they applied single fuzzy clustering algorithms like FCM,
GG, GK and KFCM and then applied the FCM algorithm
to the co-association matrix and in the end, they obtained
the final clustering. In this method, all of the clusterings
participate in forming the co-association matrix in an
equal manner.

& Berikov presented the probabilistic model for the fuzzy
Clustering ensemble based on the weighted co-
association matrix [41]. In this model, each of the base-
clusterings is created by different single clustering algo-
rithms. Each single algorithm performs a certain number
of times on each data set (i.e. r times). The Hellinger dis-
tance [42] between the membership value of every data-
object pair to all clusters in each clustering is calculated r
times and then, the variance of these distances is obtained.
The calculated variance of the distances is considered as
the weight of each base-clustering in the calculation of the
reverse co-association matrix (the matrix is based on the
distance of the data-object pair rather than the similarity of
the data-object pair). In this algorithm, the variance of the
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distance between the data-object pairs is considered as a
consistency criterion. Then, the final clustering is obtained
by applying a hierarchical agglomerative clustering such
as “cl” (complete linkage) on the resulting matrix.

& sCSPA is proposed by Punera and Ghosh [43] which is
similar to CSAPA [15], it creates a graph of all data-
objects where edges are weighted by pair-wise similarities.
It first transforms the data-objects into a label-space. Then
each data-object is visualized as a vector in a c dimensional
space (c: number of all clusters in the ensemble), and then
the Euclidean distance in the label-space is used to calculate
the similarity between each data-object pair. Punera and
Ghosh also developed sMCLA and sHBGF approaches
[43] which are the fuzzy extension versions of MCLA
[15] and HBGF [17], respectively. In these methods, all
base-clusterings participate in generation of the final clus-
tering; there is not a selection process though.

& An Information Theory K-means algorithm named ITK
proposed by Dhiloon for clustering the words of a text is
applied in order to reduce the number of features [44]. In
ITK, for each data-object, the concatenation of its mem-
bership degree to all clusters in each fuzzy base-clustering
is considered as its feature values in a new space (each
base-clustering is a feature). Therefore, the distance be-
tween data-object pairs is obtained using the KL-
divergence [45]. In the end, the final clustering is obtained
by applying an algorithm similar to the K-means algo-
rithm on the distances resulted from the KL-divergence.

& A Particle Swarm optimization based method for fuzzy
clustering ensemble was proposed by Oliveira [46].
Diverse base-clusterings are generated using Particle
SwarmClustering (PSC) algorithm and through parameter
change. Then β′ among β base-clusterings (β′ <β) are
selected through the pruning process: first the fitness of
each base-clustering is measured using one of the internal
cluster validity indices like Ball-Hall [47], Calinski-
Harabasz [48], Dunn index [49], Silhouette index [50] or
Xie-Beni [51], and then the elite clusterings are chosen
using one of the genetic selection mechanisms like tour-
nament or roulette wheel. Lastly, again the PSC algorithm
is applied as a consensus function in order to produce the
final clustering. Unlike some other PSO-based methods
where each clustering is represented as a particle, in this
study, each cluster is represented as a particle.

& Parvin et al. proposed a weighted locally adaptive cluster-
ing algorithm (FWLAC) for handling the imbalanced
clusterings. FWLAC assigns weights to features and clus-
ters during the clustering process. Computing these
weights is dependent on two regularization terms.
Because the performance of FWLAC algorithm is depen-
dent on the tuning of these terms, they propose an elite
clustering ensemble to tune these parameters and obtain an
optimized clustering. Their proposed elitism procedure

first converts fuzzy clusters into crisp-clusters and con-
siders each cluster as a clustering. Finally, the NMI mea-
sure was used to assess each cluster [52].

& Sevillano et al. [37] proposed a method based on voting
mechanism in order to obtain consensus clustering from
fuzzy clustering ensemble. This method includes two pro-
cedures, 1. Disambiguation and 2. Voting. In disambigu-
ation phase of clusters, the re-labeling problem is
performed using the Hungarian algorithm [53] with
O(K3) time complexity,K representing the number of clus-
ters in each clustering (we summarize the notation intro-
duced in this paper in Table 7). The final consensus clus-
tering is obtained through the voting procedure. Two
confidence-based voting methods named Sum Voting
Rule and Product Voting Rule [54] and also two
positional-based voting methods named Borda Voting
Rule [55] and Copeland Voting Rule [56] are presented
and the time complexity of these four algorithms is
O(MKβ), where K represents the number of clusters in
each clustering, M shows the number of data-objects and
β indicates the number of base-clusterings. Based on the
combination of re-labeling and voting being direct or re-
petitive, there exists eight different consensus functions,
named DSC (direct sum consensus), DPC (direct product
consensus), DBC (direct Borda consensus), DCC (direct
Copeland consensus), ISC (iterative sum consensus), IPC
(iterative product consensus), IBC (iterative Borda con-
sensus) and ICC (iterative Copeland consensus).

& Seera et al. combined Fuzzy Min–Max clustering neural
network and ensemble clustering trees to propose a learn-
ing model with the ability of performing online clustering
[57]. This method extended the Fuzzy Min-Max neural
network [58] by adding a centroid hyper-box and a confi-
dence-factor. They computed centroid data of each hyper-
box using one of the four mean measures: harmonic, geo-
metric, arithmetic, and root mean square. This extended
Fuzzy Min-Max neural network recalculates hyper-boxes
confidence-factor after placing each arriving data-object
in one of the hyper-boxes. After all data-objects are
partitioned by this process, these centroids and their
confidence-factors are considered a goodness-of-split
measure for building a tree in the next step. Finally, an
ensemble of multiple trees is built by a bagging method
with random feature selection.

& In [59] Son et al. generate base-clusterings by FCM [3],
KFCM [6] and GK [4] algorithms. Then, they calculate
the weight of each base-clustering in the ensemble
according to Dunn and PC [60] internal clustering valida-
tion measure and after that, they compute the weighted co-
association matrix. Finally, they obtain the final clustering
by the minimization of sum of square error between the
weighted co-association matrix and final clustering
through the gradient descent method.
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It is noteworthy to mention a crisp ensemble clustering
which contains a selection method:

& Alizadeh et al. [61] developed a method for selecting sta-
ble clusters (crisp-cluster) based on stability of clusters. To
compute the stability of each cluster, first they generated
an ensemble of base-clusterings using the resampling
technique, and then they transformed the ensemble into a
cluster representation. After that, the stability value of
each cluster in relation to other clusters was computed.
Finally, they selected the clusters with the most stability
value. It is notable that, a new measure for computing the
NMI of each cluster was introduced. Their proposed se-
lection method operates at crisp- cluster level and ignores
the diversity of the base-clusterings.

It is also worth noting that considerable work has been
performed in the field of multi-view learning and ensem-
ble clustering via co-training. Among them, the following
lists are briefed:

& Kumar and Daume [62] apply the idea of co-training [63]
to the problem of multi-view spectral clustering [64]. The
using of co-training in clustering is that if two points are
assigned to one cluster in one view, they should be
assigned to the same cluster in all views. Spectral cluster-
ing was extended for multi view data clustering in the
following manner. For each two views of the data, K ei-
genvectors (discriminative eigenvectors) of the normal-
ized Laplacian matrix of every similarity matrix of every
view are calculated. Based on the discriminative eigenvec-
tors of each view, the similarity matrix of the other one is
modified. This process is repeated for a certain number of
iterations. Then similar to traditional spectral clustering,
the discriminative eigenvectors are concatenated as a ma-
trix, normalized, and clustered by k-means algorithm, and
finally, the data-objects are assigned to the clusters. The
algorithm does not have any hyper-parameters to set, but
its time complexity is O(M3), where M is the number of
data-objects. This approach is not appropriate for cluster-
ing high-dimensional datasets. Later, Hong et al. [65] ex-
tended this approach via the use of spectral embedded
clustering instead of spectral clustering. Spectral embed-
ded clustering has better performance than spectral clus-
tering on high-dimensional data.

& Appice andMalerba [66] used trace clustering (an ordered
list of activities invoked by a process execution in an event
log) as a pre-processing step for minimizing the spaghetti-
like (complex or hard to understand) problem of process
models discovered by other process mining algorithms.
They proposed a multiple-view method for multiple-
perspective (profile) clustering by applying the co-
training strategy [63]. A general co-training strategy was
formulated for application to any distance-based cluster-
ing algorithm. Also, Silhouette width was used as a mea-
sure for stopping the iterative procedure in multi-view

spectral clustering algorithm. Because the traces being
grouped in a cluster are related, the model discovered by
each cluster is more comprehensive and accurate (com-
pared to a state where no clustering is applied).

In Table 1, only the mentioned researches in the field of
fuzzy clustering ensemble are summarized. The idea of this
summarization is to determine the limitations of related works
that can be dealt with in this paper.

In the clustering ensemble, not all base-clusterings have a
positive influence on the final clustering [15, 19]. Therefore,
selecting appropriate base-clusterings is a critical process.
Some researchers such as Parvin et al. [52], Alizadeh et al.
[61, 67], selected a subset of base-clusters instead of all clus-
ters to construct the final clustering based on cluster stability
criterion. Nadli et al. proposed a method for selecting the
finest base-clusterings according to validity indices [68].
Despite fuzzy clustering being more generalized compared
to crisp-clustering, researches in elite fuzzy clustering ensem-
ble are still in their initial stages and there exist relatively few
approaches for this field. Converting fuzzy clustering into
crisp-clustering and selecting the clusters results in the loss
of some information. In addition to the quality of base-
clustering in the ensemble, the diversity of the base-
clustering highly influences the quality of final clustering
obtained by consensus process in ensemble clustering and
leads to better ensemble quality [16]. The consensus results
may be severely affected by low-quality and even not diverse
base-clusterings. To deal with low-quality base-clusterings,
some researchers investigated the quality-evaluation of the
base-clusterings or base-clusters to improve the quality of
the consensus functions’ results [34, 52, 61, 69–72] . Also,
some researchers investigated the diversity evaluation of the
crisp base-clusterings [73–75]. However, these approaches
and all researches previously mentioned in this paper, do not
consider the diversity and quality evaluation for selecting a
subset of fuzzy base-clusterings in the ensemble simulta-
neously (main limitation).

In order to address the above-mentioned main limitation
and some limitations in Table 1, this study was devoted to-
wards the development of a new elite fuzzy clustering ensem-
ble framework based on diversity-quality of fuzzy base-clus-
tering. Specifically, the main ideas of the new approach are:

& Select a subset of initial fuzzy base-clustering set whereby
the selected fuzzy base-clusterings satisfy diversity and
high-quality simultaneously by a fuzzy clustering
criterion.

& Construct an extended fuzzy co-association matrix from
the selected fuzzy base-clusterings

& Calculate final clustering from the selected base-
clusterings through a new consensus function or single
traditional clustering algorithms.
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Table 1 Summarized fuzzy
clustering ensemble related works Authors/ Method Advantages Limits

Alizadeh et al. [39] - independent of original data
objects (Knowledge reuse)

- high computational costsa

- no selection processb

- the same number of clustersc

- base clustering must be crisp

Bedalli et al. [40] - independent of original data objects - high computational costs

- dependent on generation phased

- no selection process

Berikov [41] - independent of original data objects

- independent of generation phase

- weighting mechanism

- high computational costs

- the same number of clusters

- lack of diversity selectione

sCSPA [43] - independent of original data
(Knowledge reuse)

- independent of generation phase c

- high computational costs

- without selection process

ITK [44] - independent of original data objects

- independent of generation phase

- high computational costs

- without selection process

Oliveira et al. [46] - selection phase based on the
clustering quality

- high computational costs

- dependent on original data objectsf

- Dependent on generation phase

- requires tuning many parameters;
i.e. twice the PSO parameter tuning

- lack of diversity selection

Parvin et al. (FWLAC)
[52]

- selection phase based on the cluster
level quality

- dependent on original data objects

- dependent on generation phase

- lack of diversity selection

Sevillano et al. [37] - independent of original data objects

- independent of generation phase

- the same number of clusters

- re-labelingg

- without selection process

Seera et al. [57] - On-line clustering - high computational costs

- dependent on original data objects

- dependent on generation phase (online)

- needs tuning hyper-parameters

- lack of diversity selection

Son et al. [59] - independent of original data objects

- independent of generation phase

- weighting mechanism (based on
inertia clustering validity)

- lack of diversity selection

- high computational costs

a An algorithm has high computational complexity if its time complexity on the number of data objects is equal to
or greater than O(M2 )
b This method contains neither selection nor weighting process (all clusters participate equally in the final clus-
tering generation)
c The number of clusters in all base-clusterings must be equal
d Consensus function is dependent on a specific type of generation mechanism; if the specific generation is not
performed for a particular problem, the best results will not be obtained
e Lack of diversity selection: this method contains selection (or weighting) method based on cluster (clustering)
quality but does not select based on clustering diversity
f If consensus function needs the original data objects in the combination step, the knowledge reusability, which is
one of the ensemble clustering properties, is ignored
g The base clustering must be aligned based on a reference clustering through a re-labeling algorithm such as
Hungarian method
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The overall process of this framework is illustrated in
Fig. 1. By considering the advantage of the ensemble diversity
and the fuzzy clustering-level quality, a selection scheme is
proposed to select a subset of fuzzy base-clusterings. Briefly,
the diversity among the base-clusterings and the clustering-
level quality are integrated to enhance the quality of the final
clustering result. Here, first, a new fuzzy normalized mutual
information (FNMI) is calculated (step 1), then the diversity of
each fuzzy base-clustering in relation to other fuzzy base-
clusterings is calculated (step 2), next, all base-clusterings
are clustered based on the calculated diversity (step 3); the
output of this step is clusters of base-clusterings that we name
base-clusterings-clusters. Then a subset of fuzzy base-
clusterings (a base-clusterings-cluster) that satisfies the quality
measure is selected in step 4 (addresses main limitation).
Finally, in order to achieve the final clustering:

(1) a new consensus method based on graph portioning al-
gorithm (we named FCBGP method) is applied as con-
sensus algorithm (path 3 in Fig. 1) or

(2) the extended fuzzy co-associationmatrix (EFCo) is formed.
At the end the EFCo is considered as similarity matrix and
one of the single clustering algorithms such as hierarchical
clustering or K-means or FCM is applied on it; we named it
DQEAFCmethod (path 2 in Fig. 1). It is worth mentioning
that the proposed approach is followed in paths 2 and 3;
path 1 is done when the proposed selection strategy is not
used and all base-clusterings directly participate in fuzzy
co-association matrix; we name this matrix FCO and this
algorithm EAFC.

The contributions of this paper are as follows:

& A method is proposed to compute diversity of each fuzzy
clustering in relation to other clusterings.

& A method is proposed to compute the quality of each
fuzzy clustering in terms of fuzzy mutual information.

& Amethod is proposed to select a subset of diverse and high-
quality base-clusterings among all fuzzy base-clusterings.

& A graph based consensus function is proposed whose time
complexity is linear in terms of data-object numbers

& Extensive experiments carried out on a variety of datasets
indicate that this proposed fuzzy clustering ensemble ap-
proach outperforms the state-of-the-art approaches in
terms of clustering quality.

The rest of the paper is organized as follows: The formal
background knowledge about ensemble clustering is intro-
duced in Section (2). The proposed selection fuzzy clustering
ensemble framework is described in Section (3). The experi-
mental results are reported in Section (4) and the conclusion is
presented in Section (5).

2 Preliminary concepts

Before explaining this proposed approach, the general formu-
lation of the data and fuzzy clustering ensemble should be
introduced as follows:

Definition 1.A data-object is a multi-tuple x1d; x
2
d ;…xNd

� �
presented as xd!, where xad is the a-th feature from d-th
data, xa: is the a-th feature from whole data x. N is the

number of features, N ¼ x:1
�� �� andM is the number of the

data-objects‘M ¼ xi:
�� ��.

Definition 2. Fuzzy clustering of data set x is a two di-

mensional matrix withM ∗K size, whereM ¼ x1:
�� �� andK

is the number of clusters, presented as π(x) so that:

∀ j ∈ 1;…;Kf g; i : π xd!
� �i

∈ 0; 1½ � ð1Þ
where

∀d : ∑K
i¼1π x!d

� �i
¼ 1 ð2Þ

Single Clustering Algorithm

Step 1:
Pair-wise FNMI calculation of

Base-Clusterings (1... β )

Outputs (Fuzzy Clustering
Ensemble):
Base-Clustering1
…
…
Base-Clustering β

Step 2:
Pair-wise diversity calculation of
Base-Clusterings (1... β )

Step 3:
Clustering Base-Clusterings (1... β )
Outputs:
Base-Clustering-Cluster 1:
...
…
Base-Clustering-Cluster KBC

Step 4:
Elitism
Outputs (Selected Based-
Clusterings):
Base-Clustering1
…
…
Base-Clustering β’

Step 5:
Fuzzy Co-association matrix
construction

Path 2

Step 6:
Consensuses Functions
Output (Final clusterings)

DQEAFC

EAFC

FCGP

FCo

EFCo

Path 3

Path 1 Path 1

Path 2

Dataset

Phase 1

Phase 2

Selection Process

Fig. 1 The proposed approach framework
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where π x!d
� �i

is the membership degree of d-th data-object
belonging to i-th cluster.

Definition 3. A clustering ensemble which consists of β
base-clusterings is defined as:

Π ¼ π1;…;πβ
� � ð3Þ

where

π j ¼ C j
1;…;C j

n j

� � ð4Þ

where πj is the j-th base-clustering inΠ,C j
i is the i-th cluster in

base-clustering πj, π j xd!
� �i

is the membership degree of d-th
data-object belonging to i-th cluster in base-clustering πj and
nj is the number of clusters in πj.

To sum up, the set of all clusters in the ensemble is
presented as

C ¼ C1
1;…;Cβ

nβ

n o
ð5Þ

where C j
i is the i-th cluster of clustering π

j, thus the number of
all clusters in the clustering ensemble Π is represented as c
and computed as:

c ¼ n1 þ…þ nβ ð6Þ
Example 1. Assume we have a dataset x with 10 data-
objects (M = 10) and assume we have produced an en-
semble with eight base-clusterings on π1 to π8 (β = 8) on
dataset x as shown in Table 2. Each base-clustering con-
tains two clusters except base-clustering π2 and π5 each
of which contains 3 clusters.

3 Proposed approach

In the following sub sections, answers to four major questions
regarding the presented approach are presented:

1. How can the diversity between each pair of fuzzy base-
clusterings be measured?

2. How can the quality of fuzzy base-clusterings be
measured?

3. How can diverse base-clusterings be selected with an ac-
ceptable level of quality (diversity and quality
simultaneously)?

4. How is the final clustering derived from the selected base-
clusterings?

Section 3.2 answers question 1, but it needs pre-calculation
in Section 3.1. Section 3.1 answers question 2. Question 3 is
answered in Sections 3.3 and 3.4. Section 3.5 is the overall
answer to questions 1, 2 and 3. Question 4 is answered by
Sections 3.6 and 3.7.1 or Section 3.7.2.

Here, first the proposed approach is briefly outlined, and
then its steps are described in detail. The main idea of our
proposed elite clustering ensemble framework is utilizing a
subset of the best diverse and high-quality fuzzy base-
clusterings in the ensemble instead of using all base-clusterings.
Only the base-clusterings that satisfy the diversity and quality
measures can participate in the final clustering construction.
The clustering diversity and the clustering quality are defined
according to Fuzzy Normalized Mutual Information (FNMI).
The proposed elite clustering ensemble framework is depicted
in phase 2 of Fig. 1. Generally, Fig. 1 consists of two phases: 1)
base-clustering generation phase: initially base-clusterings were
generated before (usually by single clustering algorithms) and
are feed forwarded as input to the phase 2. 2) combination
phase: combines base-clusterings and derives final clustering
(this phase contains the proposed approach). This research fo-
cuses on phase 2 and decomposes it into 6 steps. The manner of
computing the diversity between two base-clusterings based on
their FNMI is described in the Sections 4.1 and 4.2 in detail
(step 1 and step 2). To select a diverse and high-quality base-
clustering subset of base-clusterings for combination, we clus-
ter all base-clusterings based on diversity measure by a single
traditional clustering algorithm such as FCM, as will be

Table 2 An example of Fuzzy clustering ensemble

π1 π2 π3 π4 π5 π6 π7 π8

x1 0.7 0.3 0.8 0.2 0.0 0.8 0.2 0.6 0.4 0.2 0.2 0.6 1.0 0.0 1.0 0.0 1.0 0.0

x2 0.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0

x3 0.1 0.9 0.4 0.6 0.0 0.4 0.6 0.6 0.4 0.6 0.0 0.4 0.0 1.0 0.0 1.0 0.0 1.0

x4 0.1 0.9 0.2 0.1 0.7 0.2 0.8 0.0 1.0 0.3 0.5 0.2 0.0 1.0 0.0 1.0 0.0 1.0

x5 0.4 0.6 0.1 0.0 0.9 0.1 0.9 1.0 0.0 0.0 0.9 0.1 1.0 0.0 0.0 1.0 0.0 1.0

x6 0.3 0.7 0.2 0.2 0.6 0.2 0.8 0.8 0.2 0.2 0.6 0.2 1.0 0.0 0.0 1.0 0.0 1.0

x7 0.6 0.4 0.6 0.2 0.2 0.6 0.4 0.6 0.4 0.2 0.2 0.6 0.0 1.0 0.0 1.0 0.0 1.0

x8 0.0 1.0 0.9 0.0 0.1 0.9 0.1 0.4 0.6 0 0.1 0.9 0.0 1.0 0.0 1.0 0.0 1.0

x9 0.6 0.4 0.1 0.8 0.1 0.1 0.9 0.1 0.9 0.8 0.1 0.1 1.0 0 1.0 0.0 1.0 0.0

x10 0.8 0.2 0.2 0.7 0.1 0.2 0.8 0.7 0.3 0.4 0.3 0.3 0.0 1.0 0.0 1.0 0.0 1.0
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illustrated in Section 4.3 (step 3). We name the output of FCM
as base-clustering-clusters. Each base-clustering-cluster con-
tains diverse base-clusterings. Then the base-clustering-cluster
with the highest FNMI-average (FNMI mean of base-
clusterings in each base-clustering-cluster) is selected as elite
clustering for participating in forming the final clustering as will
be illustrated in Section 4.4 (step 4). After selection phase, the
selected base-clusterings are used to: (1) construct weighted
graph for the fuzzy clusters, and by partitioning this graph,
the final clustering is obtained (FCGP of step 6). Or (2) con-
struct the extended fuzzy co-association matrix from selected
base-clusterings (step 5). Finally, a hierarchical clustering algo-
rithm, such as Complete-Linkage (‘CL’) is used to extract the
final clustering out of this matrix (DQEAFC of step 6).

In other words, the proposed framework in Fig. 1 tries to
overcome some limitations of the related work in Table 1 as:
before step 1 is started base-clusterings were generated
depending on whether generation phase limitation occurs here
(in spite of [52],). Lack of diversity selection, also quality selec-
tion problems are solved by step 2 through 5 (selection process).
Steps 2 and 3 components (quality and diversity criteria) are
computed based on membership values of each data-object to
clusters and their computations do not require dataset records;
they are not dependent on the original data objects (in spite of
[52, 57]), in addition, these components operate on fuzzy clusters
and do not need to convert fuzzy clusters into crisp (in spite of
[39]). The FCGP consensus function is proposed to solve high
computational cost to obtain final clustering. Looking at the used
equation in the framework steps, it appears that the number of
clusters in base-clusterings can be different and clustering
relabeling is unnecessary (in spite of [37]).

3.1 Fuzzy normalized mutual information (FNMI)
calculation

The first step in Fig. 1 is calculation of fuzzy normalized
mutual information (FNMI). Normalized Mutual
Information (NMI) indicates how much information is shared
between two clusterings, in other words how similar these
clusterings are. We use NMI as a measure to compute the
similarity between two clusterings, because it has some prop-
erties such as (1) it takes into account the number of data-
objects in and not in a clusters. (2) it takes in to account the
entire distribution of each clustering. (3) no bias from small
clusters. (4) symmetric (5) nonlinear relations between clus-
terings detection. The traditional NMI between two crisp-
clusterings πi and πj is calculated using Eq. (7) [15].

NMI πi;π j� � ¼ MI πi;π jð Þ=max H πið Þ;H π jð Þð Þ ð7Þ

where,MI(πi, πj) denotes the mutual information between two
clusterings and is computed by Eq. (8),

MI πi;π j� � ¼ H πi� �þ H π j� �
−JH πi;π j� � ð8Þ

where JH(πi, πj) denotes the join entropy between two clus-
terings πi and πj, which is computed by Eq. (9),

JH πi;π j� � ¼ −∑ni
t¼1∑

n j

l¼1

Mij
tr

M
log

Mij
tl

M
ð9Þ

and H(πi) denotes the entropy of πi which is computed by Eq.
(10).

H πi� � ¼ −∑ni
t¼1

Mi
t

M
log

Mi
t

M
ð10Þ

whereMij
tl is the number of shared data-objects between clusters

ct ∈ πi and cl ∈ πj,Mi
t is the number of data-objects in ct andM

is the number of data-objects.
The traditional NMI is used for crisp-clustering and cannot

be used directly for fuzzy clustering. Hence in this study, we
extended it for computing the amount of shared information
between two fuzzy clusterings as a clustering-pair similarity
measure. We named this extended NMI as fuzzy NMI

(FNMI) measure. In this extension: we define Mij
tl as the simi-

larity between two fuzzy clusters Ci
t and C j

l and denoted it by

sim Ci
t;C

j
l

� �
(computed according to Definition 5). Also, in

fuzzy clustering Mi
t means the sum of similarities between

cluster Ci
t and all clusters in the clustering πj (Ci

t in the view

of clustering πj) and denoted it by Ssim Ci
t π j

� �
(computed

according to Eq. (15)).Mmeans the sum of similarities between
each cluster Ci

t and all clusters in the clustering πj and vice

versa (similarities between each cluster C j
t and all clusters in

the clustering πi). M here is expressed by SSsim(πi,πj) (com-
puted according to Eq. (16)). The termH(πi) of crisp-clustering
in fuzzy clustering is denoted asH πi

π jð Þ andmeans the entropy
of fuzzy clustering πiwith respect to clustering πj (computed
according to Eq. (14)) and the term JH(πi, πj) of crisp-
clustering denotes the join entropy between two fuzzy cluster-
ings πi and πj (computed according to Eq. (13)).

As a summary, the FNMI between two base-clusterings πi,
πj is computed according to Definition 4.

Definition 4. Fuzzy Normalized Mutual Information be-
tween two fuzzy clusterings πi, πj is expressed by FNMI
(πi, πj) and is computed as:

FNMI πi;π j� � ¼ FMI πi;π jð Þ=max H πiπ jð Þ; π j
πið Þð Þ ð11Þ

where FMI(πi, πj) is the fuzzy mutual information between
two clusterings πi and πj, and is computed by Eq. (12),

FMI πi;π j� � ¼ H πi
π j

� �þ H π j
πi

� �
−JH πi;π j� � ð12Þ

where JH(πi, πj) is the joint entropy between two fuzzy clus-
terings πi and πj, and is computed by Eq. (13),
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JH πi;π j� � ¼ −∑ni
t¼1∑

nj
l¼1

sim Ci
t;C

j
l

� �
SSsim πi;π jð Þ log

sim Ci
t;C

j
l

� �
SSsim πi;π jð Þ

 ! !
ð13Þ

and H πi
π jð Þ is the entropy of fuzzy clustering πiwith respect

to clustering πj, that is computed by Eq. (14) and H π j
πið Þ is

the entropy of fuzzy clustering πjwith respect to clustering πi

H πi
π j

� � ¼ −∑ni
t¼1

Ssim Ci
t π j

� �
SSsim πi;π jð Þ log

Ssim Ci
t π j

� �
SSsim πi;π jð Þ ð14Þ

where sim Ci
t;C

j
r

� �
is the similarity between two fuzzy clus-

ters ct ∈ πi, cr ∈ πj and is computed according to Definition
5, Ssim Ci

t π j

� �
is the sum of similarity between the fuzzy

clusters ct ∈ πi and all clusters C j
l∈π

j and is computed
according to Eq. (15) and SSsim(πi, πj) is the sum of similarity
between each cluster of clustering πi in relation to each cluster
of clustering πj and is computed according to Eq. (16).

Ssim Ci
t π j

� � ¼ ∑n j

l¼1sim Ci
t;C

j
l

� � ð15Þ

SSsim πi;π j
� � ¼ ∑ni

t¼1∑
n j

l¼1sim Ci
t;C

j
l

� � ð16Þ

As can be seen, to compute Fuzzy Normalized Mutual
Information (FNMI) we need to compute fuzzy cluster
pairwise similarity:

Definition 5. The similarity of cluster Ci
t (cluster Ct ∈ πi)

from cluster C j
l (cluster Cl ∈ πj), is computed using Eq.

(17):

sim Ci
t;C

j
l

� � ¼ ∑M
d¼1 πi xd!

� �t
*π j xd!
� �l	 


ð17Þ

where πi xd!
� �t

is the membership degree of d-th data-object
belonging to t-th cluster in clustering πi.

In fact, the similarity of Ct ∈ πi indicates how the member-
ship degree of data-objects belonging to cluster Ct in base-
clustering πi is similar to the membership degree of them
belonging to cluster Cl in the base-clustering πj.

Example 2 (Continuation of example 1). The similarity

between fuzzy clusters C1
1 and C2

1 of fuzzy clustering en-
semble in Table 2 based on the Eq. 17 has been computed

as sim C1
1;C

2
1

� � ¼ 0:7*0:8þ 0:0*1:0þ 0.1 ∗ 0.4+ 0.1 ∗
0.2+ 0.4 ∗ 0.1+ 0.3 ∗ 0.2+ 0.6 ∗ 0.6+ 0.0 ∗ 0.9 + 0.6 ∗
0.1+ 0.8 ∗ 0.2 = 1.30. Other values have been calculated
in the same way and matrix sim is shown in Table 3.

Example 3 (Continuation of example 2). The Ssim

C1
1 π2

� �
based on the Eq. (15) has been calculated as Ssim

C1
1 π2

� � ¼ sim C1
1;C

2
1

� � þsim C1
1;C

2
2

� � þsism C1
1;C

2
3

� �

¼ 1.3 + 1.43 + 0.87 = 3.6. Other Ssim values have been

calculated in the same way, e.g. Ssim C1
1 π2

� � ¼ 6:4,

Ssim C2
1 π1

� � ¼ 4:5, Ssim C2
2 π1

� � ¼ 2:8,

Ssim C2
3 π1

� � ¼ 2:7. Considering the Computed Ssim
and based on the Eq. (16) SSsim(π1, π2) has been calcu-

lated as SSsim π1;π2ð Þ ¼ sim C1
1;C

2
1

� � þsim C1
1;C

2
2

� � þ
sism C1

1;C
2
3

� �þ sim C1
2;C

2
1

� � þsim C1
2;C

2
2

� �þ sim
C1

2;C
2
3

� � ¼ 1:3þ 1:47þ 1:08 þ3:20þ 1:37þ 1:83 ¼ 10.
Other SSsim values have been calculated in
the same way. Based on the Eq. (14)

H π1π2ð Þ ¼ − Ssim C1
1π2ð Þ

SSsim π1;π2ð Þ log
Ssim C1

1π2ð Þ
SSsim π1;π2ð Þ þ

Ssim C1
2π2ð Þ

SSsim π1;π2ð Þ log
Ssim C1

2π2ð Þ
SSsim π1;π2ð Þ

	 

¼

− 3:6
10 log

3:6
10 þ 6:4

10 log
6:4
10

� � ¼ 0:6534. Entropy of other
fuzzy clusterings has been calculated in the same way, e.g.
H π2π1ð Þ ¼ 1:0693. Based on the Eq. (13) JH π1; π2ð Þ ¼ −

sim C1
1;C

2
1ð Þ

SSsim π1;π2ð Þ

	
*log sim C1

1;C
2
1ð Þ

SSsim π1;π2ð Þ

	 

þ sim C1

1;C
2
2ð Þ

SSsim π1;π2ð Þ *log
sim C1

1;C
2
2ð Þ

SSsim π1;π2ð Þ

	 

þ

sim C1
1;C

2
3ð Þ

SSsim π1;π2ð Þ *log sim C1
1;C

2
3ð Þ

SSsim π1;π2ð Þ

	 

þ sim C1

2;C
2
1ð Þ

SSsim π1;π2ð Þ *log
sim C1

2;C
2
1ð Þ

SSsim π1;π2ð Þ

	 

þ

sim C1
2;C

2
2ð Þ

SSsim π1;π2ð Þ *log
sim C1

2;C
2
2ð Þ

SSsim π1;π2ð Þ

	 

þ sim C1

2;C
2
3ð Þ

SSsim π1;π2ð Þ *log
sim C1

2;C
2
3ð Þ

SSsim π1;π2ð Þ

	 

Þ ¼

− 1:3
10 log

1:3
10 þ 1:43

10 log 1:43
10 þ 0:87

10 log 0:87
10 þ 3:2

10 log
3:2
10 þ 1:37

10 log 1:37
10 þ 1:83

10 log 1:83
10

� �
¼ 1:7035 . Finally, the FNMI between two fuzzy cluster-
ings π1 and π2 based on the Eq. (11) has been
c a l c u l a t e d a s FNMI π1; π2ð Þ ¼ FMI π1;π2ð Þ=max H π1π2ð Þ; π2π1ð Þð Þ ¼

H π1π2ð ÞþH π2π1ð Þ−JH π1;π2ð Þ
max H π1π2ð Þ;H π2π1ð Þð Þ ¼ 0:6534þ1:0693−1:7035

max 0:6534;1:0693ð Þ ¼ 0:0179 .

The FNMI of other fuzzy clustering pairs has been calcu-
lated in same way and the result is shown in Table 4.

3.2 Computing the clustering diversity

As can be seen in Fig. 1, step 2 is devoted to compute
the diversity of the base-clusterings. A few diversity mea-
sures have been developed for determining the diversity
among base-clusterings [18, 19, 76]. These measures can
be divided in two categories: (1) 1- pass measures: when
ensemble process is forwarded the diversity between each
pair of base-clustering is measured, e.g. [16, 68, 72, 77,
78]. b) 2- pass measures: first, in one pass the consensus
clustering is obtained by consensus function(s) then the
ensemble process is restarted and the diversity of each
base-clustering is computed in relation to the obtained
consensus clustering (obtained in pass one) e.g. [18, 76].

In this study we define diversity as dissimilarity be-
tween two clusterings. Since we define fuzzy normal-
ized mutual information (FNMI) as a measure to com-
pute the similarity between two clusterings, the two
clusterings are diverse if shared information between
them is low.
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Definition 6. The diversity of clustering πi in relation to
clustering πj, πi ≠ πjis computed according to:

FDiv πi;π j� � ¼ 1−FNMI πi;π j� � ð18Þ

where FNMI is computed according to Eq. (11).

Example 3 (Continuation of example 2). The matrix
FDiv of the fuzzy clustering ensemble in Table 2 with
regard to the matrix FNMI in Table 4, which was com-
puted according to Eq. (18) is shown in Table 5.

3.3 Base-clustering clustering

As can be seen in Fig. 1, in the third step the base-clusterings
are clustered by a single traditional clustering algorithm such
as FCM. The objective of this step is to put diverse base-

clusterings in a group based on FDiv criterion. As can be seen
in Fig. 1, at first, the diversity of the base-clusterings is com-
puted and is considered as clustering pairwise similarity (step
2 of Fig. 1), in other words the base-clusterings are mapped in
a new space. In the new space, each base-clustering is consid-
ered as a point and the diversity between them is considered as
their feature values. Then these base-clusterings are clustered
by FCM algorithm (or other single traditional clustering algo-
rithm). Here, output of FCM algorithm is clusters of base-
clustering; We name these base-clustering-clusters. We denote
the number of base-clustering-clusters as kBC,, the base-
clustering-cluster i − th is represented as BCCi (kBC≥i ≥ 1).
Let |BCCi| denote the number of base-clusterings in the BCCi.

3.4 Elitism

The fourth step in Fig. 1 is eliciting a subset of base-
clusterings based on diversity and quality measures. Because

Table 3 Values of sim corresponding to fuzzy clustering ensemble presented in Table 2

C1
1 C1

2 C2
1 C1

2 C2
3 C3

1 C3
2 C4

1 C4
2 C5

1 C5
2 C5

3 C6
1 C6

2 C7
1 C7

2 C8
1 C8

2

C1
1 – – 1.30 1.43 0.87 1.30 2.30 2.10 1.50 1.21 1.15 1.24 2.00 1.60 1.30 2.30 1.30 2.30

C1
2 – – 3.20 1.37 1.83 3.20 3.20 3.70 2.70 1.49 1.75 3.16 3.00 3.40 1.70 4.70 1.70 4.70

C2
1 1.30 3.20 – – – 3.11 1.39 2.85 1.65 0.78 0.75 2.97 2.20 2.30 1.90 2.60 1.90 2.60

C2
2 1.43 1.37 – – – 0.80 2.00 1.33 1.47 1.43 0.54 0.83 1.20 1.60 1.00 1.80 1.00 1.80

C2
3 0.87 1.83 – – – 0.59 2.11 1.62 1.08 0.49 1.61 0.60 1.60 1.10 0.10 2.60 0.10 2.60

C3
1 1.30 3.20 3.11 0.80 0.59 – – 2.85 1.65 0.78 0.75 2.97 2.20 2.30 1.90 2.60 1.90 2.60

C3
2 2.30 3.20 1.39 2.00 2.11 – – 2.95 2.55 1.92 2.15 1.43 2.80 2.70 1.10 4.40 1.10 4.40

C4
1 2.10 3.70 2.85 1.33 1.62 2.85 2.95 – – 1.12 1.88 2.80 3.50 2.30 1.70 4.10 1.70 4.10

C4
2 1.50 2.70 1.65 1.47 1.08 1.65 2.55 – – 1.58 1.02 1.60 1.50 2.70 1.30 2.90 1.30 2.90

C5
1 1.21 1.49 0.78 1.43 0.49 0.78 1.92 1.12 1.58 – – – 1.20 1.50 1.00 1.70 1.00 1.70

C5
2 1.15 1.75 0.75 0.54 1.61 0.75 2.15 1.88 1.02 – – – 1.80 1.10 0.30 2.60 0.30 2.60

C5
3 1.24 3.16 2.97 0.83 0.60 2.97 1.43 2.80 1.60 – – – 2.00 2.40 1.70 2.70 1.70 2.70

C6
1 2.00 3.00 2.20 1.20 1.60 2.20 2.80 3.50 1.50 1.20 1.80 2.00 – – 3.00 2.00 3.00 2.00

C6
2 1.60 3.40 2.30 1.60 1.10 2.30 2.70 2.30 2.70 1.50 1.10 2.40 – – 0.00 5.00 0.00 5.00

C7
1 1.30 1.70 1.90 1.00 0.10 1.90 1.10 1.70 1.30 1.00 0.30 1.70 3.00 0.00 – – 3.00 0.00

C7
2 2.30 4.70 2.60 1.80 2.60 2.60 4.40 4.10 2.90 1.70 2.60 2.70 2.00 5.00 – – 0.00 7.00

C8
1 1.30 1.70 1.90 1.00 0.10 1.90 1.10 1.70 1.30 1.00 0.30 1.70 3.00 0.00 3.00 0.00 – –

C8
2 2.30 4.70 2.60 1.80 2.60 2.60 4.40 4.10 2.90 1.70 2.60 2.70 2.00 5.00 0.00 7.00 – –

Table 4 The values of FNMI corresponding to Table 1

π1 π2 π3 π4 π5 π6 π7 π8

π1 – 0.0179 0.0132 0.0000 0.0105 0.0050 0.0076 0.0076

π2 0.0179 – 0.0941 0.0085 0.1269 0.0071 0.0740 0.0740

π3 0.0132 0.0941 – 0.0070 0.0769 0.0003 0.0424 0.0424

π4 0.0000 0.0085 0.0070 – 0.0192 0.0431 0.0002 0.0002

π5 0.0105 0.1269 0.0769 0.0192 – 0.0112 0.0400 0.0400

π6 0.0050 0.0071 0.0003 0.0431 0.0112 – 0.3958 0.3958

π7 0.0076 0.0740 0.0424 0.0002 0.0400 0.3958 – 1.0000

π8 0.0076 0.0740 0.0424 0.0002 0.0400 0.3958 1.0000 –

Table 5 The values of FDiv corresponding to Table 1

π1 π2 π3 π4 π5 π6 π7 π8

π1 – 0.9821 0.9868 1.0000 0.9895 0.9950 0.9924 0.9924

π2 0.9821 – 0.9059 0.9915 0.8731 0.9929 0.9260 0.9260

π3 0.9868 0.9059 – 0.9930 0.9231 0.9997 0.9576 0.9576

π4 1.0000 0.9915 0.9930 – 0.9808 0.9569 0.9998 0.9998

π5 0.9895 0.8731 0.9231 0.9808 – 0.9888 0.9600 0.9600

π6 0.9950 0.9929 0.9997 0.9569 0.9888 – 0.6042 0.6042

π7 0.9924 0.9260 0.9576 0.9998 0.9600 0.6042 – 0.0000

π8 0.9924 0.9260 0.9576 0.9998 0.9600 0.6042 0.0000 –

Elite fuzzy clustering ensemble based on clustering diversity and quality measures 1733



the elements in a cluster are more similar rather than
the other cluster elements (with regard to the general
definition of clustering), each of the base-clustering-
clusters generated in the previous step, contains diverse
base-clusterings. So far, diversity factor is satisfied by
clustering the base-clusterings, now we must select one
of the base-clustering-clusters based on the quality mea-
sure. The quality measure which is used as selection
criterion is the average FNMI between base-clustering
within each base-clustering-clusters, and is defined as
Defamation 8.

Definition 7. The quality of a base-clustering-cluster
BCCiwhich contains |BCCi| base-clusterings is calculated
as: πj, πi ≠ πjis computed according to:

Q BCCið Þ ¼ ∑ BCCij j−1
i¼1 ∑ BCCij j

j¼iþ1FNMI πi;π j
� �

BCCij j−1 ð19Þ

Example 4 (Continuation of example 3). We use FCM
algorithm as clustering algorithm with kBC = 2 for
partitioning base-clusterings π1, π2, π3, π4, π5, π6,
π7 and π8 (example 1), based on their pair-wise diversity
computed in Table 5, BCC1 = {π1, π2, π3, π4, π5} and
BCC2 = {π6, π7, π8} are obtained. Average FNMI of
base-clustering-cluster BCC2 according to Eq. (19) and
with regard to Table 4 is computed as

Q BCC2ð Þ ¼ FNMI π6;π7ð ÞþFNMI π6;π8ð ÞþFNMI π7;π8ð Þ
BCCij j−1 ¼ 0:3958þ0:3958þ1:0

3−1 ¼ 0:8958,

in the same way Q(BCC1) = 0.2860. As can be seen,
BCC2 has the highest Q values and is selected. Hence,
only base-clusterings π6, π7 and π8 participate in final
clustering construction.

3.5 Selection process

As can be seen in Fig. 1, the selection strategy consists of steps
1 through 4. The goal of this process in the framework is
selecting the elite base-clusterings. If the base-clusterings are
diverse and they also have an acceptable quality, a better final
clustering can be obtained [79]. In this study diverse base-
clusterings with acceptable quality in terms of FNMI are con-
sidered elite clusterings. The overall selection process is
shown in Algorithm 1. As can be seen, at first, the diversity
of the base clustering is computed and is considered as clus-
tering pairwise similarity. Then, these base-clusterings are
clustered by FCM algorithm. Because the elements in a cluster
are more similar rather than the other cluster elements, each of
these base-clustering-clusters contains diverse (similar) base-
clustering. So far, diversity factor is satisfied. Following this
process, the quality factor is satisfied; the average FNMI of the
base-clustering-clusters are measured according to Definition
7 and is considered as the base-clustering-cluster quality (Q).
Finally the base-clustering-cluster with the highestQ (average
FNMI) is selected (we denote it as πsel).

Algorithm 1 Selection process

Inputs: Π, C, , kBC

Output: , ′

// Π is an ensemble of base clusterings 

// C is set of all clusters in Π
// is the number of Base-clusterings (ensemble size)

// kBC is the number of Base-clustering clusters

// is subsets of selected base clusterinsg
//  ′ is the number of selected base-clustering from base clustering ( ′ < )

1: for each two base-cluster pair in C compute the fuzzy cluster pairwise similarity according to Definition 5 // (form cluster similarity matrix 

(sim values))

2: for each two base clusterings in Π Compute the Fuzzy clustering pairwise FNMI according to Definition 4 //Form FNMI matrix according to 

Eq. (11)

3: for each two base-clusterings in Π Compute the according to  Definition 6 // Compute the matrix according to  by Eq. (18)   

4:Consider the matrix as similarity matrix among the base clusterings and partition them by FCM as

base-clustering-clusters=FCM ( , )  //base-clustering-clusters: 1 …

5: Compute the quality (Q) of each base-clustering-cluster according to Definition 7

6: Select the base-clustering-cluster with maximum value of  Q(BCC ) as elite base-clusterings ( si = arg max (BCC )

7: = { | = 1: , ∈ } // is the set of base-clusterings which are elements of selected base-clustering cluster

8: return as selected base clusterings
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3.6 Computing fuzzy co-association matrix

As can be seen in Fig. 1, the fifth step is computing weighted
fuzzy co-association matrix of the selected base-clusterings
πsel. Evidence accumulation clustering (EAC), which was first
proposed by Fred and Jain [33] is the most common method
used to consolidate the base-clusterings. The EAC maps the
clustering ensemble into a pairwise co-association matrix of
data-objects. The EAC which is used for crisp-clustering en-
semble, cannot derive the co-association matrix from fuzzy
clusters efficiently, so the EAC method was developed as:

The accumulation method proposed by Fred and Jain was
formed on this idea: “The results of multiple clusterings are
consolidated in a single clustering supposing that the result of
each clustering is independent of dataset organization”. This
method is proposed for crisp clustering ensemble. In crisp
clustering data member belongs to one of the clusters but does
not belong to other clusters. Then in crisp clustering, the an-
swer to the question “are two data-objects xi and xj Co-clus-
tered?” is certain and the counts of Co-cluster in the ensemble
are considered as their corresponding entry in the co-
association matrix. But in fuzzy clustering the answer is un-
certain, and we must compute the probability of co-clustering
xi and xj by considering their membership-degrees to all clus-
ters. As the sum of the probability that two data-objects are Co
-cluster and are not Co-cluster by considering a base-
clustering is 1 (we present as (Co-cluster(xi!, x j! ) and

Co−clusterð xi!; x jÞ
�!

respectively)

Prob Co−cluster xi!; x j!
� �� �

¼ 1−prob Co−cluster xi!; x j!
� �	 


ð20Þ

then it is easier to first compute prob.(Co−cluster xi!; x j!
� �

.

prob.(Co−cluster xi!; x j!
� �

means that xi and xj are not Co-
clusters in any of the clusters (not occurred in the same

cluster). The probability that xi and xj are not placed in the
same cluster is represented as p ( xi!, x j! ) and computed as.

p ( xi!, x j! ) = 1- p( xi!, x j! ), where ( xi!, x j! ) is the probability
that xi and xj are placed in same cluster. Because in the clus-

tering πk, xi belonging to cluster Ck
t is independent of xj be-

longing to Ck
t then p( xi!, x j! )= πk xi!

� �t*πk x j!
� �t

, so

p xi!; x j!
� �

¼ 1−πk xi!
� �t

*πk x j!
� �t

ð21Þ

and

prob Co−cluster
�
xi!; x j

��! !

¼ ∏nk
t¼1 1−πk xi!

� �t
*πk x j!
� �t	 


ð22Þ

By substituting Eq.(22) in Eq.(20) we obtain the probabil-
ity of co-clustering xi and xj in clustering πk as

Prob Co−cluster xi!; x j!
� �� �

¼ 1−∏nk
t¼1 1−πk xi!

� �t
*πk x j!
� �t	 


ð23Þ

Finally, co-association matrix 1) of all fuzzy base-
clustering of ensemble Π (β base-clusterings) with using Eq.
(23) is constructed as Eq. (24) and 2) of the β′ selected fuzzy
base-clusterings of ensemble Π (not all β base-clusterings),
which is named extended fuzzy co-association matrix (EFCo)
is formed as Eq. (25).

FCoΠ xð Þ
i; j ¼ 1

�
β∑

β
k¼1 1−∏nk

t¼1 1−πk xi!
� �t

*πk x j!
� �t	 
 �

ð24Þ

EFCoπsel xð Þ
i; j ¼ 1

�
β
0∑β

0

k¼1 1−∏nk
t¼1 1−πk xi!

� �t
*πk x j!
� �t	 
 �

ð25Þ
where xi! and x j! are the data-objects.

Example 5 (Continuation of example 4). The EFCo
corresponds to selected base-clustering π6, π7

and π8 from fuzzy clustering ensemble in Table 2
was computed according to Eq. (25) and its value is
shown in Table 6, e.g.

EFCo xi!;x2!
� �

¼1=3* 1− 1−π6 xi!
� �1*π6 x2!

� �1� �
* 1−π6 xi!

� �2�h�
*

π6 x2!
� �2Þ� þ 1− 1−π7 xi!

� �1*π7 x2!
� �1� �

* 1−π7 xi!
� �2*π7

�h
x2!
� �2

Þ� 1− 1−π8 xi!
� �1*π8 x2!

� �1� �
* 1−π8 xi!

� �2*π8 x2!
� �2� �h i

Þ ¼ 1
�
3*

1− 1−1*1ð Þ* 1−0*0ð Þ½ � þ 1− 1−1*1ð Þ* 1−0*0ð Þ½ � 1− 1−1*1ð Þ½ð
* 1−0*0ð Þ�Þ =1.

Table 6 The EFCo matrix corresponds to selected base-clustering π6,
π7 and π8 from fuzzy clustering ensemble in Table 2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x1 – 1.00 0.00 0.00 0.33 0.33 0.00 0.00 1.00 0.00

x2 1.00 – 0.00 0.00 0.33 0.33 0.00 0.00 1.00 0.00

x3 0.00 0.00 – 1.00 0.67 0.67 1.00 1.00 0.00 1.00

x4 0.00 0.00 1.00 – 0.67 0.67 1.00 1.00 0.00 1.00

x5 0.33 0.33 0.67 0.67 – 1.00 0.67 0.67 0.33 0.67

x6 0.33 0.33 0.67 0.67 1.00 – 0.67 0.67 0.33 0.67

x7 0.00 0.00 1.00 1.00 0.67 0.67 – 1.00 0.00 1.00

x8 0.00 0.00 1.00 1.00 0.67 0.67 1.00 – 0.00 1.00

x9 1.00 1.00 0.00 0.00 0.33 0.33 0.00 0.00 – 0.00

x10 0.00 0.00 1.00 1.00 0.67 0.67 1.00 1.00 0.00 –
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3.7 The consensus functions

As can be seen in Fig. 1, in the last step, we must
derive final clustering. To obtain final clustering from
base-clusterings Π according to the diversity-quality se-
lection method in the ensemble, at first selection process
must be executed to select the diverse base-clusterings
with acceptable quality (Q), then two ways are used to
construct final clustering: 1- by EAFC methods
(Section 3.7.1) and 2- by a new consensus function
(graph based partitioning algorithm). We propose it in
Section 3.7.2. All used notations in this paper are
depicted in Table 7.

3.7.1 EAFC methods

First we select diverse and high-quality base-clusterings
based on selection process, secondly the selected base-
clusterings are transformed into an extended fuzzy co-
association matrix. Each entry in the co-association
matrix EFCo corresponds to summarized similarities be-
tween two data-objects in the ensemble. Hence, the co-
association matrix is considered as similarity matrix and
by applying a single traditional clustering algorithm such
as hierarchical clustering it can be clustered. Because in
the experiment section we need to compare the selection
strategy versus consolidating without selection, we divide
EAFC method into some types as follows:

(1) Derive finale clustering based on selection: The ex-
tended fuzzy co-association clustering ensemble
matrix (EFCo) is obtained according Eq. (25).
Then, matrix EFCo is treated as the similarity ma-
trix of data. Finally, one of the single traditional
algorithms such as K-Means, FCM or hierarchical
clustering algorithm is applied as consensus func-
tion over the EFCo matrix to obtain the final clus-
tering. Here, hierarchical clustering CL (Complete

Table 7 Summary of notation

Notation Description

M the number of data-objects

k the number of final clusters

β the number of base clusterings (ensemble size)

β′ the number of selected base clustering by elitism
process

c the number of all clusters in the base clusterings

c′ number of clusters in β′ selected base clustering

C the set of all clusters in the ensemble

N the number of features

X dataset

xi! A data-object

Π Ensemble of all base clusterings

π∗ final clustering

πm the m-th base clustering

nm The number of clusters inside πm

C j
i the i-th cluster of clustering πj

πi xd!
� �t

the membership degree of d-th data-object
belonging to t-th cluster in clustering πi

π* xd!
� �t

the membership degree of d-th data-object
belonging to t-th cluster in clustering π∗

sim(ct, cl) The similarity of cluster Ct in relation to
cluster Cl (the similarity between cluster
Ct and cluster Cl)

Nsim(ci, cj) the normalized similarity between cluster
Ci and cluster Cj

NMI(πi, πj) normalized mutual information between
two clusterings πi and πj

I(πi, πj) the mutual information between two
clusterings πi and πj

AC Clustering accuracy criterion

FNMI(πi, πj) Normalized mutual Information between
two fuzzy base-clusterings πiand πj

FMI (πi, πj) mutual Information between two fuzzy
clusterings πiand πj

FDiv(πi, πj) diversity between fuzzy base-clusterings
πi and πj

BCCi the base-clustering-cluster i-th

kBC the number of base-clustering-clusters

|BCCi| the number of clusters in the
base-clustering-cluster i-th

πsel Selected base-clusterings by selection process

Cπsel the set of all clusters in base clusterings πsel
partq the q-th partition of partitioning πp∗ that

obtained by METIS

|partq| the number of basic-fuzzy-clusters in partition partq
πp∗ a clustering of clusters (modified_METIS output)

H πi
π jð Þ the entropy of fuzzy clustering πiwith respect

to clustering πj

sim Ci
t;C

j
r

� �
the similarity between two fuzzy

clusters ct ∈ πi, cr ∈ πj

Sim Ci
t π j

� �
the sum of similarity between the fuzzy

clusters ct ∈ πi and all clusters C j
l∈π

j

Table 7 (continued)

Notation Description

Ssim(πi, πj) the sum of similarity between each cluster of
clustering πi in relation to each cluster of
clustering πj

FCoΠ xð Þ
: the co-association matrix of all fuzzy

base-clusterings

EFCoπsel xð Þ
: the co-association matrix of selected fuzzy

base-clusterings

Mij
tr the number of shared data-objects between

crisp-clusters ct ∈ πi and cr ∈ πj

Mi
t the number of data-objects in

crisp-cluster ct ∈ πi
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Linkage) is applied as the consensus function for
comparison in experimental process. The flow of
this algorithm is path 2 in Fig. 1. This algorithm
is named DQEAFC (Diversity-Quality based

EAFC) and is presented in Algorithm 2 in detail.
In this algorithm Π is the base-clustering ensemble
and K is the number of clusters in the final
clustering.

(2) Derive finale clustering based on all base-
clustering: This algorithm is similar to DQEAFC
(Algorithm 2), in that the selection process is omitted;
all base-clusterings participate in the fuzzy co-

association matrix construction. Then co-association
matrix is calculated by using Eq. (24). The flow of
this algorithm is path 1 in Fig. 1. This algorithm is
named EAFC and is shown in Algorithm 3.

3.7.2 Fuzzy cluster-based graph partitioning clustering
algorithm

In this section, we propose a consensus function, which
i s named FCBGP ( fuzzy c lus t e r -based graph
partitioning), with the ability of producing fuzzy clus-
ters. After selection of diverse and high-quality base-
clusterings (by selection process), first we construct
weighted graph for the fuzzy clusters of selected base-
clusterings, then this graph is partitioned by a graph
portioning algorithm. We present this graph as
Gclusters(πsel) = (V(πsel), E(πsel)), where πsel is the select-
ed base-clusterings by selection process, all clusters in
πsel are considered as the graph nodes V(πsel) and
E(πsel) is the weight of the edges. For the given two
clusters vt ϵ πi and vlϵ πj, where πiϵπsel and πjϵ πsel,

the weighted edge between vt and vl is E(vt, vl). (E(vt,
vl) is an edge which connects two clusters vt and vl).

E vt; vlð Þ ¼ sim Ci
t;C

j
l

� �
ð26Þ

where sim Ci
t;C

j
l

� �
is the similarity between two fuzzy clus-

ters vt and vl, which is computed according to Eq. (17).
After constructing the weighted graph, it is partitioned by

using graph partitioning techniques like METIS [80] into K par-
titions, where K is the number of clusters in the final clustering
(we denote these partitions as πp∗). πp∗ is a partition that contains
K clusters (we denote the q-th partition of partitioning πp∗ as
partq) . Indeed each partition partq contains |partq| fuzzy-base-
clusters. We consider Cp*

q as a cluster corresponding to partq in

which (Cp*
q ) contains the data-objects belonging to base-fuzzy-

clusters in partq, and represent this cluster as Cp*
q . At the end the
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membership-degree of each data-object to each cluster Cp*
q is

computed based on a min, max or sum belonging to member-

ship-scheme. Algorithm FCGP is detailed in Algorithm 4. The
flow of this algorithm is path 3 in Fig. 1.

Example 6 (Continuation of example 4). With re-
gard to Example 4, the selected base-clusterings are
π6, π7 and π8 (πsel = {π6, π7, π8 }) and all clusters in

πsel are C6
1;C

6
2;C

7
1;C

7
2;C

8
1;C

8
2

� �
. The weighted

graph for these fuzzy clusters (Gclusters(πsel)) was com-
puted according to Eq. (26) and is shown in Fig. 2. The
partitioning obtained by πp∗ =METIS (Gclusters(πsel),
2) (the number of final clusters is 2) is: πp∗ = {part1,
part2} where part1 ¼ C6

2;C
7
2;C

8
2

� �
and part2 ¼ C6

1;C
7
1;C

8
1

� �
and

the final clustering by using FCGP with max member-
ship scheme after normalization is shown in Table 8;

e . g . π* x1!
� �1 ¼ max π6 x5!

� �2
; π7 x5!
� �2

;π8 x5!
� �2� �

Þ ¼ max

0:0; 0:1; 0:0ð Þ ¼ 1:0 a n d π* x5!
� �1 ¼ max

π6 x5!
� �2

;π7 x5!
� �2

;π8 x5!
� �2� �

Þ ¼ max 1:0; 0:0; 0:0ð Þ

¼ 1:0. after normalization: π* x5!
� �1 ¼ 1:0

1:0þ1:0 ¼ 0:50

π* x5!
� �2 ¼ 1:0

1:0þ1:0 ¼ 0:5.

3.7.3 Time complexity analysis

We denoted c is the number of all clusters in the base-clusterings,
K is the number of final clusters, t is the number of K-means
iterations, M is the number of data-objects and the KBC is the
number of base-clustering clusters. We supposed the number of
selected base-clustering by elitism process is (β′ (β′< β ) and the
number of clusters in β′ base-clustering is c′ (c′< c).

According to algorithm 1, the time complexity of selection

process is O selectionð Þ ¼ O Mc2 þ c2
.

4
þ βtKBC þ β

0� �2�
2

þ KBC þ β
0

	 

refers to line 5 (quality (Q) calculation; because the FNMI values
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were computed in line 2, they are not computed in line 5) and
KBC refers to line 6 .

According to algorithm 2, the time complexity of
DQEAFC algorithm is O(selection) + O(c′M2) +O(MKt or
MlogM), the term O(selection) corresponds to line 1(the time
complexity of selection process), O(c′M2) corresponds to line
2 for computing EFCo matrix. Term O(MKt or MlogM cor-
responds to line 3; if K-means is used as consensus function
term O(MKt) is added else the term O(M2 ) is added as hier-
archical clustering algorithm.

According to algorithm 3, the time complexity of FCBGP is
O(selection) +O(c′2 + c′2 +MK|partq| +MK), where the term
O(selection) corresponds to line 1(the time complexity of se-
lection process), term c′2 corresponds to forming graph (line 2);
because the similarity computation between clustering graph is
done in selection process, we ignore it here. The second term c′2

corresponds to METIS algorithm in worst case (line 3),
MK|partq| corresponds to computing data-objects membership
to final clusters (lines 4 and 5) and term MK corresponds to
membership matrix normalization (line 6) where |partq| is the
number of base-clusters in the partition partq.

In reality, since the size of datasets grows rapidly, the ma-
jority term in algorithm 2 is O(c′M2) and in algorithm 3 is
O(Mc2) provided thatM ≫ c andM ≫ k, it can be deduced that
FCBGP is efficient compared to other algorithms and is ap-
propriate for large datasets.

4 Experiments

The fuzzy ensemble clustering approach presented in this
study is written in Matlab. It is evaluated on several datasets.
The goal of the evaluation study is to answer the following
questions: (1) Is final clustering discovered through the select-
ed base-clusterings with the proposed selection strategy better
(in terms of quality criteria such as NMI and RI) if compared
to the final clustering derived through all base-clusterings (no
selection strategy)? Furthermore, (2) Is the proposed approach
competitive to several state-of-art fuzzy ensemble clustering

algorithms (with respect to RI and AC criteria of derived final
clustering)? (3) How does changing the input parameters of
the proposed approach influence the performance of the final
clustering? (sensitivity analysis).

All experiments are run in Matlab R2014a 64-bit environ-
ment on a Windows Server 2008 64-bit, Intel Xeon CPU E5–
2609(2.5 GHz 2.5 GHz) 2 processors and 16 GB of RAM
workstation.

4.1 Base-clusterings

To evaluate the performance of the proposed fuzzy cluster
ensemble approach, 9 data sets are selected from UCI
Machine Learning Data repository [81] and dataset Glass from
KEEL-dataset repository [82]. The description of these
datasets is shown in Table 9.

To evaluate the performance of the proposed approaches
and the compared algorithms on the same base-clusterings of
each dataset, we construct a pool of base-clusterings by using
the FCM and FCM–IDPSO [9] clustering algorithms at first

 

3

3

 

5

8 

5 2

3

2

Fig. 2 Gclusters of selected clusters C6
1;C

6
2;C

7
1;C

7
2;C

8
1;C

8
2

� �

Table 8 Final fuzzy clustering
(π∗) of fuzzy base-clusterings in
Table 2 obtained by FCBGP

data-object Cp*
1 Cp*

2

x1 0.00 1.00

x2 0.00 1.00

x3 1.00 0.00

x4 1.00 0.00

x5 0.50 0.50

x6 0.50 0.50

x7 1.00 0.00

x8 1.00 0.00

x9 0.00 1.00

x10 1.00 0.00

Table 9 Overview of used datasets

Index Dataset # data-objects
(M)

#classes
(K)

#features
(N)

DS1 Breast 683 2 9

DS2 Bupa 323 7 4

DS3 Glass 214 7 10

DS4 Mammographic 961 2 5

DS5 Image
segmentation
(IS)

2310 7 19

DS6 Landsat
Satellite (LS)

6435 6 36

DS7 Pima Indians
Diabetes

768 2 8

DS8 Seeds 210 3 7

DS9 Vehicle 846 4 18

DS10 Wine 178 3 13
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(phase 1 in Fig. 1). In order to construct diverse base-cluster-
ings, the FCM and FCM–IDPSO are run with different num-
bers of cluster. The number of clusters for FCM and FCM–
IDPSO methods are randomly chosen from the interval

2;
ffiffiffiffiffi
M

p� �
, whereM is the number of data-objects in the dataset

under experiment.
The ensemble size for performance evaluation was consid-

ered as β = 200, kBC valued 1 through 10. To rule out the
occasional luck factor and provide a fair comparison, in this
proposed approach, the state-of-the-art fuzzy cluster ensemble
methods were assessed by their performance criteria over nu-
merous runs (50 runs).

4.2 Experimental set-up

Our study aims at evaluating the performance of the proposed
approach when it is applied to derive final clustering of the
base-clusterings on several datasets.

4.2.1 Evaluation metrics

Three evaluation criteria AC, NMI and RI are applied
here to assess the performance of clustering. We mea-
sure the AC, NMI and RI between the final clustering
and the ground truth cluster labels (real data clustering;
column four from Table 9) of each dataset. The accura-
cy (AC) provides a sound indication between final clus-
tering and ground truths (the prior labeling information)
of the examined dataset. The AC of final clustering π∗

compared with ground truths labels π′ is computed as:
Each cluster is relabeled with the most similar cluster
label in π′. Then the AC of the new labels is measured
by counting the number of correctly labeled data-objects
(in comparison to their corresponding labels in the π′),
divided by the total number of data-objects (M) [83]. If
miis the number of intersected data-objects in the cluster
ci ∈ π∗ and the most similar cluster to it in π′, the AC is
calculated as

AC π*;π
0

� �
¼ ∑π*

i¼1mi

M
ð27Þ

AC is in the range [0,1], if the AC value 1 of a
clustering result denotes that all data-objects are clus-
tered correctly. Larger values of AC indicate a better
clustering result.

Other criterion used here is NMI [15], which is computed
according to Eq. (7). For computing NMI(πi, πj) by Eq. (7), πi

is final clustering and πj is ground truth of each dataset.NMI is
in the range [0,1]; a larger value of NMI indicates a better
clustering result.

RI criteria is a validity measure that considers the number
of data-object pairs that are placed in the same and different

clusters [84]. The RI of final clustering π∗ compared with
ground truths labels π′ is computed as:

RI π*;π
0

� �
¼ m11 þ m00

M
2

	 
 ð28Þ

where m11 is the number of data-objects that are in the same
cluster in π∗ and in same cluster in π′. Where m00 is the num-
ber of data-objects that are in different clusters in π∗ and in
different clusters in π′ (ground truth labels). Larger values of
RI indicate a better clustering result.

4.2.2 Compared algorithms

In order to evaluate the influence of selection strategy on the
final clustering performance four algorithm types need to be
compared:

(1) The FCo matrix of all base-clusterings according to Eq.
(24) is constructed and the hierarchical CL (complete
linkage) clustering algorithm is applied as consensus
function (Algorithm 3), we call this algorithm EAFC
(path 1 in Fig. 1).

(2) We apply the selection strategy, then EFCo matrix is
constructed by using Eq. (25), the final clustering is de-
rived by applying the CL algorithm on it as consensus
function. We named this algorithm DQEAFC
(Algorithm 2; path 2 in Fig. 1).

(3) We apply the selection strategy, then the final clustering
is derived by using FCGP method with min, max and
sum membership scheme; we call these algorithms as
FCGP-min, FCGP-max and FCGP-sum (Algorithm 4;
path 3 in Fig. 1).

(4) Other fuzzy clustering ensemble methods, i.e. Berikov
[41], DPC [37], FSCEOGA1 [39], ITK [44], sCSPA
[43], IPC [37], FWLAC [52] and the crisp-clustering
ensemble methods WEAC [69] and GPMGLA [69].

We design two comparison scenarios and a sensitivity analy-
sis scenario in order to evaluate the performance of the final
clustering derived by using the proposed selection strategy: (1)
compare the DQEAFC algorithm (type 2) with EAFC algorithm
(type 1); selection strategy versus no-selection (section 4.3.1). (2)
compare the mentioned algorithms types 2 and 3 with other
algorithms (type 4) (section 4.3.2). In both mentioned scenarios
the algorithms were run 50 times.We calculate the mean ofNMI
and RI of the final clustering obtained by each algorithm, and
consider them as comparison criteria. The number of final clus-
ters in each dataset is the same as the number of pre-defined
classes (ground truth) in each dataset. (3) at the end a scenario
is done in order to evaluate the sensitivity of the proposed ap-
proach along the set-up of the input parameters (section 5.3.3).
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In scenario 1, in order to statistically determinewhether there
is significant difference between the performance (in terms of
NMI and RI) of the EAFC algorithm and DQEAFC algorithm,
theWilcoxon sign rank-test with a significance level of 5%will
be used. But the Friedman test [85] is applied in scenario 2 with
the goal of determining the significant difference among mean
ranks of the proposed algorithms and state-of-the-art algo-
rithms. All tests will be performed with a 5% significance level
and the null hypothesis that the compared algorithms are the
same. The Wilcoxon and Friedman tests are selected due to the
fact that they are non-parametric tests; they do not consider any
assumptions about data distribution.

4.3 Results and discussion

The analysis of the result with regard to the mentioned sce-
narios in section 4.2.2 is illustrated in the following.

4.3.1 Selection strategy analysis

Tables 10 and 11 report the measures of performance for
the final clustering derived by the EAFC and
DQRBEAFC algorithms in terms of NMI and RI respec-
tively (the result of scenario 1 which is explained in
section 4.2.2). The last row shows the average
performance-term for each algorithm over all the datasets.
The resulting P value of running the paired Wilcoxon test
of NMI and RI between the EAFC and DQEAFC algo-
rithms is 0.0020 and 0.0020, respectively; if the P value is
less than 0.5 then there is a significant difference between
the two compared algorithms. The results confirm that the
final clustering derived by algorithms that use the pro-
posed selection mechanism (type 2 algorithms) has better
performance than the algorithm without selection process.
Moreover, it was also better for the NMI and RI in all
datasets.

4.3.2 Comparison with state of the art algorithms

The result of the previous section confirmed that the
selection strategy can achieve good performances. To
confirm the usefulness of the selection strategy, we
compare the NMI and RI of the final clustering derived
by DQEAFC, FCGP-min, FCGP-max and FCGP-sum
algorithms with a number of state-of-the-art ensemble
clustering algorithms (scenario 2).

Tables 12 and 13 report the measures of performance for
the final clustering derived by the DQRBEAFC, FCGP-min,
FCGP-max, FCGP-sum and the type 4 algorithms in terms of
NMI and RI respectively (the result of scenario 1 which was
explained in section 4.2.2). The value in bold in the rows
represents the best performance-term of each dataset yield
by all the examined algorithms. The Friedman test is applied
here to the results of Tables 12 and 13, and the test results in
the Fig. 3 and Fig. 4 respectively.

As can be seen in Fig. 3 and the null hypothesis, the mean
rank of the NMI being equal in all algorithms is rejected, be-
cause p value is 4.00E-9, indicating that there exist significant
differences among them. From Table 12 and Fig. 3, we can see
that the proposed DQEAFC algorithm has the best performance
on 4 datasets DS1, DS3 and DS9 out of a total of 10 datasets,
additionally DQEAFC and FCGP-Max obtain the maximum
value NMI on dataset DS7. This algorithm achieves the second
best results on datasets DS2, DS4, DS5, DS8 and DS10 and on
DS6 obtains the fourth best result. On mean ranks DQEAFC
ranks first with a value of 12.05. For DS4, DS5, DS8 and DS10
the proposed FCGP_sum algorithm achieves the best perfor-
mance. FCGP_sum ranks third with a mean rank value of
10.08. Also, the proposed algorithm FCGP-max outperforms
other algorithms on datasets DS2 and DS6 in addition to DS7,
and ranks second with a value of 10.95. Among the proposed
algorithm FCGP_min ranks fourth. Among the state-of-the-art
clustering ensemble methods FSCEOGA1 has the best mean
rank with the value of 6.70. It is worth noting that neither of
these algorithms can achieve good NMI on Bupa and Pima

Table 11 The RI (%)
result with and without
using selection process

Dataset EAFC DQEAFC

DS1 94.03 94.31

DS2 49.98 50.37

DS3 65.15 69.66

DS4 80.18 84.08

DS5 79.44 85.09

DS6 53.70 56.32

DS7 54.91 55.21

DS8 86.70 88.34

DS9 59.39 67.11

DS10 89.03 95.34

Average 71.25 74.58

Table 10 The NMI (%)
resulted with and without
using selection process

Dataset EAFC DQEAFC

DS1 78.96 79.73

DS2 0.17 0.72

DS3 36.66 38.48

DS4 48.32 54.15

DS5 43.69 53.98

DS6 8.50 9.05

DS7 2.29 3.32

DS8 67.70 72.14

DS9 13.06 19.18

DS10 77.23 85.55

Average 37.66 41.63
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dataset. One reason may lie in the role of single-clustering
algorithm in the underlying structure of the datasets.

Figure 4 shows that the null hypothesis is rejected. In other
words, there is a significant difference among the perfor-
mances of all algorithms in the term RI, because p value is
8.250e-09. Concerning Table 13 the proposed FCGP-sum al-
gorithm achieves the best RI results on DS3, DS4, DS8 and
DS10 datasets. The proposed DQEAFC algorithm has the best
performance on three datasets DS1, DS6 and DS7. Also, the
proposed algorithm FCGP-max outperforms other algorithms
on datasets DS2, DS5 and DS9. It is clear in Fig. 4 that: on
mean rank, the DQEAFC ranks the first with a value of 10.65,
FCGP_MAX ranks the second with a value of 10.50,
FCGP_sum ranks the third with a value of 10.30 and
FWLAC with the value of 9.50 proceeds them, the proposed
algorithm FCGP_min ranks the fifth with 8.50. It is clear that
among state-of-the-art clustering ensemble methods, FWLAC
ranks the first, IPC ranks second with a value of 7.20,
FSCEOGA1 ranks third with 6.60, WEAC ranks fourth,
sCSPA ranks fifth, ITK ranks the sixth, DPC ranks the sev-
enth, DPC ranks the eighth and the Berikov algorithm is
ranked last.

By focusing the analysis on the fuzzy clustering ensemble
algorithms, we can see that final clustering derived by the
proposed algorithms has the desired quality (compared to oth-
er methods). Results on RI and NMI show that the selection
strategy almost improves the quality of the final clustering. In
addition to the selection strategy, consensus function has a
great influence on the final clustering.

4.3.3 Sensitivity analysis

The input parameters of the proposed approach are shown in
Table 14. Due to comparison of the final clustering with
ground truths labels of each dataset we fix the K as the
predefined number of the classes and evaluate the sensitivity
of the proposed algorithms on 4 datasets Wine, Glass, Vehicle
and IS, with consider 2 scenarios as follows:

1) We let ensemble size β = 200 and measure the AC of
the final clustering derived by proposed algorithms by
varying the number of base-clustering-cluster kBc be-
tween 2 and 9 on the 4 datasets and depicted them in
Fig. 5a-d. The horizontal axis represents the kBc, and
the vertical axis is the performance in terms of

Table 13 The RI (%) resulted from different algorithms

Dataset DQEAFC FCGP_min FCGP_max FCGP_sum DPC IPC Berikov sCSPA FSCEOGA1 ITK FWLAC WEAC GPMGLA

DS1 94.31 92.05 89.48 91.32 94.03 70.54 50.53 74.15 90.63 79.97 90.29 94.03 50.90

DS2 50.37 51.13 51.32 51.13 51.13 49.88 50.35 49.98 50.31 50.04 49.90 50.79 49.89

DS3 69.66 71.23 72.39 72.84 53.92 53.78 56.63 70.92 67.71 69.58 64.81 71.96 69.29

DS4 84.08 78.01 85.64 86.72 14.25 65.62 51.77 82.35 72.47 74.96 34.25 74.34 72.81

DS5 85.09 82.05 87.25 86.68 18.95 84.60 67.58 81.75 72.17 75.38 62.00 78.16 18.95

DS6 56.32 55.60 55.96 53.26 50.22 55.60 50.10 49.96 55.60 54.50 49.97 49.95 50.22

DS7 55.21 55.07 55.16 54.66 50.51 50.96 50.63 49.94 55.11 52.81 53.35 54.82 49.98

DS8 88.34 84.91 87.97 89.12 70.98 85.18 53.05 86.44 82.09 70.73 69.93 69.15 82.41

DS9 67.11 49.19 66.45 65.88 24.94 50.89 56.65 65.48 62.15 64.92 60.50 66.41 60.97

DS10 95.34 92.50 93.83 95.40 67.92 93.92 55.04 88.15 89.41 84.80 84.51 77.14 47.81

Table 12 The NMI (%) resulted from different algorithms

Dataset DQEAFC FCGP_min FCGP_max FCGP_sum DPC IPC Berikov sCSPA FSCEOGA1 ITK FWLAC WEAC GPMGLA

DS1 79.73 73.40 67.40 71.50 78.94 39.82 0.60 47.83 69.77 54.06 69.03 78.96 0.13

DS2 0.72 0.05 0.73 0.32 0.00 0.01 0.31 0.18 0.10 0.23 0.50 0.03 0.37

DS3 38.48 35.75 32.56 32.71 18.31 17.73 7.68 30.10 27.97 27.60 25.32 31.78 38.13

DS4 54.15 37.23 50.93 55.90 0.00 22.45 0.95 37.28 0.57 16.65 3.86 34.78 1.06

DS5 53.98 49.75 59.28 59.89 0.00 50.77 0.49 43.80 30.36 34.26 31.11 43.55 0.00

DS6 9.05 9.52 9.53 8.08 0.00 8.67 0.00 0.00 9.41 8.35 0.95 0.00 0.00

DS7 3.32 0.91 3.32 3.18 0.10 0.58 0.04 0.02 2.67 2.50 1.60 1.00 0.16

DS8 72.14 63.16 70.28 74.19 38.51 63.74 0.51 65.36 59.63 43.03 35.83 37.11 63.05

DS9 19.18 8.79 17.02 16.14 0.00 9.63 1.65 10.70 11.59 13.21 13.45 18.64 0.43

DS10 85.55 79.31 84.13 86.28 38.22 83.19 3.99 72.19 74.54 72.53 67.33 59.62 3.94
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Accuracy (AC) values between the final clustering and
the ground truth cluster labels. With regard to these
Figs:

There is gradual change in the performance (AC cri-
terion) of DQEAFC and FCGP_sum on dataset Wine
when kBc varies from 2 to 8, after kBc = 8 their perfor-
mances decrease dramatically. The performance of
FCGP-min and FCGP_max increases rapidly by varying
kBc between 2, 3 and 4, their performance approximately
reaches the performance of DQEAFC and FCGP_sum
when kBc is in the range [5, 6], after kBc = 6 a rapid

decrease in their performances can be seen. On dataset
Glass the variation of performance of FCGP-sum and
FCGP_min is more tangible in contrast to other algo-
rithms and these algorithms have better performance than
others. On dataset Vehicle: performance of DQEAFC
deceases suddenly then increases to achieve a high value
of performance. Although FCGP_sum changes smooth-
ly, DQEAFC has a higher performance than others on
this dataset. There are tangible changes in the perfor-
mance of FCGP-sum and FCGP_max on dataset IS,
the performances of these are greater than other algo-
rithms’ performances. Performance of DQEAFC
changes smoothly when kBc changes, although there is
a jump in the performance of FCGP-min at kBc = 4 and
after that it changes gradually, but it is very low in con-
trast to other algorithms. Overall, DQEAFC achieves
maximum performance when kBc is in the interval [3,
6] and maximum performance of other algorithms is
achieved when kBc is in the interval [4, 6]; the perfor-
mance of DQEAFC changes smoothly, FCGP_max
and FCGP_um change sharply by varying kBc but have
higher performance than others. It is obvious that perfor-
mance of the algorithms changes with kBc variations, in-
deed by tuning the kBc the diversity and quality of select-
ed base-clusterings is adjusted with respect to consensus
function.

2) We compute AC of proposedmethods on the 4 datasets by
varying ensemble size β between 40, 100, 200 and 300,
and report them in Fig. 6a-d. The horizontal axis repre-
sents the ensemble size, and the vertical axis is the AC
values between the final clustering and the ground truth
cluster labels. According to Fig. 6a-d:

Although on Wine dataset DQEAFC and FCGP_sum im-
proved smoothly by increasing ensemble size, they are approx-
imately robust to β variation. A great improvement can be seen
in the performance of FCGP_max and FCGP_MIN then after
this FCGP_max has a steady state but the performance of
FCGP_min decreases; the sensitivity of FCGP_min by varying
β is more than other algorithms. The performance of all algo-
rithms improved by increasing β although the improvement of
FCGP_sum is more significant, and the performance of
DQEAFC increases gradually. All proposed algorithms are ro-
bust to β increasing on dataset Vehicle. On dataset IS: the
performance of FCGP_MIN is less than other algorithms and

Ranks

Mean Rank

DQEAFC

FCGP_min

FCGP_max

FCGP_sum

DPC

IPC

Berikov

sCSPA

FSCEOGA1

ITK

FWLAC

WEAC

GPMGLA

12.05

8.20

10.95

10.80

3.10

6.20

3.00

6.05

6.70

6.60

6.20

6.65

4.50

Test Statisticsa

N

Chi-Square

df

Asymp. Sig.

10

64.168

12

4E-9

Friedman Testa.

Fig. 3 The Friedman test result of Table 12
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Fig. 4 The Friedman test result of Table 13

Table 14 The input parameters of proposed approach

Parameter Description

β Ensemble size

kBc The numbers of base-clustering-cluster

K The numbers of final clusters
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its minimum performance is at β = 200, minimum performance
of other algorithms occurred at β = 100. After β = 100 the per-
formance of all algorithms except FCGP_min is increased, al-
though the performance of FCGP_sum increased slightly.

To sum up, DQEAFC is the most robust to β variation and
the improvements of FCGP_sum are more significant than
other algorithms. The performance variation of all algorithms
except FCGP_min by varying β between 100, 200 and 300 is

little; except the FCGP_min the other algorithms are robust
for variation in ensemble size.

4.4 Real-world application

Process mining application in [66] can be done by our proposed
method, especially for traces with high perspective (profiles). In
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this application each profile can be clustered (by single traditional
clustering algorithms) without considering other views and final-
ly combining this generated clustering will be done by the en-
semble clustering technique. For detecting analysis of gene ex-
pression profiles, where gene-expression data can contain many
thousands of variables (features), the proposed method can be
used. Resampling and subspace methods can be used to generate
multiple sets (views) of gene data then an ensemble of base-
clusterings is generated by single traditional clustering algo-
rithms, and applying the proposed method the final robust clus-
tering will be obtained. Satellite image segmentation can be used
in some domains such as forest monitoring, remote sensing [86],
monitoring marine environment (a pixel corresponds to an area
of the land space, which may not necessarily belong to a single
type of land cover), is another application of the proposed ap-
proach. The captured image is clustered by multiple single tradi-
tional clustering algorithms to form a pool of clustering, finally a
segmentation of image (final clustering) is obtained. For most
engineering design optimization problems (especially mechani-
cal simulation), finding the global optimum due to the
unaffordable computational cost is difficult (or even impossible)
[87]. Then clustering technique can reduce the space of the prob-
lem. But to ensure accuracy of the generated model of reduced
space is improved, an ensemble of reduced space (via clustering)
is formed to obtain meta-model. Distributed clustering where
data sets are stored in different sites is one of the applications
of ensemble clustering [10]. In this case database records (rows)
or database features (columns) can be distributed across multiple
sites (or peers in the peer-to-peer networks). Then the data of
each site can be clustered at each solely; an ensemble of cluster-
ing is formed. Finally, the proposed method will be applied to
generate final clustering. Text detection in video can be consid-
ered one of the applications. Firstly, β (ensemble size) frame of
the video is extracted. Each frame is divided intoM blocks. Then
each frame of blocks is clustered solely (β base-clusterings is
generated). Finally, the proposed methods will be used to obtain
final clustering.

5 Conclusion and future work

In this paper, a novel elite fuzzy clustering ensemble framework
based on new fuzzy diversity measure and a fuzzy-clustering
quality measure has been proposed. Diversity of fuzzy clustering
is computed based on fuzzy NMI criterion (FNMI). The base-
clusterings in the ensemble are clustered based on the diversity
criterion and the quality of each base-clustering-cluster is com-
puted. Then a selective strategy has been taken to choose the
diverse and high-quality fuzzy base-clusterings (based on FDiv
and Q). The final clustering is obtained: 1) by new efficient
consensus function (FCBGP) or 2) after extraction of the extend-
ed co-association matrix from the ensemble, a single clustering
algorithm is applied on the matrix (DQEAFC consensus

function). The experimental results on ten datasets confirm the
quality improvement in comparison to other fuzzy clustering
ensemble methods. Dealing with the influence of reliability on
the fuzzy clustering ensemble can be considered as an issue in
future works. Also, for future works, we can investigate the
effect of different clustering algorithm used for partitioning
base-clusterings on the performance of final clustering.
Examination of different sampling mechanisms on the perfor-
mance of the proposed method could be considered as yet an-
other issue. We shall also investigate the influence of different
fuzzy cluster similarity measures on the proposed framework.
The influence of applying different consensus functions on the
selected base-clustering can be investigated in the future works,
too.
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