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Abstract
Multi-class imbalance is one of the challenging problems in many real-world applications, from medical diagnosis to
intrusion detection, etc. Existing methods for gene expression classification usually assume relatively balanced class
distribution. However, the assumption is invalid for imbalanced data learning. This paper presents an effective method
named EN-FWELM for class imbalance learning. First, based on a fast classifier extreme learning machine (ELM), fuzzy
membership of sample is proposed in order to eliminate classification error coming from noise and outlier samples,
and balance factor is introduced in combination with sample distribution and sample number associated with class to
alleviate the bias against performance caused by imbalanced data. Furthermore, ensemble of ELMs is used for making
classification performance more stable and accurate. A number of base ELMs are removed based on dissimilarity measure,
and the remaining base ELMs are integrated by majority voting. Finally, experimental results on various gene expression
classification and real-world classification demonstrate that the proposed EN-FWELM remarkably outperforms other
approaches in the literature.

Keywords Gene expression classification · Extreme learning machine · Fuzzy membership · Balance factor ·
Dissimilarity measure

1 Introduction

Generally, the type of cancer being identified early on can
improve the health of people. Because the same cancer
resulting from many factors may have different symptoms,
traditional diagnostic methods can fail to identify cancer
exactly [1]. However, gene expression data based on the
microarray technology can achieve more accurate results.
Therefore, the relevant research based on gene expression
classification attracted more and more attention [2–4].

Extreme learning machine (ELM) was proposed for
the single-hidden layer feed-forward networks (SLFNs).
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It has good generalization performance and fast learning
speed by generating randomly input weights and biases
of hidden nodes instead of adjusting network parameters
iteratively [5, 6]. With the advantages, ELM has been widely
applied in various areas [7–12]. Inspired by the ensemble
idea [13], the stability and classification performance of
single ELM can be improved. For example, Bagging takes
different bootstrap samples from training data to construct
a parallel ensemble model. AdaBoost runs repeatedly a
learning machine on different distribution of training data
to construct a serial ensemble model [14]. Cao et al. [15]
proposed V-ELM that performs ensemble of ELMs and
makes the final decision by majority voting. Li et al.
[16] proposed boosting weighted ELM. Weighted ELM is
embedded into a modified AdaBoost framework, and the
distribution weights can be used as training sample weights.
Zhang et al. [17] presented ensemble learning strategy based
on differential evolution (DE) that performs ensemble of
WELMs with different activation functions and employs
DE to optimize the weight of each base classifier. Xu et al.
[18] proposed WELM-Ada based on fusion optimization of
weighted ELM and AdaBoost. Lu et al. [19] proposed D-
D-ELM and DF-D-ELM, which remove some base ELMs
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based on the dissimilarity and group the remaining ELMs
by majority voting on gene expression data.

One is often confronted with multi-class imbalance
problem on gene expression data, and this issue brings
extreme challenge. On one hand, existing methods for
gene expression classification usually ignore the influence
of samples distribution on classification, which can
incur classification error coming from noise and outlier
samples and reduce generalization performance of ELM.
Furthermore, existing methods usually assume relatively
balanced class distribution and are more concerned with
overall accuracy, which can ignore the minority class and
tend to be biased against the majority class in dealing with
imbalanced data [20, 21]. In other words, they may achieve
higher misclassification accuracy of the minority class than
that of the majority class.

There are two methods dealing with imbalanced data
i.e. resampling technique and algorithmic technique [22].
Resampling technique includes oversampling which dupli-
cates some minority class samples randomly or creates new
samples in the neighborhood of minority class samples and
undersampling which removes some majority class samples
randomly to balance the size of each class [23, 24]. More-
over, resampling technique modifies samples distribution
and can lose some useful information. However, algorithmic
technique does not change sample distribution and is widely
used to cope with imbalanced data [25].

In this study, algorithmic technique is of particular inter-
est, and ensemble based fuzzy weighted extreme learning
machine is presented to perform gene expression classifi-
cation. First, different fuzzy membership is assigned for
each sample. Fuzzy membership indicates the importance
of sample on classification, and the bigger fuzzy member-
ship is, the greater the influence of sample on classification
is. Therefore, noise and outlier samples are assigned low
fuzzy membership to improve classification performance. In
addition, balance factor is used to alleviate the bias against
performance caused by imbalanced data. An extra balance
factor, relevant to samples distribution and samples num-
ber of each class, is designed for each sample to strengthen
the relative impact of the minority class, and G-mean is
taken as evaluation measure to monitor classification abil-
ity. Furthermore, some base ELMs are removed based on
the dissimilarity and the remaining ELMs are integrated by
majority voting. Finally, experimental results illustrate that
the proposed method named EN-FWELM is effective and
robust.

The rest of this paper is organized as follows. Section 2
presents a brief review of relevant preliminary knowledge.
In Section 3, the detailed implementations of the proposed
method are explained. In Section 4, the experimental
design is described and many experiments are completed
to demonstrate that the proposed method presents better

classification performance than that achieved by some
existing methods. Finally, conclusions are summarized in
Section 5.

2 Related work

2.1 Extreme learningmachine (ELM)

Given a training dataset consisting of N arbitrary samples
(xj , tj ), where tj = [tj1, tj2, · · · , tjm]T ∈ Rm and xj =
[xj1, xj2, · · · , xjn]T ∈ Rn. The jth sample tj is an m × 1
target vector, and xj is an n × 1 feature vector. Given
hidden nodes L << N and activation function g(x), then
the standard mathematical model of SLFNs is as follows:
L∑

i=1

βig(ai · xj + bi) = tj j = 1, 2, · · · , N (1)

where βi = [βi1, βi2, · · · , βim]T is the output weight vector
connecting the ith hidden node and output nodes, ai =
[ai1, ai2, · · · , ain]T is the input weight vector connecting
input nodes and the ith hidden node, ai · xj is the inner
product of ai and xj , and bi is the bias of the ith hidden
node.

SLFNs can approximate the training samples with zero
error if the number of hidden nodes L is equal to the number
of training samples N. The formula (1) can compactly be
rewritten as (2).
Hβ = T (2)

H =
⎡

⎢⎣
h(x1)

...
h(xN)

⎤

⎥⎦ =
⎡

⎢⎣
g(a1 · x1 + b1) · · · g(aL · x1 + bL)

... · · · ...
g(a1 · xN + b1) · · · g(aL · xN + bL)

⎤

⎥⎦

N×L

β =
⎡

⎢⎣
βT
1

...
βT

L

⎤

⎥⎦

L×m

, and T =
⎡

⎢⎣
tT1
...
tTN

⎤

⎥⎦

N×m

(3)

where H is the hidden layer output matrix, and the jth
column of H represents the jth hidden node output vector
on all the inputs. T is the output matrix, and β is the output
weight matrix.

However, in most cases, it is L << N and there may
not exist a β that satisfies (2). The hidden layer biases and
input weights need not be tuned at all and can be randomly
generated, so the output weights can be determined by
finding the Least Square solution β = H+T of Hβ =
T , where H+ is the Moore-Penrose generalized inverse
of matrix H. In short, ELM algorithm is summarized as
follows.

1) Generate randomly input weights ai and biases bi , i =
1, 2, · · · , L.

2) Calculate the hidden layer output matrix H.
3) Calculate the output weight β = H+T .
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2.2Weighted extreme learningmachine (WELM)

According to Bartlett’s theory [26], ELM is not only to
minimize the training error but also to minimize the norm of
the output weights. Meanwhile, an extra weight is designed
for each sample to better deal with imbalanced data, so the
classification problem can be formulated as (4).

min

⎛

⎝1

2
||β||2 + CW

1

2

N∑

j=1

ξ2j

⎞

⎠

s.t .
N∑

j=1

βig(ai · xj + bi) = tj − ξj (4)

The equivalent dual optimization problem in regard to (4)
based on KKT theorem is

LELM = 1

2
||β||2 + CW

1

2

N∑

j=1

ξ2j

−
N∑

j=1

αj (βig(ai · xj + bi) − tj + ξj ) (5)

where ξj is the training error, C is penalty parameter, and αj

is Lagrange multiplier.W is diagonal matrix relevant to each
training sample, namelyW = diag(wjj ), j = 1, 2, · · · , N .
For instance, weighted strategy associated with the number
of samples in each class can be assigned as follows [20]:

W1 : wjj = 1

N(tj )

W2 : wjj =
{

0.618
N(tj )

if N(tj ) > AV G
1

N(tj )
if N(tj ) ≤ AV G

(6)

where N(tj ) is the number of samples in class tj , and AVG
is the average samples number of each class. Then solution
of (5) can be formulated as (7).

β =
{

HT
(

I
C

+ WHHT
)−1

WT when N < L
(

I
C

+ HT WH
)−1

HT WT when N >> L
(7)

3 Proposed EN-FWELMmodel

In this study, construction of the optimal model comprises
three main procedures: fuzzy weighted extreme learning
machine (FWELM), ensemble learning based on the
dissimilarity and performance evaluation.

3.1 FWELM

In this study, balance factor and fuzzy membership are
introduced into ELM. WELM is a widely used method
dealing with imbalance data. However, it only considers the

imbalance of sample numbers in each class. In fact, not only
does the imbalance of samples lies in the imbalance of the
number of samples but also lies in the imbalance of sample
distribution. Therefore, it is crucial that sample number and
sample distribution are both considered as balance factors.
In this study, sample density, as the important index to
measure sample distribution, is used for representing sample
distribution [21, 27]. Center of samples in each class can be
formulated as (8).

dk = 1

Nk

Nk∑

j=1

xj k = 1, · · · , c (8)

where c is the number of class, Nk is the number of samples
in the kth class, xj is the jth sample, and dk is center of
samples in the kth class. Accordingly, sample density in
each class is defined as (9).

pk =

Nk∑
j=1

||xj − dk||

Nk

k = 1, · · · , c (9)

where pk is sample density in the kth class. In addition,
weighted strategy is also designed for each sample to better
deal with imbalanced data, and it can be presented as (10).

W : wjj = N(c − tj + 1)

N
(10)

where N(c − tj + 1) is the number of samples in class
c−tj +1. The number of samples in class 1, · · · , c is ranked
in the ascending order. Therefore, in this study, balance
factor R is diagonal matrix relevant to each training sample
and is defined as (11).

R : rjj = wjj × pc−tj +1 (11)

Weight W has more enormous influence than weight
W1 and weight W2 on the classification performance. For
example, for binary classification problem the reason is as
follows.

�W =
(

N−

N

)
−

(
N+

N

)
= N− − N+

N

= N− − N+

N− + N+

1) �W1 =
(

1

N+

)
−

(
1

N−

)

= N− − N+

N− × N+

where N−, N+ stand for the number of negative and
positive samples, respectively. Moreover,N−×N+−(N−+
N+) = (N− − 1) × (N+ − 1) − 1. For N− > 2,
N+ > 2, so N− − 1 > 1 and N+ − 1 > 1, namely
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(N− − 1) × (N+ − 1) > 1. Therefore, �W > �W1 and
weight W has better performance than weight W1.

2) �W2 =
(

1

N+

)
−

(
0.618

N−

)

= N− − 0.618 × N+

N− × N+

for N− > 2, N+ > 2, so (N− + N+) − N− × N+ <

(N− − N+) − (N− − 0.618 × N+), namely �W > �W2
and weightW has better performance than weight W2.

On the other hand, fuzzy membership of sample is
proposed in order to eliminate classification error coming
from noise and outlier samples [21]. The radius from all
samples to center in each class is defined as (12).

rdk = max||xj − dk|| j = 1, · · · , Nk (12)

where rdk is the radius from samples to center in the kth
class. Then fuzzy membership is defined as (13).

S : sjj = 1 − ||xj − dk||
rdk + δ

j = 1, 2, · · · , Nk (13)

where S is diagonal matrix relevant to each training sample,
and δ is an arbitrary small positive number. From (13), it can
be seen that noise and outlier samples are usually far away
from center of the class, and they will be given a minimum
fuzzy membership to reduce the influence on classification.
Therefore, in this study, the classification problem can be
formulated as (14).

LELM = 1

2
||β||2 + CR

1

2

N∑

j=1

sjj ξ
2
j

s.t . h(xj )β = tj − ξj (14)

Based on KKT theorem, KKT constraint conditions can
be formulated as:
∂LELM

∂ξj

= 0 → αj = CRsjj ξj j = 1, 2, · · · , N (15)

∂LELM

∂β
= 0 → β =

N∑

j=1

αjh(xj )
T = HT α (16)

∂LELM

∂αj

= 0 → h(xj )β − tj + ξj = 0 (17)

By substituting (15) and (16) into (17), the output weight
of FWELM can be formulated as (18).

β = HT

(
(S)−1

C
+ RHHT

)−1

RT (18)

If the number of training samples is large, the output
weight of FWELM can be formulated as (19) by substituting
(15) and (17) into (16).

β =
(

I

C
+ HT RSH

)−1

HT RST (19)

3.2 Ensemble learning

In this study, ensemble learning [28] based on the dissimilar-
ity is used for handling class imbalance, and the dissimilar-
ity between the ith ELM and the jth ELM is defined as (20).

dfi,j = P 01 + P 10 + P 11

P 01 + P 10 + P 11 + P 00
(20)

where P yz is the number of samples for which samples are
separately classified as y by the ith ELM and classified as z
by the jth ELM. 0 denotes samples are wrongly classified,
while 1 denotes samples are correctly classified. Moreover,
the dissimilarity between the ith ELM and other ELMs is
defined as (21).

Di =
K∑

j=1

dfi,j (21)

where K is the number of classifiers. Inspired by [19],
ELMs with larger dissimilarity are selected based on D =
{D1, D2, · · · , DK}. The one-sided confidence interval of
D is calculated to select ELMs whose Di belong to the
confidence interval, and the t distribution with no arguments
is constructed to calculate the confidence interval.

The mean value of D is

D = 1

K

K∑

i=1

Di (22)

The standard deviation of D is

SD =
√√√√ 1

K − 1

K∑

i=1

(Di − D)
2

(23)

D − μ

SD/
√

K
∼ t (K − 1) (24)

The one-side confidence interval at 95% confidence level
of μ is
[
D − t0.05(K − 1)SD√

K
, ∞

)
(25)

This study starts with selecting ELMs whose Di belong
to the one-sided confidence interval, and then integrates
them by majority voting.

3.3 Measuremetrics

In this study, Accuracy, G-mean and F-score are used
for evaluating the performance of proposed EN-FWELM
model. These measure metrics are defined below.

Accuracy =
∑c

i=1 T Pi∑c
i=1 T Pi + FNi

(26)

Precisioni = T Pi

T Pi + FPi

(27)
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Recalli = T Pi

T Pi + FNi

(28)

F − measurei = 2RecalliP recisioni

Recalli + Precisioni

(29)

F − score =
∑c

i=1 F − measurei

c
(30)

G − mean =
(∏c

i=1
Recalli

) 1
c

(31)

where TP, FP, TN, FN stand for the number of true positive,
false positive, true negative and false negative, respectively.

Accuracy is the evaluation measure for correctly
classified samples over all samples. F-measure is usually
used to assess the performance of imbalanced data
classification, and F-score is the average over F-measure.
Obviously, G-mean is 0 when the classification accuracy for
the ith class is 0 [17]. Therefore, G-mean is also used to
evaluate classification performance of imbalanced data and
makes a more fair comparison.

4 Experiments

4.1 Experiment datasets

To compare proposed EN-FWELM with other learning
algorithms, a variety of datasets from GEMS and KEEL
repository are used for classification [29, 30]. The detailed
information about these datasets is listed in Table 1 and
these datasets are ordered according to IR. The imbalance
degree measured by the imbalance ratio (IR) is defined as

Binary : IR = #majority

#minority

Multi − class : IR = max(#i)

min(#i)
, i = 1, 2, · · · , c (32)

Table 1 Description of imbalanced datasets

GEMS/KEEL Datasets #Atts #Class #Train #Test IR

Leukemia2 11225 3 38 34 1.4

SRBCT 2308 4 43 40 2.64

DLBCL 5469 2 43 34 3.05

Leukemia1 5327 3 38 34 4.22

11 Tumors 12533 11 120 54 4.5

Lung cancer 12600 5 143 60 23.17

wine 13 3 125 53 1.5

new-thyroid 5 3 150 65 5.0

dermatology 34 6 248 110 5.5

glass2 9 2 150 64 11.59

ecoli-0-1-4-6 vs 5 6 2 196 84 13

shuttle-6 vs 2-3 9 2 160 70 22

The number of these datasets attributes varies from 5 to
12600. The number of these datasets classes varies from 2
to 11, and IR varies from 1.4 to 23.17.

4.2 Experimental setting

To evaluate the performance of the proposed approach,
it is compared against variants of EN-FWELM and other
ensemble learning methods [14–19]. The whole experiment
is conducted on MATLAB platform, which runs on
windows 8 OS with Intel(R) Core(TM) i5-4460 CPU
(3.2 GHz) and 8 GB of RAM. The parameters setting
is given as follows. A grid search of penalty parameter
C on {2−18, 2−16, · · · , 248, 250} and hidden nodes L on
{10, 20, · · · , 990, 1000} is used to find the optimal G-
mean, and g(x) = 1

1+exp(−(a·x+b))
is applied as activation

function.
The attributes of these datasets are normalized into [0, 1].

Each dataset is randomly divided into a training-testing set.
Then each experiment is individually repeated 10 times, and
the average of 10 runs is used as the final results.

4.3 Comparison with variants of EN-FWELM

In these experiments, the classification performance of
ELM, W1-based weighted learning algorithm (WELM1)
and W2-based weighted learning algorithm (WELM2) [20]
is evaluated, respectively. To show the effectiveness of EN-
FWELM, it is also compared against its variants i.e. WELM
and FWELM, which are built to analyze the importance of
different parts in EN-FWELM. Meanwhile, the dimension
of gene expression data is reduced by information gain (IG)
[31] before training the classifier.

Tables 2, 3, 4, 5 and 6 show the detailed results of
parameters setting, Accuracy, G-mean, F-score and training
time, where the bold indicates the best results. From
Tables 4 and 5, we can see that EN-FWELM achieves better
G-mean and F-score than other algorithms. In particular,
the performance results show that our EN-FWELM can
improve significantly G-mean and F-score when datasets
are sensitive to class imbalance, such as Lung cancer, new-
thyroid, 11 Tumors, ecoli-0-1-4-6 vs 5 and glass2. On these
datasets, G-mean is respectively improved by about 18.43%,
14.18%, 8.46%, 8.39% and 24.32% compared with ELM,
then F-score is respectively improved by about 11.53%,
8.24%, 8.23%, 7.83% and 19.35% compared with ELM.
The reason is that ELM is based on the assumption that the
size of each class is relatively balanced. Therefore, ELM has
the bias against the majority class and ignores the minority
class. From Tables 4 and 5, it can also be seen that G-
mean and F-score of EN-FWELM outperforms WELM1,
WELM2 and WELM. G-mean is respectively improved
by about 3.01%, 2.67% and 2.53% on average compared
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Table 2 Parameters setting

GEMS/KEEL Datasets ELM WELM1 WELM2 WELM FWELM EN-FWELM

L (C,L) (C,L) (C,L) (C,L) (C,L)

Leukemia2 650 (214,730) (214,680) (24,920) (234,690) (214,420)

SRBCT 760 (230,700) (242,820) (244,770) (210,880) (242,530)

DLBCL 830 (2−2,730) (20,910) (2−4,940) (2−16,720) (236,90)

Leukemia1 930 (26,900) (20,540) (216,800) (2−14,890) (2−16,130)

11 Tumors 600 (228,850) (26,680) (236,850) (220,540) (2−16,590)

Lung cancer 720 (20,740) (20,960) (2−2,690) (2−10,730) (218,130)

wine 20 (212,810) (212,220) (26,450) (24,240) (242,660)

new-thyroid 30 (24,50) (214,750) (214,640) (210,320) (230,490)

dermatology 100 (210,110) (28,360) (26,100) (20,740) (240,690)

glass2 430 (232,10) (238,30) (234,10) (28,110) (224,890)

ecoli-0-1-4-6 vs 5 60 (218,240) (216,890) (238,30) (218,50) (2−8,610)

shuttle-6 vs 2-3 30 (242,40) (244,20) (250,30) (236,10) (224,980)

Table 3 Performance results (Mean ± SD) in terms of Accuracy(%)

GEMS/KEEL Datasets ELM WELM1 WELM2 WELM FWELM EN-FWELM

Leukemia2 92.65 ± 5.59 94.41 ± 4.03 94.12 ± 3.67 94.71 ± 3.62 95.00 ± 3.68 97.65 ± 2.32

SRBCT 93.75 ± 4.75 94.00 ± 3.57 94.25 ± 3.34 94.50 ± 3.29 95.00 ± 3.54 98.00 ± 2.58

DLBCL 93.82 ± 3.78 95.29 ± 4.21 95.29 ± 3.45 95.88 ± 2.48 96.76 ± 2.58 98.82 ± 1.52

Leukemia1 91.76 ± 4.76 93.24 ± 4.17 93.82 ± 3.78 94.12 ± 3.10 94.41 ± 3.78 96.47 ± 2.70

11 Tumors 89.26 ± 3.68 90.56 ± 3.65 92.41 ± 3.54 92.59 ± 3.15 92.96 ± 3.00 95.37 ± 2.93

Lung cancer 84.33 ± 3.87 85.50 ± 2.94 81.83 ± 3.55 89.33 ± 3.26 91.50 ± 2.28 93.67 ± 2.19

wine 97.55 ± 2.19 98.11 ± 2.52 97.92 ± 1.65 98.87 ± 1.32 99.06 ± 1.33 99.43 ± 0.91

new-thyroid 90.92 ± 3.28 92.77 ± 3.41 94.92 ± 2.62 93.85 ± 3.16 95.69 ± 1.89 96.62 ± 1.59

dermatology 96.82 ± 1.50 97.64 ± 1.30 97.73 ± 1.23 98.09 ± 1.45 98.36 ± 1.03 99.09 ± 0.96

glass2 66.09 ± 7.55 75.31 ± 5.97 76.41 ± 5.91 76.72 ± 5.63 80.78 ± 3.30 85.00 ± 3.06

ecoli-0-1-4-6 vs 5 96.43 ± 1.68 96.90 ± 1.61 96.90 ± 1.35 96.79 ± 1.87 97.38 ± 1.84 98.21 ± 1.28

shuttle-6 vs 2-3 99.00 ± 1.51 99.29 ± 1.01 99.00 ± 1.18 99.57 ± 0.96 99.86 ± 0.45 99.86 ± 0.45

Table 4 Performance results (Mean ± SD) in terms of G-mean(%)

GEMS/KEEL Datasets ELM WELM1 WELM2 WELM FWELM EN-FWELM

Leukemia2 92.99 ± 5.64 94.32 ± 4.58 94.68 ± 3.56 95.15 ± 3.55 95.29 ± 3.52 97.82 ± 2.18

SRBCT 94.31 ± 4.62 95.36 ± 3.15 95.42 ± 2.78 95.31 ± 2.57 95.97 ± 2.81 98.24 ± 2.54

DLBCL 91.77 ± 5.38 95.87 ± 3.81 95.76 ± 3.50 95.16 ± 3.37 96.18 ± 3.26 97.67 ± 3.16

Leukemia1 91.57 ± 6.02 91.76 ± 5.78 91.81 ± 5.56 93.06 ± 5.02 93.33 ± 4.85 95.49 ± 3.75

11 Tumors 84.71 ± 5.15 85.87 ± 5.80 88.20 ± 5.67 88.84 ± 4.97 90.48 ± 5.58 93.17 ± 4.58

Lung cancer 65.19 ± 5.97 80.57 ± 3.70 80.43 ± 3.74 79.72 ± 4.26 80.81 ± 3.22 83.62 ± 2.75

wine 97.62 ± 2.22 98.57 ± 1.89 98.42 ± 1.26 99.03 ± 1.18 99.27 ± 1.05 99.56 ± 0.71

new-thyroid 79.50 ± 7.25 92.32 ± 4.47 93.29 ± 4.83 89.00 ± 5.37 90.77 ± 4.66 93.68 ± 3.78

dermatology 96.42 ± 2.11 97.34 ± 1.35 97.44 ± 1.44 98.10 ± 1.38 98.18 ± 1.38 99.03 ± 1.07

glass2 59.72 ± 12.13 78.55 ± 11.37 80.72 ± 7.13 81.76 ± 6.33 83.95 ± 5.31 84.04 ± 4.04

ecoli-0-1-4-6 vs 5 87.67 ± 6.97 93.30 ± 6.72 91.94 ± 6.36 93.67 ± 6.74 92.28 ± 6.26 96.06 ± 4.82

shuttle-6 vs 2-3 94.37 ± 11.56 97.66 ± 4.36 97.52 ± 4.30 98.51 ± 4.21 98.66 ± 4.24 99.26 ± 2.35
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Table 5 Performance results (Mean ± SD) in terms of F-score(%)

GEMS/KEEL Datasets ELM WELM1 WELM2 WELM FWELM EN-FWELM

Leukemia2 92.57 ± 5.51 94.07 ± 4.29 93.89 ± 4.08 94.48 ± 3.47 94.84 ± 3.74 97.72 ± 2.21

SRBCT 93.82 ± 4.72 94.27 ± 3.46 94.19 ± 3.14 94.40 ± 3.00 95.53 ± 3.17 97.88 ± 2.79

DLBCL 91.41 ± 5.64 94.30 ± 4.94 94.05 ± 4.29 94.45 ± 3.26 95.79 ± 3.23 98.26 ± 2.27

Leukemia1 90.69 ± 6.75 92.45 ± 5.53 92.82 ± 4.31 93.78 ± 3.88 94.00 ± 4.39 96.23 ± 2.84

11 Tumors 85.85 ± 4.17 87.62 ± 4.97 89.49 ± 4.19 90.07 ± 4.09 91.46 ± 4.32 94.08 ± 3.80

Lung cancer 74.10 ± 4.34 77.35 ± 3.90 75.54 ± 3.91 80.75 ± 3.64 83.54 ± 2.99 85.63 ± 2.65

wine 97.50 ± 2.11 98.07 ± 2.59 97.98 ± 1.59 98.80 ± 1.38 98.98 ± 1.38 99.50 ± 0.81

new-thyroid 86.09 ± 4.94 90.87 ± 4.39 92.67 ± 3.48 91.62 ± 4.21 93.78 ± 2.95 94.33 ± 2.70

dermatology 96.40 ± 1.75 97.31 ± 1.33 97.40 ± 1.34 98.00 ± 1.43 98.24 ± 1.19 99.03 ± 1.03

glass2 49.78 ± 7.97 59.72 ± 7.04 60.76 ± 6.25 61.38 ± 6.07 63.23 ± 5.82 69.13 ± 4.25

ecoli-0-1-4-6 vs 5 87.04 ± 6.31 90.11 ± 5.21 87.40 ± 5.74 89.17 ± 5.74 92.06 ± 5.15 94.87 ± 4.09

shuttle-6 vs 2-3 95.82 ± 7.23 96.99 ± 4.47 94.29 ± 7.14 98.17 ± 3.93 99.25 ± 2.38 99.58 ± 1.34

with WELM1, WELM2 andWELM. F-score is respectively
improved by about 4.43%, 4.65% and 3.43% on average
compared with WELM1, WELM2 and WELM. The reason
is that in this study FWELM is proposed by modifying
WELM, in which balance factor and fuzzy membership are
respectively presented. Balance factor is designed for each
sample to strengthen the relative impact of the minority
class, and fuzzy membership is designed for each sample
to improve generalization performance of ELM. On the
other hand, multiple FWELMs are trained and FWELMs
with high dissimilarity are retained to improve the stability
and classification performance of single FWELM. From the
results, it can be concluded that it can be better to ensemble
some base classifiers instead of all of base classifiers.

To further analyze the results, F-measure of each class on
all the datasets is shown in Fig. 1, and the abbreviation of
each class name is shown in x-axis to visualize the results
more clearly. F-score is the average result over F-measures
of each class on a dataset. From Fig. 1, we can see that
F-measure of hypo class on new-thyroid acquired by EN-
FWELM is worse than that acquired by some other variants.
The reason is that F-measures of some classes are improved
at the cost of relatively slight decrease in F-measures of
other classes. From Fig. 1, it can be concluded that EN-
FWELM can improve the classification accuracy of the
minority class on the multi-class imbalanced data.

Performance results in terms of Accuracy is shown
in Table 3. We can see that EN-FWELM obtains more

Table 6 Comparison (Mean ± SD) of training time(s)

GEMS/KEEL ELM WELM1 WELM2 WELM FWELM EN-FWELM

Datasets

Leukemia2 0.0041 ± 0.00005 0.0030 ± 0.0002 0.0028 ± 0.00001 0.0037 ± 0.00002 0.0028 ± 0.00002 0.0159 ± 0.0017

SRBCT 0.0032 ± 0.0002 0.0022 ± 0.00001 0.0025 ± 0.00006 0.0024 ± 0.0001 0.0029 ± 0.0005 0.0115 ± 0.0018

DLBCL 0.0025 ± 0.0001 0.0023 ± 0.0001 0.0029 ± 0.0002 0.0028 ± 0.00004 0.0023 ± 0.00008 0.0060 ± 0.0006

Leukemia1 0.0034 ± 0.00009 0.0026 ± 0.00004 0.0016 ± 0.00006 0.0024 ± 0.0001 0.0028 ± 0.0005 0.0076 ± 0.0007

11 Tumors 0.0056 ± 0.0002 0.0041 ± 0.0001 0.0034 ± 0.00008 0.0042 ± 0.0007 0.0026 ± 0.00007 0.0127 ± 0.0014

Lung cancer 0.0294 ± 0.0007 0.0075 ± 0.0007 0.0089 ± 0.0005 0.0070 ± 0.0001 0.0081 ± 0.0004 0.0659 ± 0.0058

wine 0.0005 ± 0.00005 0.0021 ± 0.0002 0.0010 ± 0.00002 0.0014 ± 0.0001 0.0010 ± 0.00002 0.0039 ± 0.0005

new-thyroid 0.0007 ± 0.00002 0.0015 ± 0.00002 0.0022 ± 0.00005 0.0020 ± 0.00005 0.0013 ± 0.00005 0.0032 ± 0.00009

dermatology 0.0033 ± 0.0002 0.0019 ± 0.0008 0.0029 ± 0.0002 0.0015 ± 0.0003 0.0036 ± 0.0005 0.0094 ± 0.0020

glass2 0.0051 ± 0.0005 0.0003 ± 0.00001 0.0004 ± 0.00004 0.0003 ± 0.00003 0.0009 ± 0.00003 0.0025 ± 0.0004

ecoli-0-1-4-6 vs 5 0.0015 ± 0.0002 0.0015 ± 0.00006 0.0025 ± 0.0003 0.0004 ± 0.00004 0.0007 ± 0.00008 0.0050 ± 0.0005

shuttle-6 vs 2-3 0.0007 ± 0.0001 0.0008 ± 0.0002 0.0004 ± 0.0002 0.0007 ± 0.0004 0.0004 ± 0.00002 0.0030 ± 0.00007
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Fig. 1 F-measure of each class on all the datasets by using different methods

than 90% classification accuracy on most of the datasets,
and improves significantly the classification accuracy. In
particularly, on glass2 dataset, sensitive to class imbalance,
Accuracy is improved by about 18.91%, 9.69% and 8.59%
compared with ELM, WELM1 and WELM2, respectively.
It illustrates that not only can EN-FWELM improve the

classification accuracy of the minority class but also
can maintain the classification accuracy of the majority
class. Moreover, EN-FWELM is applicable to not only
imbalanced data, but also relatively balanced data. The
standard deviation (SD) acquired by EN-FWELM is also
relatively much smaller than that acquired by other variants.

Fig. 2 Comparison of Performance results
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From the results, it can be concluded that generalization
performance of EN-FWELM outperforms other algorithms.

The computation cost of each method is evaluated by
measuring training time. Training time averaged over 10
runs of each method is shown in Table 6. From Table 6,
we can see that EN-FWELM learns multiple classifiers and
consumes more training time than other variants, which is
acceptable because the proposed EN-FWELM is based on
ELM algorithm and ELM is fast in learning speed.

4.4 Comparison with other ensemble learning
methods

To validate its effectiveness, EN-FWELM is also compared
against other ensemble learning methods, including V-ELM
[15], D-D-ELM, DF-D-ELM [19], AdaBoost, Boosting
[16], DE-WELM [17] and WELM-Ada [18]. Performance
results of above methods are shown in Fig. 2.

From Fig. 2, it can be seen that the classification
performance of EN-FWELM outperforms other ensemble
learning algorithms. Among these ensemble learning
algorithms, the classification performance of D-D-ELM and
DF-D-ELM based on the dissimilarity measure is better than
V-ELM, but the classification results of V-ELM, D-D-ELM
and DF-D-ELM are also relatively low. In particular, G-
mean is remarkably on the decrease on the datasets sensitive
to class imbalance, such as new-thyroid and glass2. The
reason is that they are based on ELM algorithm and are
more applicable to balanced data. Therefore, these methods

ignore the minority class and result in relatively decrease
in G-mean. In AdaBoost, multiple classifiers are trained
serially. The distribution weights of training samples reflect
their relative importance and the samples that are often
misclassified will obtain larger distribution weights than the
correctly classified samples. In Boosting, the distribution
weights of training samples are adjusted according to
the performance of the previous classifiers and updated
separately for samples coming from different classes. Based
on the distribution weights, they perform better than V-
ELM, D-D-ELM, and DF-D-ELM. But in some cases,
their G-mean is improved at the cost of relatively slight
decrease in Accuracy, for instance, Leukemia1 and ecoli-
0-1-4-6 vs 5. In DE-WELM, ensemble of WELMs based
onW1 weighted strategy with different activation functions
is constructed and DE is employed to optimize the weight
of each WELM. In WELM-Ada, W2 weighted strategy
is used as initial weight, then the fusion optimization of
weighted ELM and AdaBoost is constructed. Similarly, in
some cases, their G-mean is also improved at the cost
of relatively slight decrease in Accuracy, such as new-
thyroid and glass2. However, in all the cases, EN-FWELM
achieves the best Accuracy, G-mean, and F-score. The
reason is that samples distribution, samples number of each
class and the dissimilarity of classifiers are all taken into
account to strengthen the classification performance of EN-
FWELM. In addition, the results of Lung cancer are not
given, because SMCL class has only 6 samples and there is
always no sample in training-testing set.

Fig. 3 The box plot representation using different methods
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Table 7 Results of the paired t-test

Comparisons p-value

EN-FWELM vs ELM 0.00230

EN-FWELM vs WELM1 0.00063

EN-FWELM vs WELM2 0.00290

EN-FWELM vs WELM 0.00089

EN-FWELM vs FWELM 0.00040

EN-FWELM vs V-ELM 0.01890

EN-FWELM vs D-D-ELM 0.00200

EN-FWELM vs DF-D-ELM 0.00017

EN-FWELM vs AdaBoost 0.00066

EN-FWELM vs Boosting 0.00290

EN-FWELM vs DE-WELM 0.00130

EN-FWELM vs WELM-Ada 0.00004

Based on the above analysis, the box plot is used to show
G-mean results of different algorithms in Fig. 3. From the
results, it can be seen that dispersion degree of EN-FWELM
is relatively low, which indicates the robustness and stability
of the proposed model. Furthermore, statistical testing is
a meaningful way to study the difference between EN-
FWELM and other algorithms. In this study, the paired t-test
at a significance level of 0.05 is used to judge the difference
based on the classification accuracy. It illustrates that the
difference between two methods is significant if the p-value
is less than 0.05. In fact, the p-value results are shown in
Table 7. From Table 7, it can be seen that EN-FWELM
exists significant difference with other algorithms.

5 Conclusion

In this study, an effective method named EN-FWELM is
proposed to handle multi-class imbalance problem. The
core components of EN-FWELM are FWELM, ensemble
learning based on the dissimilarity and performance evalu-
ation. In FWELM, balance factor is devised in combination
with sample distribution and sample number associated with
class to alleviate the bias against performance caused by
imbalanced data, and fuzzy membership of sample is pro-
posed to eliminate classification error coming from noise
and outlier samples. Ensemble of FWELMs is used for mak-
ing classification results more stable and accurate. Then
some base FWELMs are removed based on dissimilarity
measure, and the remaining base FWELMs are integrated by
majority voting. Experiments are conducted on gene expres-
sion classification and real-world classification, and the
proposed EN-FWELM is compared against its variants and
other ensemble learning methods, respectively. It is proven
that EN-FWELM remarkably outperforms other approaches
in the literature, and it is applicable to not only imbalanced

data, but also relatively balanced data. The future work is
that the proposed method is to be evaluated in other medical
diagnosis areas.
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