

Optimal generation scheduling and dispatch of thermal generating units considering impact of wind penetration using hGWO-RES algorithm

Ashutosh Bhadoria¹ · Vikram Kumar Kamboj²

Published online: 17 November 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

In order to achieve paramount economy, hybrid renewable energy sources are gaining importance, as renewable sources are costless. Over the past few years wind energy incorporation drew more consideration in the electricity market, as wind power took an affirmative role in energy saving as well as sinking emission pollutants. Recently developed Grey wolf optimizer (GWO) algorithm has conspicuous behavior for verdicting global optima, without getting ensnared in premature convergence. In the proposed research the exploitation phase of the grey wolf optimizer has been further improved using random exploratory search algorithm, which uses perturbed solutions vectors along with previously generated solution vectors. The paper presents a hybrid version of Grey Wolf Optimizer algorithm combined with random exploratory search algorithm (hGWO-RES) for the solution of combinatorial scheduling and dispatch problem of electric power systems. To validate the feasibility of the algorithm, the proposed algorithm has been tested on 23 benchmark problems. To verify the feasibility and efficacy of operation of proposed algorithm on generation scheduling and dispatch of electric power systems, small and medium scale power systems consisting of 7-, 10-, 19-, 20- and 40-generating units systems taken into consideration. Commitment and scheduling pattern has been evaluated with and without wind integration and it has been experimentally founded that proposed hybrid algorithm provides superior solution as compared to other recently reported meta-heuristics search algorithms.

Keywords Generation scheduling and dispatch (GSD) · Grey wolf optimizer · Unit commitment problem

1 Introduction

Hybrid renewable energy sources are getting importance, as renewable sources are costless. Over the past few years, wind energy incorporation drew more consideration in electricity generation market, as wind power acting as an affirmative role in energy saving as well as sinking emission pollutants. Also, multidisciplinary design *optimization* and multidisciplinary system *design optimization are emerging area for the solution of design* and optimization problems incorporating a number of disciplines. Scientific revolution has affected every aspect of contemporary life. In recent years, with the advancement in computer technology, new era of problem-solving methods has been emerged making use of computers. These methods are becoming more suitable for solving complex problems. These problem-solving methods with direct human involvement are sluggish. So, computer-aided design are widely adopted emphasizing on use of computer for engineering design problems. The computer-aided design not only emphasis on simulating a system but also helps to find the optimal design with high accuracy, low cost, high speed and reliability. Optimization techniques are considered to be one of the best tools for solving the engineering problems and to find the optimal results for the problem. The optimization process initialize with random set for specified problem and then improving them over predefined steps. The engineering problems to be tackled consist of various difficulties such as unconstrained, constrained, uncertainties, local solution, global solution, multiple objectives, etc. Optimization technique must be able to discourse these issues. In the recent years, various meta-heuristics search algorithms has been implemented such as Biogeography based Optimizer [1], Grey Wolf Optimizer [2], Ant Lion Optimizer [3], Moth Flame Optimizer [4], Multi Verse Optimizer [5], Dragon Fly Algorithm [6], Sine Cosine Algorithm [7], Lightning

Vikram Kumar Kamboj vikram.23687@lpu.co.in

¹ Department of Electrical Engineering, DAV University, Jalandhar, Punjab, India

² School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab, India

Search Algorithm [8], Seeker Optimization Algorithm [9], Virus Colony Search Algorithm [10], Whale Optimization Algorithm [11], Wind Driven Optimization [12], Water Cycle Algorithm [13], Salp Swarm Algorithm [14], Symbiotic Organism Search [15], Search Group Algorithm [16], Stochastic Fractal Search Algorithm [17], The Runner Root Algorithm [18], Ant Colony Optimization [19], Shuffled Frog Leaping Algorithm [20], Flower Pollination Algorithm [21], Optics Inspired Optimization [22], Cultural Evolution Algorithm [23], Grasshopper Optimization Algorithm [24], Interior Search Algorithm [25], Colliding Bodies Optimization [26], Krill Herd Algorithm [27], Competition over Resources [28], Binary Bat Algorithm [29], Mine Blast Algorithm [30], Biogeography Based Optimization [31], Adaptive Cuckoo Search Algorithm [32], Bat Algorithm [33], Animal Migration Optimization [34], Gravitational Search Algorithm [35], Branch and Bound Method [36], Expert System Algorithm [37], Genetic Algorithm [38], Binary Gravitational Search Algorithm [39], Collective Animal Behavior Algorithm [40], Bird Swarm Algorithm [41], Cognitive Behavior Optimization [42], Electromagnetic Field Optimization [43], Firework Algorithm [44], Water Wave Optimization [45], Earthworm Optimization Algorithm [46], Forest Optimization Algorithm [47], Mean Variance Optimization Algorithm [48], League Championship Algorithm [49], Chaotic Krill Herd Algorithm [50], Elephant Herding Optimization [51], Differential Evolution Algorithm [52], Imperialistic competition algorithm [53], Invasive weed optimization [54], Particle swarm optimization algorithm [55], Crow Search Algorithm [56], Self-Adaptive Bat Algorithm [57]. The brief review of these algorithms is depicted in Table 1. A large portion of these calculation depends on straight and nonlinear programming systems that require broad slope data and for the most part attempt to locate an enhanced arrangement in the region of a beginning stage. These numerical improvement calculations give a valuable technique the worldwide ideal in basic and perfect models [3]. However, some certifiable designing and logical improvement issues are exceptionally intricate and hard to settle, utilizing these techniques. On the off chance that there are more than one neighborhood minima in the problem, the outcome may rely upon the choice of an underlying point, and the acquired minima may not really be the global minima. Also, The No-Free-Lunch theorem for optimization allow developers to develop a new algorithm or to improve the existing algorithm because, it logically proves that there is no such optimization algorithm which can solve all the optimization problems with equal efficiency for all. Some algorithms work best for a few problems and worst for the rest of the problems. So, there is always a scope or improvement to develop the algorithm which could work well for most of the problems. In the proposed research, hybrid variant of grey wolf optimizer has been implemented to solve combinatorial optimizations problems of multidisciplinary system design.

1.1 Novely and contribution

The main contributions of the proposed research study are as follows:

- A novel hybrid grey wolf inspired optimizer algorithm has been proposed by improving exploitation phase of existing GWO algorithm using random exploratory search algorithm.
- In the proposed research, two algorithms are combined recursively to improve the local search capability of existing GWO algorithm and proposed algorithm has been tested for 23-benchmark problems including unimodal, multimodal and fixed dimension optimization.
- Performance analysis of the proposed algorithm has been investigated for standard Numerical Optimization Problem.
- For validation, the proposed algorithm has been tested on combinatorial optimization problem (i.e. Unit Commitment and dispatch Problem) of electric power system for small and medium scale power systems consisting of 7-, 10-, 19-, 20- and 40-generating units.
- The performance of the proposed algorithm has been investigated by comparing it with various recently developed meta-heuristics search algorithm.

2 Unit commitment problem formulation

Unit Commitment of power system units is a multidimensional optimization task for preparation and maneuver of participated units. Contemporary power system network has diverse generating resources, which can be broadly grouped together into two categories i.e. conventional and non-conventional generation sources. Unfortunately, load demand is never steady and it has the tendency to change at every instant of time, a great difficulty arises for the generation that tends to cope with this variable load. Thus, it is required to make a judgment on which generating unit to turn on and which unit to turnoff and at what time it is desirable in the power system network. This complex process of obtaining on-off pattern of generating units, which should satisfy the load demand and spinning reserve parameter is known as unit commitment problem [1]. Unit commitment problem is a part of system planning schedule of 8-h to 24 h planning is done before-hand this duration is quite moderate, however it can to lead

Author's name	name Algorithm Year Type of problem solved		Nu. of benchmark functions	Ref.	
Li X.	Animal migration optimization	2013	N/A	23	[34]
Mirjalili S.	Adaptive gbest-guided gravitational search algorithm	2014	Engineering optimization	25	[58]
Mirjalili S.	Ant Lion optimizer	2015	Engineering optimization	19	[3]
Simon D.	Biogeography-based optimization	2008	Real world problem	14	[1]
Rashedi E.	Binary gravitational search algorithm	2009	N/A	23	[39]
Mirjalili S.	Binary PSO-GSA	2014	N/A	22	[59]
Meng Bing Z.	Bird swarm algorithm	2015	N/A	18	[41]
Mirjalili S.	BBO train multilayer perceptron	2014	Bio-medical optimization	6	[60]
Kuo H.C.	Cultural evolution algorithm	2013	Reliability engineering problems	7	[23]
Wang G.	Chaotic Krill Herd algorithm	2014	N/A	14	[50]
Mohseni S.	Competition over resources	2014	N/A	8	[28]
Mudong L.	Cognitive behaviour optimization	2015	Engineering optimization	20	[42]
Mirjalili S.	Dragonfly algorithm	2015	Propeller design	19	[6]
Ghorbani N.	Exchange market algorithm	2014	N/A	12	[61]
Beheshti Z.	Electromagnetic field optimization	2015	N/A	30	[43]
Wang G.	Elephant herding optimization	2015	N/A	15	[51]
Tan Ying	Firework algorithm	2010	N/A	9	[44]
Ghaemi M.	Forest optimization algorithm	2014	Feature weighting	4	[47]
Rashedi E.	Gravitational search algorithm	2009	N/A	23	[35]
Saremi S.	Grasshopper optimization algorithm	2017	Engineering optimization	19	[24]
Mirjalili S.	Grey Wolf optimizer	2014	Engineering optimization	29	[2]
Singh N.	GWO-SCA	2017	Bio-medical optimization	22	[62]
Dai C.	Human group optimizer	2011	N/A	14	[63]
Gandomi A.	Interior search algorithm	2014	Engineering optimization	14	[25]
Gandomi A.	Krill Herd	2012	N/A	20	[27]
Shareef H.	Lightning search algorithm	2015	N/A	24	[8]
Sadollah A.	Mine blast algorithm	2012	Engineering optimization	16	[30]
Mirjalili S.	Moth-flame optimization algorithm	2015	Engineering optimization	29	[4]
Mirjalili S.	Multi-verse optimizer	2015	Engineering optimization	19	[5]
Salimi H.	Stochastic fractal search	2014	Engineering optimization	23	[17]
Cheng M.	Symbiotic organism search	2014	Engineering optimization	26	[15]
Mirjalili S.	Sine cosine algorithm	2016	Aircraft wing design	19	[7]
Mirjalili S.	Salp swarm algorithm	2017	Engineering optimization	19	[14]
Li Dond M.	Virus colony search	2016	Engineering optimization	30	[10]
Eskandar H.	Water cycle algorithm	2012	Engineering optimization	19	[13]
Mirjalili S.	Whale optimization algorithm	2016	Engineering optimization	29	[11]

Table 1 Brief review of various heuristics and meta-heuristics search algorithms

short-term planning (next hour) to very long-term planning (one week to few weeks). Basically, unit commitment problem is a hierarchical problem as it does not end with the achievement of bare on-off patterns of units but economic factors are deeply incorporated with it. Next level of problem is allocation of real power in units that participated in load. So this problem can be subdivided into two sub problem Viz. optimum allocation (commitment) of generators at each stations for various load levels and "allocation of generation" to each station. The first problem in power system dialect is called the unit commitment problem (UCP) and second is called load scheduling or dispatch problem (EDP). Since this problem has both binary (UC) as well as continuous (ED) variable, it is known as the link optimization problem. In recent years, due to tremendous increase in load demand, large interconnections of hybrid electric networks are taken into consideration, which basically

Fig. 1 2-D view of position vectors along with perturbed position vectors $(\vec{X}_i + \Delta_i), (\vec{X}_i - \Delta_i)$ and possible next location w.r.t. Prey

consist of an integration of thermal unit with one renewable energy source as a wind system, acknowledged as hybrid renewable energy system (HRES) [64-66]. The vagueness in Wind Power crafts difficulties for obtaining UC Patterns. Wind integrated thermal power systems are analyzed on the basis of various simulation techniques such as Weibull probability distribution function [67], diverse Probability distribution function [68], adaptable Probability distribution function [69], incomplete Gama function [70], artificial neural networks [71], adaptive neuro-fuzzy approach [71], Gaussian PDF [72], copula theory [73], Levy alpha-stable distribution function [74], P-SCOPF [75], Differential evolution [76], Genetic algorithm [77], hPSO-SQP [78, 79], Upgraded Inertia Wight (PSO-IIW) [80], Fuzzy approach [81], neural network with MIPSO algorithm [82] and Teaching learning based

Fig. 2 3-D view of position vectors along with perturbed position vectors $(\vec{X}_i + \Delta_i), (\vec{X}_i - \Delta_i)$ and possible next location w.r.t. Prey

optimizer [83]. No free lunch theorem has logically demonstrated that there exists no method suitable to all optimization problems [84]. Hence, the hybrid variant of grey wolf optimizer combined with random exploratory search algorithm has been proposed to evaluate the generation scheduling and dispatch of thermal power system combined with renewable energy system. The objective function for thermal power system with consideration of wind power can be mathematically described as per Eq.(1), as wind turbine do not consume fossil fuel and does not include any fuel cost.

$$FC_{T} = \sum_{h=1}^{H} \sum_{n=1}^{NOU} FC_{n} (P_{n}^{h}) U_{n}^{h} + U_{n}^{h} (1 - U_{n}^{h-1}) SUC_{n,h} + U_{n}^{h-1} (1 - U_{n}^{h}) SDC_{n}$$
(1)

where, $FC_n(P_n^h)$ describe the fuel cost of n-th generating units at h-th hours and $SUC_{n,h}$ represents the startup cost of n-th generating units for h-th hours and these costs may be mathematically described as:

$$FC_n(P_n^h) = a_n(P_n^h)^2 + b_n(P_n^h) + c_n$$
⁽²⁾

$$SUC_{n,h} = \begin{cases} HSC_n & \text{if} \quad T_{n,down} \leq T_{n,off}^h \leq T_{n,down} + T_{n,cold} \\ CSC_n & \text{if} \quad T_{n,off}^h \geq T_{n,down} + T_{n,cold} \end{cases}$$
(3)

Where, HSC_n hot start is cost, and CSC_n is cold start cost, $T_{n, down}$ is minimum down time of n-th unit, $T_{n, off}^h$ is consecutive off time of n-th unit and term $T_{n, cold}$ represents the cold start hour of the n-th units.

The aforementioned unit commitment problem is subjected to various equality and non-equality constraints and which are mathematically described below:

a) Power Operational constraints:

$$\sum_{i=1}^{N} P_{i,t} + P_{W,t} - P_{D,t} = 0$$
(4)

b) Spinning Reserve Constraint

$$SR_{j,u}^{h} = \min\left(P_{j,\max} - P_{j,h}, \quad U_{R,h} T_{l}\right)$$
(5)

$$\sum_{n=1}^{NOU} u_{n,h} S R^h_{n,h} \ge R^h_D + W_u P_{w,h}$$

$$\tag{6}$$

Fig. 3 a Updating of position of alpha, beta and delta Grey Wolves in GWO. **b** PSEUDO code for proposed hybrid GWO-RES Algorithm

c) Minimum up and down time constraints

$$\left(P_{n,h-1}^{on} - P_{n,\min}^{on}\right) \left(U_{n,h-1} - U_{n,h}\right) \ge 0 \tag{7}$$

$$\left(T_{j,t-1}^{off} - T_{j,\min}^{off}\right) \left(U_{j,t-1} - U_{i,t}\right) \ge 0$$
(8)

d) Maximum and Minimum Power Limit

$$P_n^{\min} \le P_{n,h} \le P_n^{\max} \tag{9}$$

The probability distribution function for the calculation of wind power can be mathematically represented [25].:

$$pdf(v;k,\lambda) = \frac{k}{\lambda} \left(\frac{v}{\lambda}\right)^{k-1} \exp\left[-\left(\frac{v}{k}\right)^k\right]$$
(10)

Because of intermittent nature of wind power (WP), it is a Random variable. The mathematical function for wind power output and Wind speed can be mathematically described as:

$$P_{W} = \begin{cases} 0 & (v^{h} \leq v_{in} \, or \, v^{h} \geq v_{out}) \\ P_{WR} & (v_{r} \leq v^{h} \leq v_{out}) \\ \frac{(v - vin)P_{WR}}{v_{r} - v_{in}} & (v_{in} \leq v^{h} \leq v_{r}) \end{cases}$$
(11)

For wind speed (v^h) , between 0 and v_{in} or for wind speed greater that v_{out} the WP is zero. When wind speed (v^h) is between v_r and v_{out} Wind power is equal to the rated wind power. So for the first and second eventuality in Eq.(11), the Wind power is a discrete variable. The probability of Wind

Fig. 4 Flow chart for solution of UCP using hGWO-RES

power being 0 or P_{WR} be calculated as per Eqs.(12) and (13) respectively described below:

$$P_r(P_W = 0) = cdf(v_{in}) + [1 - cdf(v_{out})]$$
(12)

For
$$P_W = 0$$
, $P_r = 1 - \exp\left[-\left(\frac{v_{in}}{\lambda}\right)^k\right] + \exp\left[-\left(\frac{v_{out}}{\lambda}\right)^k\right]$
(13)

For
$$P_W = P_{WR}$$
, $P_r = \exp\left[-\left(\frac{v_r}{\lambda}\right)^k\right] - \exp\left[-\left(\frac{v_{out}}{\lambda}\right)^k\right]$ (14)

Between v_{in} and v_r Wind power is continuous variable and its probability density function can be written as

$$pdf(P_W) = \frac{kLv_{in}}{(P_{WR})\lambda} \left[\frac{\left(1 + \binom{LP_W}{P_{WR}}\right)v_{in}}{\lambda} \right] \times \exp\left[-\left(\frac{1 + \binom{LP_W}{P_{WR}}v_{in}}{\lambda}\right)^k \right]$$
(15)

Ever since Correctness of Wind Power prediction is not meticulous and exact so based on above empirical formulas, Maximum generation scheduling can be computed. This maximum wind generation takes up base portion of load curve. In a time when the present position of unit commitment does not meet with the reserve demand a unit may be startup subject to satisfying constraint as described in Eq. (15).

3 Hybrid grey Wolf optimizer

Primarily developed Grey Wolf Optimizer, is a transformative calculation algorithm, based on grey wolves, which recreate the social stratum and chasing component of grey wolves in view of three principle ventures of chasing: scanning for prey, encompassing prey and assaulting prey and its mathematical model was designed in view point of hierarchy levels of different wolves. The fittest solution was designated as alpha (α). Accordingly, the second and third best solutions are named beta (β) and delta (δ) individually. Whatever is left of the hopeful solution are thought to be omega (ω), kappa (κ) and lambda (λ). For the fitness value calculation, the advancement (i.e. chasing) is guided by α , β and δ . The ω , κ and λ wolves trail these three wolves. In GWO, Encircling or Trapping of Prey was achieved by calculating \overrightarrow{D} and $\overrightarrow{X}_{GWolf}$ vectors described by Eqs. (16.1) and (16.2).

Table 2 Unimodal benchmark function

Function	Dim	Range	f_{\min}
$f_1(x) = \sum_{i=1}^{n} x_i^2$	30	[-100, 100]	0
$f_{2}(x) = \sum_{i=1}^{n} x_{i} + \prod_{i=1}^{n} x_{i} $	30	[-10,10]	0
$f_3(x) = \sum_{i=1}^{n} \left(\sum_{j=1}^{i} x_j \right)^2$	30	[-100, 100]	0
$f_4(x) = \max_i\{ x_i , 1 \le i \le n\}$	30	[-100, 100]	0
$f_5(x) = \sum_{i=1}^{n-1} \left[100 \left(x_{i+1} - x_i^2 \right)^2 + \left(x_i - 1 \right)^2 \right]$	30	[-30,30]	0
$f_6(x) = \sum_{i=1}^{n} \left([x_i + 0.5] \right)^2$	30	[-100, 100]	0
$f_7(x) = \sum_{i=1}^{n} ix_i^4 + random[0, 1]$	30	[-1.28, 1.28]	0

Table 3 Multi-modal benchmark functions

Function	Dim	Range	f_{\min}
$F_8(x) = \sum_{i=1}^{n} -x_i \sin\left(\sqrt{ x_i }\right)$	30	[-500,500]	-418.9829 × 5
$F_9(x) = \sum_{i=1}^{n} \left[x_i^2 - 10\cos(2\pi x_i) + 10 \right]$	30	[-5.12,5.12]	0
$F_{10}(x) = -20\exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^{n}\cos(2\pi x_{i}) + 20 + c\right)$	30	[-32,32]	0
$F_{11}(x) = \frac{1}{4000} \sum_{i=1}^{n} x_i^2 - \prod_{i=1}^{n} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$	30	[-600,600]	0
$F_{12}(x) = \frac{\pi}{n} \{ 10\sin(\pi y_1) + \sum_{i=1}^{n-1} (y_i - 1)^2 [1 + 10\sin^2(\pi y_{i+1})] + (y_n - 1)^2 \} + \sum_{i=1}^n u(x_i, 10, 100, 4)y_i = 1 + \frac{x_i + 1}{4}$	30	[-50,50]	0
$u(x_i, a, k, m) = \begin{cases} k(x_i - a)^m & x_i > a \\ 0 & -a < x_i < a \\ k(-x_i - a)^m & x_i < -a \end{cases}$			
$F_{13}(x) = 0.1\left\{\sin^2(3\pi x_1) + \sum_{i=1}^n (x_i - 1)^2 \left[1 + \sin^2(3\pi x_i + 1)\right] + (x_n - 1)^2 \left[1 + \sin^2(2\pi x_n)\right]\right\} + \sum_{i=1}^n u$	30	[-50,50]	0
$(x_i, 5, 100, 4)$	30	[0, π]	-4.687
$F_{14}(x) = \sum_{i=1}^{n} \operatorname{sm}(x_i) \cdot \left(\operatorname{sm}\left(\frac{1}{\pi}\right)\right) , m = 10$	30	[-20 20]	-1
$F_{15}(x) = \left[e^{-\sum_{i=1}^{m} (x_i/\beta)^{2m} - 2e^{-\sum_{i=1}^{m} x_i^2}} \right] - \prod_{i=1}^{m} \cos^2 x_i, m = 5$	50	[20,20]	Ĩ
$F_{16}(\mathbf{x}) = \left\{ \left[\sum_{i=1}^{n} \sin^2(x_i) \right] - \exp\left(-\sum_{i=1}^{n} x_i^2 \right) \right\} . \exp\left[-\sum_{i=1}^{n} \sin^2 \sqrt{ x_i } \right]$	30	[-10,10]	-1

Function	Dim	Range	f_{\min}
$F_{14}(x) = \left(\frac{1}{500} + \sum_{i=1}^{25} \frac{1}{1 + \sum_{i=1}^{2} (x_i - x_i)^6}\right)^{-1}$	2	[-65,65]	1
$V_{j=1} = \int_{i=1}^{j+1} \left[\frac{x_i - a_{ij}}{b_i^2 + b_i x_2 + x_4} \right]^2$ $F_{15}(x) = \sum_{i=1}^{11} \left[a_i - \frac{x_1(b_i^2 + b_i x_2)}{b_i^2 + b_i x_3 + x_4} \right]^2$	4	[-5,5]	0.00030
$F_{16}(x) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$	2	[-5,5]	-1.0316
$F_{17}(x) = \left(x_2 - \frac{5.1}{4\pi^2}x_1^2 + \frac{5}{\pi}x_1 - 6\right)^2 + 10\left(1 - \frac{1}{8\pi}\right)\cos(x_1 + 10)$	2	[-5,5]	0.398
$F_{18}(x) = [1 + (x_1 + x_2 + 1)^2 (19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2)] \times [30 + (2x_1 - 3x_2)^2 \times (18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2)]$	2	[-2,2]	3
$F_{19}(x) = -\sum_{i=1}^{4} c_i \exp\left(-\sum_{j=1}^{3} a_{ij} \left(x_j - p_{ij}\right)^2\right)$	3	[1, 3]	-3.32
$F_{20}(x) = -\sum_{i=1}^{4} c_i \exp\left(-\sum_{j=1}^{6} a_{ij} \left(x_j - p_{ij}\right)^2\right)$	6	[0,1]	-3.32
$F_{21}(x) = -\sum_{i=1}^{5} \left[(x-a_i)(x-a_i)^T + c_i \right]^{-1}$	4	[0,10]	-10.1532
$F_{22}(x) = -\sum_{i=1}^{7} \left[(x-a_i)(x-a_i)^T + c_i \right]^{-1}$	4	[0,10]	-10.4028
$F_{23}(x) = -\sum_{i=1}^{10} \left[(x-a_i)(x-a_i)^T + c_i \right]^{-1}$	4	[0,10]	-10.5363

Table 5 Results of hybrid GWO-RES algorithm for unimodalbenchmark function

Benchmark functions	Parameters							
	Mean value	SD	Worst value	Best value				
F1	1.5066E-37	3.5976E-37	2.3685E-36	1.7935E-41				
F2	1.5904E-22	1.6059E-22	7.6125E-22	7.3967E-24				
F3	2.7467E-09	1.5616E-08	1.0932E-07	1.2011E-15				
F4	5.0234E-11	5.0001E-11	2.0190E-10	3.5869E-13				
F5	27.6775	0.7815	28.8199	26.0570				
F6	2.0191	0.4567	3.2489	1.0135				
F7	6.6614E-04	3.9632E-04	0.0017	8.0435E-05				

$$\overrightarrow{\mathbf{D}} = |\overrightarrow{\mathbf{C}}.\overrightarrow{\mathbf{X}}_{\text{Prey}}(\text{iter}) - \overrightarrow{\mathbf{X}}_{\text{GWolf}}(\text{iter})|$$
(16.1)

$$\overrightarrow{X}_{GWolf}(iter + 1) = \overrightarrow{X}_{Prey}(iter) - \overrightarrow{A}.\overrightarrow{D}$$
(16.2)

Where, *iter* demonstrates the present iteration, \overrightarrow{A} and \overrightarrow{C} are coefficient vectors, $\overrightarrow{X}_{Prey}$ is the position vector of the prey and $\overrightarrow{X}_{GWolf}$ shows the position vector of a grey wolf and the vectors \overrightarrow{A} and \overrightarrow{C} are calculated as follows:

$$\overrightarrow{A} = 2 \overrightarrow{a} . \overrightarrow{\mu}_1 - \overrightarrow{a}$$
(16.3)

$$\vec{C} = 2. \vec{\mu}_2 \tag{16.4}$$

Where, $\overrightarrow{\mu}_1, \overrightarrow{\mu}_2 \in rand(0, 1)$ and \overrightarrow{a} decreases linearly from 2 to 0.

The hunting of prey are achieved by calculating the corresponding fitness score and positions of alpha, beta and delta wolves using Eqs. (17), (18) and (19) respectively and final position for attacking towards the prey was calculated by Eq. (20).

$$\vec{\mathbf{D}}_{Alpha} = abs\left(\vec{\mathbf{C}}_{1}, \vec{\mathbf{X}}_{Alpha} - \vec{\mathbf{X}}\right)$$
(17a)

Table	6 (Comparison	of	unimoda	al	bench	ımark	functions
-------	-----	------------	----	---------	----	-------	-------	-----------

Algorithms	Parameters	Unimodal benchmark functions						
		F1	F2	F3	F4	F5	F6	F7
GWO [71]	Mean	6.59E-28	7.18E-17	3.29E-06	5.61E-07	26.81258	0.816579	0.002213
	SD	6.34E-05	0.029014	79.14958	1.315088	69.90499	0.000126	0.100286
PSO [55]	Mean	0.000136	0.042144	70.12562	1.086481	96.71832	0.000102	0.122854
	SD	0.000202	0.045421	22.11924	0.317039	60.11559	8.28E-05	0.044957
BA [33]	Mean	0.773622	0.334583	0.115303	0.192185	0.334077	0.778849	0.137483
	SD	0.528134	3.816022	0.766036	0.890266	0.300037	0.67392	0.112671
FPA [21]	Mean	1.06E-07	0.000624	5.67E-08	0.0038379	0.7812	1.08E-07	0.00310527
	SD	1.27E-07	0.000176	3.90E-08	0.002186	0.366891	1.25E-07	0.001367
GA	Mean	0.118842	0.145224	0.13902	0.157951	0.714157	0.167918	0.010073
	SD	0.125606	0.053227	0.121161	0.862029	0.972711	0.868638	0.003263
DA [6]	Mean	2.85E-18	1.49E-05	1.29E-06	0.000988	7.6	4.17E-16	0.0103
	SD	7.16E-18	3.76E-05	2.10E-06	0.00278	6.79	1.32E-15	0.00469
BDA [6]	Mean	0.282	0.0589	14.2	0.248	23.6	0.0953	0.0122
	SD	0.418	0.0693	22.7	0.331	34.7	0.13	0.0146
BPSO	Mean	5.59	0.196	15.5	1.9	86.4	6.98	0.0117
	SD	1.98	0.0528	13.7	0.484	65.8	3.85	0.00693
BGSA [39]	Mean	83	1.19	456	7.37	3100	107	0.0355
	SD	49.8	0.228	272	2.21	2930	77.5	0.0565
hGWO-RES	Mean	1.51E-37	1.59E-22	2.75E-09	5.02E-11	27.6775	2.0191	0.00066614
	SD	3.60E-37	1.61E-22	1.56E-08	5.00E-11	0.7815	0.4567	0.00039632

Fig. 5 Convergence curve of hGWO-RES for unimodal benchmark functions

$$\vec{X}_{1} = \vec{X}_{Alpha} - \vec{A}_{1} \cdot \vec{D}_{Alpha}$$
(17b)

$$\overrightarrow{D}_{Beta} = abs\left(\overrightarrow{C}_2, \overrightarrow{X}_{Beta} - \overrightarrow{X}\right)$$
(18a)

$$\overrightarrow{X}_{2} = \overrightarrow{X}_{Beta} - \overrightarrow{A}_{2} \cdot \overrightarrow{D}_{Beta}$$
(18b)

$$\overrightarrow{\mathbf{D}}_{\text{Delta}} = \text{abs}\left(\overrightarrow{\mathbf{C}}_{3}, \overrightarrow{\mathbf{X}}_{\text{Delta}} - \overrightarrow{\mathbf{X}}\right)$$
(19a)

$$\overrightarrow{\mathbf{X}}_{3} = \overrightarrow{\mathbf{X}}_{\text{Delta}} - \overrightarrow{\mathbf{A}}_{3} \cdot \overrightarrow{\mathbf{D}}_{\text{Delta}}$$
(19b)

$$\vec{X}(\text{iter}+1) = \frac{(X_1 + X_2 + X_3)}{3}$$
 (20)

In the proposed hybrid Grey-Wolf Optimizer-Random Exploratory search (hGWO-RES) algorithm, the position vector \overrightarrow{X}_i is perturbed by Δ_i and new position vectors $\left(\overrightarrow{X}_i + \Delta_i\right)$ and $\left(\overrightarrow{X}_i - \Delta_i\right)$ has been obtained. The variation

D Springer

Fig. 6 Trial solutions for unimodal benchmark functions

of parameter Δ_i has been taken randomly within local search space to exploit the search space in a better way. The new fitness solutions $f^+ \leftarrow f(X + \Delta)$ and $f^- \leftarrow f(X - \Delta)$ has been obtained along with previous fitness solution $f \leftarrow f(X)$ and final fitness has been evaluated taking minimum values out of these newly obtained solutions using Eq. (21).

$$f_{final} \leftarrow \min(f^+, f^-, f) \tag{21}$$

The impact of newly obtained positions vectors as 2-Dimentional position vectors and conceivable neighbors are outlined in Fig. 1. As per Fig. 1, a grey wolf poser of (X, Y)can update its position w.r.t. newly obtained position vectors $((X + \Delta), (Y + \Delta))$ and $((X - \Delta), (Y - \Delta))$ indicated by the position of the prey (X^*, Y^*) and exploit the search space in better way. Better places around as well as can be expected regarding the present position by altering the estimation of \overrightarrow{A} and \overrightarrow{C} vectors. Figure 1 shows the 2-D view of Position Vectors along with perturbed position vectors $(\overrightarrow{X}_i + \Delta_i), (\overrightarrow{X}_i - \Delta_i)$ and possible next Location w.r.t. Prey. The 3-D view of position vectors along with perturbed position vectors $(\vec{X}_i + \Delta_i)$, $(\vec{X}_i - \Delta_i)$ and possible next location w.r.t. prey has been shown in Fig. 2.

The random positions vectors, which allow grey wolves to reach any position between the points including perturbed position vectors $(\vec{X}_i + \Delta_i)$ and $(\vec{X}_i - \Delta_i)$ are shown in Fig. 3a. The exploration phase in hGWO-RES is similar to GWO., In order to explore the search space globally, vector \vec{A} and \vec{C} are used, which mathematically model divergence. The PSEUDO code for the proposed hybrid GWO-RES algorithm is shown in Fig. 3b.

4 Solution strategy for unit commitment problem

In grey wolf optimizer, the search agent explore and exploit their updated position to a suitable real value in given search space considering various constraints impose upon them.

Benchmark functions	Parameters						
	Mean value	SD	Worst value	Best value			
F8	-5.007E+03	990.1043	-2.8135E + 03	-6.7082E + 03			
F9	0	0	0	0			
F10	2.1352E-14	4.0956E-15	3.2863E-14	1.5099E-14			
F11	3.5591E-04	0.0025	0.0178	0			
F12	0.1559	0.0977	0.6548	0.0319			
F13	1.4189	0.2363	2.0189	0.9452			

Table 7Results of hybrid GWO-RES algorithm for multi modalbenchmark function

Algorithms	Parameters	Multi modal benchmark functions					
		F8	F9	F10	F11	F12	F13
GWO [2]	Mean	-6.12E + 03	3.11E-01	1.06E-13	4.49E-03	5.34E-02	6.54E-01
	SD	-4.09E + 03	4.74E + 01	7.78E-02	6.66E-03	2.07E-02	4.47E-03
PSO [55]	Mean	-4.84E + 03	4.67E + 01	2.76E-01	9.22E-03	6.92E-03	6.68E-03
	SD	1.15E + 03	1.16E + 01	5.09E-01	7.72E-03	2.63E-02	8.91E-03
BA [33]	Mean	-1.07E + 03	1.23E + 00	1.29E-01	1.45E + 00	3.96E-01	3.87E-01
	SD	8.58E + 02	6.86E-01	4.33E-02	5.70E-01	9.93E-01	1.22E-01
FPA [21]	Mean	-1.84E + 03	2.73E-01	7.40E-03	8.50E-02	2.66E-04	3.67E-06
	SD	5.04E + 01	6.86E-02	7.10E-03	4.00E-02	5.53E-04	3.51E-06
GA [85]	Mean	-2.09E + 03	6.59E-01	9.56E-01	4.88E-01	1.11E-01	1.29E-01
	SD	2.47E + 00	8.16E-01	8.08E-01	2.18E-01	2.15E-03	6.89E-02
DA [6]	Mean	-2.86E + 03	1.60E + 01	2.31E-01	1.93E-01	3.11E-02	2.20E-03
	SD	3.84E + 02	9.48E + 00	4.87E-01	7.35E-02	9.83E-02	4.63E-03
BDA [6]	Mean	-9.24E + 02	1.81E + 00	3.88E-01	1.93E-01	1.49E-01	3.52E-02
	SD	6.57E+01	1.05E + 00	5.71E-01	1.14E-01	4.52E-01	5.65E-02
BPSO [86]	Mean	-9.89E + 02	4.83E + 00	2.15E + 00	4.77E-01	4.07E-01	3.07E-01
	SD	1.67E + 01	1.55E + 00	5.41E-01	1.29E-01	2.31E-01	2.42E-01
BGSA [39]	Mean	-8.61E + 02	1.03E + 01	2.79E + 00	7.89E-01	9.53E + 00	2.22E + 03
	SD	8.06E + 01	3.73E + 00	1.19E + 00	2.51E-01	6.51E + 00	5.66E+03
hGWO-RES	Mean	-5.01E + 03	0.00E + 00	2.14E-14	3.56E-04	1.56E-01	1.42E + 00
	SD	9.90E + 02	0.00E + 00	4.10E-15	2.50E-03	9.77E-02	2.36E-01

 Table 8
 Comparison of multi modal benchmark functions

Fig. 7 Convergence curve of hGWO-RES for multi-modal benchmark functions

Fig. 8 Trial solutions of hGWO-RES for multi-modal benchmark functions

Since unit commitment problem is highly constrained in nature, they have both binary and discrete values. Thus mapping of continuous value of search agent updated to binary value is mandatory. Before solving unit commitment problem by using hGWO-RES algorithm we represent agent as a binary string .each unit "on state" as 1 and "off state" as a 0. So, unit state U is basically matrix of {N*T} following steps clarify modus operandi of unit commitment problem.

Step-1: To solve single area unit commitment problem,

every individual is defined as units ON/OFF

status showed as 1/0 correspondingly. An individual would display the unit commitment schedule over the time horizon H. The on/off schedule of the units is stored as an integermatrix U, which is mathematically defined as:

$$U_{NP} = egin{bmatrix} u_1^1 & u_1^2 & \cdots & u_1^H \ u_2^1 & u_2^2 & \cdots & u_2^H \ dots & dots & dots & dots & dots \ dots & dots & dots \ dots & dots & dots \ dots & dots \ dots & dots \ dots & dots \ dot$$

9 Results of hybrid GWO- algorithm for fixed dimen- benchmark function	Benchmark functions	Parameters	Parameters		
		Mean value	SD		
	F14	5.9633	4 6787		

	Mean value	SD	Worst value	Best value			
F14	5.9633	4.6787	12.6705	0.9980			
F15	0.0044	0.0081	0.0209	3.0750E-04			
F16	-1.0316	2.4868E-08	-1.0316	-1.0316			
F17	0.3979	8.4205E-05	0.3985	0.3979			
F18	3.0000	4.3667E-05	3.0002	3.0000			
F19	-3.8605	0.0030	-3.8549	-3.8628			
F20	-3.2335	0.0822	-3.0850	-3.3220			
F21	-8.6292	2.5069	-2.5843	-10.1531			
F22	-10.1886	1.0518	-5.0876	-10.4028			
F23	-10.2111	1.2932	-5.1284	-10.5360			

Table RES sion b

Table 10	Comparison	of fixed	dimension	benchmark	functions
----------	------------	----------	-----------	-----------	-----------

Algorithms	Parameters	Composite ben	chmark functions				
		F14	F15	F16	F17	F18	F19
GWO [2]	Mean	4.04E + 00	3.37E-04	-1.03E + 00	3.98E-01	3.000028	-3.86263
	SD	4.25E + 00	0.000625	-1.03163	0.397887	3	-3.86278
PSO [55]	Mean	3.627168	0.000577	-1.03163	0.397887	3	-3.86278
	SD	2.560828	0.000222	6.25E-16	0	1.33E-15	2.58E-15
BA [33]	Mean	182.476	487.2021	588.1938	756.9757	542.2006	818.5043
	SD	117.0248	161.4107	137.7861	160.097	220.2014	152.501
FPA [21]	Mean	3.37E-01	18.23309	2.24E + 02	362.0262	10.1592	5.04E + 02
	SD	2.36E-01	3.074685	5.03E + 01	54.01816	1.393908	1.16E+00
GA [85]	Mean	114.6139	95.46331	325.4427	466.3074	90.36913	521.1935
	SD	26.96248	7.163383	51.66827	29.56841	13.72977	27.98507
DA [6]	Mean	1.04E + 02	1.93E+02	4.58E + 02	596.6629	229.9515	6.80E + 02
	SD	9.12E + 01	8.06E + 01	1.65E + 02	171.0631	184.6095	1.99E + 02
hGWO-RES	Mean	5.9633	0.0044	-1.0316	0.3979	3	-3.8605
	SD	4.6787	0.0081	2.49E-08	8.42E-05	4.37E-05	0.003

Where, u_n^h is unit on/off status of n^{th} unit at h^{th} hour (i.e. $u_n^h = 1/0$ for ON/OFF).

- Step-2: Generating units are prioritized according to their Average Full Load generation Capacity in descending order.
- Step-3: Status of individual units is modified in the population to satisfy the spinning reserve constraints
- Step-4: Individual units in the population are repaired for minimum up/down time violations

 Table 11
 Comparison of results for fixed dimension benchmark functions

Algorithms	Parameters	Benchmar	k functions		
		F20	F21	F22	F23
GWO [2]	Mean	-3.28654	-10.1514	-10.4015	-10.5343
	SD	-3.25056	-9.14015	-8.58441	-8.55899
PSO [55]	Mean	-3.26634	-6.8651	-8.45653	-9.95291
	SD	0.060516	3.019644	3.087094	1.782786
GSA [35]	Mean	-3.31778	-5.95512	-9.68447	-10.5364
	SD	0.023081	3.737079	2.014088	2.60E-15
DE [52]	Mean	NA	-10.1532	-10.4029	-10.5364
	SD	NA	2.50E-06	3.90E-07	1.90E-07
FEP [87]	Mean	-3.27	-5.52	-5.53	-6.57
	SD	0.059	1.59	2.12	3.14
hGWO-RES	Mean	-3.2335	-8.6292	-10.1886	-10.2111
	SD	0.0822	2.5069	1.0518	1.2932

- Step-5: Units of some search agents are de-committed in the population to reduce excessive spinning reserve due to minimum up/down time repairing
- Step-6: Economic Load Dispatch Problem is then solved using MIQP and Fuel Cost is calculated for each Hour.
- Step-7: Calculate Start-up cost for each hour using Eq. (3).
- Step-8: Overall generation cost for 1st position is evaluated and it is assumed as global fitness and its position as global position.
- Step-9: Overall generation costs for all positions are then evaluated in the population and then local generation cost and local commitment schedule for whole population is determined.
- Step-10: Overall global generation cost is compared with Local generation cost in whole population. If global generation cost is greater than local generation cost, replace global generation cost with local generation cost and take local commitment schedule as global commitment.
- Step-11: Modify the individual position using hGWO-RES algorithm and determine overall best generation cost and commitment schedule.
- Step-12: If the maximum iteration number is reached, then go to next step (Step 14.)
- Step-13: Otherwise, increase iteration number and go back to step 3.
- Step-14: Stop and obtain the optimal solution of single area unit commitment problem from the individual position in the population that generated the least total generation cost (Fig. 4).

Fig. 9 Convergence curve of hGWO-RES for fixed dimension benchmark functions

Fig. 10 Trial solutions of hGWO-RES for fixed dimension benchmark functions

5 Constraints handling strategy/ repair mechanism of constraints

The achieved major unit scheduling by hGWO-RES may not fulfill the certain crucial constraints such as MDT, MUT, Spinning reserve etc. So, the constraints defilements are to be repaired. In this paper a heuristic search strategy is adopted to tackle such problem.

5.1 Minimum up and minimum down time handling strategy

Minimum up and down time of specific unit is defined as connective hours that unit is 'on' or 'off' 'when it 'on' or 'off'. Any unit that is 'on' should not be turned 'off' immediately without reaching to 'MUT' and similarly any unit which is once "off" should not be turned "on" immediately without reaching to MDT. These constraints are calculated beforehand by using following recursive relation

$$T_{n.on}^{h} = \begin{cases} T_{n,on}^{h-1} + 1 & \text{if } u_{n}^{h} = 1\\ 0 & \text{if } u_{n}^{h} = 0 \end{cases}$$
(26)

$$T^{h}_{n,off} = \begin{cases} T^{h-1}_{n,off} + 1 & \text{if } u^{h}_{n} = 0\\ 0 & \text{if } u^{h}_{n} = 1 \end{cases}$$
(27)

Where $T_{n,on}^h$ and $T_{n,off}^h$ are number of continuous time when unit is on and off.

When crowning load duration appreciably inferior to the minimum down time of a particular unit. Minimum up time is violated. And constraint associated with minimum down time is violated at low load level where low load duration is considerably shorter than minimum up time. Since repapering of MDT, MUT, can lead to excessive spinning reserve, which results into high operating cost, thus if this remains it would defeat the whole purpose of optimizing cost. Hence we again us heuristic technique to de-commit excess of reserve.

The methodology to adjust/repair defilement of constraints associated with MDT, MUT are done as given below.

Hour	Status	s of com	mitted un	iits				Scheduling	of comm	itted unit	s			
	P1	P2	Р3	P4	Р5	P6	P7	P1	P2	P3	P4	Р5	P6	P7
1	1	0	0	0	1	0	0	287.7251	0	0	0	252.2749	0	0
2	1	0	0	0	1	0	0	328.648	0	0	0	291.352	0	0
3	1	0	0	0	1	0	0	499.5011	0	0	0	454.4989	0	0
4	1	0	0	0	1	0	1	447.1869	0	0	0	404.5443	0	174.2688
5	1	0	0	0	1	0	1	438.1869	0	0	0	395.9502	0	167.8629
6	1	0	0	0	1	0	0	518.9395	0	0	0	473.0605	0	0
7	1	0	0	0	1	0	0	511.778	0	0	0	466.222	0	0
8	1	0	0	0	1	0	0	500.5242	0	0	0	455.4758	0	0
9	1	0	0	0	1	0	0	493.3627	0	0	0	448.6373	0	0
10	1	0	0	0	1	0	0	483.132	0	0	0	438.868	0	0
11	1	0	0	0	1	0	0	472.9012	0	0	0	429.0988	0	0
12	1	0	0	0	1	0	0	395.6593	0	0	0	355.3407	0	0
13	1	0	0	0	1	0	0	344.5056	0	0	0	306.4944	0	0
14	1	0	0	0	1	0	0	312.2788	0	0	0	275.7212	0	0
15	1	0	0	0	1	0	0	319.4403	0	0	0	282.5597	0	0
16	1	0	0	0	1	0	0	404.3554	0	0	0	363.6446	0	0
17	1	0	0	0	1	0	0	459.6013	0	0	0	416.3987	0	0
18	1	0	0	0	1	0	0	452.9513	0	0	0	410.0487	0	0
19	1	0	0	0	1	0	0	442.7206	0	0	0	400.2794	0	0
20	1	0	0	0	1	0	0	421.7476	0	0	0	380.2524	0	0
21	1	0	0	0	0	0	1	542.144	0	0	0	0	0	241.856
22	1	0	0	0	1	0	1	325.6868	0	0	0	288.5243	0	87.78893
23	1	0	0	0	1	0	0	365.4786	0	0	0	326.5214	0	0
24	1	0	0	0	1	0	0	341.4364	0	0	0	303.5636	0	0
												Overall Gener	ration Co	st = 49,184 \$

 Table 12
 Results for 56-bus system using hGWO-RES (considering thermal units)

 Table 13
 Results for 56-bus system using hGWO-RES (considering wind-thermal units)

Hour	Status	s of comn	nitted unit	ts				Scheduling	of commi	tted units				
	P1	P2	Р3	P4	Р5	P6	P7	P1	P2	Р3	P4	Р5	P6	P7
1	1	0	0	0	0	0	0	458	0	0	0	0	0	0
2	1	0	0	0	0	0	0	510	0	0	0	0	0	0
3	1	0	0	0	1	0	0	457.8621	0	0	0	414.7379	0	0
4	1	0	0	0	1	0	0	480.6766	0	0	0	436.5234	0	0
5	1	0	0	0	1	0	0	453.4117	0	0	0	410.4883	0	0
6	1	0	0	0	1	0	0	471.0086	0	0	0	427.2914	0	0
7	1	0	0	0	1	0	0	458.834	0	0	0	415.666	0	0
8	1	0	0	0	1	0	0	453.8721	0	0	0	410.9279	0	0
9	1	0	0	0	1	0	0	456.8902	0	0	0	413.8098	0	0
10	1	0	0	0	1	0	0	449.9333	0	0	0	407.1667	0	0
11	1	0	0	0	1	0	0	427.8349	0	0	0	386.0651	0	0
12	1	0	0	0	1	0	0	361.8979	0	0	0	323.1021	0	0
13	1	0	0	0	1	0	0	315.6038	0	0	0	278.8962	0	0
14	1	0	0	0	1	0	0	243.6818	0	0	0	210.2182	0	0
15	1	0	0	0	0	0	0	513.3	0	0	0	0	0	0
16	1	0	0	0	1	0	0	361.6932	0	0	0	322,9068	0	0
17	1	0	0	0	1	0	0	400.2119	0	0	0	359.6881	0	0
18	1	0	0	0	1	0	0	384.0474	0	0	0	344.2526	0	0
19	1	0	0	0	1	0	0	375.9651	0	0	0	336.5349	0	0
20	1	0	0	0	1	0	0	361.2329	0	0	0	322,4671	0	0
21	1	0	0	0	1	0	0	361.3352	0	0	0	322.5648	0	0
22	1	0	0	0	1	0	0	319.3892	0	0	0	282.5108	0	0
23	1	0	0	0	1	0	0	321.998	0	0	0	285.002	0	0
24	1	0	0	0	1	0	0	316.7292	0	0	0	279.9708	0	0
											Ove	erall Generation	Cost = 42	,355 \$

Table 14	Thermal commitment and	l generation schedule for	10-unit test system with 5% s	spinning reserve usi	ng hGWO-RES
----------	------------------------	---------------------------	-------------------------------	----------------------	-------------

Hour	P1	P2	Р3	P4	Р5	P6	P7	P8	Р9	P10	P1	P2	Р3	P4	Р5	P6	P7	P8	Р9	P10
1	1	1	0	0	0	0	0	0	0	0	455	245	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0	455	295	0	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0	0	455	395	0	0	0	0	0	0	0	0
4	1	1	0	1	0	0	0	0	0	0	455	365	0	130	0	0	0	0	0	0
5	1	1	0	1	1	0	0	0	0	0	455	390	0	130	25	0	0	0	0	0
6	1	1	0	1	1	0	0	0	0	0	455	455	0	130	60	0	0	0	0	0
7	1	1	1	1	1	0	0	0	0	0	455	410	130	130	25	0	0	0	0	0
8	1	1	1	1	1	0	0	0	0	0	455	455	130	130	30	0	0	0	0	0
9	1	1	1	1	1	1	0	0	0	0	455	455	130	130	110	20	0	0	0	0
10	1	1	1	1	1	1	1	0	0	0	455	455	130	130	162	43	25	0	0	0
11	1	1	1	1	1	1	1	1	0	0	455	455	130	130	162	80	25	13	0	0
12	1	1	1	1	1	1	1	1	1	0	455	455	130	130	162	80	25	53	10	0
13	1	1	1	1	1	1	1	0	0	0	455	455	130	130	162	43	25	0	0	0
14	1	1	1	0	1	1	1	0	0	0	455	455	130	0	162	73	25	0	0	0
15	1	1	1	0	1	0	1	0	0	0	455	455	130	0	135	0	25	0	0	0
16	1	1	1	0	1	0	0	0	0	0	455	440	130	0	25	0	0	0	0	0
17	1	1	1	0	1	0	0	0	0	0	455	390	130	0	25	0	0	0	0	0
18	1	1	1	0	1	0	0	0	0	0	455	455	130	0	60	0	0	0	0	0
19	1	1	1	1	1	0	0	0	0	0	455	455	130	130	30	0	0	0	0	0
20	1	1	1	1	1	1	1	0	0	0	455	455	130	130	162	43	25	0	0	0
21	1	1	0	1	1	1	1	0	0	0	455	455	0	130	162	73	25	0	0	0
22	1	1	0	1	0	1	1	0	0	0	455	455	0	130	0	35	25	0	0	0
23	1	1	0	1	0	0	0	0	0	0	455	315	0	130	0	0	0	0	0	0
24	1	1	0	0	0	0	0	0	0	0	455	345	0	0	0	0	0	0	0	0
															0	verall (Genera	tion co	st = 557	7,830\$

Table 15Wind-thermal commitment and generation schedule for 10-unit test system with 5% spinning reserve using hGWO-RES

Hour	Com	mitted	status o	f genera	ating ur	nits for	wind-th	ermal V	JCP		Gene	ration sc	hedulir	ng for v	vind-ther	mal sc	heduli	ng UC	P	
	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10
1	1	1	0	0	0	0	0	0	0	0	455	163	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0	455	185	0	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0	0	455	313.6	0	0	0	0	0	0	0	0
4	1	1	0	0	0	0	0	0	0	0	455	386.2	0	0	0	0	0	0	0	0
5	1	1	0	0	1	0	0	0	0	0	455	381.9	0	0	25	0	0	0	0	0
6	1	1	0	0	1	0	0	0	0	0	455	455	0	0	96.3	0	0	0	0	0
7	1	1	0	1	1	0	0	0	0	0	455	436.5	0	130	25	0	0	0	0	0
8	1	1	0	1	1	0	0	0	0	0	455	455	0	130	68.8	0	0	0	0	0
9	1	1	1	1	1	0	0	0	0	0	455	455	130	130	58.7	0	0	0	0	0
10	1	1	1	1	1	1	0	0	0	0	455	455	130	130	145.1	20	0	0	0	0
11	1	1	1	1	1	1	1	0	0	0	455	455	130	130	146.9	20	25	0	0	0
12	1	1	1	1	1	1	1	0	0	1	455	455	130	130	162	67	25	0	0	10
13	1	1	1	1	1	0	1	0	0	0	455	455	130	130	148.5	0	25	0	0	0
14	1	1	1	1	1	0	0	0	0	0	455	425.9	130	130	25	0	0	0	0	0
15	1	1	1	0	1	0	0	0	0	0	455	455	130	0	71.3	0	0	0	0	0
16	1	1	1	0	1	0	0	0	0	0	455	356.6	130	0	25	0	0	0	0	0
17	1	1	1	0	1	0	0	0	0	0	455	273.9	130	0	25	0	0	0	0	0
18	1	1	1	0	1	0	0	0	0	0	455	355.3	130	0	25	0	0	0	0	0
19	1	1	1	0	1	0	0	0	0	0	455	455	130	0	29.5	0	0	0	0	0
20	1	1	1	1	1	1	0	0	0	0	455	455	130	130	91.7	20	0	0	0	0
21	1	1	0	1	1	1	0	0	0	0	455	455	0	130	139.9	20	0	0	0	0
22	1	1	0	1	0	1	0	0	0	0	455	394.9	0	130	0	20	0	0	0	0
23	1	1	0	1	0	0	0	0	0	0	455	230	0	130	0	0	0	0	0	0
24	1	1	0	1	0	0	0	0	0	0	455	166.7	0	130	0	0	0	0	0	0
															Over	all Ge	neratic	on Cos	t = 505	5,520\$

		12	P3	P4	P5	P6	P7	P8	P9	P10	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
1 1	1	1	0	0	0	0	0	0	0	0	455	245	0	0	0	0	0	0	0	0
2 1	1	1	0	0	0	0	0	0	0	0	455	295	0	0	0	0	0	0	0	0
3 1	1	1	0	0	1	0	0	0	0	0	455	370	0	0	25	0	0	0	0	0
4 1	1	1	0	0	1	0	0	0	0	0	455	455	0	0	40	0	0	0	0	0
5 1	1	1	0	1	1	0	0	0	0	0	455	390	0	130	25	0	0	0	0	0
6 1	1	1	1	1	1	0	0	0	0	0	455	360	130	130	25	0	0	0	0	0
7 1	1	1	1	1	1	0	0	0	0	0	455	410	130	130	25	0	0	0	0	0
8 1	1	1	1	1	1	0	0	0	0	0	455	455	130	130	30	0	0	0	0	0
9 1	1	1	1	1	1	1	1	0	0	0	455	455	130	130	85	20	25	0	0	0
10 1	1	1	1	1	1	1	1	1	0	0	455	455	130	130	162	33	25	10	0	0
11 1	1	1	1	1	1	1	1	1	1	0	455	455	130	130	162	73	25	10	10	0
12 1	1	1	1	1	1	1	1	1	1	1	455	455	130	130	162	80	25	43	10	10
13 1	1	1	1	1	1	1	1	1	0	0	455	455	130	130	162	33	25	10	0	0
14 1	1	1	1	1	1	1	1	0	0	0	455	455	130	130	85	20	25	0	0	0
15 1	1	1	1	1	1	0	0	0	0	0	455	455	130	130	30	0	0	0	0	0
16 1	1	1	1	1	1	0	0	0	0	0	455	310	130	130	25	0	0	0	0	0
17 1	1	1	1	1	1	0	0	0	0	0	455	260	130	130	25	0	0	0	0	0
18 1	1	1	1	1	1	0	0	0	0	0	455	360	130	130	25	0	0	0	0	0
19 1	1	1	1	1	1	0	0	0	0	0	455	455	130	130	30	0	0	0	0	0
20 1	1	1	1	1	1	1	1	1	0	0	455	455	130	130	162	33	25	10	0	0
21 1	1	1	1	1	1	1	1	0	0	0	455	455	130	130	85	20	25	0	0	0
22 1	1	1	0	0	1	1	1	0	0	0	455	455	0	0	145	20	25	0	0	0
23 1	1	1	0	0	1	0	0	0	0	0	455	420	0	0	25	0	0	0	0	0
24 1	1	1	0	0	0	0	0	0	0	0	455	345	0	0	0	0	0	0	0	0

 Table 16
 Thermal commitment and generation schedule for 10-unit test system with 10% spinning reserve using hGWO-RES

 Table 17
 Wind-thermal scheduling and dispatch for 10-unit test system with 10% spinning reserve using hGWO-RES

Hour	Com	mitted	status o	f gener	ating u	nits for	wind-tł	hermal	UCP		Gene	eration se	hedulir	ng for v	vind-ther	mal sc	heduli	ng UC	CP	
	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10
1	1	1	0	0	0	0	0	0	0	0	455	163	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0	455	185	0	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0	0	455	313.6	0	0	0	0	0	0	0	0
4	1	1	0	0	1	0	0	0	0	0	455	361.2	0	0	25	0	0	0	0	0
5	1	1	0	0	1	0	0	0	0	0	455	381.9	0	0	25	0	0	0	0	0
6	1	1	1	0	1	0	0	0	0	0	455	396.3	130	0	25	0	0	0	0	0
7	1	1	1	0	1	0	0	0	0	0	455	436.5	130	0	25	0	0	0	0	0
8	1	1	1	1	1	0	0	0	0	0	455	368.8	130	130	25	0	0	0	0	0
9	1	1	1	1	1	0	1	0	0	0	455	455	130	130	33.7	0	25	0	0	0
10	1	1	1	1	1	1	1	0	0	0	455	455	130	130	120.1	20	25	0	0	0
11	1	1	1	1	1	1	1	1	0	0	455	455	130	130	136.9	20	25	10	0	0
12	1	1	1	1	1	1	1	1	1	0	455	455	130	130	162	57	25	10	10	0
13	1	1	1	1	1	1	1	0	0	0	455	455	130	130	128.5	20	25	0	0	0
14	1	1	1	1	1	0	0	0	0	0	455	425.9	130	130	25	0	0	0	0	0
15	1	1	1	0	1	0	0	0	1	0	455	455	130	0	61.3	0	0	0	10	0
16	1	1	1	0	1	0	0	0	0	0	455	356.6	130	0	25	0	0	0	0	0
17	1	1	1	0	1	0	0	0	0	0	455	273.9	130	0	25	0	0	0	0	0
18	1	1	1	0	1	0	0	0	0	0	455	355.3	130	0	25	0	0	0	0	0
19	1	1	1	0	1	0	0	0	0	0	455	455	130	0	29.5	0	0	0	0	0
20	1	1	1	1	1	0	0	0	1	1	455	455	130	130	91.7	0	0	0	10	10
21	1	1	1	1	1	0	0	0	0	0	455	455	130	130	29.9	0	0	0	0	0
22	1	1	0	1	1	0	0	0	0	0	455	389.9	0	130	25	0	0	0	0	0
23	1	1	0	1	0	0	0	Õ	Õ	0	455	230	0	130	0	0	0	0	0	0
24	1	1	0	1	0	0	0	0	0	0	455	166.7	0	130	0	0	0	0	0	0
	-	-	-	-	-		-	-	-	-		/	5		-	-	То	tal cos	t = 51	1,680\$

Table 18	8 Commit	ment st	atus and gene	ration schedu	ile of	IEEE-	.118 bus system	using	g hGW	/O-RE	S (considering	thermal units	()						
Hours	Generation	1 sched	uling for com	mitted genera	ating 1	mits													
	PI	P2	P3	P4	P5	P6	P7	P8	6d	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19
_	464.8711	0	0	224.2784	0	0	0	0	0	0	363.634	0	006	517.2165	0	700	0	0	0
2	471.6118	0	0	229.3339	0	0	0	2	0	0	369.7006	0	006	524.3537	0	700	0	0	0
3	468.5735	0	61.2685	227.0551	0	0	0	5	0	0	366.9662	0	006	521.1367	0	700	0	0	0
4	448.0393	0	49.3454	0	0	0	0	5	0	0	348.4854	349.7354	006	499.3946	0	700	0	0	0
5	476.8248	0	66.05959	0	0	0	37.20749	0	0	0	374.3924	375.6424	006	529.8734	0	700	0	0	0
9	500	0	0	0	0	0	100	0	20	20	400	400	006	600	0	700	0	0	0
7	488.9805	0	0	242.3604	0	0	0	0	20	20	385.3325	386.5825	006	542.7441	0	700	0	0	0
8	483.3392	0	0	238.1294	0	0	0	0	20	0	380.2553	381.5053	006	536.7709	0	700	0	0	0
6	454.4649	0	53.0764	216.4737	0	0	0	0	20	0	354.2684	355.5184	006	506.1981	0	700	0	0	0
10	500	0	92.98987	268.0286	0	0	0	0	0	0	400	0	006	578.9815	0	700	0	0	0
11	438.4326	0	43.76729	0	0	0	0	0	0	0	339.8393	341.0893	897.6488	489.2227	0	700	0	0	0
12	422.873	0	0	0	0	0	0	0	0	0	325.8357	327.0857	874.3096	472.7479	0	687.9796	89.16838	0	0
13	419.4425	0	0	0	0	0	0	0	0	0	322.7482	323.9982	869.1637	469.1155	0	683.5689	86.96301	0	0
14	483.0366	0	0	237.9025	0	0	0	0	0	0	379.983	381.233	006	0	0	700	127.845	0	0
15	439.958	0	0	205.5935	0	0	0	0	0	0	341.2122	342.4622	899.9364	490.8378	0	700	0	0	0
16	469.8808	0	62.02754	228.0356	0	0	0	0	0	0	368.1427	369.3927	006	522.5208	0	700	0	0	0
17	469.8808	0	62.02754	228.0356	0	0	0	0	0	0	368.1427	369.3927	006	522.5208	0	700	0	0	0
18	483.3879	0	69.87042	0	0	0	0	0	0	0	380.2991	381.5491	006	536.8225	0	700	128.0708	0	0
19	465.3744	0	0	0	0	0	30.96178	0	0	0	364.0869	365.3369	006	517.7493	0	700	116.4907	0	0
20	428.362	0	0	0	0	0	30	0	0	0	330.7758	332.0258	882.543	478.5597	0	695.0368	92.69698	0	0
21	470.2637	0	0	228.3228	0	0	0	0	20	0	368.4873	0	006	522.9262	0	700	0	0	0
22	454.5579	0	0	216.5434	0	0	0	0	20	0	0	355.6021	006	506.2966	0	700	0	0	0
23	453.2098	0	0	215.5323	0	0	0	0	20	0	0	354.3888	006	504.8692	0	700	0	0	0
24	0	0	0	240.0703	0	0	0	0	20	0	382.5844	383.8344	006	539.511	0	700	0	0	0
																Overall (Generation cos	t = 208	\$069,

Table 19	Commitn	nent sta	tus and genera	ation schedule	e of IE	EE-118	s bus sy	vstem u	sing h	GWO-R	ES (consideri	ing wind-ther	mal)						
Hours	Generation	schedu	lling for comn	nitted generat	ing un	its													
	P1	P2	P3	P4	P5	P6	ΡŢ	P8	6d	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19
-	442.7617	0	0	207.6963	0	0	0	0	0	0	343.7355	0	006	493.8065	0	700	0	0	0
2	443.301	0	0	208.1007	0	0	0	0	0	0	344.2209	0	006	494.3775	0	700	0	0	0
3	464.4937	0	0	223.9952	0	0	0	0	0	0	363.2943	0	006	516.8168	0	700	0	0	0
4	407.6711	0	0	181.3783	0	0	0	0	0	0	312.154	313.404	851.5066	456.6517	0	668.4342	0	0	0
5	425.3463	0	0	194.6347	0	0	0	0	0	0	328.0617	329.3117	878.0194	475.3667	0	691.1595	0	0	0
9	455.6789	0	53.7813	217.3842	0	0	0	0	0	0	355.361	356.611	006	507.4836	0	700	0	0	0
٢	462.6546	0	57.83169	222.6159	0	0	0	0	0	0	361.6391	362.8891	006	514.8696	0	700	0	0	0
8	456.1607	0	54.06103	217.7455	0	0	0	0	0	0	355.7946	357.0446	006	507.9936	0	700	0	0	0
6	454.8504	0	0	216.7628	0	0	0	0	0	0	354.6153	355.8653	006	506.6063	0	700	0	0	0
10	485.3076	0	0	239.6057	0	0	0	0	0	0	382.0268	0	006	538.8551	0	700	129.3049	0	0
11	437.2596	0	0	203.5697	0	0	0	0	0	0	338.7836	0	895.8894	487.9808	0	700	98.41689	0	0
12	432.4917	0	0	199.9938	0	0	0	0	0	0	334.4926	0	888.7376	482.9324	0	700	95.35183	0	0
13	450.9853	0	0	213.864	0	0	0	0	0	0	351.1368	0	006	502.5139	0	700	0	0	0
14	417.6158	0	0	0	0	0	0	0	0	0	321.1043	322.3543	866.4238	467.1815	0	681.2204	0	0	0
15	500	0	94.43014	0	0	0	0	0	0	0	0	400	006	581.6079	0	700	155.2619	0	0
16	500	0	82.06233	253.9138	0	0	0	0	0	0	0	400	006	559.0548	0	700	141.569	0	0
17	496.7758	0	77.644	248.2068	0	0	0	0	0	0	0	393.5982	006	550.9979	0	700	136.6773	0	0
18	445.4336	0	0	209.7002	0	0	0	0	0	0	346.1403	347.3903	006	496.6356	0	700	0	0	0
19	426.3741	0	0	195.4056	0	0	0	0	0	0	328.9867	330.2367	879.5611	476.4549	0	692.481	0	0	0
20	459.937	0	0	220.5777	0	0	0	0	0	0	359.1933	0	006	511.9921	0	700	0	0	0
21	448.6665	0	0	212.1249	0	0	0	0	0	0	349.0499	0	006	500.0587	0	700	0	0	0
22	414.1544	0	0	0	0	0	0	0	0	0	317.9889	319.2389	861.2315	463.5164	0	676.7699	0	0	0
23	480.9497	0	68.45467	0	0	0	0	0	0	0	0	379.3547	006	534.2409	0	700	0	0	0
24	0	0	97.59177	273.9727	0	0	0	0	0	0	0	400	006	587.3732	0	700	158.7623	0	0
Overall (sost = 200,49	\$0																	

Table 20	Commitment status of 20 unit thermal unit	with 10% spinning	reserve using hGWO-RES

Hours	Con	nmitted	l status	of ger	neratin	g units														
	P1	P2	Р3	P4	Р5	P6	P7	P8	Р9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20
1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
4	1	1	0	0	0	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0
5	1	1	0	0	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0
6	1	1	1	1	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0
7	1	1	1	1	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0
8	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
9	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	0	1	0	0	0
10	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	0	0
11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	0	0
14	1	1	1	1	1	0	1	0	0	0	1	1	1	1	1	1	1	0	0	0
15	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
16	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
17	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
18	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
19	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
20	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	0	0
21	1	1	1	1	1	1	1	0	0	0	1	1	1	0	1	1	1	0	0	0
22	1	1	1	0	1	1	1	0	0	0	1	1	0	0	0	1	1	0	0	0
23	1	1	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
24	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0

 Table 21
 Generation scheduling of 20 unit thermal unit with 10% spinning reserve using hGWO-RES

Hours	Gene	ration scl	hedulin	g for co	ommitte	ed gen	erating	g units												
	P1	P2	Р3	P4	Р5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20
1	455	245	0	0	0	0	0	0	0	0	455	245	0	0	0	0	0	0	0	0
2	455	295	0	0	0	0	0	0	0	0	455	295	0	0	0	0	0	0	0	0
3	455	330	0	0	0	0	0	0	0	0	455	330	130	0	0	0	0	0	0	0
4	455	417.5	0	0	0	0	0	0	0	0	455	417.5	130	0	25	0	0	0	0	0
5	455	455	0	0	25	0	0	0	0	0	455	455	130	0	25	0	0	0	0	0
6	455	425	130	130	25	0	0	0	0	0	455	425	130	0	25	0	0	0	0	0
7	455	455	130	130	45	0	0	0	0	0	455	455	130	0	45	0	0	0	0	0
8	455	455	130	130	30	0	0	0	0	0	455	455	130	130	30	0	0	0	0	0
9	455	455	130	130	95	20	25	0	0	0	455	455	130	130	95	0	25	0	0	0
10	455	455	130	130	162	33	25	10	10	0	455	455	130	130	162	33	25	0	0	0
11	455	455	130	130	162	73	25	10	10	10	455	455	130	130	162	73	25	10	0	0
12	455	455	130	130	162	80	25	43	10	10	455	455	130	130	162	80	25	43	10	10
13	455	455	130	130	162	33	25	10	10	0	455	455	130	130	162	33	25	0	0	0
14	455	455	130	130	95	0	25	0	0	0	455	455	130	130	95	20	25	0	0	0
15	455	455	130	130	30	0	0	0	0	0	455	455	130	130	30	0	0	0	0	0
16	455	310	130	130	25	0	0	0	0	0	455	310	130	130	25	0	0	0	0	0
17	455	260	130	130	25	0	0	0	0	0	455	260	130	130	25	0	0	0	0	0
18	455	360	130	130	25	0	0	0	0	0	455	360	130	130	25	0	0	0	0	0
19	455	455	130	130	30	0	0	0	0	0	455	455	130	130	30	0	0	0	0	0
20	455	455	130	130	162	33	25	0	10	0	455	455	130	130	162	33	25	10	0	0
21	455	455	130	130	150	20	25	0	0	0	455	455	130	0	150	20	25	0	0	0
22	455	455	130	0	160	20	25	0	0	0	455	455	0	0	0	20	25	0	0	0
23	455	432.5	0	0	25	0	0	0	0	0	455	432.5	0	0	0	0	0	0	0	0
24	455	345	0	0	0	0	0	0	0	0	455	345	0	0	0	0	0	0	0	0
															Ov	erall G	eneratic	n Cost	= 1,125	,100\$

 Table 22
 Wind-thermal commitment status for 20-unit test system with 10% spinning reserve using hGWO-RES algorithm

Comm	itment	status	for wi	nd-the	rmal sc	heduli	ng UC	Р												
Hour	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	U11	U12	U13	U14	U15	U16	U17	U18	U19	U20
1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
4	1	1	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0
5	1	1	0	0	1	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0
6	1	1	0	0	1	1	0	0	0	0	1	1	1	0	1	0	0	0	0	0
7	1	1	0	1	1	1	0	0	0	0	1	1	1	0	1	0	0	0	0	0
8	1	1	0	1	1	1	0	0	0	0	1	1	1	0	1	1	0	0	0	0
9	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	0	0	0	0
10	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0	0	0
11	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	0	0
12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
13	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	0	0	0
14	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	0	0	0	0	0
15	1	1	1	1	1	1	0	0	0	0	1	1	1	0	1	0	0	0	0	0
16	1	1	1	1	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0
17	1	1	1	1	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0
18	1	1	1	1	1	0	0	0	0	0	1	1	1	0	1	0	1	0	0	0
19	1	1	1	1	1	1	0	0	0	0	1	1	1	0	1	0	1	0	0	0
20	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	1	0	0	0
21	1	1	0	1	1	1	0	0	0	0	1	1	1	1	1	1	1	0	0	0
22	1	1	0	0	1	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0
23	1	1	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0
24	1	1	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0

Table 23Wind-thermal generation schedule for 20-unit test system with 10% spinning reserve using hGWO-RES algorithm

Gener	ation s	cheduling	g for w	ind-th	ermal sch	eduling	UCP													
Hour	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	U11	U12	U13	U14	U15	U16	U17	U18	U19	U20
1	455	204	0	0	0	0	0	0	0	0	455	204	0	0	0	0	0	0	0	0
2	455	240	0	0	0	0	0	0	0	0	455	240	0	0	0	0	0	0	0	0
3	455	354.3	0	0	0	0	0	0	0	0	455	354.3	0	0	0	0	0	0	0	0
4	455	428.1	0	0	0	0	0	0	0	0	455	428.1	0	0	25	0	0	0	0	0
5	455	450.95	0	0	25	0	0	0	0	0	455	450.95	0	0	25	0	0	0	0	0
6	455	455	0	0	68.15	20	0	0	0	0	455	455	130	0	68.15	0	0	0	0	0
7	455	455	0	130	48.25	20	0	0	0	0	455	455	130	0	48.25	0	0	0	0	0
8	455	455	0	130	94.4	20	0	0	0	0	455	455	130	0	94.4	20	0	0	0	0
9	455	455	130	130	61.85	20	25	0	0	0	455	455	130	130	61.85	20	0	0	0	0
10	455	455	130	130	147.55	20	25	0	0	10	455	455	130	130	147.55	20	25	0	0	0
11	455	455	130	130	162	38.95	25	10	10	0	455	455	130	130	162	38.95	25	0	0	0
12	455	455	130	130	162	80	25	15	10	10	455	455	130	130	162	80	25	15	0	10
13	455	455	130	130	151.75	20	25	10	0	0	455	455	130	130	151.75	20	25	0	0	0
14	455	455	130	130	52.95	20	0	0	0	0	455	455	130	130	52.95	0	0	0	0	0
15	455	455	130	130	40.65	20	0	0	0	0	455	455	130	0	40.65	0	0	0	0	0
16	455	333.3	130	130	25	0	0	0	0	0	455	333.3	130	0	25	0	0	0	0	0
17	455	266.95	130	130	25	0	0	0	0	0	455	266.95	130	0	25	0	0	0	0	0
18	455	345.15	130	130	25	0	0	0	0	0	455	345.15	130	0	25	0	25	0	0	0
19	455	437.25	130	130	25	20	0	0	0	0	455	437.25	130	0	25	0	25	0	0	0
20	455	455	130	130	133.35	20	0	0	0	10	455	455	130	130	133.35	20	25	0	0	0
21	455	455	0	130	112.45	20	0	0	0	0	455	455	130	130	112.45	20	25	0	0	0
22	455	442.45	0	0	25	0	0	0	0	0	455	442.45	130	130	0	20	0	0	0	0
23	455	337.5	0	0	0	0	0	0	0	0	455	337.5	0	130	0	0	0	0	0	0
24	455	255.85	0	0	0	0	0	0	0	0	455	255.85	0	130	0	0	0	0	0	0
																	Overa	ll cost =	= 1,071	,700\$

Table 24 Commitment status of 40 unit with 10% spinning reserve using hGWO-RES (considering thermal u	units)
---	--------

Commi	itment	status	for uni	ts 1-20	for 40	-gener	ating u	nit syst	em											
Hour	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20
1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
4	1	1	0	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
5	1	1	0	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
6	1	1	0	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
7	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
8	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
9	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	0	0	0	0
10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
14	1	1	1	1	1	0	1	0	0	0	1	1	1	1	1	0	1	0	0	0
15	1	1	1	1	1	Ő	0	ů 0	Õ	0	1	1	1	1	1	0	0	0	0	0
16	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	Õ	0	1	0	0
17	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
18	1	1	1	1	1	0	0	1	0	0	1	1	1	1	1	0	0	0	0	0
10	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0
20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
20	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	0	0	0
21	1	1	1	0	1	1	1	0	0	0	1	1	0	0	1	1	0	0	0	0
22	1	1	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0
23	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
Commi	1 itment	1 etatue	for uni	ite 21_1	0 for 4	0 0_gene	ratina	U unit sv	tem	0	1	1	0	0	0	0	0	0	0	0
Hour	D21	DDD	D23	D24	D25	D26	D27	DDS	D20	D30	D21	D32	D33	D3/	D25	D36	D37	D38	D30	D 40
noui	121	1 22	1 23	1 24	125	0	0	0	0	0	1	1 32	0	0	0	0	0	0	0	0
1	1	1	0	0				0	0	0	1	1	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	Ő	0	Δ	Ο	1	1	1	0	0	0	0	0	Ο	Ο
1 2 3	1 1	1 1	0 0 0	0 0 0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
1 2 3	1 1 1	1 1 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	0 0	0 0	1 1	1 1	1 1	0 0 1	0 0	0 0	0 0	0 0	0 0	0 0
1 2 3 4	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 1 1	1 1 1	1 1 1	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
1 2 3 4 5	1 1 1 1 1	1 1 1 1 1	0 0 0 1	0 0 0 0 0	0 0 1 1	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1	1 1 1 1	1 1 1 1	0 0 1 1	0 0 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
1 2 3 4 5 6 7	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 1 1	0 0 0 0 0 0	0 0 1 1 1	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	0 0 1 1 1	0 0 1 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
1 2 3 4 5 6 7 8	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 1 1 1	0 0 0 0 0 0 0	0 0 1 1 1 1	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	0 0 1 1 1 1 1	0 0 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
1 2 3 4 5 6 7 8	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1	0 0 0 0 0 0 0 1	0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 1 1 1 1 1 1	0 0 1 1 1 1 1	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1	0 0 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1 1	0 0 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 1 1 1	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1	0 0 0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 0 0 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1 1 1	0 0 0 0 0 0 0 0 0 1 1 1	0 0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 1
1 2 3 4 5 6 7 8 9 10 11 12 13	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 1 1 1 0	0 0 0 0 0 0 0 0 0 0 1 1 1 0	0 0 0 0 0 0 0 0 0 0 0 0 1 0	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 1 1 1 0 0	0 0 0 0 0 0 0 0 0 0 1 1 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0	0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1 1 1 1 1 1 0	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0	0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0	0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 17 \\ 18 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 18 \\ 16 \\ 17 \\ 18 \\ 16 \\ 17 \\ 18 \\ 16 \\ 17 \\ 18 \\ 16 \\ 17 \\ 18 \\ 16 \\ 17 \\ 18 \\ 16 \\ 16 \\ 17 \\ 18 \\ 16 \\ 17 \\ 18 \\ 16 \\ 17 \\ 18 \\ 16 \\ 17 \\ 18 \\ 16 \\ 17 \\ 18 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 26 \\ 17 \\ 18 \\ 19 \\ 26 \\ 16 \\ 17 \\ 18 \\ 19 \\ 26 \\ 16 \\ 17 \\ 18 \\ 19 \\ 26 \\ 16 \\ 17 \\ 18 \\ 19 \\ 26 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 20 \\ 11 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\end{array} $	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\end{array} $	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ \end{array} $	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$ \begin{array}{c} 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gener	ation s	cheduling	g for u	nits 1-	20 for 4	0-gene	erating	unit s	ystem											
Hour	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20
1	455	245	0	0	0	0	0	0	0	0	455	245	0	0	0	0	0	0	0	0
2	455	262.5	0	0	0	0	0	0	0	0	455	262.5	0	0	0	0	0	0	0	0
3	455	362.5	0	0	0	0	0	0	0	0	455	362.5	0	0	0	0	0	0	0	0
4	455	346.25	0	130	25	0	0	0	0	0	455	346.25	0	130	25	0	0	0	0	0
5	455	357.5	0	130	25	0	0	0	0	0	455	357.5	0	130	25	0	0	0	0	0
6	455	455	0	130	27.5	0	0	0	0	0	455	455	0	130	27.5	0	0	0	0	0
7	455	455	130	130	45	0	0	0	0	0	455	455	0	130	45	0	0	0	0	0
8	455	455	130	130	56.25	0	0	0	0	0	455	455	0	130	56.25	0	0	0	0	0
9	455	455	130	130	102.5	20	25	0	0	0	455	455	130	130	102.5	20	0	0	0	0
10	455	455	130	130	162	33	25	10	10	10	455	455	130	130	162	33	25	10	0	0
11	455	455	130	130	162	73	25	10	10	10	455	455	130	130	162	73	25	10	10	10
12	455	455	130	130	162	80	25	43	10	10	455	455	130	130	162	80	25	43	10	10
13	455	455	130	130	162	33	25	10	10	10	455	455	130	130	162	33	25	10	0	0
14	455	455	130	130	100	0	25	0	0	0	455	455	130	130	100	0	25	0	0	0
15	455	455	130	130	30	0	0	0	0	0	455	455	130	130	30	0	0	0	0	0
16	455	307.5	130	130	25	0	0	0	0	0	455	307.5	130	130	25	0	0	10	0	0
17	455	260	130	130	25	0	0	0	0	0	455	260	130	130	25	0	0	0	0	0
18	455	357.5	130	130	25	0	0	10	0	0	455	357.5	130	130	25	0	0	0	0	0
19	455	453.75	130	130	25	0	0	0	0	0	455	453.75	130	130	25	0	25	0	0	0
20	455	455	130	130	162	33	25	10	10	10	455	455	130	130	162	33	25	10	0	0
21	455	455	130	130	150	20	25	0	0	0	455	455	130	130	150	20	25	0	0	0
22	455	455	130	0	115	20	25	0	0	0	455	455	0	0	115	20	0	0	0	0
23	455	422.5	0	0	0	0	25	0	0	0	455	422.5	0	0	0	0	0	0	0	0
24	455	345	0	0	0	0	0	0	0	0	455	345	0	0	0	0	0	0	0	0
Gener	ation s	cheduling	g for u	nits 21	-40 for	40-ger	erating	g unit	system	ı										
Hour	P21	P22	P23	P24	P25	P26	P27	P28	P29	P30	P31	P32	P33	P34	P35	P36	P37	P38	P39	P40
1	455	245	0	0	0	0	0	0	0	0	455	245	0	0	0	0	0	0	0	0
2	455	262.5	0	0	0	0	0	0	0	0	455	262.5	130	0	0	0	0	0	0	0
3	455	362.5	0	0	0	0	0	0	0	0	455	362.5	130	0	0	0	0	0	0	0
4	455	346.25	0	0	25	0	0	0	0	0	455	346.25	130	130	0	0	0	0	0	0
5	455	357.5	130	0	25	0	0	0	0	0	455	357.5	130	130	25	0	0	0	0	0
6	455	455	130	0	27.5	0	0	0	0	0	455	455	130	130	27.5	0	0	0	0	0
7	455	455	130	0	45	0	0	0	0	0	455	455	130	130	45	0	0	0	0	0
8	455	455	130	130	56.25	0	25	0	0	0	455	455	130	130	56.25	0	0	0	0	0
9	455	455	130	130	102.5	0	25	0	0	0	455	455	130	130	102.5	20	0	0	0	0
10	455	455	130	130	162	33	25	0	0	0	455	455	130	130	162	33	25	0	0	0
11	455	455	130	130	162	73	25	10	10	0	455	455	130	130	162	73	25	0	0	0
12	455	455	130	130	162	80	25	43	10	10	455	455	130	130	162	80	25	43	10	10
13	455	455	130	130	162	33	25	0	0	0	455	455	130	130	162	33	25	0	0	0
14	455	455	130	130	100	0	25	0	0	0	455	455	130	130	100	20	25	0	0	0
15	455	455	130	130	30	0	0	0	0	0	455	455	130	130	30	0	0	0	0	0
16	455	307.5	130	130	25	0	0	0	0	0	455	307.5	130	130	25	0	0	0	0	0
17	455	260	130	130	25	0	0	0	0	0	455	260	130	130	25	0	0	0	0	0
18	455	357.5	130	130	25	0	0	0	0	0	455	357.5	130	130	25	0	0	0	0	0
19	455	453.75	130	130	25	0	0	0	0	0	455	453.75	130	130	25	0	0	0	0	0
20	455	455	130	130	162	33	25	0	0	0	455	455	130	130	162	33	25	0	0	0
21	455	455	130	130	150	20	25	0	0	0	455	455	0	0	150	20	25	0	0	0
22	455	455	0	130	115	20	25	0	0	0	455	455	0	0	0	20	25	0	0	0
23	455	422.5	0	0	0	20	25	10	0	0	455	422.5	0	0	0	0	0	10	0	0
24	455	345	0	0	0	0	0	0	0	0	455	345	0	0	0	0	0	0	0	0
															Overall	Gener	ration	Cost =	2,255.	,000\$
																			,,	+

Table 26	Generation scheduling	of 40-unit with 10%	spinning reserve usin	g hGWO-RES (co	onsidering wind-thermal s	ystem)
----------	-----------------------	---------------------	-----------------------	----------------	---------------------------	--------

Home P1 P3 P3 P3 P3 P10 P10 P11 P12 P13 P14	Comm	itment	status	for un	its 1-20) for 4()-gener	ating u	nit syst	tem(wi	nd-thei	mal)									
1 1 1 0 </td <td>Hour</td> <td>P1</td> <td>P2</td> <td>P3</td> <td>P4</td> <td>P5</td> <td>P6</td> <td>P7</td> <td>P8</td> <td>P9</td> <td>P10</td> <td>P11</td> <td>P12</td> <td>P13</td> <td>P14</td> <td>P15</td> <td>P16</td> <td>P17</td> <td>P18</td> <td>P19</td> <td>P20</td>	Hour	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20
2 1 1 1 0	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
3 1 1 1 0 </td <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	2	1	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
4 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 </td <td>3</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	3	1	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
5 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1	4	1	1	1	0	1	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0
6 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1	5	1	1	1	0	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
7 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1	6	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
8 1 </td <td>7</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	7	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
9 1	8	1	1	1	1	1	1	0	0	0	0	1	1	0	1	1	0	0	0	0	0
10 1	9	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	0	1	0	0	0
11 1	10	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	0	0
12 1	11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
13 1 1 1 1 1 1 0 1	12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0	13	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	0	1
15 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1	14	1	1	1	1	1	0	1	0	0	0	1	1	1	1	1	0	1	0	0	0
16 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0	15	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
11 1	16	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
18 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1	17	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
19 1 <t< td=""><td>18</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	18	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	0	0	0	0	0
20 1	19	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	0	1	0	0	0
11 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 <t< td=""><td>20</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td></t<>	20	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	0	1	0	0	0
12 1 1 1 1 0 0 0 1 1 0 <t< td=""><td>21</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td></t<>	21	1	1	1	1	1	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0
1 1 0 0 0 0 0 0 0 1 1 0 <td>22</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	22	1	1	0	0	1	1	1	0	0	0	1	1	0	0	1	0	0	0	0	0
24 1 1 0 0 0 0 0 1 1 0 </td <td>23</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	23	1	1	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0
Commission Value	24	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
HourP21P22P23P24P25P26P27P28P29P30P31P32P33P34P35P36P37P38P39P41110000000110000000211000000011000000031100000001100000041100000001100000051100100000011000006110010000110000006110100000111100000611010000011111000071111000011111100071<	Comm	itment	status	for un	its 21-4	0 for 4	10-gene	rating	unit sy	stem (v	wind-th	ermal)									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hour	P21	P22	P23	P24	P25	P26	P27	P28	P29	P30	P31	P32	P33	P34	P35	P36	P37	P38	P39	P40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
3 1 1 0 0 0 0 0 1 1 0	2	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
	5	1	1	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1	1	0	0	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0
8 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1	7	1	1	1	0	1	0	0	0	0	0	1	1	1	0	1	1	0	0	0	0
9 1 0 0 0 0 1 1 1 1 1 1 0	8	1	1	1	0	1	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	0	1	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
14 1 0 0 0 0 1 1 1 1 0	13	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	0	1	0	0	0
16 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0	15	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
17 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0	16	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
18 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0	17	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
19 1 1 1 1 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0	18	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1	1	0	0	0	0
20 1	19	1	1	1	1	1	1	0	1	0	0	1	1	0	1	1	1	0	0	0	0
21 1 1 0 0 1	20	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	0	0
1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 0 22 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 23 1 1 0 </td <td>21</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td>	21	1	1	0	0	1	1	1	0	0	0	1	1	1	1	1	1	1	0	1	1
23 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0	22	1	1	0	Õ	1	0	1	0	0	0	1	1	1	1	0	1	1	0	0	0
	23	1	1	Õ	õ	0	0	0	0	0	0	1	1	1	0	0	0	0	0	õ	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	1	1	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0

Table 27	Gene	tration sched	luling of	40-unit	with 10% spi	nning reserv	e using	hGWO-R	ES (con	sidering	wind-the	trmal)								
Unit com	mitmen	t schedule fi	or units	1-20 for	40-generating	unit system	1(wind-tl	hermal)												
Hour	Pl	P2	P3	P4	P5	P6	P7	P8	6d	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20
1	455	224.5	0	0	0	0	0	0	0	0	455	224.5	0	0	0	0	0	0	0	0
2	455	235	130	0	0	0	0	0	0	0	455	235	0	0	0	0	0	0	0	0
3	455	342.15	130	0	0	0	0	0	0	0	455	342.15	0	0	0	0	0	0	0	0
4	455	422.8	130	0	25	0	0	0	0	0	455	422.8	0	0	25	0	0	0	0	0
5	455	426.725	130	0	25	0	0	0	0	0	455	426.725	0	130	25	0	0	0	0	0
9	455	455	130	130	36.575	0	0	0	0	0	455	455	0	130	36.575	0	0	0	0	0
7	455	455	130	130	46.625	0	0	0	0	0	455	455	0	130	46.625	0	0	0	0	0
8	455	455	130	130	62.2	20	0	0	0	0	455	455	0	130	62.2	0	0	0	0	0
6	455	455	130	130	89.675	20	0	0	0	0	455	455	130	130	89.675	0	25	0	0	0
10	455	455	130	130	162	21.775	25	10	10	0	455	455	130	130	162	21.775	25	0	0	0
11	455	455	130	130	162	55.975	25	10	10	10	455	455	130	130	162	55.975	25	10	10	0
12	455	455	130	130	162	80	25	31.5	10	10	455	455	130	130	162	80	25	31.5	10	10
13	455	455	130	130	162	21.375	25	10	10	0	455	455	130	130	162	21.375	25	0	0	10
14	455	455	130	130	72.725	0	25	0	0	0	455	455	130	130	72.725	0	25	0	0	0
15	455	455	130	130	40.325	0	0	0	0	0	455	455	130	130	40.325	0	0	0	0	0
16	455	321.65	130	130	25	0	0	0	0	0	455	321.65	130	130	25	0	0	0	0	0
17	455	263.475	130	130	25	0	0	0	0	0	455	263.475	130	130	25	0	0	0	0	0
18	455	348.825	130	130	25	20	0	0	0	0	455	348.825	130	130	25	0	0	0	0	0
19	455	436.125	130	130	25	20	0	0	0	0	455	436.125	130	130	25	0	25	0	0	0
20	455	455	130	130	152.925	20	25	10	0	0	455	455	130	130	152.925	0	25	0	0	0
21	455	455	130	130	157.475	20	25	0	0	0	455	455	130	0	157.475	0	25	0	0	0
22	455	455	0	0	94.96667	20	25	0	0	0	455	455	0	0	94.96667	0	0	0	0	0
23	455	385	0	0	0	0	0	0	0	0	455	385	0	0	25	0	0	0	0	0
24	455	300.425	0	0	0	0	0	0	0	0	455	300.425	0	0	0	0	0	0	0	0
Unit com	mitmen	t schedule fi	or units .	21-40 foi	or 40-generatin	g unit syster	m (wind	-thermal)												
Hour	P21	P22	P23	P24	P25	P26	P27	P28	P29	P30	P31	P32	P33	P34	P35	P36	P37	P38	P39	P40
1	455	224.5	0	0	0	0	0	0	0	0	455	224.5	0	0	0	0	0	0	0	0
2	455	235	0	0	0	0	0	0	0	0	455	235	0	0	0	0	0	0	0	0
3	455	342.15	0	0	0	0	0	0	0	0	455	342.15	0	0	0	0	0	0	0	0
4	455	422.8	0	0	0	0	0	0	0	0	455	422.8	0	0	0	0	0	0	0	0
5	455	426.725	0	0	25	0	0	0	0	0	455	426.725	0	0	0	0	0	0	0	0
9	455	455	0	0	36.575	0	0	0	0	0	455	455	130	0	36.575	0	0	0	0	0
7	455	455	130	0	46.625	0	0	0	0	0	455	455	130	0	46.625	20	0	0	0	0
8	455	455	130	0	62.2	0	0	0	0	0	455	455	130	130	62.2	20	0	0	0	0
6	455	455	130	130	89.675	0	0	0	0	0	455	455	130	130	89.675	20	25	0	0	0

Table 2	7 (cont	inued)																		
10	455	455	130	130	162	21.775	25	0	0	0	455	455	130	130	162	21.775	25	0	0	0
11	455	455	130	130	162	55.975	25	0	0	0	455	455	130	130	162	55.975	25	0	10	0
12	455	455	130	130	162	80	25	31.5	10	10	455	455	130	130	162	80	25	31.5	0	0
13	455	455	130	130	162	21.375	25	0	0	0	455	455	130	130	162	21.375	25	0	0	0
14	455	455	130	130	72.725	20	0	0	0	0	455	455	130	130	72.725	0	25	0	0	0
15	455	455	130	130	40.325	0	0	0	0	0	455	455	0	130	40.325	0	0	0	0	0
16	455	321.65	130	130	25	0	0	0	0	0	455	321.65	0	130	25	0	0	0	0	0
17	455	263.475	130	130	25	0	0	0	0	0	455	263.475	0	130	25	0	0	0	0	0
18	455	348.825	130	130	25	0	0	0	0	0	455	348.825	0	130	25	20	0	0	0	0
19	455	436.125	130	130	25	20	0	10	0	0	455	436.125	0	130	25	20	0	0	0	0
20	455	455	130	130	152.925	20	25	0	0	10	455	455	130	130	152.925	20	25	10	0	0
21	455	455	0	0	157.475	20	25	0	0	0	455	455	130	130	157.475	20	25	0	10	10
22	455	455	0	0	94.96667	0	25	0	0	0	455	455	130	130	0	20	25	0	0	0
23	455	385	0	0	0	0	0	0	0	0	455	385	130	0	0	0	0	0	0	0
24	455	300.425	0	0	0	0	0	0	0	0	455	300.425	130	0	0	0	0	0	0	0
																	ó	erall Cos	t = 2,198	,400\$

Step1: Calculate the duration on and off times of all units for the whole schedule time horizon.

Step2: set h = 1

Step3: set iteration count n = 1

Step 4: if $u_n^h = 0$ and $u_n^{h-1} = 1$ and $T_{n,on}^{h-1} \le MUT$ then set $u_n^h = 1$

- Step 5: if $u_n^h = 0$ and $u_n^{h-1} = 1$ and $h + MDT 1 \le T$ and $T_{n,off}^{off + MDT 1} \le MDT$ SET $u_n^h = 1$
- Step6: if $if_n u_n^h = 0$ and $u_n^{h-1} = 1$ and t + MDT 1 > T and $\sum_{n=h}^{H} u_n^h > 0$ set $u_n^h = 1$
- Step7: update the time period of ON/OFF times for unit *i*
- Step8: Do n = n + 1 return to step 4.
- Step 9: if h < H, h = h + 1, return to step 3,
- Step10: If condition at step 9, found false, stop.

6 Test system and standard benchmark

In order to validate the performance of the proposed hGWO-RES algorithms, 23 benchmark functions [2] has been taken into consideration and has been shown in Tables 2, 3, and 4. Table 2 depicts the Unimodal Benchmark Function, Table 3 depicts the Multi-modal Benchmark functions and Table 4 depicts the fixed dimensions benchmark problems.

In order to show the efficacy of the anticipated hGWO-RES algorithms for generation scheduling and dispatch problem, different types of test systems have been taken into consideration, which includes 7-, 10-, 19-, 20- and 40-Generating Units system [58]. The load demand pattern of 24-h are taken into consideration for effective research study. In the whole research study, 30 search agents are taken into considerations and algorithm is simulated for maximum iterations of 500.

7 Results and discussion

In order to overcome the stochastic nature of proposed hGWO-RES algorithm and validate the results, 30 trial runs are taken into consideration and each objective function has been evaluated for average, standard deviation, worst and best values. In order to validate the exploitation phase of proposed algorithm, unimodal benchmark function F1, F2, F3, F4, F5, F6 and F7 are taken into consideration. Table 5 shows the solution of unimodal benchmark function using hGWO-RES algorithm. The comparison results for unimodal benchmark functions has been shown in Table 6, which are compared with other recently developed metaheuristics search algorithms GWO [2], PSO [55], BA [33], FPA [21], GA [85], DA [6], BDA [6], BPSO [86] and BGSA [39] in terms of average and standard deviation. The convergence curve and

Table 28 Comparative costanalysis for various test systems(% saving in cost)

Number of units	Cost of thermal system	Cost of wind thermal system	% Cost saving	
7 (SR = 10%)	49,184 \$	42,355\$	13	
10 (SR = 5%)	557,830 \$	505,520\$	9	
10 (SR = 10%)	563,980\$	511,680\$	9	
19 (SR = 10%)	208,690\$	200,490\$	3.9	
20 (SR = 10%)	1,125,100\$	1,071,700\$	4.7	
40 (SR = 10%)	2,255,000\$	2,198,400\$	2.5	

A. Bhadoria, V. Kumar Kamboj

trial solutions for hGWO-RES for unimodal benchmark functions are shown in Figs. 5 and 6.

In order to validate the exploration phase of proposed algorithm, the multi-modal benchmark functions F8, F9, F10, F11, F12 and F13 are taken into consideration, as these functions have many local optima with the number increasing exponentially with dimension. Table 7 shows the solution of multi-modal benchmark function using hGWO-RES algorithm. The comparison results for multimodal benchmark functions has been shown in Table 8, which are compared with other recently developed metaheuristics search algorithms GWO [2], PSO [55], BA [33], FPA [21], GA [85], DA [6], BDA [6], BPSO [86] and BGSA [39] in terms of average and standard deviation. The convergence curve and their corresponding trial solutions of hGWO-RES for multi-modal benchmark functions are shown in Figs. 7 and 8.

The test results for fixed dimension benchmark problems are shown in Table 9. The comparison results for multi-modal benchmark functions has been shown in Tables 10 and 11, which are compared with other recently developed metaheuristics search algorithms GWO [2], PSO [55], BA [33], FPA [21], GA [85], DA [6], FEP [87], GSA [35] and DE [52] in terms of average and standard deviation. The trial solutions for fixed dimension benchmark functions along with their convergence curve are shown in Figs. 9 and 10.

In order to verify the performance of proposed hGWO-RES algorithm for generation scheduling and dispatch problems, the conventional UCP and UCP considering wind power as renewable energy sources are solved and their corresponding solutions are represented in Tables 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and 28. Table 29 depicts the optimal cost analysis for 10-generating unit systems considering wind power have been compared with recently developed algorithms.

8 Conclusion

In the proposed research, a hybrid version of grey wolf optimizer with random exploratory search has been presented to solve benchmark problems and generation scheduling and dispatch problem of electric power system with due consideration of wind energy as renewable energy source. Results of hGWO-RES has been tested for non-linear, highly constrained, non-convex engineering design and optimization problems, which include 23 benchmark problems and

Method	Best cost	Worst cost	Mean	CPU time (in seconds)
QBGSA [88]	515,339.6	517,156.8	516,425.4	49
BPSO [88]	516,778.5	519,963.0	518,304.5	61
BGSA [88]	517,736.6	520,577.2	519,254.8	61
GA [89]	563,977	565,606	564,275	221
EP [90]	564,551	566,231	565,352	100
EACO [91]	563,938	565,869	564,831	_
HPSO [92]	563,942	565,785	564,772	_
BF [93]	564,842	565,872	NA	110
DBDE [94]	563,977	564,241	564,028	3.6
SGA [89]	565,943	570,121	569,042	_
PSO [89]	564,212	565,783	565,103	120
Clustering method [95]	563,938	563,976	563,945	39.6
Operational cycle based algorithm [96]	563,937.70	-	564,227	19.4
hGWO-RES [proposed method]	511,680	511,687	511,683	80.3

Table 29Comparative costanalysis for 10-unit system con-sidering wind power (for 10%spinning reserve)

14.

- Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112
- Gonçalves MS, Lopez RH, Miguel LFF (2015) Search group algorithm: a new metaheuristic method for the optimization of truss structures. Comput Struct 153:165–184
- Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl-Based Syst 75:1–18
- Merrikh-Bayat F (2015) The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl Soft Comput 33:292–303
- Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39
- Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154
- Yang X-S (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, Springer, p 240-249
- Husseinzadeh Kashan A (2014) A new metaheuristic for optimization: optics inspired optimization (OIO). Comput Oper Res 55:99– 125
- Kuo HC, Lin CH (2013) Cultural evolution algorithm for global optimizations and its applications. J Appl Res Technol 11(4):510– 522
- Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47
- Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183
- Kaveh A, Mahdavi VR (2015) Colliding bodies optimization: extensions and applications. Colliding Bodies Optim Extensions Appl, p 1–284
- Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845
- Mohseni S, Gholami R, Zarei N, Zadeh AR (2014) Competition over resources: a new optimization algorithm based on animals behavioral ecology. 2014 Int. Conf. Intell. Netw. Collab. Syst., p 311–315
- Nakamura RYM, Pereira LAM, Costa KA, Rodrigues D, Papa JP, Yang XS (2012) BBA: a binary bat algorithm for feature selection. Brazilian Symp. Comput. Graph. Image Process., p 291–297
- Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612
- Du D, Simon D, Ergezer M (2009) Biogeography-based optimization combined with evolutionary strategy and immigration refusal. In: IEEE Proc International Conference on Systems, p 997–1002
- Mareli M, Twala B (2017) An adaptive cuckoo search algorithm for optimisation. Appl Comput Informatics
- Yang X-S. (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010), Springer, p 65-74
- Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Applic 24(7–8):1867–1877
- Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232
- Cohen AI, Yoshimura M (1983) A branch-and-bound algorithm for unit commitment. IEEE Trans Power App Syst 102(2):444–451
- Kothari DP, Ahmad A (1995) An expert system approach to the unit commitment problem. Energy Convers Manag 36(4):257–261

combinatorial unit commitment problem of electric power system. Experimentally, it has been found that the exploitation phase of the existing GWO algorithm has been improved. Also, the authors have presented the solution of scalar objective generation scheduling and dispatch of thermal generating units considering impact of wind power using hGWO-RES algorithm. The results for IEEE test system consisting of 7-, 10-, 19-, 20- and 40-generating units has been evaluated, analyzed for percentage cost saving and has been compared with recently developed algorithms, while considering wind power as a renewable energy source. Also, it is evident from analysis that by integrating wind power source along with conventional thermal power system, power production cost per megawatt is significantly reduced. Hence it is envisaged to incorporate wind energy source to tackle price hiking problem. Moreover, hGWO-RES accelerates the progress towards the near global optimum point thereby enabling one to obtain improved solutions with a reduced computation overhead.

Acknowledgements The authors are very thankful to Dr. Seyedali Mirjalili for providing free access to MATLAB code of GWO algorithm on website http://www.alimirjalili.com/GWO.html.

References

- Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713
- Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
- 3. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80-98
- Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249
- Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Applic 27(2):495–513
- Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multiobjective problems. Neural Comput Applic 27(4):1053–1073
- Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133
- Shareef H, Ibrahim AA, Mutlag AH (2015) Lightning search algorithm. Appl Soft Comput 36:315–333
- Chaohua D, Weirong C, Yunfang Z (2007) Seeker optimization algorithm. 2006 Int. Conf. Comput. Intell. Secur. ICCIAS 2006, vol. 1, p 225–229
- Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92: 65–88
- Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
- Bayraktar Z, Komurcu M, Werner DH (2010) Wind Driven Optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. 2010 IEEE Int. Symp. Antennas Propag. CNC-USNC/URSI Radio Sci. Meet. -Lead. Wave, AP-S/URSI 2010, no. 1, p 0–3
- Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166

- Kazarlis SA, Bakirtzis AG, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst 11(1):83–92
- Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. Nat Comput 9(3):727–745
- Cuevas E, González M, Zaldivar D, Pérez-Cisneros M, García G (2012) An algorithm for global optimization inspired by collective animal behavior. Discret Dyn Nat Soc 2012
- Meng XB, Gao XZ, Lu L, Liu Y, Zhang H (2016) A new bioinspired optimisation algorithm: bird swarm algorithm. J Exp Theor Artif Intell 28(4):673–687
- Li M, Zhao H, Weng X, Han T (2016) Cognitive behavior optimization algorithm for solving optimization problems. Appl Soft Comput 39:199–222
- Abedinpourshotorban H, Mariyam Shamsuddin S, Beheshti Z, Jawawi DNA (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput 26:8–22
- 44. Tan Y, Tan Y, Zhu Y (2015) Fireworks algorithm for optimization fireworks algorithm for optimization. 355–364
- 45. Zheng YJ (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res 55:1–11
- Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio Inspir Com 1(1):1
- Ghaemi M, Feizi-Derakhshi MR (2014) Forest optimization algorithm. Expert Syst Appl 41(15):6676–6687
- Erlich I, Venayagamoorthy GK, Worawat N (2010) A meanvariance optimization algorithm. 2010 IEEE World Congr. Comput. Intell. WCCI 2010 - 2010 IEEE Congr. Evol. Comput. CEC 2010
- Husseinzadeh Kashan A (2014) League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships. Appl Soft Comput 16:171–200
- Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34
- Wang GG, Deb S, Coelho LDS (2016) Elephant herding optimization. Proc. - 2015 3rd Int. Symp. Comput. Bus. Intell. ISCBI 2015, p 1–5
- Storn R, Price K (1997) Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359
- Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. 2007 IEEE Congr Evol Comput CEC 2007, p 4661–4667
- Karimkashi S, Kishk AA (2010) Invasive weed optimization and its features in electromagnetics. IEEE Trans Antennas Propag 58(4): 1269–1278
- Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, p 1942–1948
- Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12
- Bavafa F, Azizipanah-Abarghooee R, Niknam T (2014) New selfadaptive bat-inspired algorithm for unit commitment problem. IET Sci Meas Technol 8(6):505–517
- Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Applic 25(7–8):1569–1584
- Mirjalili S, Wang G-G, Coelho L d S (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Applic 25(6):1423–1435
- Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci 269:188–209
- 61. Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft Comput 19:177–187

- Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problems. Eng Sci Technol Int J 20(6):1586–1601
- Dai C, Chen W, Ran L, Zhang Y, Du Y (2011) Human group optimizer with local search. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics), vol 6728 LNCS, no PART 1:310–320
- Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken
- 65. Dhillon JS, Kothari DP (2010) Power system optimization, 2nd edn. Prentice Hall India, New Delhi
- 66. Wood AJ, Wollenberg BF (1996) *Power generation, operation, and control.* Wiley, Hoboken
- Guan Y, Wang Y, Tan Z (2012) Environmental protection and security considered dynamic economic dispatch for wind farm integrated systems. In: 2012 Asia-Pacific Power and Energy Engineering Conference, p 1–4
- Tewari S, Geyer CJ, Mohan N (2011) A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized markets. IEEE Trans Power Syst 26(4):2031– 2039
- Zhang Z-S, Sun Y-Z, Gao DW, Lin J, Cheng L (Aug. 2013) A versatile probability distribution model for wind power forecast errors and its application in economic dispatch. IEEE Trans. Power Syst. 28(3):3114–3125
- Jadhav HT, Bhatia M, Roy R (2011) An application of craziness based shuffled frog leaping algorithm for wind-thermal generation dispatch considering emission and economy. In: 2011 10th International Conference on Environment and Electrical Engineering, p 1–4
- De Giorgi MG, Ficarella A, Tarantino M (2011) Error analysis of short term wind power prediction models. Appl Energy 88(4): 1298–1311
- Bludszuweit H, Dominguez-Navarro JA, Llombart A (2008) Statistical analysis of wind power forecast error. IEEE Trans Power Syst. 23(3):983–991
- Zhang N, Kang C, Xia Q, Liang J (2014) Modeling conditional forecast error for wind power in generation scheduling. IEEE Trans Power Syst. 29(3):1316–1324
- Bruninx K, Delarue E (2014) A statistical description of the error on wind power forecasts for probabilistic reserve sizing. IEEE Trans Sustainable Energy 5(3):995–1002
- Lyu J-K, Heo J-H, Kim M-K, Park J-K (2013) Impacts of wind power integration on generation dispatch in power systems. J Electr Eng Technol 8(3):453–463
- Sturt A, Strbac G (2012) Efficient stochastic scheduling for simulation of wind-integrated power systems. IEEE Trans Power Syst. 27(1):323–334
- 77. Ravi CN, Selvakumar G, Christober C, Rajan A Hybrid real coded genetic algorithm differential evolution for optimal power flow
- Zhang Y, Yao F, Iu HHC, Fernando T, Trinh H (2015) Windthermal systems operation optimization considering emission problem. Int J Electr Power Energy Syst 65:238–245
- Hou J, Guo J, Liu J (2016) An economic load dispatch of windthermal power system by using virtual power plants, 2016 35th Chinese Control Conf., p 8704–8709
- 80. Ardabili M (2014) Optimal thermal generating unit commitment with wind power impact : a PSO-IIW procedure
- Bhatt A, Shrivastava A, Pandit M, Dubey HM (2014) Cost and profit optimization of integrated wind-thermal system by dynamic dispatch using swarm intelligence. In: International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), p 1–6
- Lu M, Zhao M (2013) The research of wind-thermal power random multi-objective scheduling based on combined MIPSO. Int J Hybrid Inf Technol 6(6):359–368

- Chaudhary V, Pandit M, Dubey HM Optimal operation of windthermal generation using differential evolution. IOSR J Electr Electron Eng 5(4):2278–1676
- Wolpert DH, William GM, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82
- John H (1992) Holland, adaptation in natural and artificial systems. MIT Press, Cambridge
- Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. 1997 IEEE Int Conf Syst Man, Cybern Comput Cybern Simul, vol. 5, p 4104–4108
- Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. 3:82
- Ji B, Yuan X, Chen Z, Tian H (2014) Improved gravitational search algorithm for unit commitment considering uncertainty of wind power. Energy 67:52–62
- Zhao B, Guo CX, Bai BR, Cao YJ (2006) An improved particle swarm optimization algorithm for unit commitment. Int J 28:482– 490
- Juste K a, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE Trans Power Syst 14(4):1452–1459
- Vaisakh K, Srinivas LR (2011) Evolving ant colony optimization based unit commitment. Appl Soft Comput 11(2):2863–2870
- Ting TO, Rao MVC, Loo CK (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans Power Syst. 21(1):411–418
- Eslamian M, Ahosseinian AA, Vahidi B (2009) Bacterial foraging based solution to the unit commitment problem. IEEE Trans 24(3): 1478–1488
- Yuan X, Su A, Nie H, Yuan Y, Wang L (2009) Application of enhanced discrete differential evolution approach to unit commitment problem. Energy Convers Manag 50(9):2449–2456
- Shukla A, Singh SN (2016) Clustering based unit commitment with wind power uncertainty. Energy Convers Manag 111:89–102
- Bavafa F, Niknam T, Azizipanah-Abarghooee R, Terzija V (2017) A new biobjective probabilistic risk-based wind-thermal unit commitment using heuristic techniques. IEEE Trans Ind Inf 13(1):115–124

Ashutosh Bhadoria received the electrical engineering and ME degree in industrial system and drives (honours) from M.I.T.S Gwalior. Currently he is an assistant professor in the department of electrical engineering at the DAV University, Jalandhar, Punjab (India). Apart from vast teaching experience, during which he taught, electrical machines, power system, power electronics, soft computing techniques, he has industrial experience of electrical maintenance, planning and quality

assurance. He has established many labs during his teaching tenure and prepared lab manuals for better understanding for students. He has Wipro certification onhigh impact teaching skills. He has guided many B.Tech/ M.Tech thesis. His current area of interest ispower system optimization, power flow analysis and optimal power flow that includes, ANNS, Evolutionary Algorithms, and Fuzzy Systems.

Dr. Vikram Kumar Kamboj presently working as Associate Professor and Head of Department (Power Systems) in School of Electronics and Electrical Engineering at Lovely Professional University, Phagwara, Punjab, INDIA. He received his Bachelor of Engineering (Instrumentation and Control Engineering) and Master of Technology (Power Systems Engineering) degree with honours and awarded doctorate degree in 2017. His current re-

search work focuses on Power System Planning and Optimization, Optimal Scheduling and Dispatch of power generating units, Renewable Energy and Smart Grids System, Meta-heuristics and memetic algorithms. His long-term research focus is on Multi-disciplinary design and Optimization, Optimal utilization of Renewable Energy Sources for power generation, evolutionary programming, Artificial Intelligence, Multi Objective Optimization, Wireless Body Area Network, Brain-Machine interfacing and control through meta-heuristics search algorithms and *Prosthesis design & control using artificial Intelligence*.