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Abstract
Bacterial foraging optimization (BFO), a biological-inspired optimization algorithm, has been applied in various fields,
such as complex function optimization, robot path planning. However, there still exist several insufficiencies in BFO
algorithm due to the fixed chemotaxis step-size, the less-efficient search direction for tumbling and the swarming strategy
with lower convergence rate. In order to deal with these issues, based on the Lévy flight step-size and particle swarm
optimization (PSO) operator, this paper proposes the improved BFO algorithm (LPBFO). To reduce the mutual interference
among different dimensions, each bacterium selects one dimension for tumbling randomly during the chemotactic process
in LPBFO. The step-size of each bacterium is determined by the stochastic flight lengths of the improved Lévy flight
which can generate small step-size with high frequency and big step-size occasionally; moreover, the stochastic step-size
is also reduced adaptively based on the evolutionary generations, which makes the bacteria transform from global search
to local search. Furthermore, inspired by the social information term in PSO, this paper employed the global best solution
to improve the swarming performance. Several experiments on benchmark functions are carried out with the purpose
of evaluating the performance of the proposed method. Experimental results show that the proposed algorithm achieves
noticeable improvement compared with other competitive algorithms.

Keywords Bacterial foraging optimization · Lévy flight · Particle swarm optimization · Chemotaxis step-size ·
Self-regulation

1 Introduction

The BFO algorithm, which was proposed by Passino [21], is a
novel category of bionic intelligent optimization algorithm.
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In the process of foraging, the bacteria takes necessary
actions (such as chemotaxis, swarming, reproduction,
elimination and dispersal) to search for nutrient-rich areas
so as to maximize the energy intake. The position of one
bacterium represents a solution of the solving problem.
According to tumbling to change the present direction and
keeping swimming in the selected direction to update its
position, the bacteria can seek for the optimal position by
continuous movement and the position of best bacterium is
the best solution of the solving problem. Up to now, the BFO
algorithm has received widespread attention and has been
applied successfully to a variety of fields, such as feature
selection [7, 20], image processing [2, 27], scheduling
problem [34] and continuous optimization problems [18, 22,
25].

However, some researchers have shown that the original
BFO algorithm suffers from low solution accuracy and poor
convergence performance. Meanwhile, many strategies and
methods have been proposed to improve the performance
of BFO algorithm. In the BFO algorithm, the constant
chemotaxis step-size can not only lead to bad convergence
performance but also result in sustained oscillation of the opti-
mization procedure. To improve convergence performance,
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Mishra proposed a least square-fuzzy scheme to gener-
ate the changing chemotactic step-size adaptively based on
the minimum value of cost function [17]. Moreover, the
authors proposed two simple schemes to adaptively change
the chemotactic step-size to avoid the oscillatory behavior
and to speed up the convergence speed [8]. In optimization
problem, the algorithm should combine global search with
local search to balance exploration and exploitation process.
Niu et al. proposed a non-linearly decreasing exponen-
tial modulation model to optimize the step-size for global
optimization [19]. In [26], the authors proposed a new
approach involving adaptable chemotactic step-size which
changes depending on the fitness value to balance the local
search and global search in the optimization process. More
recently, Xu et al. proposed a novel adaptive scheme, which
based on the function period, predefined maximum and
minimum values, to adapt the chemotactic step-size and
introduced a novel operation of micro-swim with the aim
of improving its convergence behavior [31]. Yang et al.
adjusted the step-size of each bacterium adaptively based
on the evolutionary generations and the information of the
globally best individual [33]. To enhance the global search
ability and extend the diversity of bacterial population, an
improved quantum BFO algorithm was proposed which uti-
lizes a continuously varying rotation angle to update the
rotation gate [13, 14].

These proposed algorithms were all shown to outper-
form the classical BFO algorithm over a few numerical
benchmark functions. However, little information being
communicated and no cooperation among bacteria existing
in these algorithms affect the performance of the BFO algo-
rithm. Inspired by the social information term of PSO [10],
Biswas et al. proposed a hybrid algorithm involving PSO
and BFO to balance between local search and global search
[3]. The proposed algorithm executes local search by means
of the chemotactic movement operation of BFO and per-
forms global search over the entire search space through
a PSO operator. Chen et al. introduced the communication
strategies among multi-colony bacterial community, which
can maintain the diversity in the whole bacterial commu-
nity [5]. The proposed multi-colony cooperative approach
speeds up the bacterial community to converge to the global
optimum significantly. Chen et al. extended the basic BFO
to a self-adaptive and cooperative bacterial colony for-
aging (BCF) by using the optimal location information
and analyzing the current status to adjust the chemotactic
step-size adaptively [4]. By combining cell-to-cell com-
munication and self-adaptive search strategies, the authors
proposed a modified BFO algorithm (BCFO) that the bac-
terial colony can maintain a balance between global search
and local search [6]. Inspired by the differential evolution
algorithm, a chemotaxis-enhanced bacteria foraging opti-
misation (CEBFO) algorithm was proposed to solve the

tumble failure problem and enhance the convergence speed
of the original algorithm [34]. Yang et al. proposed a new
bacterial foraging optimization algorithm (BFO-CC) based
on the new designed chemotaxis standard and conjugation
strategies, which makes the algorithm keep a better balance
between exploration and exploitation [33]. Tang et al. pro-
posed an improved bacterial foraging (MBFO) algorithm by
incorporating the PSO operator into chemotactic process to
quicken the convergence rate and to improve the quality of
the final solution [27]. As different swarm intelligence algo-
rithms have different features, to improve the convergence
performance, Turanoglu proposed a new hybrid heuristic
algorithm, which combined the simulated annealing and
BFO algorithm [28].

The above methods have achieved some progress, but
there still exists some problems. On one hand, when solving
optimization problem, the solutions are easy to trap in local
optimum, but the above algorithms cannot escape from the
local optimum effectively. To solve such problem, this paper
uses the Lévy flight length as the chemotaxis step-size
which can generate small step-size with high frequency and
big step-size occasionally to balance local search and global
search. Moreover, the solutions using the big step-size can
escape from the local optimum effectively. For population-
based optimization methods, it is desirable to encourage
the individuals to wander through the entire search space
at the initial phase of the optimization; moreover, it is
very important to fine-tune the candidate solutions in the
succeeding phases of the optimization [23, 33]. Therefore,
to make the bacteria transform from global search to local
search gradually, this paper constructs an adaptive Lévy
flight step-size, which is reduced adaptively along with the
increase of the number of iterations. On the other hand,
in the original BFO algorithm, the bacteria choose one
direction from an infinite number of directions randomly
in the tumbling process, which not only possesses smaller
probability of choosing the right direction but also causes
mutual interference among different dimensions; such
mechanism reduces the search efficiency greatly. In order
to improve the search efficiency, this paper proposes an
improved strategy to determine the search direction, where
each bacterium selects one dimension randomly from the
search space to tumble. As the selected dimension possess
two directions, the selected direction is toward the better
solution with the probability of fifty percent. Moreover,
the bacterium swimming along one dimension can avoid
the interference among different dimensions effectively and
can maximize the search ability of the algorithm. Last, to
improve swarming mechanism, this paper uses the global
best solution of PSO algorithm to quicken the convergence
rate and improve the swarming performance.

The remainder of the paper is organized as follows.
Section 2 outlines the reviews of the classical BFO algorithm
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briefly. Section 3 introduces the proposed LPBFO algo-
rithm. Section 4 comparatively analyze the LPBFO and
other bionic algorithm based on eight benchmark functions
and the experimental result verifies that LPBFO algorithm
significantly outperforms other bionic algorithm in the lit-
erature in terms of t-test. Finally, the conclusion is drawn in
Section 5.

2 Classical BFO algorithm

The classical BFO algorithm includes four principal
mechanisms, namely chemotaxis, swarming, reproduction,
and elimination-dispersal [21]. In the following, we describe
the contents of these four processes briefly.

2.1 Chemotaxis

The chemotaxis process simulates the movement of the E.
coli bacteria through tumbling and swimming. The E. coli
bacteria can tumble for another direction through selecting
a direction randomly from the search space. After that,
bacteria are going to move a step size. If the fitness becomes
better, then they keep on swimming along this direction.
Suppose θi(j, k, l) is the position of the ith bacterium at j th
chemotactic, kth reproductive, and lth elimination-dispersal
step. The chemotactic movement of the ith bacterium can
be represented as

θi(j + 1, k, l) = θi(j, k, l) + C(i)
�(i)

√
�T (i)�(i)

(1)

where C(i) is the fixed step-size in each swimming. �(i)

is the selected direction vector by tumbling whose elements
lie in the range [−1, 1].

2.2 Swarming

A cell-to-cell signaling via an attraction and repellant is
simulated in swarming stage. The cell releases attractants
to signal other cells that they should swarm together. The
cell also releases repellent substance to repel a nearby cell.
The combined cell-to-cell attraction and repelling effects is
denoted as follows:

Jcc(θ, P (j, k, l)) =
S∑

i=1

Jcc(θ,θ i (j, k, l))

=
S∑

i=1

[

−dattract exp

(

−ωattract

D∑

m=1

(θm − θi
m)

2

)]

(2)

+
S∑

i=1

[

hrepellant exp

(

−ωrepellant

D∑

m=1

(θm − θi
m)

2

)]

where Jcc(θ, P (j, k, l)) is the cell-to-cell communication
value to be added to the actual fitness function to present

a time-varying fitness function. S is the total number of
bacteria; D is the number of dimension to be optimized;
θ = [θ1, ..., θD]T is a point in the D-dimensional search
space; dattract , ωattract , hrepellant , ωrepellant are different
coefficients that should be chosen properly. The fitness
value of bacterium i can be represented by

J (i, j, k, l) = J (i, j, k, l) + Jcc(θ, P (j, k, l)) (3)

2.3 Reproduction

Nc is the lifetime of a bacterium and after Nc chemotactic
steps, the bacterium performs reproduction. The health
value of bacterium i (Ji,health) equals to the sum of the
fitness value during its life.

Ji,health =
Nc∑

i=1

J (i, j, k, l) (4)

Based on the health value, all bacteria are sorted in
descending order. In the reproduction stage, the Sr (Sr =
S/2) healthiest bacteria survive and each split into two
bacteria, which are placed in the same locations, thereby
maintaining a constant swarm size; the other Sr least healthy
bacteria die.

2.4 Elimination and dispersal

Due to the adverse and unexpected changes in the local
environment, some bacteria in this region may be killed or
dispersed into new location. This phenomenon is simulated
by the elimination in BFO and the bacteria are killed
with a small probability Ped . Simultaneously, some new
bacteria are randomly generated within the environment for
replacement.

3 LPBFO algorithm

In order to improve the performance, three improvements
of LPBFO are introduced. First, the adaptive Lévy flight
step-size is used as chemotaxis step-size to keep the balance
between global search and local search. Moreover, the
adaptive step-size can also make the solutions escape from
the local optimum effectively. Second, instead of choosing
one direction randomly from the search space, the bacterium
selects a dimension randomly as the search direction to
update the position of the solution. Third, in order to
accelerate convergence speed, the global best location
information is used to improve the swarming performance.
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3.1 Adaptive Lévy flight step-size

A Lévy flight is a random walk in which the step-size have a
probability distribution that is heavy-tailed. The probability
distribution is called Levy distribution, satisfying the form
of a power-law distribution, and can be expressed as follows
[30]:

P(s) = s−λ (5)

where s is the step-size with 1<λ ≤ 3. Lévy flight
can generate smaller step-size with high frequency and
occasionally generate larger step-size. In the search process,
the bacteria with a larger step-size can reach the full range of
the search space to locate the potential optimal regions; the
bacteria with a smaller step-size tend to fine-tune the current
solution to obtain the global optimal solution. Therefore,
Lévy flight can well balance local search and global search.
When solving optimization problem, the bigger step-size
can also make the solutions escape from the local optimum
effectively. The foraging behaviors of many creatures in
nature satisfy Lévy flight, such as albatrosses’ foraging
flight trajectory [15, 29] and drosophilas’ intermittent
foraging flight trajectory [24]. Many studies suggest that
Lévy flight is an optimal search strategy when the target
sites are sparse and distributed randomly.

This paper uses the method proposed by [16] to calculate
Lévy flight step-size:

s = u

|v|1/β
(6)

where β ∈ [0.3, 1.99], u and v are two normal stochastic
variables with standard deviation σu and σv .

u ∼ N(0, σ 2
u ), v ∼ N(0, σ 2

v ) (7)

σu =
{

�(1 + β) sin(πβ/2)

�[(1 + β)/2]2(β−1)/2β

}1/β

, σv = 1 (8)

where �(z) is gamma function.
As shown in Fig. 1, Lévy flight with a mix of large

step-size and small step-size can balance local search and
global search. Therefore, the Lévy flight step-size s can
be used to replace chemotaxis step-size to improve search
efficiency. However, at the early stage of the optimization
process, the bacteria are inclined to locate the potential
optimal regions by wandering through the entire search
space; conversely, most of the bees are apt to fine-tune the
present solutions to obtain the optimal solution at the latter
stage of the optimization. Therefore, this paper constructs
an adaptive Lévy flight step-size, upon which the step-size
dwindle down gradually with the increase of the number
of iterations. The equation for the adaptive nonuniform
step-size is given below.

C′(i) = α

t(i)
∗ |s| (9)

−120 −100 −80 −60 −40 −20 0 20
−20

0

20
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Fig. 1 An example of 1000 steps of a Lévy flight in two dimensions.
The origin of the motion is at [0,0], the step-size is generated according
to (6) with β = 1.5 and the angular direction is uniformly distributed

where α is a control parameter determining the change
strength of step-size. Parameter t (i) denotes the number of
chemotaxes that the ith bacterium has experienced and t (i)

increases in the course of the optimization. At the early
stage of the optimization, the bacteria with larger step-size
can achieve global search by wandering through the entire
search space. At the latter stage of the optimization, the
bacteria with the adaptively reduced step-size can achieve
local search by being apt to fine-tune the present solution.

3.2 Improved search direction

In the classical BFO algorithm, it is less-efficient for
each bacterium to choose one direction randomly in each
chemotaxis process. First, there exists an infinite number
of directions can be chosen in D-dimensional search space
and each bacterium should choose one direction randomly
from these directions. Therefore, the selected direction is
toward the better solution with a low probability. Second,
each selected direction contains D dimensions in which
some dimensions are possible to have the correct directions
and some dimensions are possible to possess the incorrect
directions. Although the new solution gets better fitness
value, some dimensions may get worse. Therefore, different
dimensions may interfere with each other and the strategy
updating all dimensions regarding a solution at each
iteration reduces search efficiency.

Therefore, to improve the search efficiency, this paper
proposes an improved strategy to determine the search
direction. In chemotaxis stage, each bacterium chooses
one dimension randomly to tumble which possess two
directions. Therefore generally speaking, the selected
direction is toward the better solution with the probability
of fifty percent. Moreover, the bacterium swimming along
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one dimension can avoid the interference among different
dimensions effectively and can maximize the search ability
of the algorithm.

Based on the adaptive Lévy flight step-size and the
improved search direction, the chemotactic movement of the
ith bacterium in LPBFO can be represented as

θi(j + 1, k, l) = θi(j, k, l) + C′(i) ∗ �′(i) (10)

where �′(i) is the improved search direction which is a D-
dimensional vector with only one coordinate being 1 or -1
and all the others being 0; C′(i) is the adaptive Lévy flight
step-size taken in direction �′(i). As can be seen from (10),
each bacterium only updates the corresponding solution in
one dimension during every chemotaxis process.

In the original BFO, the bacterium will calculate its
fitness value after each movement. During the chemotaxis
stage, if the fitness value is better than the previous position,
the bacterium will keep on moving along this direction. If
the fitness value gets worse, the bacterium will not move
forward. However, the bacterium has already in the worse
position, which can slow down the chrematistic activity
of the bacterium. If this chemotaxis behavior happens
frequently, the searching efficiency will be greatly reduced.
In order to overcome this problem, this paper employs a
self-regulation strategy. When the bacterium arrives at the
worse position, the bacteria will return to the last position
automatically and the bacteria continues the next step.

3.3 Modified swarming process

In the original BFO algorithm, the bacteria complete the
swarming process through the fitness function which is
related to attraction-repellant and the distance among bac-
teria. Without directionality, the swarming process cannot
guarantee that bacteria converge to the optimal solution. The
optimal position information is not considered, and there-
fore the swarming process possess a lower convergence
rate.

To accelerate the convergence rate and improve the
accuracy of convergence, this paper takes advantage of the
information of the global best (gbest) solution to guide
the movement of the bacteria, we modify the swarming
equation

θi(j +1, k, l) = θ i(j, k, l)+(θgbest −θi(j, k, l))∗C′(i)∗�′(i) (11)

According to (11), the gbest term can drive the bacteria
towards the global best solution in one dimension, therefore,
the modified swarming equation can improve convergence
rate of the swarming process. Moreover, the adaptive Lévy
flight step-size is also used in the modified swarming
equation to balance the global search and the local search.
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3.4 Description of the LPBFO algorithm

The pseudo code of the LPBFO algorithm can be described
as follows:

1288



Bacterial foraging optimization based on improved chemotaxis process and novel swarming strategy

0 500 1000 1500 2000
10

−150

10
−100

10
−50

10
0

10
50

Chemotactic Steps/Iterations

M
ea

n 
of

 B
es

t F
un

ct
io

n 
V

al
ue

s 
(L

og
 S

ca
le

)

 

 

BCF
CEBFO
MBFO
BFO−CC
LPBFO

0 500 1000 1500 2000
10

−300

10
−250

10
−200

10
−150

10
−100

10
−50

10
0

10
50

Chemotactic Steps/Iterations

M
ea

n 
of

 B
es

t F
un

ct
io

n 
V

al
ue

s 
(L

og
 S

ca
le

)

 

 

BCF
CEBFO
MBFO
BFO−CC
LPBFO

0 500 1000 1500 2000
10

−80

10
−60

10
−40

10
−20

10
0

10
20

Chemotactic Steps/Iterations

M
ea

n 
of

 B
es

t F
un

ct
io

n 
V

al
ue

s 
(L

og
 S

ca
le

)

 

 

BCF
CEBFO
MBFO
BFO−CC
LPBFO

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Chemotactic Steps/Iterations

M
ea

n 
of

 B
es

t F
un

ct
io

n 
V

al
ue

s 
(L

og
 S

ca
le

)

 

 

BCF
CEBFO
MBFO
BFO−CC
LPBFO

0 500 1000 1500 2000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Chemotactic Steps/Iterations

M
ea

n 
of

 B
es

t F
un

ct
io

n 
V

al
ue

s 
(L

og
 S

ca
le

)

 

 

BCF
CEBFO
MBFO
BFO−CC
LPBFO

0 500 1000 1500 2000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Chemotactic Steps/Iterations

M
ea

n 
of

 B
es

t F
un

ct
io

n 
V

al
ue

s 
(L

og
 S

ca
le

)

 

 
BCF
CEBFO
MBFO
BFO−CC
LPBFO

0 500 1000 1500 2000
10

−15

10
−10

10
−5

10
0

10
5

Chemotactic Steps/Iterations

M
ea

n 
of

 B
es

t F
un

ct
io

n 
V

al
ue

s 
(L

og
 S

ca
le

)

 

 

BCF
CEBFO
MBFO
BFO−CC
LPBFO

0 500 1000 1500 2000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Chemotactic Steps/Iterations

M
ea

n 
of

 B
es

t F
un

ct
io

n 
V

al
ue

s 
(L

og
 S

ca
le

)

 

 

BCF
CEBFO
MBFO
BFO−CC
LPBFO

Fig. 2 Comparison of the convergence results of the average optimum value with 15 dimensions. a Sphere Function b Quartic Function
c Schwefels Problem 2.22 d Rosenbrock Function e Rastrigin Function f Griewank Function g Ackley Function h Schwefel’s Problem 2.26

4 Experiments and discussion

To fully test the performance of the LPBFO algorithm,
eight benchmark functions shown in Table 1 were used
to conduct the experiments. The first four functions are
unimodal functions with only one local optimum which is
the global optimum; the others are multimodal functions
with a large number of local optimum and algorithms may
easily fall into a local optimum when intending to solve the
functions. The unimodal functions can be used to analysis
the intensification capability and convergence rate of the
algorithms. The multimodal functions are commonly used
to show the exploration capability of the algorithms. In

Table 1, D denotes the dimensions of the solution space
and 15, 30, 45, and 60 dimensions are used in the present
paper.

The effectiveness of the proposed LPBFO algorithm
was evaluated by comparing its results with other related
algorithms, such as BCF [6], CEBFO [34], MBFO [27],
and BFO-CC [33]. Following the parameter settings in
the previous studies, the values of the population size
used in each algorithm were chosen to be the same as
S = 50. To make a fair comparison, we set Nc =
100, Nre = 5, Ned = 4 and then the algorithms perform
totally T = Nc × Nre × Ned = 2000 iterations times
in each run; all algorithms were tested with the maximum
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Fig. 3 Comparison of the convergence results of the average optimum value with 30 dimensions. a Sphere Function b Quartic Function c
Schwefels Problem 2.22 d Rosenbrock Function e Rastrigin Function f Griewank Function g Ackley Function h Schwefel’s Problem 2.26

number of swimming and swarming length Ns = 4. The
other detailed parameters of LPBFO algorithm, we take
Ped = 0.25, β = 1.5 following the original studies
and α = 1000 using trial and error. Additionally, as for
other specific parameters of each comparison algorithm,
we followed the settings in a corresponding original
paper.

BCF settings: For the proposed BCF algorithm, we set
k = 0.8, φ1 = 1.494, φ2 = 1.494, εinitial = 100, Ku =
20, λ = 10, and the initialized run-length unit Cinitial is
set to be 1% of the search space.

CEBFO settings: For the CEBFO algorithm, we take
Ped = 0.25, CR = 0.9, F = 0.5. The step length C is set
for each benchmark function as shown in Table 3 in [34].

MBFO settings: For the MBFO algorithm, we set Ped =
0.03, C(i) = 0.1, dattract = 0.1, ωattract =
0.2, hrepellant = 0.15, ωrepellant = 0.1.

BFO-CC settings: For the BFO-CC algorithm, the param-
eters are set as Ped = 0.3, Pc = 0.2, L = 0.1 ∗ D, b =
0.5.

In order to ensure the experiment results stability, we
repeated each algorithm 20 times and averaged the results.

4.1 Experimental results

To analyze the experimental data, this subsection uses five
indexes introduced by [33] to evaluate the effectiveness
of the proposed method: the best solution (Best), median
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Fig. 4 Comparison of the convergence results of the average optimum value with 45 dimensions. a Sphere Function b Quartic Function
c Schwefels Problem 2.22 d Rosenbrock Function e Rastrigin Function f Griewank Function g Ackley Function h Schwefel’s Problem 2.26

solution (Median), worst solution (Worst), average solution
(Mean), and standard deviation (Std). Figures 2, 3, 4, and 5
show how the mean of the best solution through 20 runs for
each algorithm changes with the number of iterations times
based on 8 basic benchmark functions with 15, 30, 45, 60
dimensions. The lines that do not extend to the end of the
experiments indicate that they have converged to 0 in the
next calibration.

At the initial phase of the optimization procedure,
Figs. 2–5 show that the proposed LPBFO algorithm does
not possess obvious advantage on the convergence rate

compared with other algorithms. The reason is that LPBFO
algorithm with large step-size realizes global search and
does poorly in local search at this stage; the global search
are inclined to locate the potential optimal regions and local
search are apt to fine-tune the present solutions to improve
the convergence rate. Further, the probability of obtaining
a better solution is very high at the initial stage for all
the algorithms; the search strategy in the proposed LPBFO
algorithm, where each bacterium selects one dimension
randomly from the search space to tumble, does not have
obvious advantages. It can be seen from the Figs. 2–5 that
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Fig. 5 Comparison of the convergence results of the average optimum value with 60 dimensions. a Sphere Function b Quartic Function
c Schwefels Problem 2.22 d Rosenbrock Function e Rastrigin Function f Griewank Function g Ackley Function h Schwefel’s Problem 2.26

the MBFO algorithm converges faster than other algorithms
at the initial phase. By incorporating the PSO operator
into chemotactic step, the MBFO algorithm quickens the
convergence rate effectively and improve the quality of the
solution.

As the adaptive Lévy flight step-size reduces along
with the increase of the number of iterations, the LPBFO
algorithm transforms from global search to local search
to fine-tune the present solutions. Moreover, when it is
difficult to obtain a better solution at the latter stage of the
optimization, the advantages of the proposed search strategy
can be well reflected. Therefore, the proposed LPBFO
algorithm converges fast and achieves significantly better
solution on all benchmark functions than other algorithms
in the succeeding phase.

In chemotaxis stage, each bacterium randomly choosing
a dimension to move forward improves the search
efficiency. By taking into account the information of global
best solution, the modified swarming process accelerates
the convergence rate and improves the accuracy of the
solutions.

Tables 2, 3, 4 and 5 shows the comparison among the
experimental results based 8 basic benchmark functions
with 15, 30, 45, 60 dimensions. The bold emphases in
Tables 2, 3, 4, 5, 7, 8 mean that the corresponding
experimental results are the best compared with other
algorithms under the corresponding index. The results
suggest that LPBFO algorithm offers the higher solution
accuracy on all the functions, which proves that LPBFO
algorithm is superior to other algorithms.
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Table 2 Comparison between LPBFO and other algorithms for 20 times independent runs tested on 8 basic benchmark functions with 15
dimensions

Functions Metrics BCF CEBFO MBFO BFO-CC LPBFO

Best 1.08e+01 8.57e−18 1.92e−04 1.25e−53 1.43e−149

Median 1.83e+02 2.92e−17 2.71e−04 1.41e−52 7.72e−146

Sphere Worst 4.40e+02 5.32e−16 3.65e−04 4.61e−50 4.04e−141

Function Mean 1.84e+02 7.93e−17 2.69e−04 2.58e−51 2.03e−142

Std 9.73e+01 1.23e−16 5.32e−05 1.02e−50 9.03e−142

Best 9.31e−02 1.11e−44 4.49e−08 3.76e−110 2.16e−295

Median 9.78e−02 4.03e−42 9.87e−08 1.44e−107 4.71e−290

Quartic Worst 1.11e−01 3.46e−41 1.91e−07 1.19e−103 2.08e−282

Function Mean 9.87e−02 9.44e−42 1.07e−07 1.14e−104 1.04e−283

Std 5.20e−03 1.17e−41 3.86e−08 3.30e−104 0.00e+00

Best 3.32e−01 4.28e−10 3.78e−02 6.69e−30 2.09e−76

Schwefel’s Median 8.35e−01 1.13e−09 5.94e−02 9.72e−29 8.57e−75

Problem Worst 2.73e+00 4.44e−09 1.97e+00 4.38e−28 6.35e−73

2.22 Mean 1.02e+00 1.45e−09 1.58e−01 1.43e−28 5.29e−74

Std 6.35e−01 9.93e−10 4.26e−01 1.21e−28 1.42e−73

Best 1.23e+03 1.01e−02 8.85e+00 3.96e−02 9.51e−04

Median 7.13e+03 4.60e−01 1.29e+01 5.13e+00 9.54e−02

Rosenbrock Worst 6.03e+04 1.48e+01 8.78e+01 2.15e+02 9.98e+00

Function Mean 1.16e+04 2.41e+00 1.93e+01 2.43e+01 2.16e+00

Std 1.43e+04 3.81e+00 2.11e+01 5.32e+01 3.51e+00

Best 1.02e+01 0.00e+00 1.00e+01 3.98e+00 0.00e+00

Median 2.48e+01 0.00e+00 2.64e+01 9.45e+00 0.00e+00

Rastrigin Worst 6.56e+01 1.78e−15 4.78e+01 2.69e+01 0.00e+00

Function Mean 2.95e+01 8.88e−17 2.64e+01 1.08e+01 0.00e+00

Std 1.51e+01 3.97e−16 1.11e+01 5.43e+00 0.00e+00

Best 8.80e−01 1.78e−15 2.51e−01 0.00e+00 0.00e+00

Median 4.57e+00 1.97e−02 8.84e−01 1.48e−02 0.00e+00

Griewank Worst 7.74e+00 4.17e−02 4.48e+00 1.38e−01 9.90e−03

Function Mean 4.71e+00 2.02e−02 1.36e+00 2.29e−02 9.86e−03

Std 1.84e+00 1.34e−02 1.28e+00 3.10e−02 3.00e−03

Best 5.37e+00 2.63e−09 2.12e+00 7.11e−15 3.55e−15

Median 8.69e+00 1.31e−08 5.62e+00 1.60e−14 7.11e−15

Ackley Worst 1.12e+01 4.84e−08 9.53e+00 9.41e−01 7.11e−15

Function Mean 8.64e+00 1.64e−08 5.85e+00 4.70e−02 6.75e−15

Std 1.20e+00 1.19e−08 2.21e+00 2.10e−01 1.09e−15

Best 1.24e+03 1.91e−04 1.90e+03 7.70e+02 1.91e−04

Schwefel’s Median 2.46e+03 1.18e+02 2.69e+03 1.36e+03 1.91e−04

Problem Worst 3.24e+03 3.55e+02 3.82e+03 1.74e+03 1.91e−04

2.26 Mean 2.46e+03 1.30e+02 2.80e+03 1.36e+03 1.91e−04

Std 4.72e+02 1.08e+02 5.24e+02 2.60e+02 0.00e+00

4.2 Comparison regarding the t-test

To investigate whether the experimental results obtained
by LPBFO algorithm are statistically significantly different

from results achieved by other algorithms, the F-test and
t-test were performed in this section. The F-test was used
to analyze the homogeneity of variances and t-test was
used to determine if two sets of data are significantly
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Table 3 Comparison between LPBFO and other algorithms for 20 times independent runs tested on 8 basic benchmark functions with 30
dimensions

Functions Metrics BCF CEBFO MBFO BFO-CC LPBFO

Best 5.81e+02 5.87e−07 3.22e−04 1.09e−24 1.61e−71

Median 9.88e+02 5.97e−06 5.67e−04 6.16e−24 1.73e−70

Sphere Worst 3.41e+03 2.77e−05 7.55e−04 5.35e−23 2.46e−67

Function Mean 1.21e+03 8.62e−06 5.62e−04 1.35e−23 1.28e−68

Std 6.79e+02 6.61e−06 1.26e−04 1.48e−23 5.49e−68

Best 5.12e−01 8.16e−20 3.69e−07 1.30e−51 3.30e−143

Median 1.25e0+00 3.84e−19 5.96e−07 6.51e−50 4.98e−139

Quartic Worst 2.72e+00 2.01e−18 1.42e−06 1.80e−48 1.69e−135

Function Mean 1.42e+00 5.77e−19 7.17e−07 1.87e−49 9.35e−137

Std 6.32e−01 5.31e−19 3.24e−07 4.07e−49 3.77e−136

Best 2.56e+00 1.42e−04 2.49e−01 4.64e−14 4.60e−37

Schwefel’s Median 8.31e+00 3.66e−04 2.05e+00 1.10e−13 2.22e−36

Problem Worst 2.83e+01 1.09e−03 6.18e+00 2.12e−13 1.75e−35

2.22 Mean 9.16e+00 4.20e−04 2.47e+00 1.20e−13 4.81e−36

Std 5.28e+00 2.16e−04 1.59e+00 4.52e−14 5.38e−36

Best 2.12e+04 8.12e−01 2.14e+01 3.20e−03 1.09e−04

Median 1.19e+05 2.21e+01 2.85e+01 3.14e+00 9.70e−01

Rosenbrock Worst 7.18e+05 9.05e+01 1.10e+02 1.26e+02 7.00e+01

Function Mean 1.46e+05 2.57e+01 3.80e+01 4.20e+01 7.13e+00

Std 1.48e+05 2.26e+01 2.69e+01 4.14e+01 1.61e+01

Best 4.21e+01 1.84e−06 2.50e+01 1.79e+01 0.00e+00

Median 1.23e+02 2.02e−05 5.33e+01 2.89e+01 0.00e+00

Rastrigin Worst 1.72e+02 9.64e−05 9.46e+01 4.88e+01 0.00e+00

Function Mean 1.19e+02 2.70e−05 5.81e+01 3.09e+01 0.00e+00

Std 2.63e+01 2.57e−05 2.20e+01 9.21e+00 0.00e+00

Best 8.98e+00 2.38e−04 4.13e−05 0.00e+00 0.00e+00

Median 1.48e+01 2.60e−02 1.73e−02 3.70e−03 0.00e+00

Griewank Worst 3.10e+01 9.16e−02 3.94e−02 3.94e−02 7.40e−03

Function Mean 1.63e+01 3.09e−02 1.73e−02 7.88e−03 3.70e−04

Std 6.02e+00 2.65e−02 1.26e−02 1.06e−02 1.70e−03

Best 7.02e+00 1.96e−03 6.95e+00 1.83e−12 1.42e−14

Median 1.09e+01 4.16e−03 9.45e+00 8.95e−12 1.78e−14

Ackley Worst 1.35e+01 1.04e−02 1.12e+01 1.34e+00 2.84e−14

Function Mean 1.09e+01 4.77e−03 9.36e+00 2.29e−01 1.83e−14

Std 1.64e+00 2.33e−03 1.24e+00 4.75e−01 4.04e−15

Best 5.67e+03 1.57e+02 4.24e+03 3.28e+03 3.82e−04

Schwefel’s Median 6.95e+03 4.75e+02 5.41e+03 3.88e+03 4.38e−04

Problem Worst 7.52e+03 9.49e+02 8.44e+03 5.61e+03 1.18e+02

2.26 Mean 6.67e+03 5.21e+02 5.76e+03 4.03e+03 2.06e+01

Std 5.95e+02 2.02e+02 1.28e+03 5.79e+02 4.40e+01

different from each other. The confidence level was set
to 95%, which means that the probability of receiving a
difference by chance is not more than 5%. In the F-test,
if the probability p is less than 0.05, the corresponding

experimental results are heterogeneity of variance. If the
probability p achieved in the t-test is less than 0.05, we can
believe that there exists a significant difference between the
corresponding experimental results. Table 6 lists the results
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Table 4 Comparison between LPBFO and other algorithms for 20 times independent runs tested on 8 basic benchmark functions with 45
dimensions

Functions Metrics BCF CEBFO MBFO BFO-CC LPBFO

Best 1.59e+03 1.45e−02 5.52e−04 5.61e−15 3.74e−46

Median 3.40e+03 3.13e−02 1.00e−03 3.15e−14 5.97e−45

Sphere Worst 7.30e+03 5.83e−02 1.30e−03 1.82e−13 8.48e−44

Function Mean 3.68e+03 3.17e−02 9.98e−04 4.96e−14 1.17e−44

Std 1.51e+03 1.16e−02 1.89e−04 4.88e−14 1.83e−44

Best 1.29e+00 4.21e−12 9.00e−07 1.09e−32 5.93e−92

Median 5.02e+00 2.16e−11 1.72e−06 2.20e−31 4.82e−90

Quartic Worst 6.42e+00 1.02e−10 4.12e−06 1.44e−30 2.45e−87

Function Mean 4.59e+00 2.53e−11 1.86e−06 3.11e−31 1.59e−88

Std 1.41e+00 2.21e−11 6.88e−07 3.93e−31 5.42e−88

Best 1.06e+01 2.15e−02 2.04e+00 7.20e−09 2.77e−24

Schwefel’s Median 2.30e+01 2.82e−02 3.45e+00 1.68e−08 1.29e−23

Problem Worst 4.43e+01 4.33e−02 1.11e+01 4.34e−08 5.29e−23

2.22 Mean 2.28e+01 3.07e−02 4.20e+00 1.93e−08 1.52e−23

Std 9.54e+00 6.32e−03 2.29e+00 9.95e−09 1.23e−23

Best 2.34e+05 1.81e+01 3.61e+01 4.72e+00 3.00e−03

Median 4.61e+05 7.06e+01 4.36e+01 1.72e+01 1.25e+00

Rosenbrock Worst 2.29e+06 1.58e+02 2.94e+02 2.29e+02 9.36e+01

Function Mean 6.12e+05 7.31e+01 7.23e+01 5.61e+01 1.51e+01

Std 4.82e+05 3.67e+01 5.96e+01 6.74e+01 2.89e+01

Best 1.90e+02 8.38e−03 4.39e+01 3.58e+01 0.00e+00

Median 2.29e+02 2.01e+00 8.42e+01 5.27e+01 0.00e+00

Rastrigin Worst 2.97e+02 3.01e+00 1.31e+02 7.86e+01 0.00e+00

Function Mean 2.29e+02 2.01e+00 8.47e+01 5.49e+01 0.00e+00

Std 2.85e+01 8.55e−01 2.08e+01 1.02e+01 0.00e+00

Best 1.63e+01 7.31e−01 9.04e−05 4.81e−14 0.00e+00

Median 3.66e+01 1.02e+00 1.49e−04 1.67e−12 0.00e+00

Griewank Worst 6.38e+01 1.09e+00 2.23e−02 1.23e−02 7.40e−03

Function Mean 3.91e+01 9.64e−01 5.40e−03 3.30e−03 3.70e−04

Std 1.32e+01 1.21e−01 7.30e−03 4.90e−03 1.70e−03

Best 1.13e+01 2.95e−01 8.41e+00 1.66e−07 2.13e−14

Median 1.45e+01 9.68e−01 1.03e+01 1.22e+00 3.02e−14

Ackley Worst 1.83e+01 1.36e+00 1.31e+01 1.82e+00 4.26e−14

Function Mean 1.49e+01 9.18e−01 1.03e+01 1.04e+00 2.88e−14

Std 2.09e+00 3.20e−01 1.18e+00 5.74e−01 6.20e−15

Best 1.00e+04 1.26e+03 7.21e+03 5.41e+03 3.33e+02

Schwefel’s Median 1.16e+04 1.56e+03 8.33e+03 7.48e+03 5.61e+02

Problem Worst 1.27e+04 2.50e+03 1.26e+04 8.63e+03 9.49e+02

2.26 Mean 1.15e+04 1.63e+03 8.65e+03 7.40e+03 5.84e+02

Std 6.88e+02 3.02e+02 1.26e+03 7.95e+02 1.59e+02

of F-test and t-tests between LPBFO and the best results
of the other algorithms regarding the indexes “Mean” for
different benchmark functions (listed are the p(F-test), the
p(t-test), and the significance of the results). In Table 6, the

sample size and number of degrees of freedom were set
as 20 and 38, respectively. “Yes” means that the results of
LPBFO and of other algorithms are significantly different.
“No” indicates that there is not a significant difference
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Table 5 Comparison between LPBFO and other algorithms for 20 times independent runs tested on 8 basic benchmark functions with 60
dimensions

Functions Metrics BCF CEBFO MBFO BFO-CC LPBFO

Best 3.97e+03 1.10e+01 1.20e−03 3.51e−10 2.26e−33

Median 7.79e+03 3.07e+01 1.60e−03 9.61e−10 2.37e−32

Sphere Worst 1.15e+04 5.37e+01 2.20e−03 6.08e−09 8.71e−32

Function Mean 7.50e+03 3.01e+01 1.60e−03 1.52e−09 3.04e−32

Std 2.40e+03 1.18e+01 2.76e−04 1.55e−09 2.77e−32

Best 2.12e+00 1.40e−08 2.00e−06 6.51e−24 4.28e−67

Median 8.14e+00 1.77e−08 5.94e−06 8.37e−23 3.56e−65

Quartic Worst 9.59e+00 2.32e−08 7.41e−06 1.28e−21 1.74e−63

Function Mean 7.56e+00 1.84e−08 5.55e−06 2.07e−22 2.74e−64

Std 1.85e+00 2.96e−09 1.67e−06 3.25e−22 5.16e−64

Best 1.75e+01 1.90e−01 3.61e+00 1.82e−06 1.77e−17

Schwefel’s Median 3.87e+01 2.88e−01 7.01e+00 3.13e−06 3.14e−17

Problem Worst 5.35e+01 4.25e−01 1.43e+01 4.60e−06 8.41e−17

2.22 Mean 3.85e+01 3.04e−01 7.72e+00 3.04e−06 3.56e−17

Std 9.24e+00 5.08e−02 2.92e+00 7.17e−07 1.82e−17

Best 3.96e+05 1.97e+02 5.31e+01 9.09e+00 3.67e−01

Median 1.66e+06 2.81e+02 5.84e+01 8.34e+01 1.17e+01

Rosenbrockf Worst 2.78e+06 3.53e+02 2.04e+02 3.50e+02 1.43e+02

Function Mean 1.57e+06 2.85e+02 8.09e+01 1.14e+02 2.74e+01

Std 6.66e+05 4.38e+01 3.84e+01 9.29e+01 3.77e+01

Best 2.75e+02 7.03e+00 5.31e+01 4.88e+01 0.00e+00

Median 3.36e+02 1.10e+01 9.98e+01 7.01e+01 0.00e+00

Rastrigin Worst 4.05e+02 1.30e+01 1.66e+02 1.00e+02 0.00e+00

Function Mean 3.39e+02 1.05e+01 1.00e+02 7.11e+01 0.00e+00

Std 4.12e+01 1.43e+00 2.93e+01 1.61e+01 0.00e+00

Best 3.20e+01 1.67e+00 1.88e−04 1.01e−09 0.00e+00

Median 5.96e+01 2.62e+00 4.10e−03 7.40e−03 0.00e+00

Griewank Worst 1.08e+02 3.47e+00 1.75e−02 2.22e−02 9.90e−03

Function Mean 6.31e+01 2.57e+00 5.90e−03 5.70e−03 4.93e−03

Std 2.17e+01 4.75e−01 6.10e−03 6.20e−03 2.20e−03

Best 1.37e+01 2.02e+00 8.78e+00 1.93e−05 4.97e−14

Median 1.79e+01 2.29e+00 1.04e+01 1.71e+00 8.53e−14

Ackley Worst 1.94e+01 2.52e+00 1.26e+01 2.17e+00 1.17e−13

Function Mean 1.77e+01 2.28e+00 1.04e+01 1.50e+00 8.37e−14

Std 1.31e+00 1.38e−01 9.07e−01 5.47e−01 1.89e−14

Best 1.56e+04 3.07e+03 8.73e+03 9.40e+03 1.39e+03

Schwefel’s Median 1.69e+04 3.58e+03 1.15e+04 1.06e+04 1.88e+03

Problem Worst 1.89e+04 4.41e+03 1.61e+04 1.26e+04 2.52e+03

Mean 1.71e+04 3.65e+03 1.17e+04 1.07e+04 1.88e+03

Std 8.94e+02 3.38e+02 1.72e+03 7.97e+02 3.23e+02

between the results of LPBFO and the best results of the
other algorithms.

From Tables 2–5, LPBFO algorithm has higher solution
accuracy on all the functions. Based on the results of

statistical tests in Table 6, almost all of the results have
obvious differences and it is clear that the results of LPBFO
algorithm are significantly better than the results of other
algorithms.
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Table 6 Comparisons between LPBFO’s results and the best results of the other algorithms on F-test and t-test

Functions Dim p(F-test) p(t-test) significance Two-tailed P

D=15 0.042 0.273 NO 0.05

Sphere D=30 2.00e−06 6.58e−04 YES 0.05

Function D=45 1.20e−05 2.20e−04 YES 0.05

D=60 1.50e−04 3.17e−04 YES 0.05

D=15 3.00e−03 0.137 NO 0.05

Quartic D=30 6.83e−03 0.054 YES 0.05

Function D=45 7.80e−05 2.21e−03 YES 0.05

D=60 1.82e−04 0.010 YES 0.05

Schwefel’s D=15 7.63e−08 3.90e−05 YES 0.05

Problem D=30 3.50e−07 2.99e−10 YES 0.05

2.22 D=45 7.00e−06 4.96e−08 YES 0.05

D=60 6.84e−07 8.15e−14 YES 0.05

D=15 0.884 0.827 NO 0.05

Rosenbrock D=30 0.513 0.005 YES 0.05

Function D=45 6.76e−04 0.019 YES 0.05

D=60 6.01e−03 7.71e−04 YES 0.05

D=15 0.041 0.330 NO 0.05

Rosenbrock D=30 2.30e−05 1.56e−04 YES 0.05

Function D=45 5.70e−05 2.40e−09 YES 0.05

D=60 2.00e−06 3.18e−18 YES 0.05

D=15 1.40e−05 3.00e−06 YES 0.05

Griewank D=30 3.00e−05 5.22e−03 YES 0.05

Function D=45 1.47e−07 0.017 YES 0.05

D=60 8.61e−03 0.099 NO 0.05

D=15 4.65e−04 6.00e−06 YES 0.05

Ackley D=30 5.38e−08 2.05e−08 YES 0.05

Function D=45 1.00e−06 8.18e−11 YES 0.05

D=60 1.10e−05 1.77e−10 YES 0.05

Schwefel’s D=15 2.39e−07 3.30e−05 YES 0.05

Problem D=30 5.90e−05 5.43e−10 YES 0.05

2.26 D=45 0.024 3.85e−14 YES 0.05

D=60 0.630 2.83e−19 YES 0.05

4.3 Comparison with other algorithms

To simulate the swarm behavior in birds flocking and fish
schooling, Kennedy et al. proposed the PSO algorithm
[10]. Inspired by the swarm foraging behavior in honey
bees, Karaboga proposed the artificial bee colony (ABC)
algorithm [9]. Both PSO and ABC, which can be used to
guide the particles to search for globally optimal solutions,
have received much attention and achieved better results in
solving the optimization problems.

In order to effectively solve the problem that the PSO
algorithm easily falls into local optima, Li et al. proposed
a self-learning PSO (SLPSO) algorithm, where four search
strategies are used and each particle chooses the optimal

strategy based on the adaptive learning framework [12]. To
improve the performance of PSO, Lai et al. proposed a
parallel PSO based on osmosis (PPBO), where the whole
particle population is divided into several subpopulations
and each subpopulation achieves migration based on osmosis
[11]. In order to solve the stagnation behavior in ABC
algorithm, Babaoglu proposed distribution-based ABC
(distABC) algorithm, which uses the mean and standard
deviation of the selected two solutions to obtain a new
candidate solution [1]. Xue et al. proposed a self-adaptive
ABC algorithm based on the global best candidate (SABC-
GB), where several different candidate solution generating
strategies and self-adaptive strategies are used to balance the
rate of convergence and robustness of the algorithm [32].
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Table 7 Comparison between LPBFO and other algorithms for 20 times independent runs tested on 8 basic benchmark functions with 30
dimensions

Functions Metrics SLPSO PPBO distABC SABC-GB LPBFO

Best 1.79e−38 3.28e+02 2.68e−39 1.37e−53 1.61e−71

Median 6.42e−36 8.38e+02 1.08e−36 6.32e−53 1.73e−70

Sphere Worst 7.52e−33 1.46e+03 1.23e−29 3.56e−52 2.46e−67

Function Mean 4.91e−34 8.64e+02 1.28e−30 8.14e−53 1.28e−68

Std 1.68e−33 2.84e+02 3.52e−30 8.49e−53 5.49e−68

Best 4.17e−81 4.14e−03 1.19e−82 3.37e−111 3.30e−143

Median 2.25e−75 3.64e−02 9.12e−77 6.20e−110 4.98e−139

Quartic Worst 2.24e−70 1.04e−01 2.85e−51 3.92e−108 1.69e−135

Function Mean 2.24e−71 4.13e−02 1.43e−52 3.89e−109 9.35e−137

Std 6.53e−71 2.53e−02 6.38e−52 8.82e−109 3.77e−136

Best 6.09e−20 6.33e+00 8.78e−21 2.00e−28 4.60e−37

Schwefel’s Median 5.33e−19 2.15e+01 1.70e−19 5.22e−28 2.22e−36

Problem Worst 6.63e−17 4.22e+01 1.66e−16 1.19e−27 1.75e−35

2.22 Mean 5.77e−18 2.29e+01 2.02e−17 5.27e−28 4.81e−36

Std 1.49e−17 9.55e+00 4.45e−17 2.53e−28 5.38e−36

Best 1.04e−29 3.55e+03 3.08e−03 2.70e−02 1.09e−04

Median 9.80e−22 4.69e+04 3.46e−01 1.04e+00 9.70e−01

Rosenbrock Worst 8.12e−07 1.74e+05 3.59e+00 8.47e+01 7.00e+01

Function Mean 4.01e−08 5.23e+04 7.61e−01 1.11e+01 7.13e+00

Std 1.82e−07 4.47e+04 1.05e+00 2.18e+01 1.61e+01

Best 0.00e+00 6.49e+01 0.00e+00 0.00e+00 0.00e+00

Median 0.00e+00 1.13e+02 0.00e+00 0.00e+00 0.00e+00

Rastrigin Worst 0.00e+00 1.73e+02 0.00e+00 0.00e+00 0.00e+00

Function Mean 0.00e+00 1.12e+02 0.00e+00 0.00e+00 0.00e+00

Std 0.00e+00 2.57e+01 0.00e+00 0.00e+00 0.00e+00

Best 0.00e+00 3.82e+00 0.00e+00 0.00e+00 0.00e+00

Median 1.48e−02 7.76e+00 0.00e+00 0.00e+00 0.00e+00

Griewank Worst 8.06e−02 1.46e+01 5.55e−16 7.66e−03 7.40e−03

Function Mean 1.96e−02 7.86e+00 2.78e−17 3.83e−04 3.70e−04

Std 2.15e−02 2.68e+00 1.24e−16 1.71e−03 1.70e−03

Best 3.20e−14 6.45e+00 3.20e−14 2.49e−14 1.42e−14

Median 4.26e−14 8.86e+00 3.91e−14 2.84e−14 1.78e−14

Ackley Worst 5.68e−14 1.04e+01 4.97e−14 3.91e−14 2.84e−14

Function Mean 4.16e−14 8.76e+00 4.12e−14 3.02e−14 1.83e−14

Std 6.93e−15 1.00e+00 4.52e−15 4.19e−15 4.04e−15

Best 2.11e−02 4.48e+03 3.82e−04 3.82e−04 3.82e−04

Schwefel’s Median 4.68e+00 6.61e+03 3.82e−04 3.82e−04 4.38e−04

Problem Worst 3.76e+01 8.48e+03 7.86e−04 3.82e−04 1.18e+02

2.26 Mean 7.18e+00 6.67e+03 4.19e−04 3.82e−04 2.06e+01

Std 8.60e+00 1.09e+03 1.03e−04 5.60e−13 4.40e+01

Therefore, to further analyze the competitiveness of
LPBFO algorithm, this section compares LPBFO with the
state-of-the-art bionic algorithm: SLPSO [12], PPBO [11],
distABC [1], SABC-GB [32].

All the algorithms were tested on eight benchmark
functions with 30, 60 dimensions and each algorithm were
repeated for 20 times. To make a fair comparison, the values
of the population size used in each algorithm were chosen to
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Table 8 Comparison between LPBFO and other algorithms for 20 times independent runs tested on 8 basic benchmark functions with 60
dimensions

Functions Metrics SLPSO PPBO distABC SABC-GB LPBFO

Best 1.63e−21 1.79e+03 1.54e−16 1.65e−23 2.26e−33

Median 1.46e−19 3.39e+03 7.13e−16 6.16e−23 2.37e−32

Sphere Worst 1.77e−17 4.70e+03 2.37e−14 2.18e−22 8.71e−32

Function Mean 1.70e−18 3.30e+03 2.08e−15 8.37e−23 3.04e−32

Std 4.10e−18 7.90e+02 5.17e−15 6.02e−23 2.77e−32

Best 1.02e−49 2.11e−01 9.48e−39 3.40e−51 4.28e−67

Median 5.69e−44 6.40e−01 1.23e−37 3.88e−50 3.56e−65

Quartic Worst 2.33e−39 1.89e+00 1.10e−33 1.34e−49 1.74e−63

Function Mean 1.33e−40 6.97e−01 5.58e−35 4.24e−50 2.74e−64

Std 5.20e−40 3.99e−01 2.46e−34 3.58e−50 5.16e−64

Best 5.36e−11 3.79e+01 6.33e−09 1.04e−12 1.77e−17

Schwefel’s Median 3.01e−10 6.07e+01 9.95e−09 1.57e−12 3.14e−17

Problem Worst 2.06e−09 1.21e+02 9.72e−06 2.78e−12 8.41e−17

2.22 Mean 5.04e−10 6.23e+01 4.98e−07 1.59e−12 3.56e−17

Std 5.40e−10 1.90e+01 2.17e−06 4.51e−13 1.82e−17

Best 8.46e−12 1.89e+05 9.56e−01 1.58e−01 3.67e−01

Median 1.31e−02 4.78e+05 3.58e+00 1.00e+01 1.17e+01

Rosenbrock Worst 8.23e+01 9.21e+05 3.90e+01 9.48e+01 1.43e+02

Function Mean 5.27e+00 4.71e+05 5.92e+00 3.08e+01 2.74e+01

Std 1.83e+01 1.86e+05 8.33e+00 3.42e+01 3.77e+01

Best 0.00e+00 2.84e+02 1.72e−05 0.00e+00 0.00e+00

Median 0.00e+00 3.25e+02 9.95e−01 0.00e+00 0.00e+00

Rastrigin Worst 0.00e+00 3.78e+02 2.99e+00 1.99e+00 0.00e+00

Function Mean 0.00e+00 3.33e+02 8.78e−01 1.99e−01 0.00e+00

Std 0.00e+00 3.06e+01 7.99e−01 5.21e−01 0.00e+00

Best 0.00e+00 2.28e+01 2.33e−15 0.00e+00 0.00e+00

Median 0.00e+00 3.32e+01 3.28e−14 0.00e+00 0.00e+00

Griewank Worst 2.70e−02 4.83e+01 1.82e−10 6.56e−10 9.90e−03

Function Mean 6.77e−03 3.32e+01 1.17e−11 3.32e−11 4.93e−03

Std 9.73e−03 6.44e+00 4.13e−11 1.47e−10 2.20e−03

Best 8.65e−12 8.15e+00 1.56e−08 1.05e−11 4.97e−14

Median 1.87e−10 1.00e+01 3.98e−08 1.71e−11 8.53e−14

Ackley Worst 6.93e−10 1.23e+01 2.92e−07 3.94e−11 1.17e−13

Function Mean 2.17e−10 1.02e+01 7.11e−08 1.92e−11 8.37e−14

Std 1.83e−10 1.05e+00 7.56e−08 7.59e−12 1.89e−14

Best 2.11e+00 1.33e+04 5.85e+02 7.64e−04 1.39e+03

Schwefel’s Median 2.21e+01 1.52e+04 8.50e+02 7.64e−04 1.88e+03

Problem Worst 5.19e+01 1.91e+04 1.10e+03 1.18e+02 2.52e+03

2.26 Mean 2.13e+01 1.58e+04 8.47e+02 5.92e+00 1.88e+03

Std 1.67e+01 1.78e+03 1.51e+02 2.65e+01 3.23e+02

be the same as S = 50 and the algorithms performed totally
2000 iterations times in each run expect SLPSO algorithm.
In SLPSO algorithm, the number of iterations times was

set to 400000 times. Additionally, as for other specific
parameters of each comparison algorithm, we followed the
settings in a corresponding original paper.
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Table 9 Results of t-tests between LPBFO and the best results of the other algorithms regarding the indexes “Mean” for different benchmark
functions

Functions Dim p(F-test) p(t-test) significance Two-tailed P

Sphere D=30 1.43e−04 3.98e−04 YES+ 0.05

Function D=60 1.00e−06 6.00e−06 YES+ 0.05

Quartic D=30 0.005 0.063 NO+ 0.05

Function D=60 2.00e−06 4.20e−05 YES+ 0.05

Schwefel’s D=30 1.40e−05 1.63e−08 YES+ 0.05

Problem 2.22 D=60 7.41e−07 2.35e−12 YES+ 0.05

Rosenbrock D=30 0.002 0.062 NO− 0.05

Function D=60 0.008 0.026 YES− 0.05

Rosenbrock D=30 —— —— SAME 0.05

Function D=60 —— —— SAME 0.05

Griewank D=30 0.041 0.330 NO− 0.05

Function D=60 0.041 0.330 NO− 0.05

Ackley D=30 0.559 1.52e−11 YES+ 0.05

Function D=60 3.32e−07 7.72e−10 YES+ 0.05

Schwefel’s D=30 7.00e−06 0.051 NO− 0.05

Problem 2.26 D=60 7.20e−05 2.06e−16 YES− 0.05

SLPSO settings: The inertia weight ω = 0.9, acceleration
coefficient η = 1.496, the minimun selection ratio for
each operator γ = 0.01, the initial learning probability
Pl = 1.0, the initial update frequency Uf = 10.

PPBO settings: The acceleration coefficient c1 = c2 = 2;
ws = 0.9, we = 0.4; the topology of PPBO is (5,10),
which is a ring consisting of 5 subpopulations, each
containing 10 particles.

distABC settings: The control parameter limit = D ×
S/2.

SABC-GB settings: The control parameter limit = 0.6 ∗
(S/2) ∗ D; LP = 10.

Tables 7 and 8 show the comparison among the exper-
imental results based on 8 basic benchmark functions with
30, 60 dimensions. From the experimental results, the
proposed LPBFO algorithm converges fast and achieves
significantly better results in comparison with the best
results of the other four algorithms on 4 benchmark
functions: Sphere, Quartic, Schwefel’s Problem 2.22 and
Ackley function. The results shown in Tables 7 and 8
indicate that the SLPSO, distABC, SABC-GB and LPBFO
can converge to 0 on Rastrigin function, which means that
these algorithms all can obtain the best result. Only on
three functions are the results of LPBFO are worse than the
best results achieved by the other algorithms: Rosenbrock
(SLPSO), Griewank (distABC), Schwefel’s Problem 2.26
(SABC-GB).

It can be seen from the formulation of Rosenbrock
function that the first term 100(xi+1−xi)

2 mainly influences

the function value, which means that only the values among
different dimensions in the candidate solutions are almost
the same, the function value is smaller. Therefore, by
choosing one dimension to updating the candidate solution,
LPBFO failed to achieve the best results. However, by
taking the global optimal solution (gbest) and the local
optimal solution (pbest) into account, SLPSO uses different
strategies to guide particles to move to cope with different
situations in the search space. Therefore, based on the
self-learning strategy and communication between particles,
SLPSO algorithm gets the best results on Rosenbrock
function.

The Griewank function and Schwefel’s Problem 2.26 are
multimodal functions, where algorithms may easily fall into
a local optimum when intending to solve the functions. The
distABC algorithm uses the mean and standard deviation of
the selected two solution to obtain a new candidate solution.
The SABC-GB algorithm uses several different candidate
solution generating strategies and self-adaptive strategies
to obtain a new candidate solution. Both algorithms use
multiple candidate solutions and use the communication
between particles, which effectively reduce the probability
of algorithm falling into local optimum. As a result,
combining multiple solutions information to find the global
optimum, distABC and SABC-GB have achieved the best
results on Griewank function and Schwefel’s Problem
2.26.

In general, it is obvious that the proposed LPBFO
algorithm yields competitive results in comparison with the
best results of the other four algorithms.
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Table 10 Comparison between LPBFO and other LPBFO variants for 20 times independent runs tested on 8 basic benchmark functions with 30
dimensions

Functions Metrics LPBFO1 LPBFO2 LPBFO3 LPBFO

Best 1.41e−34 1.53e−06 5.81e−55 1.61e−71

Median 7.08e−34 2.01e−06 5.92e−53 1.73e−70

Sphere Worst 7.62e−33 3.38e−06 3.41e−52 2.46e−67

Function Mean 1.86e−33 2.24e−06 1.00e−52 1.28e−68

Std 2.40e−33 5.78e−07 1.16e−52 5.49e−68

Best 1.15e−74 2.86e−11 1.57e−114 3.30e−143

Median 7.20e−73 1.11e−10 4.02e−112 4.98e−139

Quartic Worst 2.47e−72 3.56e−10 2.53e−103 1.69e−135

Function Mean 8.41e−73 1.45e−10 2.54e−104 9.35e−137

Std 8.88e−73 1.07e−10 8.00e−104 3.77e−136

Best 6.30e−19 5.41e−02 1.11e−29 4.60e−37

Schwefel’s Median 2.28e−18 5.63e−01 1.53e−27 2.22e−36

Problem Worst 4.93e−18 4.55e+00 6.01e−27 1.75e−35

2.22 Mean 2.12e−18 1.25e+00 1.69e−27 4.81e−36

Std 1.22e−18 1.62e+00 1.89e−27 5.38e−36

Best 4.08e−02 2.30e+01 8.65e−05 1.09e−04

Median 1.39e+01 2.79e+01 2.59e+00 9.70e−01

Rosenbrock Worst 2.15e+01 9.54e+01 1.92e+01 7.00e+01

Function Mean 1.11e+01 3.90e+01 5.77e+00 7.13e+00

Std 9.34e+00 2.59e+01 6.85e+00 1.61e+01

Best 0.00e+00 3.58e+01 0.00e+00 0.00e+00

Median 0.00e+00 5.92e+01 0.00e+00 0.00e+00

Rastrigin Worst 0.00e+00 1.00e+02 0.00e+00 0.00e+00

Function Mean 0.00e+00 6.44e+01 0.00e+00 0.00e+00

Std 0.00e+00 2.17e+01 0.00e+00 0.00e+00

Best 0.00e+00 6.47e−07 0.00e+00 0.00e+00

Median 0.00e+00 1.11e−02 0.00e+00 0.00e+00

Griewank Worst 9.86e−03 4.67e−02 1.48e−02 7.40e−03

Function Mean 9.86e−04 1.53e−02 1.48e−03 3.70e−04

Std 3.12e−03 1.43e−02 4.67e−03 1.70e−03

Best 1.70e−08 9.97e+00 2.49e−14 1.42e−14

Median 7.43e−07 1.40e+01 3.20e−14 1.78e−14

Ackley Worst 2.81e−06 1.99e+01 9.95e−14 2.84e−14

Function Mean 1.02e−06 1.37e+01 4.12e−14 1.83e−14

Std 1.08e−06 2.96e+00 2.29e−14 4.04e−15

Best 3.79e+02 3.19e+03 2.73e+03 2.38e+02

Schwefel’s Median 9.77e+02 4.37e+03 3.67e+03 8.34e+02

Problem Worst 1.67e+03 5.42e+03 4.54e+03 2.62e+03

2.26 Mean 9.88e+02 4.31e+03 3.72e+03 9.48e+02

Std 4.04e+02 8.01e+02 5.00e+02 5.31e+02

4.4 Comparison regarding the t-test

The same as Section 4.2, the F-test and t-test were
performed in this section. “Yes+” means that the results
of LPBFO are significantly better than the results of other

algorithms. “NO+” indicates that the results of LPBFO are
better than the results of other algorithms but there exists
no significant difference. “Yes-” means that the results of
LPBFO are significantly worse than the results of other
algorithms. “NO-” indicates that the results of LPBFO are
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Table 11 Comparison between LPBFO and other other LPBFO variants for 20 times independent runs tested on 8 basic benchmark functions
with 60 dimensions

Functions Metrics LPBFO1 LPBFO2 LPBFO3 LPBFO

Best 1.33e−14 1.88e−05 7.05e−25 2.26e−33

Median 5.83e−14 3.91e−05 1.04e−23 2.37e−32

Sphere Worst 7.18e−14 4.72e−05 2.36e−22 8.71e−32

Function Mean 4.97e−14 3.41e−05 4.04e−23 3.04e−32

Std 2.28e−14 1.04e−05 7.19e−23 2.77e−32

Best 1.29e−34 1.39e−08 2.72e−51 4.28e−67

Median 2.52e−33 1.74e−08 1.43e−49 3.56e−65

Quartic Worst 5.08e−32 8.88e−08 3.29e−47 1.74e−63

Function Mean 1.10e−32 2.58e−08 5.59e−48 2.74e−64

Std 1.85e−32 2.29e−08 1.11e−47 5.16e−64

Best 1.86e−08 4.91e+00 6.76e−13 1.77e−17

Schwefel’s Median 3.04e−08 9.76e+00 1.20e−12 3.14e−17

Problem Worst 4.27e−08 1.76e+01 2.06e−12 8.41e−17

2.22 Mean 3.07e−08 1.10e+01 1.31e−12 3.56e−17

Std 8.01e−09 4.14e+00 5.14e−13 1.82e−17

Best 1.63e+00 5.29e+01 3.19e+00 3.67e−01

Median 9.33e+00 5.87e+01 2.03e+01 1.17e+01

Rosenbrockf Worst 1.56e+02 1.90e+02 2.23e+01 1.43e+02

Function Mean 2.50e+01 8.69e+01 1.77e+01 2.74e+01

Std 4.65e+01 4.49e+01 6.53e+00 3.77e+01

Best 2.90e−04 6.27e+01 5.88e−11 0.00e+00

Median 2.31e−01 1.11e+02 1.07e−09 0.00e+00

Rastrigin Worst 1.99e+00 1.79e+02 4.11e−07 0.00e+00

Function Mean 4.43e−01 1.15e+02 6.25e−08 0.00e+00

Std 6.30e−01 3.90e+01 1.38e−07 0.00e+00

Best 4.06e−05 8.52e−06 0.00e+00 0.00e+00

Median 1.03e−03 1.54e−05 0.00e+00 0.00e+00

Griewank Worst 1.18e−02 1.73e−02 7.40e−02 9.90e−03

Function Mean 5.31e−03 4.94e−03 7.40e−03 4.93e−03

Std 3.57e−03 6.87e−03 2.34e−03 2.20e−03

Best 3.18e−06 1.43e+01 1.29e−08 4.97e−14

Median 9.04e−06 1.99e+01 3.06e−08 8.53e−14

Ackley Worst 4.48e−05 1.99e+01 5.56e−08 1.17e−13

Function Mean 1.27e−05 1.92e+01 3.25e−08 8.37e−14

Std 1.19e−05 1.80e+00 1.62e−08 1.89e−14

Best 5.92e+03 6.22e+03 8.48e+03 4.18e+03

Schwefel’s Median 6.42e+03 8.64e+03 9.01e+03 5.39e+03

Problem Worst 7.25e+03 1.16e+04 9.54e+03 6.91e+03

Mean 6.51e+03 8.81e+03 9.01e+03 5.46e+03

Std 6.21e+02 1.94e+03 3.88e+02 7.35e+02

worse than the results of other algorithms but there exists no
significant difference. “SAME” means that LPBFO and the
best one in other algorithms have obtained the same optimal
solution.

Based on the results of statistical tests in Table 9,
LPBFO algorithm is significantly better than the results
of other algorithms in 7 experiments (YES+); LPBFO
algorithm is significantly worse than the results of other
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algorithms in 2 experiments (YES-); there exists no
significant difference between LPBFO algorithm and the
results of other algorithms in 7 experiments (NO+, NO-
and SAME). The above analysis suggests that the LPBFO
algorithm is still the best one among the six algorithms
and it possess competitive performance in comparison with
other algorithms.

4.5 Discussion on LPBFO algorithm

In this subsection, we offer a thorough analysis on the proposed
LPBFO algorithm and all the algorithms were tested using
the same parameters with the previous experiments.

In order to overcome the insufficiencies in BFO algorithm,
the proposed LPBFO algorithm introduces three improve-
ments: the adaptive Lévy flight step-size, the improved
search direction, the modified swarming process, where
each improvement has different effect. We constructed three
LPBFO algorithm variants (LPBFO1, LPBFO2, LPBFO3)
to analyze how each improvement influences the LPBFO
algorithm. All the algorithms were tested on 8 benchmark
functions with 30, 60 dimensions and each algorithm were
repeated 20 times.

The difference between LPBFO1 algorithm and LPBFO
algorithm is that instead of using the adaptive Lévy flight
step-size as the chemotaxis step-size, LPBFO1 algorithm
uses the fixed step-size C(i) = 0.1. Different with LPBFO
algorithm, LPBFO2 algorithm uses the tumbling direction
in the original BFO algorithm as the search direction
which is randomly selected from the search space. In
the modified swarming process of LPBFO algorithm, the
global best solution is used to guide the movement of
the bacteria; LPBFO3 algorithm used a randomly selected
solution to complete the swarming process. Tables 10
and 11 show the experimental results obtained by each
algorithm in the 20 independent runs. As can be seen from
Tables 10 and 11, LPBFO with the three improvements
obtained the best solution than other LPBFO variants, where
each LPBFO variant (LPBFO1, LPBFO2, LPBFO3) uses
two improvements. Therefore, any improvement being less
worsen the result, which means that the three improvements
working together can achieve the best result.

Among the three LPBFO variants (LPBFO1, LPBFO2,
LPBFO3), LPBFO3 achieved the best solution, followed by
LPBFO1 and the last is LPBFO2. Without using the global
best solution in the modified swarming process, LPBFO3
still obtained good results which means that the third
improvement has minor impact on LPBFO. From Tables 10
and 11, without using the improved search direction,
LPBFO2 obtained the worst solutions than LPBFO1 and
LPBFO3. Therefore, we can conclude that the second
improvement (searching one dimension one time) has the

most impact on LPBFO. Moreover, the adaptive Lévy flight
step-size has certain impact on LPBFO and the global best
solution has the least impact on LPBFO.

5 Conclusion

In this paper, we proposed an improved BFO algorithm
(LPBFO) to accelerate the convergence rate and improve
the precision of the solution. The adaptive Lévy Flight
step-size is set as the chemotaxis step-size to balance
local search and global search. To avoid the oscillation
phenomenon among different dimensions and maximize
the search ability of the algorithm, each bacterium choose
one dimension randomly to tumble. To improve the
accuracy of convergence, the information of global best
solution is used to guide the movement of the bacteria.
Finally, simulation experiments were conducted to assess
the effectiveness of the LPBFO algorithm based on eight
benchmark functions. The experiments verified that LPBFO
algorithm significantly outperforms other bionic algorithms
in the literature in terms of t-test.
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