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Abstract
Through the analysis of the biological wastewater treatment process (WWTP), a multiobjective optimal control strategy
is developed with the usage of energy consumption (EC) and effluent quality (EQ) as objectives to be optimized. To
effectively handle the multiobjective optimization problem (MOP) with complex Pareto-optimal front (POF), an adaptive
multiobjective evolutionary algorithm based on decomposition (AMOEA/D) is proposed in this paper. Since the efficiency
of the multiple reference points and two-phase optimization strategies in solving MOPs with complex POFs has been
proved. In the proposed AMOEA/D, an auto-switching strategy based on the aggregation function enhancement is designed
to automatically make the algorithm switch from the first phase to the second phase. Besides, an adaptive differential
evolution strategy is introduced into AMOEA/D to balance exploration and exploitation during the evolutionary process.
Finally, the dynamic optimization, intelligent decision and bottom tracking control of the set-points of the dissolved oxygen
and nitrate nitrogen in the WWTP are achieved via the combination of AMOEA/D with the self-organizing fuzzy neural
network approximator and the self-organizing fuzzy neural network controller. The international benchmark simulation
model No. 1 (BSM1) is utilized for experimental verification. Simulation results demonstrate that the proposed AMOEA/D
can effectively reduce the EC of the WWTP under the premise of ensuring effluent parameters to meet the effluent discharge
standards.

Keywords Wastewater treatment process · Multiobjective optimal control · MOEA/D · Two-phase optimization ·
Auto-switching · Adaptive differential evolution strategy

1 Introduction

The activated sludge process is one of the widely
used technologies in the wastewater treatment processes
(WWTPs) [1, 2]. In this method, activated sludge is formed
after a certain reaction time as a result of the propagation
of aerobic microorganisms via the continuous filling of
air into wastewater. Under the action of bio condensation,
adsorption and oxidation of the activated sludge organic
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pollutants are decomposed and then removed from the
wastewater [3]. To meet the effluent discharge standards
and reduce fines, wastewater treatment plants are typically
operated at the full load status. In this case, the dissolved
oxygen concentration (SO) in the aerobic zone and the
nitrate nitrogen level (SNO) in the anaerobic zone are
maintained at a high level through aeration and pumping [4].
However the operation of blowers and return sludge pumps
requires a large amount of energy supply, resulting in higher
operating costs. Besides, according to the biochemical
reaction mechanism in the WWTPs, only the appropriate
set-points of SO and SNO can ensure the smooth progress
of nitrification and denitrification [5]. Therefore, the set-
points of SO and SNO should be dynamically optimized
based on the actual operating conditions so as to reduce
energy consumption (EC) and effluent quality (EQ) as much
as possible. Note that EQ is utilized to represent fines which
are required to be paid due to the discharge of pollutants
into the receiving water bodies in the benchmark simulation
platform. To improve the treatment effect and reduce the
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running cost, it is imperative to develop an optimal control
strategy in the WWTPs.

With the characteristics of nonlinearity, time variation
and big lag, the control issues in the WWTPs have
been extensively investigated. For example, Wahab et al.
designed a multi-variable controller for SO and SNO by
tuning the parameters of PID controller in [6]. Song et
al. applied a robust PID controller to the tracking control
of SO in [7] and the results showed that the controller
could exhibit good robustness in the case of a model
mismatch. Furthermore, Holenda et al. proposed a model
predictive controller (MPC) for SO based on a third-order
simplified model of the WWTP in [8] and the results
indicated that MPC owns a remarkable performance under
the conditions of constant and variable concentrations of
SO . In [9], Belchior et al. investigated the application
of the adaptive fuzzy control (AFC) for SO in which
the consequent parameters of fuzzy rules are adaptively
adjusted by Lyapunov comprehensive analysis approach.
Qiao et al. introduced a self-organizing fuzzy neural
network controller for SO in [10]. For these controllers [6–
10], a group of fixed set-points which remains unchanged
in the control process is preset. Therefore, the above control
strategies could not meet the urgent need of wastewater
treatment plants for efficiency promotion, energy saving and
consumption reduction.

To effectively reduce EC in the WWTPs, the single-
objective optimal control (SOOC) strategy considering EC
as the only optimization objective and SO and SNO as the
main decision variables has been proposed [11–14]. For
example, Santin et al. presented a two-level hierarchical
control structure in [13]. In this method, an upper controller
was used to adjust the set-points of SO online and a
lower controller was designed to track the set-points. The
results showed that the proposed control strategy can
effectively reduce the operating cost. In [14], a genetic
algorithm was utilized to optimize EC so that EC can
be reduced by dynamically optimizing the set-points of
SO . However, these SOOC methods mainly focus on EC
and might easily cause effluent parameters to exceed the
standard, resulting in an increase of the total operating
cost. Thus, weight factor scheme, which can convert the
multiobjective optimization problem (MOP) into a single-
objective optimization problem (SOP), is introduced to
construct the loss function [15–17]. For example, a data-
driven optimal controller (DDAOC) based on the adaptive
dynamical programming was introduced to optimize the set-
points of SO and SNO in [16]. The results showed that the
proposed DDAOC can provide a reduction of 5.30% in EC.
In [17], a Hopfield neural network optimal controller based
on the Lagrange multiplier was designed to optimize the
set-points of SO and SNO . In [18], a set-point optimization
technique for WWTPs that is composed of dynamic real

time optimization and nonlinear model predictive control
(RTO-NMPC) was proposed. However, it is hard to obtain
a balance between EC and EQ for these methods [16–
18], since the determination of a suitable weight factor is
difficult.

Fortunately, multiobjective optimization algorithm can
overcome the shortcomings described above. Therefore,
the design of multiobjective optimal controllers for the
WWTPs has been extensively investigated [19–25]. In [20],
an interactive software designed based on nondominated
sorting genetic algorithm (NSGAII) called IND-NIMBUS,
was utilized to construct an optimal operation model for
the WWTP. In [21], NSGAII was adopted to establish a
multiobjective optimization model for greenhouse emission,
operating cost, and effluent contaminant concentration.
The results revealed that the improvement of water
quality and the decrease of operation cost can cause
the increase of greenhouse emission. In [22], a dynamic
multiobjective optimization algorithm was applied to
establish an optimization model for running cost and
wastewater treatment quality. The results demonstrated
that these two objectives have conflicting characteristics.
Furthermore, some other optimal controllers based on
NSGAII for the WWTPs could be found in [23–25].
Recently, an optimal controller based on adaptive fuzzy
neural network was developed to solve the problem of
high EC in WWTPs, and a good energy-saving effect was
achieved [26, 27]. From the analysis of the previous studies
[20–27], it is easy to find that the multiobjective optimal
controller can not only ensure that the effluent parameters
satisfy the standard, but also reduce EC and operation
cost effectively. However, there are still many challenges
for developing a suitable optimal controller to tackle the
multiple conflicting objectives. In addition, NSGAII has a
high computational cost, and the convergence, diversity and
coverage of the approximated optimal solutions should be
enhanced.

The multiobjective evolutionary algorithm based on
decomposition (MOEA/D) has been shown to be very effi-
cient in solving MOPs. In MOEA/D, a MOP is decomposed
into a number of scalar optimization subproblems and these
subproblems are optimized simultaneously in a collabora-
tive manner [28]. Decomposition mechanisms are utilized
to push the population to approach the Pareto-optimal front
(POF), while a set of uniformly distributed weight vectors
are applied to maintain the population diversity [29, 30]. In
addition, the concept of subproblem neighborhood, firstly
presented in MOEA/D, can improve the balance between
exploration and exploitation [31, 32]. However, recent
research indicated that MOEA/D can only tackle MOPs
with simple POFs, but cannot provide a good distribution for
MOPs with irregular POFs. Due to the nonlinearity, big lag
and strong interference, the MOPs in the WWTPs may have
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complex POFs, such as discontinuity, long tail and/or sharp
peak, which could significantly degrade the performance of
MOEA/D.

To improve the capability of MOEA/D in addressing
MOPs with complex POFs, different approaches have been
proposed in recent studies. In [33], Qi et al. proposed an
adaptive weight adjustment (AWA) strategy for MOEA/D
(MOEA/D-AWA). In MOEA/D-AWA, the AWA strategy is
adopted to regularly adjust the distribution of the weight
vectors. In [34], Yang et al. investigated the influence of
the penalty factor θ in the penalty boundary intersection
(PBI) decomposition method on the performance of
MOEA/D, thus proposing an MOEA/D with an adaptive
penalty scheme (MOEA/D-APS). In [35], Jiang and Yang
introduced a kind of MOEA/D with a two-phase strategy
and a new niche scheme (MOEA/D-TPN), aiming to find
more boundary solutions for complex MOPs. In MOEA/D-
TPN, the evolution process is divided into two phases. In
the first phase, the ideal point is adopted as the reference
point in Tchebycheff decomposition method. In the second
phase, the nadir point is utilized as the reference point.
When the generations reach a certain number, the algorithm
can determine whether or not to execute the second phase
based on the crowdedness. In [36], Wang et al. proposed
a MOEA/D with multiple reference points (MOEA/D-
MR), in which the ideal point and reference point are
simultaneously utilized to optimize the subproblems. In
[37], Ho-Huu et al. presented an improved MOEA/D
(iMOEA/D), in which all the weight vectors are divided into
odd and even weight vectors firstly, and then subproblems
are optimized by using a two-phase strategy. Simulation
results demonstrated the effectiveness of these methods on
benchmark testing. However, it is still difficult to apply
them to practical engineering. For example, the number
of iterations for the first phase still needs to be set
by experience in MOEA/D-TPN and tri-objective MOPs
cannot be addressed by iMOEA/D

Furthermore, Li and Zhang pointed out that the simulated
binary crossover (SBX) operator applied in MOEA/D
often generates inferior solutions in [38]. Therefore, they
proposed a well-known MOEA/D with a differential
evolution (DE) operator, called MOEAD-DE. Considering
the defects of a single DE operator, Li et al. applied
four DE operators to form an operator pool and designed
a bandit-based adaptive operator selection strategy which
significantly improved the performance of the MOEA/D
[39]. The DE operator pool strategy was also utilized in
[40, 41] and [42]. These promising results encourage us to
design a suitable operator selection strategy to enhance the
proposed improved MOEA/D.

In this paper, to effectively address the MOPs in the
WWTPs an adaptive MOEA/D algorithm (AMOEA/D)
is proposed. In AMOEA/D, the advantages of multiple

reference points and two-phase optimization in MOEA/D-
TPN are still retained. To overcome the shortcomings
of iteration setting for the first phase by experience, an
auto-switching scheme which could automatically switch
the algorithm to the second phase is designed based on
the aggregation function enhancement (AFE). In addition,
an adaptive operator selection (AOS) scheme, which
can select appropriate DE operator online, is developed
based on the solution replacement rate. Furthermore, a
hybrid multiobjective optimal control (HMOOC) strategy is
designed to reduce EC without violating effluent standards.
First, a self-organizing fuzzy neural network approximator
developed in the previous study [43, 44] is utilized to
establish the objective functions of EC and EQ, according
to the analysis of the control variables and optimization
objectives. Second, the proposed AMOEA/D in this study
is adopted to dynamically optimize the set-points of SO and
SNO . Then, an intelligent decision-making system based on
the fuzzy membership function method is applied to select
the preferred solution as the optimized set-points of the
current optimization cycle. Third, a self-organizing fuzzy
neural network controller designed in the previous study
[45] is used to track the optimal set-points. Finally, the
international benchmark simulation model No.1 (BSM1)
is introduced to validate the effectiveness of the proposed
AMOEA/D-based HMOOC strategy.

The rest of this paper is organized as follows. Section 2
introduces the MOP in the WWTP. In Section 3, the
proposed AMOEA/D is described in detail. Section 4
presents the HMOOC strategy for WWTP. Experimental
studies for AMOEA/D on benchmark test instances and
WWTP are presented in Sections 5 and 6, respectively.
Finally, Section 7 concludes this paper.

2MOP in theWWTP

2.1 BSM1

WWTP is a large nonlinear dynamic systems subject to
large perturbations in influent flow rate and pollutant load,
together with uncertainties concerning the composition of
the incoming wastewater. To evaluate the possible control
strategies, a benchmark was proposed by the Working
Groups of COST Action 682 and 624-BSM1 [46]. The
general overview of the BSM1 plant is depicted in Fig. 1,
where the plant is composed of the biological reactor and
the secondary settler. The biological reactor consists of
five tanks connected in cascade. Tanks 1 and 2 are non-
aerated but fully mixed with volume equal to 1000 m3

each. Tanks 3, 4 and 5 are aerated and their volumes are
approximately equal to 1333 m3 each. The activated sludge
model No.1 (ASM1) is selected to describe the biological
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Fig. 1 General overview of the BSM1 plant

phenomena taking place in the biological reactor. In BSM1,
there are two control loops, namely the SO and SNO control
loops. The first control loop tunes the dissolved oxygen
concentration in the fifth tank SO,5 by manipulating the
oxygen transfer coefficient KLa5, and the second one tunes
the nitrate nitrogen level in the second tank SNO,2 by
manipulating the internal recirculation flow rate Qa .

The general equations for mass balancing in BSM1 are
as follows [46]:

For unit 1(k =1):
dZ1

dt
= 1

V1
(QaZa + QrZr + Q0Z0 + r1V1 − Q1Z1) (1)

Q1 = Qa + Qr + Q0 (2)

where Qa , Qr , Q, and Q1 are, respectively, the internal
recirculation flow rate, the external recirculation flow rate,
the influent flow rate, and the flow rate in unit 1; Za , Zr ,
Z0, and Z1 are, respectively, the component concentration
of the internal recirculation, the external recirculation, the
influent, and unit 1; r1 is the component reaction rate in unit
1 and V1 is the volume of unit 1.

For unit 2-5 (k =2-5):

dZk

dt
= 1

Vk

(Qk−1Zk−1 + rkVk − QkZk) (3)

Qk = Qk−1 (4)

Fig. 2 The influent and SS , XB,H , SNH concentrations in three working conditions
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where Qk , Zk , and rk are, respectively, the flow rate, the
component concentration, and the component reaction rate
in unit k. Vk is the volume of the kth unit.

In BSM1, three influent files, including dry weather, rain
weather, and storm weather, are generated from a practical
wastewater treatment plant. The data sampling interval is
15 min [46]. The plots of the influent flow rates and
the influent SS , XBH and SNH concentrations under three
different weather situations are presented in Fig. 2, which
can indicate the characteristics of strong nonlinearity, severe
uncertainty and strong coupling in the WWTP [46, 47].

2.2 MOP in theWWTP

The aim of multiobjective optimal control is to achieve the
best balance between EC and EQ by dynamically adjusting
the set-points of SO,5 and SNO,2. In the WWTP, the set-
points of SO,5 and SNO,2 not only affect EC but also show
a close relationship with EQ. In this study, the proposed
AMOEA/D is utilized to address these two conflicting
objectives simultaneously.

Since the aeration energy consumption (AE) and the
pump energy consumption (PE) account for more than 70%
of the total energy consumption, the optimization objective
EC is defined as the sum of AE and PE [24], as follows:

EC = AE + PE (5)

As defined in BSM1, AE and PE can be calculated as [46]

AE = SO,sat

T · 1.8 · 1000

∫ (k+1)T

kT

5∑
i=1

Vi · KLai(t)dt (6)

PE = 1

T · 1000

∫ (k+1)T

kT

(4Qa(t) + 8Qr(t) + 50Qw(t))dt

(7)

where Vi and KLai are the volume and oxygen transfer
coefficient of the ith unit, respectively. SO,sat is the
saturation concentration for oxygen. T is the optimal cycle.
Qa , Qr , and Qw are, respectively, the internal recirculation
flow rate, the external recirculation flow rate, and the sludge
flow rate.

Moreover, EQ is defined as

EQ = 1

T · 1000

∫ tf

t0

⎛
⎝ 2 · SSe(t) + CODe(t)

+3 · SNKj,e(t) + 10 · SNO,e(t)

+2 · BOD5,e(t)

⎞
⎠ Qe(t)dt

(8)

where SSe, CODe, SNKj,e, SNO,e, and BOD5,e are,
respectively, the effluent concentrations of suspended
solid, chemical oxygen demand, Kjeldahl nitrogen, nitrate
nitrogen, and biochemical oxygen demand of 5 days; Qe is
the effluent flow rate.

The constraint condition of the MOP is the standard
values of five kinds of effluent parameters given in BSM1,
as follows [46]:

SNH,e ≤ 4mg/l,Ntot,e ≤ 18mg/l,

BOD5,e ≤ 10mg/l, CODe ≤ 100mg/l,

SSe ≤ 30mg/l

(9)

where Ntot,e is the effluent total nitrogen which is the sum
of SNO,e and SNKj,e.

To sum up, the MOP is described as follows:

minimize F(x) = (fEC(x), fEQ(x))T

subject to gj (x) = fj (x) − cj ≤ 0, j = 1, 2, ..., 5
xl
i ≤ xi ≤ xu

i , i = 1, 2, ..., 5
(10)

where x = (x1, x2, x3, x4, x5)
T = [Qw, KLa3, KLa4, SO,5,

SNO,2]T is the decision vector, gj (x)≤0 are inequality
constraints, fj (x) represents the relationship between the
j th effluent parameter and the decision vector, xu i and xl i
are the upper and lower limits of the ith decision variable.

3 The AMOEA/D algorithm

This section first provides some background knowledge,
including the basic definition of constrained multiobjec-
tive optimization problem (CMOP) and the Tchebycheff
decomposition method. Then, the advantages of multiple
reference points and multiple DE operators are described.
Furthermore, the AOS-based adaptive DE strategy and the
auto-switching-based adaptive two-phase strategy are intro-
duced. Finally, the procedure of the proposed AMOEA/D is
given.

3.1 Background

3.1.1 Constrainedmultiobjective optimization problem

Without loss of generality, this paper considers the
following CMOP [48]:

minimize F(x) = (f1(x), f2(x), ..., fm(x))T

subject to gj (x) ≤ 0, j = 1, ..., J
hk(x) = 0, k = 1, ..., K

(11)

where x= (x1,...,xn)
T ∈ � is a decision variable vector,

� is the feasible search region, F: � → Rm consists
of m real-valued objective functions, Rm is the objective
space, gj (x)≤0 are inequality constraints, and hk(x)=0 are
equality constraints.
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3.1.2 The Tchebycheff decomposition method

The decomposition method used in the MOEA/D is the
Tchebycheff method. In this method, the scalar objective
optimization problem is in the form

minimize gte(x |w , z∗) = max
1≤j≤m

{wi |fj (x) − z∗
j |}

subject to x ∈ �
(12)

where w= (w1,...,wm)T is a weight vector, i.e., λj ≥ 0
for all j =1,...,m and

∑m
j=1 wj = 1. z∗ = (z∗

1,...,z∗
m) is

the ideal point in the objective space, i.e., z∗
j =min{fj (x)|

x∈ �} for each j =1,...,m. Since z∗ is generally unknown
before searching, z∗

j can be replaced by fj (x) with the
smallest value during the searching process [28].

3.2 Multiple reference points andmultiple
DE operators

3.2.1 Multiple reference points

Figure 3 shows the distribution of optimal solutions over
a POF by using the ideal point z∗ and the nadir point
znad . It is clear from Fig. 3 that, for a convex MOP, the
optimal solutions would converge to the middle region
of the POF, if z∗ is used as the reference point. On the
contrary, in the case of using znad as the reference point,

more boundary optimal solutions would be obtained. In
addition, for a concave MOP, uniformly distributed optimal
solutions can be obtained by using z∗ as the reference point.
Otherwise, the optimal solutions would converge to the
middle region of the POF, if znad is utilized as the reference
point. Considering the complementarity of z∗ and znad , a
two-phase strategy was proposed in [35], and a multiple
reference points strategy was introduced in [36].

As demonstrated in [35] and [36], the scalar optimization
problem using znad as reference point can be formed as

maxmize gte(x |w , znad)= min
1≤j≤m

{wj |znad
j −fj (x)|}

subject to x ∈ �
(13)

where znad = (znad
1 ,...,znad

m ) is the nadir point generated
from the worst objective values of the obtained POF, i.e.,
znad
j =max{fj (x)|x∈ �x} for each j =1,...,m.

3.2.2 Multiple DE operators

Due to different DE operators showing different search char-
acteristics, the performance of MOEA/D could be improved
through effective combination of them during the evolution
process [39]. In this paper, three well-known DE operators
(i.e., rand/1/bin, rand/2/bin and rand/1/bin˜, respectively
named DE1, DE2, and DE3) with fixed parameters settings
are utilized [41]. Their expressions are as follows:

DE1 : ui
j =

{
x

r1
j + F × (x

r2
j − x

r3
j ) + F × (x

r4
j − x

r5
j ) if rand < CR

xi
j otherwise

, with CR = 0.9 and F = 0.7 (14)

DE2 : ui
j =

{
x

r1
j + F × (x

r2
j − x

r3
j ) if rand < CR

xi
j otherwise

, with CR = 0.5 and F = 0.5 (15)

DE3 : ui
j =

{
xi
j + F × (x

r1
j − x

r2
j ) if rand < CR

xi
j otherwise

, with CR = 0.1 and F = 0.5 (16)

where ui
j is the j th dimension of the ith trial solution, xi

j

is the j th dimension of the ith parent solution, rand is a
random number generated from [0,1], CR is the crossover
rate, F is the scaling factor, and r1, r2, r3, r4, and r5

are five distinct individuals randomly selected from parent
population.

For these three DE operators, the parent solutions of DE1

and DE2 are randomly selected from the population. Thus,
they have a strong exploration ability and are suitable for the

early evolution stage. Compared with DE2, DE1 with two
random vectors, which could generate larger disturbances,
has stronger capability to jump out of local POF, and is
suitable for MOPs with complicated POFs. Furthermore,
DE3 could improve local search ability since it can inherit
much information from its parent.

In addition, the setting of control parameters CR and F

also significantly influences the performance of DE. A large
value of CR shows that the offspring solution could inherit
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Fig. 3 Pareto optimal solutions
obtained by using z∗ and znad
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a mutant gene from the parent with a large probability,
improving the search ability around the target vector.
Conversely, a small value of CR indicates that the offspring
solution could inherit original gene from the parent with a
high probability, increasing the exploitation ability around
the target vector. For parameter F , a large value of F could
increase the search step size, expand the search scope, and
improve the population diversity. By contrast, a small value
of F could enhance the exploitation ability around the target
vector, and then improve the population convergence [41].

3.3 The AMOEA/D algorithm

The proposed AMOEA/D is developed based on MOEA/D-
DE [38], which is a well-known improved version of
MOEA/D. The flowchart of two-phase optimization with
multiple adaptive strategies is first presented. Then, the
initialization, AOS-based reproduction operation, constraint
handling technique, replacement operation, and auto-
switching scheme are briefly introduced. Finally, the
pseudo-code of the proposed AMOEA/D is given.

The first 
phase

Operators 
Pool

Auto 
switching 
strategy

The second 
phase

z
*reference 

point

Adaptive 
operator 
selection

z
nadreference 

point

Operators 
Pool

Adaptive 
operator 
selection

Archive 
maintenance

Fig. 4 The flowchart of two-phase optimization with multiple adaptive strategies
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Figure 4 shows the flowchart of two-phase optimization
with multiple adaptive strategies. Since the concavity-
convexity of an MOP is unknown in advance, z∗ is first
utilized as the reference point in the first phase. At each
iteration, a suitable DE operator selected by the AOS
scheme is adopted to produce the offspring solutions. The
algorithm runs until the auto-switching scheme detects that
it is in a stagnation state, and then automatically switches to
the second phase. At the end of the first phase, the obtained
optimal solutions are saved to the external archive EA1. In
the second phase, the reference point znad is derived from
the maximum values of the objective functions at the end
of the first phase. Once the preset maximum number of
iteration is reached, the algorithm stops and the obtained
optimal solutions in the second phase are saved to the
external archive EA2. Finally, the nondominated solutions
are identified from EA1 and EA2 by external archive
maintenance algorithm.

3.3.1 Initialization

In MOEA/D, the initialization operation mainly includes the
initialization of population and weight vectors. Since we
have no prior knowledge about the position of the POS, the
initial population is randomly generated from the decision
space. During evolution, the optimization of each sub-
problem is completed by evolutionary operation between
the subproblem and subproblems in its neighborhood. The
relationship of adjacent subproblems is determined by the
distance between weight vectors associated with subprob-
lems. To a certain extent, the uniform distribution of weight
vectors can improve the uniformity of the approximated
POF obtained by the algorithm. MOEA/D adopts the sim-
plex lattice design method, proposed by Scheff in 1958, to
set weight vectors, as follows:

wi
j ∈

{
0

H
,

1

H
,

2

H
, ...,

H

H

}
(17)

∑m

j=1
wi

j = 1 (18)

where each subproblem i(i =1,2,...,N) corresponds to a
weight vector wi = (wi

1w
i
2,...,wi

m), wi
j ≥0, j =1,2,...,m,

the weight vector set is W =(w1, w2,...,wN), where N =
Cm−1

H+m−1 is the total number of weight vectors [29]. In
MOEA/D, a neighborhood of weight vector wi is defined as
a set of its several closest weight vectors in {w1, w2,...,wN }.
The neighborhood of the ith subproblem consists of all the
subproblems with the weight vectors from the neighborhood
of wi . In initialization, we need to compute the Euclidean
distances between any two weight vectors and then work out
the T closet weight vectors to each weight vector [28]. For

each i =1, 2,...,N , set B(i) ={i1, i2,...,iT }, where i1, i2,...,iT
are the T closest weight vectors to wi . The pseudo-code of
initialization is given in Algorithm 1. It is worth noting that
the weight vectors need to be reinitialized at the beginning
of the second phase, as described in [35].

3.3.2 AOS-based reproduction operation

In MOEA/D-DE, to maintain the population diversity,
the maximum number of parent solutions replaced by
an offspring solution is bounded by nr . In [38], the
recommended setting of nr is 2. Let np be the maximum
number of parent solutions replaced by an offspring
solutions for all subproblems at each iteration, the parent
solution updating rate at the t th iteration is defined as

SRR(t) = np

np,max − np,min
(19)

where np,max is the maximum of np (np,max = 2 × N), and
np,min is the minimum of np (np,min = 0 × N). A large
value of np indicates that the algorithm is in diversity status,
and it is advisable to select DE1 with large probability p1

to strengthen the global exploration ability. A small value
of np shows that the algorithm is in convergence status,
and DE3 operator should be applied with a large probability
p3 to enhance the local exploitation capability. For median
np, DE2 operator should be utilized to balance exploration
and exploitation. Therefore, as the number of np decreases,
p3 should decrease while p1 increase. In this paper, the
expressions of p1 and p3 can be defined as follows:

p1(t) = 0.9 × 1.0

1 + exp(−20 × (SRR(t) − 0.35))
(20)

p3(t) = 0.9 × 1.0

1 + exp(20 × (SRR(t) − 0.2))
(21)
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Fig. 5 The relationship and
dynamic trend of p1, p3 and
SRR on F1

Figure 5a shows the relationship between p1, p3 and SRR.
Figure 5b shows the dynamic trend of p1, p3 and SRR on F1
test instance. As seen from Fig. 5, in the initial evolution of
the first phase np is large, and the DE1 operator is selected
with a large probability to enhance the population diversity.
With the operation of the first phase, np decreases, and the
DE3 operator is selected with a large probability to improve
the local search capability. The same phenomenon could be
observed in the second phase. And the pseudo-code of the
AOS scheme is presented in Algorithm 2.

After the operation of the DE operator, AMOEA/D also
needs to perform the mutation operator. For simplicity,
the polynomial mutation operator [29, 38] is applied in
AMOEA/D, as follows:

x′i
j =

{
ui

j + σj × (bj − aj ) if rand < pm

ui
j otherwise

(22)

σj =
{

(2 × rand)
1

η+1 − 1 if rand < 0.5

1 − (2 − 2 × rand)
1

η+1 otherwise
(23)

where j ∈{1,2,...,n} , rand∈[0,1], pm is the mutation
probability, η is the distribution index, aj and bj are
the lower and upper bounds of the j th decision variable,
respectively. To maintain the population diversity in
AMOEA/D, five parent solutions are selected from the
whole population with a low probability 1-δ. In such a way,
a very wide range of child solutions could be generated due
to the dissimilarity among these parent solutions. Therefore,
the exploration ability of the search could be enhanced.
The pseudo-code of reproduction operation with the AOS
scheme is given in Algorithm 3.

3.3.3 Replacement operation with constraint handling
technique

When performing replacement operation, the processing of
constraint conditions should be taken into consideration.
In this paper, the constraint handing technique introduced
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in [48] is utilized. For infeasible solution x its constraint
violation can be defined as

cv(x) =
J∑

j=1

max(gj (x), 0)+
K∑

j=J+1

max(
∣∣hj (x)

∣∣ − δ, 0) (24)

For parent solution x and offspring solution x′, x is
substituted by x′ if one of the following conditions is met:
(1) Both x′ and x are feasible solutions, and the aggregation
function value of x′ is smaller than that of x; (2) x′ is
a feasible solution, and x is in the infeasible region; (3)
Both x′ and x are in the infeasible region, and the cv(x′)
is smaller than cv(x). The pseudo-code of the replacement
operation with constraint handling technique is presented
in Algorithm 4. It should be noted that the condition of
g(x′|wj z∗) ≤ g(xj |wjz∗) in the first phase should be
changed as g(x′|wj znad) ≥ g(xj |wj znad) in the second
phase.

3.3.4 Auto-switching scheme

In [35], a fixed number of iterations is needed to be set
in advance for phase switching resulting in an unequal
distribution of computing resources. In this paper, an auto-
switching scheme is designed based on the aggregation
function enhancement (AFE). According to (12), MOEA/D
approaches POF by minimizing the aggregation function

values of all the subproblems. If the value of the aggregation
function of all subproblems could not be improved, it shows
that the algorithm has found real POF or is in the stagnation
status. At this point, the algorithm should be switched to
the second phase from the first phase. The value of AFE
for the ith subproblem at the t th iteration is calculated as
below:

AFEi(t) = gte(wi, t) − gte(wi, t − 1) (25)

where gte(wi, t) and gte(wi, t − 1) are the aggregation
function values of the ith subproblem at the t th and (t-1)th
iterations, respectively. Let the maximum of AFE for all
subproblems at the t th iteration be

AFEmax(t) = max
1≤i≤N

AFEi(t) (26)

Let varAFE be the variance of the vector of [AFEmax(t −
γ +1), AFEmax(t −γ +2), ..., AFEmax(t)], if varAFE ≤ ε,
the algorithm switches from the first phase to the second
phase, where ε is a predefined stopping threshold. In the
experiments, the value of ε is selected as ε = 10−6 by
trial-and-error.

3.3.5 The procedure of the AMOEA/D algorithm

The pseudo-code of the proposed AMOEA/D is provided in
Algorithm 5. At the beginning of AMOEA/D some related
parameters (i.e. N , maxIteration, p1, p3, r , and flag) are
initialized in line 1. Then, in line 2, the weight vectors W

and population P are generated according to Algorithm 1.
From line 3 to line 34, the algorithm enters the major circle
until the maximum number of iteration is reached and then
the algorithm stops. From line 5 to line 20, the algorithm
performs the first phase. From line 13 to line 19, the autos-
witching scheme is run to determine whether to switch to
the second phase. From line 21 to line 33, the algorithm
executes the second phase. Besides, it is vital to note that
the algorithm needs to store the nondominated solutions
obtained in the first phase to the external archive EA1, reset
the reference point with znad, reinitialize the weight vectors
and recalculate the neighborhood relationship from line 21
to line 24. In line 35, the algorithm needs to save the non-
dominated solutions acquired in the second phase to the
external archive EA2 at the end of the second phase. Finally,
in line 36, a certain number of non-dominated solutions with
good diversity are identified from EA1 and EA2 by using
the external archive maintenance algorithm with dynamic
crowding distance method [49].
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z

3.4 Computational cost of one generation
of AMOEA/D

In this section, let us consider the computational cost
of AMOEA/D in one generation. AMOEA/D has the
same framework as MOEA/D-DE [38], thus the increased
computation cost is attributed to its detection step for
the auto-switching strategy and calculation of the parent
solution updating rate for adaptive DE strategy. The
calculation of the AFEmax value (line 13 in Algorithm
5) requires O(mN) computations. The calculation of
the variance varAFE has a smaller computational cost.
Therefore, the overall complexity of detection step is
O(mN). Consider the adaptive operator selection presented
in Algorithm 2, the calculation of the parent solution
updating rate (line 2 in Algorithm 2) costs O(N)

computations. At last, the reinitialization of the weight
vectors and the recalculation of the neighborhood (line 24
in Algorithm 5) require O(mN) and O(mNT) computations,
respectively. However, these two operations only need to
be run once during the entire evolutionary process. In
summary, the computational cost of AMOEA/D in each
generation is O(mN).

4Multiobjective optimal control based
on AMOEA/D

By analyzing the (5)–(8), it can be found that EC
and EQ have no explicit mathematical relationship with
the five decision variables, particularly with SO,5 and
SNO,2. Furthermore, the critical effluent quality parameters
forming the constraint condition cannot be measured online.
Therefore, the HMOOC strategy is proposed for the WWTP.
First, a data-driven-based modeling approach is utilized to
establish the accurate soft-computing models for EC, EQ
and effluent quality parameters as optimization objectives
and constraints. Second, the proposed AMOEA/D, utilizing
multiple DE operators with AOS scheme and two-phase
optimization with auto-switching scheme, is applied to
dynamically optimize SO,5 and SNO,2 by minimizing the
established objectives. Furthermore, an intelligent decision
system is developed to select a preferred solution from
the obtained POS as an optimized set-points. Finally,
the multivariable controller, employing the self-organizing
fuzzy neural network, is adopted to track the optimized set-
points. And the overall structure of the HMOOC for the
WWTP is shown in Fig. 6.

The overall process of the HMOOC for the WWTP is
described as follows:
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Fig. 6 Architecture of HMOOC for the WWTP

Step 1: The optimization objectives are established using
the SOFNN-based prediction models with the
process data in BSM1. The inputs of the models
are the five decision variables and influent quality
parameters. And the outputs of the models are the
EC, EQ and effluent parameters.

fk(x) =
u∑

j=1

wjkϕj =

u∑
j=1

[
wjk exp

(
− ‖x−cj ‖2

δ2
j

)]

u∑
j=1

exp

(
−‖X−cj ‖2

δ2
j

) (27)

where x=[x1x2,...,xn]T is the input vector of
SOFNN, n is the number of input variables,
cj =[c1j c2j ,...,cnj ] and δj =[δ1j δ2j ,...,δnj ] are

the center vector and width vector of the j th
rule neuron, respectively ϕj is the normalized
output of the j th rule neuron, wjk is the weight
coefficient between the j th rule neuron and the
kth output neuron j =1,2,...,uu is the number of
rule neurons, and k =1,2,...,ss is the number of
output variables. In SOFNN, the network structure
is dynamically adjusted by a self-organizing
mechanism designed based on the singular value
decomposition method. Meanwhile, the network
parameters are optimized by an adaptive learning
algorithm developed based on the improved
Levenberg-Marquardt (LM) optimization method
[43, 44].
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Step 2: The optimization objectives are minimized by
using the proposed AMOEA/D to obtain a set of
Pareto optimal solutions.

Step 3: The intelligent decision system designed by the
fuzzy membership function approach is utilized to
select a preferred solution from the Pareto solution
set. Then, the optimal set-points of SO,5 and SNO,2

in the current optimal cycle could be determined.

For the ith objective function fi , the satisfaction
of nondominated solution f (xk) is defined as
follows:

μk
i =

⎧⎪⎨
⎪⎩

1, fi(xk) ≤ f min
i

f max
i −fi(xk)

f max
i −f min

i

, f min
i < fi(xk)< f max

i

0, fi(xk) ≥ f max
i

(28)

Table 1 Test instances F1 - F6

Instance Description Domain Number of variables Notes

F1 f1(x) = (1 + g(x))x1 xi ∈ [0,1] 1 ≤ i ≤ n 20 Unimodal convex

f2(x) = (1 + g(x))(1 − √
x1)

3

g(x) = 2 sin(0.5πx1)(n − 1 + ∑n
i=2 (y2

i − cos(2πyi)))

where yi=2:n = xi − sin(0.5πxi)

POF:f2 = (1 − √
f1)

3

POS:xi = sin(0.5πxi), i = 2, . . . , n

F2 f1(x) = (1 + g(x))x1 xi ∈ [0,1] 1 ≤ i ≤ n 20 Unimodal concave

f2(x) = (1 + g(x))

√
1 − x5

1

g(x) = 2 sin(0.5πx1)(n − 1 + ∑n
i=2 (y2

i − cos(2πyi)))

where yi=2:n = xi − sin(0.5πxi)

POF:f2 =
√

1 − f 5
1

POS:xi = sin(0.5πxi), i = 2, . . . , n

F3 f1(x) = (1 + g(x))x1 xi ∈ [0,1] 1 ≤ i ≤ n 20 Multimodal disconnected

f2(x) = 1
2 (1 + g(x))(1 − x0.1

1 + (1 − √
x1)

2 cos2(3πx1))

g(x) = 2 sin(0.5πx1)(n − 1 + ∑n
i=2 (y2

i − cos(2πyi)))

where yi=2:n = xi − sin(0.5πxi)

POF:f2 = 1
2 (1 − f 0.1

1 + (1 − √
f1)

2 cos2(3πf1))

POS:xi = sin(0.5πxi), i = 2, . . . , n

F4 f1(x) = (1 + g(x))(x1 + 0.05 sin(6πx1))
2 xi ∈ [0,1] 1 ≤ i ≤ n 20 Multimodal mixed

f2(x) = (1 + g(x))(1 − x1 + 0.05 sin(6πx1))
2

g(x) = 2 sin(0.5πx1)(n − 1 + ∑n
i=2 (y2

i − cos(2πyi)))

where yi=2:n = xi − sin(0.5πxi)

POF:f 0.5
1 + f 0.5

2 = 1 + 0.1 sin(3π(f 0.5
1 − f 0.5

2 + 1))

POS:xi = sin(0.5πxi), i = 2, . . . , n

F5 f1(x) = (1 + g(x))(x1 + 0.05 sin(6πx1))
0.2 xi ∈ [0,1] 1 ≤ i ≤ n 20 Multimodal mixed

f2(x) = (1 + g(x))(1 − x1 + 0.05 sin(6πx1))
10

g(x) = 2 sin(0.5πx1)(n − 1 + ∑n
i=2 (y2

i − cos(2πyi)))

where yi=2:n = xi − sin(0.5πxi)

POF:f 5
1 + f 0.1

2 = 1 + 0.1 sin(3π(f 5
1 − f 0.1

2 + 1))

POS:xi = sin(0.5πxi), i = 2, . . . , n

F6 f1(x) = ((1 + g(x)) cos(0.5πx1) cos(0.5πx2))
4 xi ∈ [0,1] 1 ≤ i ≤ n 20 Unimodal convex

f2(x) = ((1 + g(x)) cos(0.5πx1) sin(0.5πx2))
4

f3(x) = ((1 + g(x)) sin(0.5πx1))
2

g(x) = ∑n
i=3 (xi − 0.5)2

POF:
√

f1 + √
f2 + f3 = 1

POS:xi = 0.5, i = 3, . . . , n



Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D 1111

where f max
i and f min

i are the maximum and mini-
mum of the ith objective function fi respectively.
The normalized satisfaction of f (xk) is as follows:

μk =
∑m

i=1 μk
i∑|S|

k=1

∑m
i=1 μk

i

(29)

where m is the number of objectives and |S|is
the number of elements in POS obtained. In this
study, the solution with the maximum value of μk

is selected by the intelligent decision system as the
preferred solution.

Step 4: The optimal set-points of SO,5 and SNO,2 is
tracked by the intelligent multivariable controller,
which is designed using self-organizing fuzzy
neural network [45]. The SOFNN controller
displaying high steady-state accuracy and strong
self-adaptability under complex conditions, can
meet the needs of the bottom control loops. If the
continuous 14-days data simulation is completed
in BSM1, then stop. Otherwise, go to Step 1 for
the next optimal cycle.

5 Benchmark problems testing

5.1 Test instances

To verify the validity of the proposed AMOEA/D algorithm,
twelve unconstrained MOPs with complex POFs are used
for testing. Table 1 gives the detailed description of the first
six test instances (F1-F6) which were designed in [34] and
Table 2 presents the detailed description of the remaining
test instances (F7-F12) which were respectively adopted in
[35] and [36].

5.2 Parameter settings

In this paper, the proposed AMOEA/D is compared
with four state-of-the-art decomposition-based MOEAs,
including MOEA/D-DE, MOEA/D-APS, MOEA/D-TPN,
and iMOEA/D. In MOEA/D-DE, MOEA/D-TPN, and
iMOEA/D, the Tchebycheff approach explained in (13)
is adopted as the decomposition approach. MOEA/D-
APS adopts the PBI-based decomposition method with
adaptive penalty scheme. The parameters of MOEA/D-
DE, MOEA/D-APS, MOEA/D-TPN, and iMOEA/D are set
according to their corresponding references [34, 35, 37, 38],
respectively. The detailed parameter settings of the proposed
AMOEA/D are summarized as follows.

1) Control parameters in polynomial mutation: pm = 1/n
and η = 20.

2) Neighborhood size: T = 20.

3) Probability to select in the neighborhood: δ = 0.9.
4) Control parameter in the replacement operator: nr =

2.
5) Population size: N = 100 for two-objective test

instances, 300 for the three-objective ones.
6) Maximum number of iterations: maxIteration= 300 for

F1-F5, 600 for F6-F12.
7) Number of runs: Each algorithm is run 30 times

independently on each test instance.

5.3 Performancemetric

In our empirical studies, we consider the following two
widely used performance metrics [34].

1) Inverted Generational Distance (IGD)

Let S∗ be a set of points uniformly sampled from the true
POF, and S be the set of approximated solutions obtained
by an MOEA, the IGD indicator measures the gap between
S∗ and S, which is calculated as follows:

IGD(S∗, S) =
∑

x∈S∗ d(x, S)

|S∗| (30)

where d(x, S) is the Euclidean distance between the solution
x and its nearest neighbor in S, and |S∗| is the cardinality
of S∗. If the number of points in S∗ is big enough, the
IGD indicator can measure the convergence and diversity
of the approximated POF obtained by an MOEA at the
same time. The smaller the IGD value, the better the quality
of the approximated POF. In the experimental studies, 500
uniformly distributed points are sampled from the true POF
for bi-objective test instances, and 1000 for three-objective
ones, respectively.

2) Hypervolume (HV)

Let zr = (zr
1, z

r
2,...,zr

m)T be a reference point in the
objective space that is dominated by all points on the true
POF, and S be the set of approximated solutions obtained by
an MOEA, the HV indicator measures the size of objective
space dominated by the solution in S and bounded by zr

HV (S) = V OL(
⋃
x∈S

[f1(x), zr
1] × ...[fm(x), zr

m]) (31)

where VOL represents the Lebesgue measure. The bigger
the HV value, the better the quality of the approximated
POF. In the experimental studies, zr is set to (1.1, 1.1)T for
F1-F5 (1.1, 1.1, 1.1)T for F6, (1.1, 11)T for F7, (1.1, 1.1)T

for F8-F9, (5.5, 5.5, 5.5)T for F10, and (1.1, 1.1, 1.1)T for
F11-F12 when computing HV for the nondominated sets
obtained by all the algorithms.
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Table 3 IGD comparison results

Prob. IGD

MOEA/D-DE [38] MOEA/D-APS [34] MOEA/D-TPN [35] iMOEA/D [37] AMOEA/D

F1 Best 0.0228 0.0615 0.0054 0.0052 0.0045
mean 0.0232 a 0.0634 a 0.0058 a 0.0060 a 0.0045
worst 0.0235 0.0654 0.0062 0.0067 0.0046

F2 Best 0.0047 0.0073 0.0061 0.0059 0.0057
mean 0.6280 a 0.3818 a 0.1783 a 0.0922 a 0.0613
worst 0.7838 0.7838 0.7838 0.7838 0.7838

F3 Best 0.0190 0.1654 0.0049 0.0046 0.0036
mean 0.0330 a 0.3160 a 0.0052 0.0055 a 0.0038
worst 0.3865 0.3942 0.0058 0.0059 0.0039

F4 Best 0.0120 0.0718 0.0047 0.0047 0.0045
mean 0.0614 a 0.1179 a 0.0051 a 0.0049 0.0046
worst 0.7525 0.7525 0.0055 0.0050 0.0048

F5 Best 0.0069 0.095 0.0060 0.0053 0.0055
mean 0.0075 0.0156 a 0.122 a 0.0108 a 0.0080
worst 0.0088 0.0148 0.232 0.0195 0.0153

F6 Best 0.698 0.0277 0.0311 − 0.0325
mean 0.0702 a 0.0286 b 0.0335 a − 0.0344
worst 0.0705 0.0291 0.354 − 0.0417

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-AAP and each of MOEA/D-DE, MOEA/D-STM, MOEA/D-
ACD and MOEA/D-APS. a and b denote the performance of the corresponding algorithm is significantly worse than or better than that of
MOEA/D-AAP, respectively

−denotes that the iMOEA/D should not be used to solve three-objective optimization problem

Table 4 HV comparison results

Prob. HV

MOEA/D-DE [38] MOEA/D-APS [34] MOEA/D-TPN [35] iMOEA/D [37] AMOEA/D

F1 Best 1.1050 1.1007 1.1069 1.1070 1.1072
mean 1.1049 a 1.1003 a 1.1068 1.1068 1.1070
worst 1.1049 1.0997 1.1065 1.1066 1.1069

F2 Best 0.3109 0.3046 0.3046 0.3059 0.3077
mean 0.1502 a 0.1934 a 0.2099 a 0.2204 a 0.2879
worst 0.1100 0.1100 0.1100 0.1100 0.1100

F3 Best 1.1263 1.1157 1.1251 1.1265 1.1280
mean 1.1241 a 1.0944 a 1.1250 a 1.1262 a 1.1280
worst 1.0853 1.0834 1.1248 1.1260 1.1279

F4 Best 1.0351 1.0306 1.0360 1.0359 1.0362
mean 0.9733 a 0.9690 a 1.0359 1.0358 1.0360
worst 0.1100 .1100 1.0358 1.0358 1.0360

F5 Best 0.5322 0.5329 0.5333 0.5332 0.5337
mean 0.5321 a 0.5302 a 0.5330 0.5329 0.5336
worst 0.5321 0.5285 0.5325 0.5327 0.5334

F6 Best 1.2660 1.2854 1.2818 − 1.2802
mean 1.2655 a 1.2846 b 1.2790 − 1.2788
worst 1.2652 1.2836 1.2766 − 1.2749

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-AAP and each of MOEA/D-DE, MOEA/D-STM, MOEA/D-
ACD and MOEA/D-APS. a and b denote the performance of the corresponding algorithm is significantly worse than or better than that of
MOEA/D-AAP, respectively

−denotes that the iMOEA/D should not be used to solve three-objective optimization problem
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5.4 Experimental results

5.4.1 Comparisons on F1-F6

Tables 3 and 4 give the best, average, and worst values of
IGD and HV for MOEA/D-DE, MOEA/D-APS MOEA/D-
TPN, iMOEA/D, and AMOEA/D on F1-F6 test instances
respectively, in which the bold means the corresponding
algorithm achieves the best results on the test instance.
The differences between the approximations are assessed
by the Wilcoxon rank-sum test at the 0.05 significance
level. Signs of a and b in the superscript form on mean
values indicate the significance of the proposed algorithms.
From Table 3, the proposed AMOEA/D can effectively
tackle the complex MOPs. For F1, F3-F5, compared
with MOEA/D-DE and MOEA/D-APS, the IGD values of
AMOEA/D decrease significantly, indicating that the TP
optimization with auto-switching scheme is more beneficial
to find boundary solutions and to improve the population
diversity. Compared with MOEA/D-TPN and iMOEA/D,

the performance of AMOEA/D has a slight improvement
since the adopted adaptive DE strategy and auto-switching
scheme can enhance the quality of POS on F1-F4. For F2,
it is easy for MOEA/D-DE and MOEA/D-APS to fall into
a local POF, resulting in the high mean IGD values, while
AMOEA/D has a stable performance and can approximate
the whole POF in most cases. For the three-objective
optimization problem F6, compared with MOEA/D-DE,
the IGD values of MOEA/D-APS, MOEA/D-TPN, and
AMOEA/D algorithms decrease to a certain extent. From
Table 4, the similar conclusions can be drawn.

Figure 7 shows the approximated POFs for MOEA/D-
DE, MOEA/D-APS, and AMOEA/D when they obtain
the lowest IGD values on F1 to F6. From Fig. 7, the
solutions obtained by MOEA/D-DE and MOEA/D-APS
might converge to the middle region of the POFs, resulting
in the decrease of population diversity. The proposed
AMOEA/D can obtain a better solution distribution along
the actual POF, especially for F1, F3, and F4 test instances
with convex POFs. It is worth noting that when the
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Fig. 7 The obtained approximated POF on F1-F6 when the minimum IGD is obtained during 30 times’ running
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Fig. 7 (continued)

minimum IGD value is obtained, MOEA/D-DE, MOEA/D-
APS, and AMOEA/D achieve the same performance on F2
with a concave POF.

In order to more clearly illustrate the proposed strategies,
Fig. 8 plots the evolution curves of the IGD metric value
versus the number of generations for each algorithm on F1
and F4 instances when the minimum IGD is obtained during
the 30 times’ running. It can be observed that the proposed
AMOEA/D can offer a significant improvement on the

IGD metric when the TP optimization with auto-switching
scheme is activated.

Figure 9 presents the boxplots of the IGD metric obtained
by the five algorithms from 30 independent runs on each
instance. These results clearly indicate that the AMOEA/D
is the best on F1-F5. And, more remarkably, for F2, the
solutions obtained by MOEA/D-DE and MOEA/D-APS
might converge to the peak point of the POF, while the
solutions obtained by the proposed AMOEA/D can cover

Fig. 8 The IGD evolution
curves of F1 and F4 when the
minimum IGD value is obtained
during the 30 times’ running
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Fig. 9 Boxplots for the comparison of AMOEA/D with MOEA/D-DE, MOEA/D-APS, MOEA/D-TPN, and iMOEA/D on IGD. DE, APS, TPN,
i, and A in the horizontal axis stand for MOEA/D-DE, MOEA/D-APS, MOEA/D-TPN, iMOEA/D, and AMOEA/D, respectively

Table 5 IGD comparison results

Prob. IGD

MOEA/D-DE [38] MOEA/D-APS [34] MOEA/D-TPN [35] iMOEA/D [37] AMOEA/D

F7 Best 0.0256 0.1431 0.0070 0.0096 0.0063
mean 0.0276 a 0.1597 a 0.0088 a 0.0103 a 0.0068
worst 0.0283 0.1796 0.0098 0.0112 0.0081

F8 Best 0.0175 0.2592 0.0061 0.0062 0.0051
mean 0.0182 a 0.2773 a 0.0075 a 0.0079 a 0.0052
worst 0.0201 0.3113 0.0092 0.0112 0.0055

F9 Best 0.0089 0.0195 0.0054 0.0060 0.0055
mean 0.0114 a 0.0225 a 0.0065 0.0073 a 0.0063
worst 0.0141 0.0265 0.0088 0.0108 0.0082

F10 Best 0.0278 0.0245 0.0231 − 0.0211
mean 0.0279 a 0.0260 a 0.0249 a − 0.0212
worst 0.0280 0.0273 0.0262 − 0.0212

F11 Best 0.0503 0.0436 0.0149 − 0.0150
mean 0.0506 a 0.0461 a 0.0165 a − 0.0155
worst 0.0510 0.0476 0.0186 − 0.0165

F12 Best 0.0724 1.2127 0.0234 − 0.0238
mean 0.0735 a 1.2217 a 0.0395 b − 0.0408
worst 0.0759 1.2252 0.0956 − 0.0649

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-AAP and each of MOEA/D-DE, MOEA/D-STM, MOEA/D-
ACD and MOEA/D-APS. a and b denote the performance of the corresponding algorithm is significantly worse than or better than that of
MOEA/D-AAP, respectively

−denotes that the iMOEA/D can not be used to solve three-objective optimization problem

Bold means the corresponding algorithm achieves the best results on the test instance
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Table 6 HV comparison results

Prob. HV

MOEA/D-DE [38] MOEA/D-APS [34] MOEA/D-TPN [35] iMOEA/D [37] AMOEA/D

F7 Best 9.6906 8.7655 9.8479 9.7709 9.8468

mean 9.6769 a 8.5676 a 9.8074 a 9.7274 a 9.8378

worst 9.6665 8.3319 9.7654 9.6854 9.8176

F8 Best 1.1559 1.1264 1.1572 1.1569 1.1575

mean 1.1557 a 1.1244 a 1.1570 a 1.1567 a 1.1572

worst 1.1550 1.1206 1.1562 1.1560 1.1568

F9 Best 0.7019 0.6889 0.7013 0.7006 0.7014

mean 0.7009 b 0.6855 a 0.7007 0.7002 a 0.7007

worst 0.6999 0.6819 0.6988 0.6988 0.6994

F10 Best 65.006 65.223 65.224 − 65.227

mean 64.989 a 64.989 a 64.993 a − 65.212

worst 64.970 64.329 64.810 − 65.199

F11 Best 1.2955 1.3038 1.3061 − 1.3064

mean 1.2954 a 1.3029 a 1.3057 a − 1.3060

worst 1.2952 1.3023 1.3039 − 1.3050

F12 Best 0.7045 0.7164 − 0.7185

mean 0.7043 a a 0.7130 a − 0.7128

worst 0.7039 0.793 − 0.7120

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-AAP and each of MOEA/D-DE, MOEA/D-STM, MOEA/D-
ACD and MOEA/D-APS. † and ‡ denote the performance of the corresponding algorithm is significantly worse than or better than that of
MOEA/D-AAP, respectively

−denotes that the iMOEA/D can not be used to solve three-objective optimization problem

Bold means the corresponding algorithm achieves the best results on the test instance

the entire POF in most cases. Thus, we can conclude that
the proposed AMOEA/D has successfully improved the
algorithm performance on MOPs with complicated POFs.

5.4.2 Comparisons on F7-F12

To verify the robustness of AMOEA/D on MOPs
with different shapes of POFs, AMOEA/D is compared
with MOEA/D-DE, MOEA/D-APS, MOEA/D-TPN, and
iMOEA/D on F7-F12 test instances in this section. Tables
5 and 6 show the performance of the five compared algo-

rithms in terms of IGD and HV on F7-F12, in which the bold
means the corresponding algorithm achieves the best results
on the test instance. It can be observed that the proposed
AMOEA/D performs significantly better than MOEA/D-
DE and MOEA/D-APS on all test instances in terms of IGD.
From Table 5, AMOEA/D has the best performance on F7,
F8, and F11, and MOEA/D-TPN has the best performance
on F12. The performance of AMOEA/D is very similar to
that of MOEA/D-TPN on F9. Similar performance can be
observed on the comparisons of five algorithms in terms
of HV, where AMOEA/D performs better than the other
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Fig. 10 The obtained approximated POF on F7-F15 when the minimum IGD is obtained during 30 times’ running
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Fig. 10 (continued)
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Fig. 11 The IGD evolution
curves of F10 and F12 when the
minimum IGD value is obtained
during the 30 times’ running
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Fig. 12 Boxplots for the comparison of AMOEA/D with MOEA/D-DE, MOEA/D-APS, MOEA/D-TPN, and iMOEA/D on IGD. DE, APS, TPN,
i, and A in the horizontal axis stand for MOEA/D-DE, MOEA/D-APS, MOEA/D-TPN, iMOEA/D, and AMOEA/D, respectively

Fig. 13 The predicting results
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Fig. 14 Approximated POFs
obtained by MOEA/D,
MOEA/D-APS, and AMOEA/D
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compared algorithms on four out of six test instances. This
further validates the efficiency of the proposed AMOEA/D
algorithm in solving complex problems tested in this paper.

Figure 10 shows the approximated POFs achieved
by MOEA/D-DE, MOEA/D-APS, and AMOEA/D with
the best IGD value on each test instance. It can be
seen from Fig. 10 that F7, F8 and F9 have disparately
scaled objectives, extremely convex POF and mixed POF,
respectively. Furthermore, F10, F11 and F12 are three
three-objective MOPs with complicated POFs, in which
the boundary parts of their POFs are more difficult to
approximate than other parts. Thus, it is desirable to obtain
a more comprehensive evaluation on the performance of
the compared algorithms by using these test problems
with different characteristics. It can be observed that the
solutions obtained by MOEA/D-DE and MOEA/D-APS
might converge to the part region of the POFs on F7-
F12 expect for F9, resulting in the decrease of population
diversity. The proposed AMOEA/D can obtain a better
solution distribution along the actual POF. It is worth noting
that MOEA/D-APS with a smaller initial penalty factor is
unable to find the actual POF on F12 due to the existence of
many local POFs.

To compare the convergence speed of the compared
algorithms, Fig. 11 plots the evolution curves of the
IGD metric value versus the number of generations
for MOEA/D-DE, MOEA/D-APS, and AMMOEA/D on

F8 and F11 instances when the minimum IGD is
obtained during the 30 times’ running. It can be observed
that AMOEA/D converges faster than MOEA/D-DE and
MOEA/D-APS, since they are easy to trap into local POFs.
Meanwhile, a significant improvement of the IGD values
can be observed when the second phase is automatically
activated.

Figure 12 shows the boxplots of the IGD metric obtained
by the five algorithms from 30 independent runs on each
instance. It can be observed that the performance of
AMOEA/D is superior to MOEA/D-DE and MOEA/D-
APS on all test problems. Besides, it can be seen from
the boxplots of F7-F9 that the beards of MOEA/D-DE
and MOEA/D-APS are longer than that of AMOEA/D.
It means that MOEA/D-DE and MOEA/D-APS are still
easy to trap into local POFs. Compared with MOEA/D-
TPN, AMOEA/D obviously performs better on F7, F9,
F10 and F11. Thus, we can conclude that the proposed
AMOEA/D outperforms all the compared algorithms in
most test instances. More remarkably, AMOEA/D is very
robust with the shapes of POFs and can effectively solve
MOPs with complicated POFs (e.g., discontinuous POFs or
POFs with a sharp peak and long tail). It is interesting that
MOEA/D-APS performs poorly on F7, F8 and F12 since it
adopts PBI-based decomposition approach which is easily
converged to the central region on MOPs with extremely
convex POFs.
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Fig. 15 Optimized set-points and online tracking control performance of SO and SNO in dry weather
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6Multiobjective optimal control
in theWWTP

In this section, the proposed AMOEA/D is utilized to
implement the multiobjective optimal control in the WWTP.
The BSM1 is introduced to evaluate the effectiveness of the
AMOEA/D-based HMOOC strategy. The sampling period
of the SOFNN controller was set to 45 seconds and the
optimal cycle was set to 2 hours. For AMOEA/D, the
population size N was set to 100 and the maximum number
of iteration was set to 300.

6.1 Modeling results

First, 500 data samples are generated with the usage of
BSM1. Then, the SOFNN prediction models are adopted
to establish the objective functions of EC, EQ and effluent
parameters. The predicting results of EC and EQ with
the usage of SOFNN and FNN are shown in Fig. 13. It
can be observed that the prediction accuracy of SOFNN
is higher than that of FNN. Obviously, the SOFNN-based
approximator can provide more accurate objective functions
for the HMOOC strategy. Specifically, for EC modeling,
the testing RMSE of SOFNN and FNN are 5.49 and
7.87, respectively. For EQ modeling, the testing RMSE of
SOFNN and FNN are 16.44 and 36.83, respectively.

6.2 Optimization results

The data file of dry weather is utilized to test the
performance of different algorithms, and the approximated
POFs obtained by MOEA/D-DE, MOEA/D-APS and
AMOEA/D in some two optimal cycles are shown
in Fig. 14. It can be seen that the convergence and
diversity of solutions obtained by AMOEA/D is better
than that of MOEA/D-DE and MOEA/D-APS. Especially,
more boundary solutions can be found by AMOEA/D,
which indicates that TP optimization with auto-switching
scheme and adaptive DE strategy can enhance the search
performance of MOEA/D. While using the intelligent
decision system to select a preferred solution, the EC
of AMOEA/D is lower than that of MOEA/D-DE and
MOEA/D-APS.

6.3 Optimal control results

The variation of the optimized set-points and the tracking
effect of the SOFNN controller in dry weather are presented
in Fig. 15. It can be seen that SO,5 and SNO,2 can be
dynamically adjusted with the change of influent condition
and component concentration, achieving the dynamic
balance between EC and EQ. Furthermore, the control
effect of the SOFNN controller is better than that of the
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Fig. 16 Optimized set-points and online tracking control performance of SO and SNO in rain weather

Table 8 Comparison of EC and EQ with different optimal control strategies in rain weather

Weather Method AE PE EC EQ

(kWh/d) (kWh/d) (kWh/d) Up/Down (kg poll./d)

Rain PID 3663.01 255.00 3918.01 − 7112.12

SOOC [24] 3572.91∗ 266.74∗ 3839.65∗ ↓ 2.20%∗ 7215.23∗

DDAOC [16] − − 3741.69 ↓ 4.50%∗ −
Hopfield [17] − − 3733.07 ↓ 4.72%∗ −
RTO-NMPC [18] 3450.09∗ 268.70∗ 3718.19∗ ↓ 5.10%∗ 7596.60∗

NSGA-II [24] 3459.12∗ 265.34∗ 3724.46∗ ↓ 4.94%∗ 7368.96∗

MOPSO [27] − − 3687.63∗ ↓ 5.88%∗ 735336∗

MOEA/D-DE [38] 3389.03 269.01 3658.64 ↓ 6.62% 7281.25

MOEA/D-APS [34] 3411.77 278.99 3690.76 ↓ 5.80% 7252.45

MOEA/D-TPN [35] 3388.12 268.16 365628 ↓ 6.68% 7310.70

iMOEA/D [37] 3405.51 277.02 368253 ↓ 6.01% 7260.33

AMOEA/D 3301.44 344.26 3645.70 ↓ 6.95% 7301.41

∗
Results are listed in the original papers, − denotes none
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Fig. 17 Optimized set-points and online tracking control performance of SO and SNO in storm weather
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Table 9 Comparison of EC and EQ with different optimal control strategies in storm weather

Weather Method AE PE EC EQ

(kWh/d) (kWh/d) (kWh/d) Up/Down (kg poll./d)

Storm PID 3685.87 245.25 3931.12 − 6635.92

SOOC [24] 3515.32∗ 337.18∗ 3852.50∗ ↓ 2.64%∗ 6815.03∗

DDAOC [16] − − 3717.26∗ ↓ 5.44%∗ −
Hopfield [17] − − 3683.06∗ ↓ 6.31%∗ −
RTO-NMPC [18] 3390.30 297.09∗ 3687.39∗ ↓ 6.20%∗ 7082.88∗

NSGA-II [24] 3425.43∗ 270.21∗ 3695.64∗ ↓ 5.99%∗ 7055.32∗

MOPSO [27] − − 366576∗ ↓ 6.75%∗ 7236.45∗

MOEA/D-DE [38] 3428.91 243.54 3672.45 ↓ 6.58% 6805.57

MOEA/D-APS [34] 3452.85 239.25 369210 ↓ 6.08% 6766.92

MOEA/D-TPN [35] 3441.48 223.89 3665.37 ↓ 6.76% 6834.84

iMOEA/D [37] 3449.20 218.14 3667.34 ↓ 6.71% 6828.20

AMOEA/D 3433.60 216.84 3650.44 ↓ 7.44% 6853.80

∗Results are listed in the original papers, − denotes none

PID controller, achieving a fast and high-precision tracking
control under complex conditions.

In addition, the optimization effect of the AMOEA/D-
based HMOOC strategy is compared with other optimal
controllers: SOOC [25], DDAOC [16], Hopfield [17],
RTO-NMPC [18], NSGA-II [25], MOPSO [27], MOEA/D-
DE [38], MOEA/D-APS [34], MOEA/D-TPN [35], and
iMOEA/D [37]. The results of AE, PE, EC, EQ and
the average effluent parameters are given in Table 7,
where influent represents the average influent parameters
and PID denotes the constant control. From Table 7, in
comparison with the PID constant control, the EC of
AMOEA/D decreases by 6.88% in dry weather. Besides,
the increase of EQ is smaller than that in SOOC and
NSGAII. The experimental results indicate that AMOEA/D
can not only ensure that the effluent parameters meet the
standards, but also effectively reduce EC. In comparison
with four MOEA/D variants, AMOEA/D presents an
improved optimization effect, indicating that the proposed

AMOEA/D with multiple adaptive strategies could obtain
a set of high-quality optimal solutions. Compared with
MOOC methods, the decrease of EC in SOOC is lower, and
its energy-saving effect is less obvious. The increase of EQ
in NSGAII is larger mainly due to the high effluent SNH .

To further verify the adaptability of AMOEA/D in the
complex working conditions, the experiments were carried
out with the usage of data files of rain weather. The optimal
control results of SO,5 and SNO,2 under the rain weather are
presented in Fig. 16. It can be seen that the set-points of SO,5

and SNO,2 can be dynamically optimized by the AMOEA/D
in the case of the inflow rate and component concentration
with large disturbance. In addition, the SOFNN controller
has high tracking accuracy and sound anti-interference
ability.

Table 8 presents the comparative results of different
optimal controllers in rain weather. Compared with the PID
constant control, the EC of AMOEA/D decreases by 6.95%
in rain weather. In addition, the EC of AMOEA/D is lower

Fig. 18 Comparison of effluent
parameters in dry weather
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than that of NSGAII, MOPSO, and four MOEA/D variants,
indicating that it can achieve a good energy-saving effect
under complex conditions.

Figure 17 plots the optimized set-points of SO,5 and
SNO,2 under the storm weather. The optimal results indicate
that AMOEA/D can adjust the value of decision variables
online regardless of the complex influent conditions.
Table 9 presents the comparative results of different optimal
controllers in storm weather. Compared with the PID
constant control, the EC of AMOEA/D decreases by 7.44%
in storm weather. In addition, the EC of AMOEA/D is lower
than that of NSGAII, MOPSO, and four MOEA/D variants,
indicating that it can achieve a good energy-saving effect
under complex conditions.

6.4 Discussion

Figure 18 shows the variation of the effluent SNH and
Ntot in dry weather. In comparison with the PID constant
control, the concentration of SNH in the optimal control
exhibits a slight increase in some optimal periods, and the
concentration of Ntot shows a downward trend in general.
In addition, BOD5, COD and TSS remain unchanged,
indicating that the HMOOC strategy can effectively reduce
EC under the condition of ensuring the average effluent
parameters to meet the standards. According to the analysis
of the mechanism of the WWTP, SNH and Ntot are a pair
of parameters with competitive relationship, and the optimal
balance between them can be achieved with the usage of the
proposed AMOEA/D.

According to the further analysis of Table 7, SNH

slightly increases and Ntot decreases to a certain extent in
AMOEA/D, whereas the other effluent parameters remain
almost unchanged. These findings are consistent with the
changes in the effluent parameters as shown in Fig. 18. It
should be noted that all the comparison methods adopted in
this study can ensure that the average effluent parameters
satisfy the standard limits. According to the analysis of the
removal rate of effluent contaminants, when compared with
the influent parameters, the removal rates of the effluent
SNH , Ntot , BOD5, COD and TSS can respectively reach
90.88%, 70.16%, 96.20%, 71.58%, and 93.66% by utilizing
the AMOEA/D-based HMOOC strategy.

Furthermore, the average values of effluent SNH , Ntot ,
BOD5, COD and TSS in rain and storm weather are
presented in Table 10. The results indicate that all the
average value of effluent SNH , Ntot , BOD5, COD and
TSS are remained within the limitations under complex
weather conditions. The optimal control results shown
in Figs. 15–18 and the performance indexes of different
optimal controllers given in Tables 7–10 illustrate the
effectiveness of the proposed AMOEA/D. The experimental
results clearly indicate that the AMOEA/D-based HMOOC

Table 10 Average effluent parameters of the proposed AMOEA/D in
rain and storm weather

Limits/Weather SNH Ntot BOD5 COD TSS

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Limits 4 18 10 100 30

Rain 3.65 16.14 2.88 47.18 13.34

Storm 3.88 16.30 2.85 47.69 13.55

strategy can address the MOP in the WWTP under
complex working conditions. In addition, the optimal
results show that the objective functions constructed by the
SOFNN approximator can meet the optimization needs of
WWTP with high modeling accuracy. The multi-variable self-
organizing controller can track the optimal set-points of SO,5

and SNO,2 with good stability and high control precision.

7 Conclusion

In this paper, an HMOOC strategy based on the adaptive
MOEA/D algorithm is proposed for the multiobjective
optimization of EC and EQ in the WWTP. In fact, good
optimal control performance mainly benefits from the
following aspects. First, the HMOOC strategy, consisting
of the SOFNN approximator, AMOEA/D algorithm and
SOFNN controller, shows a good overall performance.
The modeling accuracy of SOFNN approximator and
the tracking precision of SOFNN controller could be
enhanced by the self-organizing adjustment of the fuzzy
rules and adaptive learning of network parameters, making
them useful to the optimal control system. Second, for
AMOEA/D, the AOS-based adaptive DE strategy could
balance global exploration and local exploitation of the
algorithm. The convergence and diversity of the Pareto
solutions obtained by AMOEA/D could be improved. Third,
based on the constraints handling mechanism, AMOEA/D
can find more solutions with small violation values while
performing the updating operation. Finally, by employing
the two-phase optimization with auto-switching scheme,
AMOEA/D can dig out more boundary solutions as well as
effectively improve the quality of the candidate solutions,
which is more suitable for the complicated MOPs in
practical engineering. Future study is needed to fully
explore the knowledge in the WWTP, and to construct an
HMOOC strategy based on knowledge and processed data.
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