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Abstract
Lazy decision tree (LazyDT) constructs a customized decision tree for each test instance, which consists of only a single path
from the root to a leaf node. LazyDT has two strengths in comparison with eager decision trees. One is that LazyDT can build
shorter decision paths than eager decision trees, and the other is that LazyDT can avoid unnecessary data fragmentation.
However, the split criterion used for constructing a customized tree in LazyDT is information gain, which is skew-sensitive.
When learning from imbalanced data sets, class imbalance impedes their ability to learn the minority class concept. In
this paper, we use Hellinger distance and K-L divergence as split criteria to build two types of lazy decision trees. An
experimental framework is performed across a wide range of imbalanced data sets to investigate the effectiveness of our
methods when comparing with the other methods including lazy decision tree, C4.5, Hellinger distance based decision
tree and support vector machine. In addition, we also use SMOTE to preprocess the highly imbalance data sets in the
experiment and evaluate its effectiveness. The experimental results, which contrasted through nonparametric statistical tests,
demonstrate that using Hellinger distance and K-L divergence as the split criterion can improve the performances of LazyDT
for imbalanced classification effectively.
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1 Introduction

Decision trees are among the more popular classification
methods due to their efficiency, simplicity and interpretabil-
ity. Algorithms for constructing decision trees such as C4.5
[1] create a single decision tree during the training phase
and then use the tree to classify test instances. In contrast,
the lazy decision tree (LazyDT) builds a customized tree for
each test instance, which consist of only a single path from
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the root to leaf node [2]. There are two strengths in compari-
son with eager decision trees. Firstly, the decision paths built
by LazyDT are often shorter than paths of eager decision
trees. Secondly, LazyDT can overcome the data fragment
problem [3]. However, LazyDT has not taken into account
the imbalanced data in which one class (the majority class)
vastly outnumbers the other (the minority class). Due to the
natures of learning algorithms, learning from imbalanced
data sets is still a challenging problem and exists widely in
many domains including, but not limited to, fraud detection
[4], network intrusion [5], medical diagnosis [6] and so on.
In order to overcome the class imbalance problem, many
methods have been proposed and can be roughly divided
into three categories as follows [7–9]. (1) Data-level meth-
ods often concentrate on modifying the training set until
all the classes are approximately equally represented. The
most common methods employed are undersampling of the
majority class and oversampling of the minority classes.
Since undersampling of the majority class does not take full
advantage of the useful information from the majority class,
oversampling has received more attention. A very popu-
lar approach is SMOTE (Synthetic Minority Oversampling
TEchnique), which increases diversity by generating pseudo
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minority class data [10]. Depending on the technique of
how synthetic samples will be generated, Several variants
of SMOTE have been proposed such as Borderline-SMOTE
[11], Adaptive Synthetic Sampling Technique (ADASYN)
[12], MSMOTE [13], and MWMOTE [14]. In addition,
when a dataset is highly dimensional and highly class imbal-
anced, existing online feature selection algorithms usually
ignore the small classes which can be important in these
applications. It is hence a challenge to select the features
from highly dimensional and class imbalanced data in an
online manner. A new Online Feature Selection based on
the Dependency in K nearest neighbors (K-OFSD) uses the
information of nearest neighbors to select relevant features
[15]. (2) Algorithm-level methods directly modify exist-
ing algorithms to alleviate the bias towards the majority
class. The most common methods modified are decision
trees and support vector machines (SVMs). For decision
trees, the main approach is to use the skew-insensitive
split criteria to generate the decision tree, which can be
seen from the next paragraph for details. For SVMs, one
approach is to adjust the class boundary towards the major-
ity class based on the kernel-alignment ideal [16]; the other
is to modify twin support vector machine (TSVM) such as
maximum margin of twin spheres support vector machine
(MMTSSVM) and maximum margin of twin spheres sup-
port vector machine with pinball loss (Pin-MMTSSVM).
MMTSSVM finds two homocentric spheres by solving a
quadratic programming problem and a linear programming
problem. The small sphere contains as many positive sam-
ples as possible, while most negative samples are pushed
outside the large sphere [17]. In contrast with MMTSSVM,
Pin-MMTSSVM uses pinball loss instead of hinge loss used
in MMTSSVM to improve the generalization performance
of MMTSSVM [18]. (3) Hybrid methods can combine
the advantages of two previous groups. One strategy is to
resample the dataset and then use the standard classifiers
such as decision trees, Naive Bayes and SVM etc. The
other is combine pre-processing with bagging and boosting.
SMOTEBagging [19], SMOTEBoost [20], EasyEnsemble
[21] and BalanceCascade [21] are examples of this type
of approaches. By contrast, the Hybrid methods have more
advantages and vaster development space [22]. Moreover,
multi-class imbalance classification is widely applied in
many areas. In recent years, a new ensemble learning is
proposed to tackle the multi-class imbalance classifica-
tion, which uses OVO (one vs one) decomposition scheme
to divided m-class imbalance classification problem into
m(m − 1)/2 binary subproblems and utilizes a confidence
degree matrix to finish the aggregation [23].

In terms of decision trees, the split criteria used in decision
trees such as Gini index, information gain and DKM

have been proven to be skew-sensitive and the Hellinger
distance is proposed as a split criterion to build Hellinger
distance decision trees (HDDT) [24, 25]. Meanwhile, the
variants of HDDT are proposed to deal with different
problems. For example, the Multi-Class HDDT (MHDDT)
employs the techniques similar to Error Correcting Output
Codes Decomposition (ECOC) to deal with the multi-class
imbalance classification [26]; Gaussian Hellinger Very Fast
Decision Tree (GH-VFDT) computes the Hellinger distance
between two normal distributions P and N straightforwardly,
which means it can deal with imbalanced data streams [27].
As for LazyDT, it adopts information gain to build the
decision path, which impedes the ability of LazyDT to learn
the minority class concept. So for all of these reasons, we
use Hellinger distance and K-L divergence as split criteria to
build LazyDT respectively, namely lazy decision tree based
on Hellinger distance (HLazyDT) and lazy decision tree
based on K-L divergence (KLLazyDT). An experimental
framework is performed across a wide range of imbalanced
data sets to investigate the effectiveness of our methods
when comparing with the other methods including lazy
decision tree, C4.5, Hellinger distance based decision tree
and support vector machine. The data sets used in this
experiment are categorized into two groups: highly and
lowly imbalanced data sets according to imbalanced ratio.
In addition, we also use SMOTE [10] to preprocess the
highly imbalanced data sets in the experiment and evaluate
its effectiveness since it has become the de facto standard for
improving the performances of the decision tree algorithms
[28]. The experimental results, which are contrasted through
nonparametric statistical tests, demonstrate that using
Hellinger distance and K-L divergence as the split criterion
to build LazyDT can improve the performances of LazyDT
for imbalanced classification effectively.

In summary, the key contributions of this paper are
as follows. (1) We analyse the reason why the split
criterion used in LazyDT is skew-sensitive. (2) We
use Hellinger distance and K-L divergence as the split
criteria used in LazyDT, which demonstrates that the
modification can improve the performances of LazyDT for
imbalanced classification effectively. (3) We investigate the
effectiveness of the SMOTE preprocessing.

The rest of this paper is organized as follows. In Section 2,
some related works are introduced. Section 3 provides the
formulations and some related properties of Hellinger dis-
tance and K-L divergence respectively. Section 4 describes
Hellinger distance based lazy decision tree (HLazyDT) and
K-L divergence based lazy decision tree (KLLazyDT).
Section 5 states the used experimental framework and the
analysis of experimental results. Finally, the conclusions
obtained in this work are shown in Section 6.
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2 Related work

As with many lazy algorithms, the first part of training
phase is non-existent and all the work of LazyDT is done
during the classification of a given test instance. LazyDT,
which gets the test instance as part of the input, follows
a separate and classify methodology: a feature is chosen
and the sub-problem containing the instances with the same
feature value as the given instance is then solved recursively.
The overall effect is that of tracing a path in an imaginary
tree built for the test instance. The heart of LazyDT is
information gain that is used as the split criterion to select
the split feature. Unlike eager decision trees, LazyDT
takes into account the information of not only the training
instances but also the test instance. Essentially, LazyDT
builds a single decision path for a given test instance, which
can avoid splits on the features that are irrelevant for the
specific instance. Therefore, LazyDT avoids unnecessary
data fragmentation and duplicate subtrees which are shown
in Fig. 1 and may produce a shorter and more accurate
decision path for the specific instance. On the other hand,
three problems need to be solved in the framework of
LazyDT. The first is the way to handle missing values.
LazyDT will ignore the missing feature and just never
branch on a missing value in the test instance. The second
problem is that the information gain may be negative or
zero. In this case, LazyDT will return the most frequent
class in the training set which covered by the current node.
The last problem is that there may be no training instances
with the same feature value as the given instance. At this
time, LazyDT will remount to the parent node and return the
most frequent class in the training set. At last, LazyDT is

Fig. 1 Data fragmentation and duplicate subtrees in eager decision tree

also applied to distributed privacy preserving area in recent
years from an application point of view [29].

Since Boosting can improve the performance of various
decision trees effectively [30, 31], Fern X Z and Brodley
C E proposed a relevance-based boosting lazy decision
trees which consist of two steps [32]. Firstly, it builds a
customized LazyDT ensemble for each test instance. All the
training instances are equally weighted at the beginning. In
each iteration, a decision path for the given test instance
is produced by applying LazyDT to the training set with
instance weights. The instance weight is then adjusted to
form a new distribution for the next iteration according to
how relevant this instance is to classifying the given test
instance and whether its class label is predicted correctly
by the current decision path. The relevance level is the
depth of the node at which the training instance is discarded
when producing the given decision path. Secondly, the
relevance-based boosting lazy decision trees also adopt a
distance-based pruning strategy to address the problem of
over-fitting. In each iteration, the pruning strategy performs
a greedy search to select a deletion of feature in the light of
the ratio of the heterogeneous distance to the homogeneous
distance. The heterogeneous distance measures the distance
between the test instance and the closest cluster of instances
from the other classes, while the homogeneous distance is
defined as the distance between the test instance and the
most frequent class in the current set. Although an empirical
comparison to the other boosted regular decision trees
shows that the relevance-based boosting lazy decision trees
achieve comparable accuracy and better comprehensibility,
the distance-based pruning strategy is biased against the
minority class. Thus, it is difficult for the relevance-based
boosting lazy decision trees to deal with the imbalanced data
sets.

Due to the fact that LazyDT needs to be re-run
independently for each test instance, the main drawback of
it is its high computational cost in the classification phase.
In order to reduce the computational cost of LazyDT, a
batched lazy decision tree was introduced by Guillame-
Bert M and Dubrawski A [33]. The batched lazy decision
tree substitutes a subtree for a single path and each
necessary node is visited only once through a single pass.
This algorithm uses the value of the test instance on
the split feature to filter the training set and the test
set simultaneously in each iteration. Once the termination
condition is satisfied, the filtered test instances are labeled
as the most frequent class.

In summary, these algorithms mentioned above do not
take into account imbalanced learning. The framework
of them all takes advantage of information gain as split
criterion. It is well known that information gain is a
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measure of impurity. As far as the imbalanced data sets are
concerned, the distributions of the classes are unbalanced
and it means that the impurity of imbalanced data is lower
than balanced data. When using information gain as the
split criterion to choose the feature in a imbalanced data
set, the information gain may be zero or even negative,
which will lead to cessation of tree growth. In this way, it is
unreasonable that all of the test instances may be classified
as the majority class, which decreases the performances of
the classifier. This is the reason why information gain is
skew-sensitive.

3 Hellinger distance and K-L divergence

3.1 Hellinger distance

Hellinger distance is one of measures which reflects
divergences between two probability distributions [34].
Given a countable space �, let P and Q be two distributions
and Hellinger distance can be defined as follows.

DH (P, Q) =
√∑

φ∈�

(
√

P(φ) − √
Q(φ))2 . (1)

The Hellinger distance carries the following properties.

(1) DH (P, Q) is in [0,
√

2].
(2) The Hellinger distance is symmetric and non-negative.
(3) The bigger Hellinger distance is, the better discrimina-

tions of the probabilities are.

The Hellinger Distance with respect to a feature for two-
class problem is given as follows, which is firstly used as a
split criterion in decision trees [24].

DH (X+, X−) =
√√√√ P∑

j=1

(

√
|X+j |
|X+| −

√
|X−j |
|X−| )2 , (2)

where |X+| indicates the number of instances that belong to
the minority class in the training set and |X+j | specifies the
subset of the training set with the minority class and value j
for the feature X. Similarly, they are the same explanations
of |X−| and |X−j | but for the majority class. In addition,
P is the number of different values in the feature X. Since
(2) is not influenced by prior probability, it is insensitive to
class distributions.

3.2 K-L divergence

Kullback-Leibler Divergence is an asymmetric measure
which reflects divergences between two probability distri-
butions and generally abbreviates to K-L divergence [35].
Suppose � is a countable space and both P and Q are two
probability distributions in � respectively. Dkl(P, Q) =

∑
φ∈�

(
ln(

P (φ)
Q(φ)

) · P(φ)
)

indicates the K-L divergence of

Q from P. Similarly, the K-L divergence of P from Q

can be defined as Dkl(Q, P ) = ∑
φ∈�

(
ln(

Q(φ)
P (φ)

) · Q(φ)
)

.

In order to make K-L divergence satisfy the symmetry, a
symmetrised form of K-L divergence is defined as follows.

Dkl−symmetry(P,Q) = 1

2
· Dkl(P,Q) + 1

2
· Dkl(Q, P )

= 1

2
·
∑
φ∈�

(
ln(

P (φ)

Q(φ)
) · P(φ)

)

+1

2
·
∑
φ∈�

(
ln(

Q(φ)

P (φ)
) · Q(φ)

)

= 1

2
·
∑
φ∈�

((ln P(φ) − ln Q(φ)) · P(φ)

+ (ln Q(φ) − ln P(φ)) · Q(φ))

= 1

2
·
∑
φ∈�

((P (φ)

− Q(φ)) · ln

(
P(φ)

Q(φ)

))
. (3)

Especially, when using the symmetrised form of K-L
divergence as the splitting criterion of decision trees for two-
class problem, we can ignore the constant term namely 1

2
and rewrite the (3) as follows.

Dkl−symmetry(X+, X−) =
P∑

j=1

⎛
⎝( |X+j |

|X+| − |X−j |
|X−|

)
· ln

⎛
⎝ |X+j |

|X+|
|X−j |
|X−|

⎞
⎠

⎞
⎠ . (4)

Since all symbols used in the (4) have the same
illustrations as the (2), we will not repeat them here
and please refer to the Section 3.1 for details. It
essentially reflects the divergence between the feature value
distributions with respect to two different classes and has
the following properties.

(1) Dkl−symmetry(X+, X−) is bounded in [0, +∞).
(2) Dkl−symmetry(X+, X−) satisfy symmetry and non-

negativeness.
(3) The bigger Dkl−symmetry(X+, X−) is, the better

discriminations of the feature are.

However, there exists zero probability problem which
makes the upper bound of the (4) infinite. Smoothing
methods are generally used to avoid this problem. In
this paper, we adopt Laplace smoothing namely additive
smoothing. For example, assuming |X+j | = 0 and there
are mj different values in the feature X, the smoothed
conditional probability is defined as follows.

P(Xj |+) = |X+j | + 1

|X+| + λ · mj

, (5)

where λ is the smoothing parameter. Here, we set λ = 1,
that is to say, Laplace’s law of succession [36]. In this way,
we can use the (5) to tackle zero probability problem.
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4 Hellinger distance and K-L divergence
based lazy decision trees

Although LazyDT avoids unnecessary data fragmentation
and duplicate subtrees and may produce a shorter and more
accurate decision path for the specific instance, it is still
difficult for LazyDT to deal with imbalanced problem.
There are two main defects which impede LazyDT’s ability
to learn from imbalanced data. one is that information
gain used by LazyDT is skew-sensitive and the other is
that LazyDT do not take into account the value of the
test instance on the alternative feature in the procedure
of selecting the split feature, which may give rise to
the problem that there are no instances in the new node
when filtering the training set by the value of the test
instance on the split feature. In this way, LazyDT will
cease to split and return the most frequent class in the
training set covered by the current node, which degrades the
classification performance of LazyDT. In order to overcome
the two defects mentioned above, we use the value of the
test instance on the candidate feature to modify Hellinger
distance and K-L divergence respectively.

4.1 Hellinger distance based lazy decision trees
(HLazyDT)

For the feature X, let v represent the value of a given test
instance. Given two-class problem, we can calculate the
Hellinger distance of the value v on the feature X as follows.

WH−v(X+, X−) =
∣∣∣∣∣
√

|X+v|
|X+| −

√
|X−v|
|X−|

∣∣∣∣∣ , (6)

where |X+| indicates the number of examples that belong to
the minority class in the training set and |X+v| specifies the
subset of training set with the minority class and the value v
for the feature X. Similarly, they are the same explanations
of |X−| and |X−v| but for the majority class. The bigger
is WH−v , the better discriminations of the value v on the
feature X are. It reflects the contribution of the value v to
the discrimination of the feature X.

As mentioned above, we combine the (2) with the (6) and
give the formula of Hellinger distance based split criterion
used in HLazyDT as follows.

SplitH = √
WH−v(X+, X−) · DH (X+, X−) , (7)

where DH (X+, X−) and WH−v(X+, X−) can be calculated
according to the (2) and the (6) respectively. Especially,
when the value v of the test instance on the feature X does
not belong to the set of the values on the feature X in the
training set, both the (6) and (7) will be equal to zero. In fact,
the (7) calculates the ability of the feature X to discriminate

the two classes based not only on all values of the feature X
but also on the value of the test instance on the feature X.

The following Algorithm 1 outlines the approach for
calculating Hellinger distance and the procedure for
inducing HLazyDT. In this algorithm, Ty=i indicates the
subset of the training set T with class i, Tf =j specifies
the subset with the value j for the feature f and Tf =j,y=i

identifies the subset with the class i and has the value j for
the feature f. Given two-class problem, class i is drawn from
some finite set of classes like the minority class(+) and the
majority class(-).
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4.2 K-L divergence based lazy decision trees
(KLLazyDT)

Similarly, we firstly calculate K-L divergence of the value v
as follows.

WKL−v(X+, X−) =
( |X+v|

|X+| − |X−v|
|X−|

)
· ln

⎛
⎝ |X+v |

|X+|
|X−v |
|X−|

⎞
⎠ , (8)

where all symbols have the same illustrations as the (6) and
please refer to the Section 4.1 for details. It reflects the
discriminations of the value v of the test instance on the
feature X. Next, we describe the formula of K-L divergence
based split criterion used in KLLazyDT as follows.

SplitKL = √
WKL−v(X+, X−) · Dkl−symmetry(X+, X−) , (9)

where Dkl−symmetry(X+, X−) and WKL−v(X+, X−) can
be calculated according to the (4) and (8) respectively.
Likewisely, if the value v of the test instance on the feature
X does not belong to the set of the values on the feature X
in the training set, both the (4) and (8) will also be equal
to zero. Moreover, it is worth mentioning that we still need
use the (5) to smooth the (4) and (8) when zero probability
problems come out. The framework of the K-L divergence
based lazy decision trees is described in Algorithm 2. Please
refer to Algorithm 1 for the illustrations of the related symbols.

Finally, we focus on the time and memory complexity
of eager decision trees and lazy decision trees, which have
been discussed in [33]. In order to make this paper self-
contained for all its related information, we just restate
the related discussions. For convenience of discussion, we
consider binary splitting for decision trees, a training dataset
with n instances and f attributes as well as a test dataset
with t instances and f attributes. We assume that there are
a minimum of p training instances in expanding nodes.
(1) The time complexity of an eager decision tree model

is O(
∑lg n

p

i=0 2i · f · n
2i ) = O(n · f · lg n

p
) and the time

complexity of a lazy decision tree model is O(t · ∑lg n
p

i=0 f ·
n
2i ) = O(t · f · n) on average. Note that lg n

p
is the

average depth of exploration, 2i is the average number of
nodes at depth i, and n

2i is the average number of training
instances contained in a node at depth i. Thus, unless the
number of unlabeled observations is small, lazy decision
trees can be slower in prediction mode than the equivalent
eager decision trees. (2) Building an eager decision tree
requires memories for the stack operations used during the
recursive construction of the tree as well as some storages
for the final trained model, while Lazy decision trees only
require the stack. The stack size and model size of decision

trees are O(
∑lg n

p

i=0
n
2i ) = O(n) and O( n

p
) (the number of

non-leaf nodes in a decision tree) on average respectively.
According to the notation mentioned above, the required

memories of an eager decision tree is O(n) + O( n
p
) on

average in the training phase and O( n
p
) in the testing phase,

while Lazy decision trees only require O(n). It means that
eager decision tree requires more memories in the training
phase than lazy decision trees, while in the testing phase it
yet requires fewer memories than lazy decision trees.
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Fig. 2 The framework of the whole experiment

5 Experiments

The whole experiment is divided into the following steps.
Firstly, we categorize the experimental data sets into three
groups: lowly (IR < 9) imbalanced data sets, highly
(IR ≥ 9) imbalanced data sets and highly imbalanced
data sets with SMOTE preprocessing. Secondly, we use
uniform-frequency method to discretize the datasets used
in the experiment. Finally, we use five-fold cross-validation
to train and test the methods which participate in the
experiment and obtain and analyze the experimental results.
In order to depict the whole procedure of our experiment
clearly, we give the whole framework of our experiment as
shown in Fig. 2. The methods’ abbreviations in Fig. 2 are
shown in Table 1.

5.1 Experiment tool

In this section, we present the set up of the experimental
framework that is used to develop the analysis of our
proposals. Moreover, we use KEEL (Knowledge Extraction
based on Evolutionary Learning)1 to finish the whole
experiment, which empowers the user to assess the
behavior of evolutionary learning and soft computing based
techniques for all kinds of data mining problems: regression,
classification, clustering, pattern mining and so on. KEEL

1http://www.keel.es

is an open source Java framework (GPLv3 license) that
provides a number of modules to perform a wide variety
of data mining tasks. It includes tools to perform data
management, add a new algorithm, design of multiple kind
of experiments, statistical analyses, etc and provides a
simple GUI to design experiments with different data sets
and computational intelligence algorithms in order to assess
the behaviour of the algorithms. The latest version of it is
KEEL3.0, which includes new modules for semi-supervised
learning, multi-instance learning, imbalanced classification
and subgroup discovery [37]. In our experiment, We first
use KEEL3.0 to implement Hellinger distance based lazy
decision tree and K-L divergence based lazy decision tree
respectively and then use the imbalanced classification
and datasets provided by KEEL3.0 to finish the whole
experiment.

5.2 Methods

In this experiment, we compare Hellinger distance based
lazy decision tree (HLazyDT) and K-L divergence based
lazy decision tree (KLLazyDT) with the other methods
including lazy decision tree (LazyDT), C4.5, Hellinger
distance based decision tree (HDDT) and support vector
machine (SVM) across lowly and highly imbalanced data
sets. Thereinto, C4.5 is a popular algorithm for eager
decision trees which was used in the experiment of lazy
decision tree [1]. Since imbalanced classification is the
focus of this experiment, we use the version of C4.5
with unpruning in this experiment, which was proven
to be an effective strategy [38]. Similarly, HDDT is an
eager decision tree which is designed for imbalanced
classification [24, 25]. Additionally, SVM is a popular
approach for data classification and has been successfully
applied in various applications [39]. Since SVM does
not belong to the family of decision trees, we only use
SVM as the comparison object in the experiment and
the statistical analysis of the experimental results will not
include it. Finally, all methods used in this experiment, their
parameters setting as well as their abbreviations are shown
in Table 1. We will use these abbreviations of all methods to
denote for the rest of this paper.

5.3 Datasets and data partitions

In this experiment, we select data sets from KEEL data
set repository2 and categorized these data sets into two
groups: lowly (IR < 9) and highly (IR ≥ 9) imbalanced
data sets according to the ratio of the number of examples
from the majority class to the minority class(IR). Although
there is no consensus in the literature about when a data

2http://www.keel.es
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Table 1 All methods used in the experiment and their parameters settings and abbreviations

Methods Parameters Setting Abbreviations

C4.5 Unprune, InstancePerLeaf=2 C4.5

Hellinger distance based decision tree Unprune HDDT

Lazy Decision Tree LazyDT

Hellinger distance based lazy decision tree a HLazyDT

K-L divergence based lazy decision tree a KLLazyDT

Support vector machine kernel function=RBF, C = 100, ε = 0.001, γ = 0.01 SVM

Items with a a are our approaches in this paper

set is considered highly imbalanced, we will consider that
the ratio of the number of examples from the majority
class to the minority class (IR) above 9 represents a highly
imbalanced data set in this paper due to the fact that
ignoring the minority class examples by a classifier still
obtains an error of 0.1 in accuracy. The characteristics of
data sets are summarized in Tables 2 and 3 where we
denote the number of examples, the number of minority
class examples, the number of features, the number of
continuous features, the number of discrete features and
imbalanced ratio by “Examples”, “Minority”, “Features”,
“Continuous”, “Discrete” and “IR” respectively. These data
sets are two-class problem.

On the other hand, when evaluating each of these approaches
on the data sets, we firstly make use of the equal-frequency
bins to discretize all used data sets since the family of the
lazy decision trees only deals with the discrete data. Sec-
ondly, in order to explore what effect SMOTE [10] have on
these methods used in this experiment, we also use SMOTE to
preprocess the highly imbalanced data sets and compare the
performances of these methods. Since our goal is to explore
SMOTE to obtain the balanced data sets, the SMOTE levels
(SL) for minority class can be calculated as follows.

SL = (
n − n+

n+
− 1) × 100%. (10)

Table 2 Lowly imbalanced data sets used in the experiment

NO Data sets Examples Minority Features Continuous Discrete IR

1 ecoli-0 vs 1 220 77 7 7 0 1.86

2 ecoli1 336 77 7 7 0 3.86

3 ecoli2 336 52 7 7 0 5.46

4 ecoli3 336 35 7 7 0 8.6

5 glass0 214 70 9 9 0 2.06

6 glass-0-1-2-3 vs 4-5-6 214 71 9 9 0 3.2

7 glass1 214 76 9 9 0 1.82

8 glass6 214 29 9 9 0 6.38

9 haberman 306 81 3 3 0 2.78

10 iris0 150 50 4 4 0 2

11 new-thyroid1 215 35 5 5 0 5.14

12 new-thyroid2 215 35 5 5 0 5.14

13 page-blocks0 5472 559 10 10 0 8.79

14 pima 768 268 8 8 0 1.87

15 segment0 2308 329 19 19 0 6.02

16 vehicle0 846 199 18 18 0 3.25

17 vehicle1 846 217 18 18 0 2.9

18 vehicle2 846 218 18 18 0 2.88

19 vehicle3 846 212 18 18 0 2.99

20 wisconsin 683 239 9 9 0 1.86

21 yeast1 1484 429 8 8 0 2.46

22 yeast2 1484 163 8 8 0 8.1
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Table 3 Highly imbalanced data sets used in the experiment

NO Data sets Examples Minority Features Continuous Discrete IR

1 cleveland-0 vs 4 177 13 13 13 0 12.62
2 ecoli-0-1 vs 2-3-5 244 24 7 7 0 9.17
3 ecoli-0-1 vs 5 240 20 6 6 0 11
4 ecoli-0-1-3-7 vs 2-6 281 7 7 7 0 39.14
5 ecoli-0-1-4-6 vs 5 280 20 6 6 0 13
6 ecoli-0-1-4-7 vs 2-3-5-6 336 29 7 7 0 10.59
7 ecoli-0-1-4-7 vs 5-6 332 25 6 6 0 12.28
8 ecoli-0-2-3-4 vs 5 202 20 7 7 0 9.1
9 ecoli-0-2-6-7 vs 3-5 224 22 7 7 0 9.18
10 ecoli-0-3-4 vs 5 200 20 7 7 0 9
11 ecoli-0-3-4-6 vs 5 205 20 7 7 0 9.25
12 ecoli-0-3-4-7 vs 5-6 257 25 7 7 0 9.28
13 ecoli-0-4-6 vs 5 203 20 6 6 0 9.15
14 ecoli-0-6-7 vs 3-5 222 22 7 7 0 9.09
15 ecoli-0-6-7 vs 5 220 20 6 6 0 10
16 ecoli4 336 20 7 7 0 15.8
17 glass-0-1-4-6 vs 2 205 17 9 9 0 11.06
18 glass-0-1-5 vs 2 172 17 9 9 0 9.12
19 glass-0-1-6 vs 2 192 17 9 9 0 10.29
20 glass-0-1-6 vs 5 184 9 9 9 0 19.44
21 glass-0-4 vs 5 92 9 9 9 0 9.22
22 glass-0-6 vs 5 108 9 9 9 0 11
23 glass2 214 17 9 9 0 11.59
24 glass4 214 13 9 9 0 15.47
25 glass5 214 9 9 9 0 22.78
26 poker-8 vs 6 1477 17 10 10 0 85.88
27 poker-8-9 vs 5 2075 25 10 10 0 82
28 poker-8-9 vs 6 1485 25 10 10 0 58.4
29 poker-9 vs 7 244 8 10 10 0 29.5
30 vowel0 988 90 13 13 0 9.98
31 yeast-0-2-5-6 vs 3-7-8-9 1004 99 8 8 0 9.14
32 yeast-0-2-5-7-9 vs 3-6-8 1004 99 8 8 0 9.14
33 yeast-0-3-5-9 vs 7-8 506 50 8 8 0 9.12
34 yeast-0-56-7-9 vs 4 528 51 8 8 0 9.35
35 yeast-1 vs 7 459 30 7 7 0 14.3
36 yeast-1-2-8-9 vs 7 947 30 8 8 0 30.57
37 yeast-1-4-5-8 vs 7 693 30 8 8 0 22.1
38 yeast-2 vs 4 514 51 8 8 0 9.08
39 yeast-2 vs 8 482 20 8 8 0 23.1
40 yeast4 1484 51 8 8 0 28.1
41 yeast5 1484 44 8 8 0 32.73
42 yeast6 1484 35 8 8 0 41.4

Finally, we performed five-fold cross-validation. In this
procedure, each data set is randomly partitioned into five
equal sized and disjoint subsets, a single subset is retained as
the validation data for testing the model and the remaining
four subsets are used as the training data. The cross-
validation process is then repeated five times and the mean
of five repetitions is considered as the final results.

5.4 Evaluationmeasure

Since the behavior of different evaluation measures can
result in potentially different conclusions, it is suggested
to use more evaluation measures to evaluate classifier
especially when learning from imbalanced datasets [40].
Therefore, we employee the area under the receiver oper-

1135



C. Su, J. Cao

ating characteristic(ROC) curve and G-mean to compare
the performance of all methods used in this experiment
respectively which are two popular evaluation measures for
imbalanced problem.

(1) The area under the ROC Curve(AUC) can be calculated
as follows [41].

AUC = 2S0 − n+(n+ + 1)

2n+n−
, (11)

where n+ and n− indicate instances of the minority
class and the majority class respectively. S0 is the sum
of ranks of the minority class instances.

(2) G-mean is computed as the geometric mean of the true
positive and true negative rates, i.e.,

G − mean =
√

T P

T P + FN
· T N

T N + FP
, (12)

where TP indicates the number of true positive
instances, TN denotes the number of true negative
instances, FP means the number of false positive
instances, and FN is the number of false negative
instances.

5.5 Statistical tests for performance comparison

For the sake of the analysis of the experimental results,
non-parametric tests are used for statistical comparisons
of all methods used in this experiment due to the fact
that the initial conditions that guarantee the reliability of
the parametric tests may not be satisfied [42, 43]. In this
experiment, we use adjusted p-value Holm procedure to find
which methods are distinctive among a 1 × n comparison.
In this procedure, we firstly obtain the average ranks of the
methods according to the Friendman procedure. Especially,
when in the case of a tie, the average rank is assigned to each
method. For instance, if the performance of two methods tie
for first, a rank of 1.5 is assigned to each, or if three tie for
first, a rank of 2 is assigned to each and so on. Secondly,
we need choose a base method or a control method. In our
experiment, we choose the method with minimum average
rank as the base method and arrange the others in ascending
order according to the average ranks. The test statistics for
comparing the ith with the base method is as follows.

Z = Ri − Rb√
K(K+1)

6N

, (13)

Table 4 The AUC results across lowly imbalanced data sets

NO Data Sets C4.5 HDDT LazyDT HLazyDT KLLazyDT SVM

1 ecoli-0 vs 1 0.964 0.953 0.951 0.983 0.970 0.948

2 ecoli1 0.827 0.835 0.823 0.821 0.777 0.823

3 ecoli2 0.837 0.811 0.804 0.843 0.848 0.880

4 ecoli3 0.696 0.797 0.734 0.745 0.763 0.786

5 glass0 0.806 0.772 0.767 0.749 0.785 0.770

6 glass-0-1-2-3 vs 4-5-6 0.879 0.897 0.887 0.913 0.878 0.860

7 glass1 0.719 0.748 0.705 0.689 0.698 0.770

8 glass6 0.903 0.841 0.883 0.884 0.889 0.894

9 haberman 0.550 0.527 0.555 0.566 0.577 0.563

10 iris0 0.990 1.00 0.990 0.985 0.985 1.00

11 new-thyroid1 0.860 0.937 0.929 0.960 0.963 0.932

12 new-thyroid2 0.923 0.957 0.932 0.992 0.977 0.966

13 page-blocks0 0.896 0.913 0.894 0.905 0.906 0.923

14 pima 0.659 0.673 0.684 0.693 0.673 0.676

15 segment0 0.985 0.994 0.989 0.991 0.990 0.994

16 vehicle0 0.888 0.930 0.914 0.908 0.916 0.964

17 vehicle1 0.672 0.656 0.656 0.676 0.673 0.742

18 vehicle2 0.886 0.914 0.856 0.946 0.950 0.981

19 vehicle3 0.642 0.635 0.614 0.662 0.685 0.715

20 wisconsin 0.944 0.942 0.941 0.958 0.947 0.966

21 yeast1 0.612 0.667 0.622 0.643 0.623 0.654

22 yeast2 0.841 0.845 0.836 0.812 0.825 0.833

Avg.ROC 0.817 0.829 0.817 0.833 0.832 0.847

1136



Improving lazy decision tree for imbalanced classification...

where Ri and Rb are the average ranks computed through
the Friendman test for the ith method and the base method
respectively. K is the number of methods to be compared
and N is the number of data sets used in the comparison.
The Z value is used to find the corresponding probability(P-
value) from the table of normal distribution, which is then
compared with an appropriate level of significance α. In
adjusted P-value Holm procedure, it starts with the most
significant P value. The ith adjusted P-value (APVi) is
defined as follows.

APVi =min{v; 1}, where v = max{(k − j)Pj , 1 ≤ j ≤ i}. (14)

If APVi < α, the null hypothesis, namely there is
no significant difference in the ranks of two methods, is
rejected. As soon as a certain null hypothesis cannot be
rejected, all remaining hypotheses are retained as well.

5.6 Experiment results and analysis

In this section, we present the empirical analysis of our
methods including HLazyDT and KLLazyDT in order
to determine their robustness in three different scenarios
namely lowly imbalanced data sets, highly imbalanced
data sets and highly imbalanced data sets with SMOTE

preprocessing. We firstly compare the average AUCs and
G-means among these different approaches and then we
also compare the average ranks among these different
approaches at 95% confidence interval according to
AUCs and G-means respectively. If there are statistically
significant difference between the base approach and the
others, we put a “

√
” sign on the corresponding method,

which are shown in Table 10.
The experimental results are shown in Tables 4, 5, 6, 7,

8, and 9 respectively. Tables 4, 6, and 8 show the AUC
results for each method across three types of the datasets
used in this experiment and the rest tables show the G-
mean results for each method across three types of the
datasets. To compare the average AUC results and G-mean
results clearly, we also make the charts which are shown in
Figs. 3 and 4 respectively. Finally, The observations can be
described as follows.

(1) When comparing the results across the lowly imbal-
anced data sets, HLazyDT and KLLazyDT outperform
the other trees except for SVM according to AUC,
which also can be seen in Fig. 3. As shown in Table 10,
we note that HLazyDT and KLLazyDT perform statis-
tically significantly better than LazyDT at 95% confi-
dence interval according to the average ranks of AUCs.

Table 5 The G-means results across lowly imbalanced data sets

NO Data Sets C4.5 HDDT LazyDT HLazyDT KLLazyDT SVM

1 ecoli-0 vs 1 0.962 0.952 0.949 0.983 0.966 0.946

2 ecoli1 0.812 0.824 0.814 0.802 0.762 0.814

3 ecoli2 0.829 0.798 0.791 0.816 0.840 0.872

4 ecoli3 0.638 0.759 0.681 0.716 0.739 0.764

5 glass0 0.801 0.763 0.762 0.740 0.773 0.765

6 glass-0-1-2-3 vs 4-5-6 0.877 0.893 0.883 0.909 0.876 0.851

7 glass1 0.706 0.740 0.692 0.650 0.690 0.763

8 glass6 0.892 0.821 0.872 0.885 0.880 0.883

9 haberman 0.467 0.44 0.466 0.507 0.535 0.426

10 iris0 0.990 1.00 0.990 0.985 0.985 1.00

11 new-thyroid1 0.833 0.931 0.923 0.961 0.961 0.925

12 new-thyroid2 0.921 0.955 0.930 0.977 0.977 0.965

13 page-blocks0 0.892 0.910 0.890 0.902 0.904 0.921

14 pima 0.653 0.659 0.674 0.681 0.673 0.666

15 segment0 0.990 0.994 0.989 0.990 0.990 0.994

16 vehicle0 0.885 0.929 0.912 0.890 0.911 0.963

17 vehicle1 0.652 0.633 0.625 0.658 0.649 0.732

18 vehicle2 0.885 0.912 0.850 0.938 0.949 0.981

19 vehicle3 0.603 0.596 0.568 0.643 0.669 0.700

20 wisconsin 0.944 0.941 0.941 0.943 0.947 0.966

21 yeast1 0.574 0.649 0.588 0.621 0.600 0.610

22 yeast2 0.830 0.834 0.824 0.786 0.811 0.820

Avg.G-means 0.802 0.815 0.801 0.817 0.822 0.833
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Similarly, when focusing on the G-mean results, we
can obtain the same results as AUC which can be seen
from Table 5 and Fig. 4.

(2) When comparing the results across the highly imbal-
anced data sets, both Tables 6 and 7 show that
HLazyDT and KLLazyDT outperform the other trees
except for SVM according to AUC or G-mean. This

Table 6 The AUC results across highly imbalanced data sets

NO Data Sets C4.5 HDDT LazyDT HLazyDT KLLazyDT SVM

1 cleveland-0 vs 4 0.631 0.660 0.592 0.622 0.778 0.741

2 ecoli-0-1 vs 2-3-5 0.623 0.733 0.755 0.850 0.870 0.844

3 ecoli-0-1 vs 5 0.802 0.821 0.857 0.911 0.932 0.886

4 ecoli-0-1-3-7 vs 2-6 0.591 0.739 0.643 0.684 0.725 0.637

5 ecoli-0-1-4-6 vs 5 0.767 0.780 0.788 0.833 0.883 0.813

6 ecoli-0-1-4-7 vs 2-3-5-6 0.707 0.744 0.727 0.767 0.824 0.795

7 ecoli-0-1-4-7 vs 5-6 0.709 0.706 0.709 0.849 0.882 0.853

8 ecoli-0-2-3-4 vs 5 0.798 0.822 0.823 0.856 0.853 0.886

9 ecoli-0-2-6-7 vs 3-5 0.815 0.853 0.835 0.815 0.798 0.730

10 ecoli-0-3-4 vs 5 0.828 0.869 0.828 0.908 0.908 0.914

11 ecoli-0-3-4-6 vs 5 0.820 0.819 0.818 0.859 0.884 0.856

12 ecoli-0-3-4-7 vs 5-6 0.758 0.812 0.800 0.854 0.841 0.800

13 ecoli-0-4-6 vs 5 0.773 0.832 0.850 0.848 0.867 0.859

14 ecoli-0-6-7 vs 3-5 0.805 0.858 0.847 0.853 0.840 0.855

15 ecoli-0-6-7 vs 5 0.880 0.876 0.880 0.893 0.885 0.870

16 ecoli4 0.866 0.817 0.891 0.891 0.903 0.891

17 glass-0-1-4-6 vs 2 0.485 0.553 0.480 0.574 0.614 0.638

18 glass-0-1-5 vs 2 0.551 0.630 0.558 0.595 0.585 0.645

19 glass-0-1-6 vs 2 0.538 0.603 0.549 0.599 0.626 0.669

20 glass-0-1-6 vs 5 0.841 0.747 0.747 0.891 0.924 0.894

21 glass-0-4 vs 5 0.994 0.894 0.994 0.832 0.809 1.00

22 glass-0-6 vs 5 0.980 0.978 0.880 0.925 0.895 0.950

23 glass2 0.549 0.572 0.580 0.533 0.543 0.594

24 glass4 0.585 0.884 0.821 0.794 0.794 0.868

25 glass5 0.938 0.695 0.795 0.988 0.973 0.745

26 poker-8 vs 6 0.532 0.521 0.499 0.531 0.529 0.625

27 poker-8-9 vs 5 0.517 0.536 0.536 0.557 0.515 0.499

28 poker-8-9 vs 6 0.498 0.518 0.499 0.617 0.615 0.68

29 poker-9 vs 7 0.535 0.587 0.541 0.596 0.689 0.646

30 vowel0 0.895 0.938 0.906 0.949 0.955 0.994

31 yeast-0-2-5-6 vs 3-7-8-9 0.709 0.673 0.670 0.668 0.688 0.714

32 yeast-0-2-5-7-9 vs 3-6-8 0.821 0.826 0.809 0.837 0.817 0.876

33 yeast-0-3-5-9 vs 7-8 0.571 0.554 0.592 0.670 0.640 0.649

34 yeast-0-5-6-7-9 vs 4 0.710 0.703 0.678 0.709 0.710 0.757

35 yeast-1 vs 7 0.557 0.613 0.602 0.589 0.615 0.631

36 yeast-1-2-8-9 vs 7 0.509 0.509 0.511 0.539 0.516 0.497

37 yeast-1-4-5-8 vs 7 0.503 0.511 0.492 0.521 0.527 0.527

38 yeast-2 vs 4 0.831 0.826 0.817 0.844 0.869 0.850

39 yeast-2 vs 8 0.696 0.742 0.797 0.696 0.702 0.673

40 yeast4 0.569 0.555 0.549 0.574 0.584 0.564

41 yeast5 0.759 0.769 0.761 0.747 0.765 0.848

42 yeast6 0.596 0.665 0.666 0.709 0.691 0.740

Avg.ROC 0.701 0.722 0.714 0.747 0.759 0.762
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result mentioned above also can be seen from Figs. 3 and
4. Moreover, we can find from Table 10 that HLazyDT

and KLLazyDT perform statistically significantly bet-
ter than the other trees at 95% confidence interval accord-
ing to both the average ranks of AUC and G-mean.

Table 7 The G-means results across highly imbalanced data sets

NO Data Sets C4.5 HDDT LazyDT HLazyDT KLLazyDT SVM

1 cleveland-0 vs 4 0.486 0.526 0.366 0.409 0.671 0.617

2 ecoli-0-1 vs 2-3-5 0.463 0.666 0.691 0.841 0.863 0.824

3 ecoli-0-1 vs 5 0.784 0.783 0.846 0.907 0.930 0.876

4 ecoli-0-1-3-7 vs 2-6 0.194 0.534 0.338 0.391 0.527 0.340

5 ecoli-0-1-4-6 vs 5 0.641 0.673 0.683 0.815 0.877 0.783

6 ecoli-0-1-4-7 vs 2-3-5-6 0.655 0.689 0.679 0.728 0.810 0.775

7 ecoli-0-1-4-7 vs 5-6 0.645 0.636 0.645 0.830 0.868 0.838

8 ecoli-0-2-3-4 vs 5 0.764 0.795 0.804 0.870 0.841 0.875

9 ecoli-0-2-6-7 vs 3-5 0.779 0.824 0.800 0.777 0.771 0.681

10 ecoli-0-3-4 vs 5 0.816 0.855 0.816 0.902 0.905 0.905

11 ecoli-0-3-4-6 vs 5 0.804 0.792 0.802 0.847 0.875 0.845

12 ecoli-0-3-4-7 vs 5-6 0.725 0.789 0.778 0.838 0.830 0.775

13 ecoli-0-4-6 vs 5 0.749 0.811 0.842 0.837 0.855 0.852

14 ecoli-0-6-7 vs 3-5 0.786 0.850 0.839 0.843 0.830 0.845

15 ecoli-0-6-7 vs 5 0.869 0.862 0.869 0.881 0.873 0.856

16 ecoli4 0.853 0.707 0.884 0.884 0.898 0.884

17 glass-0-1-4-6 vs 2 0.093 0.332 0.093 0.345 0.550 0.492

18 glass-0-1-5 vs 2 0.304 0.406 0.304 0.369 0.368 0.508

19 glass-0-1-6 vs 2 0.245 0.396 0.244 0.364 0.509 0.531

20 glass-0-1-6 vs 5 0.736 0.621 0.621 0.872 0.917 0.794

21 glass-0-4 vs 5 0.994 0.794 0.994 0.723 0.704 1.00

22 glass-0-6 vs 5 0.979 0.978 0.862 0.915 0.885 0.941

23 glass2 0.159 0.260 0.270 0.304 0.301 0.362

24 glass4 0.341 0.864 0.785 0.760 0.800 0.855

25 glass5 0.929 0.795 0.595 0.978 0.968 0.536

26 poker-8 vs 6 0.115 0.100 0.000 0.115 0.114 0.379

27 poker-8-9 vs 5 0.090 0.178 0.178 0.267 0.090 0.000

28 poker-8-9 vs 6 0.000 0.099 0.000 0.393 0.369 0.521

29 poker-9 vs 7 0.138 0.277 0.138 0.198 0.470 0.421

30 vowel0 0.888 0.934 0.900 0.948 0.955 0.994

31 yeast-0-2-5-6 vs 3-7-8-9 0.656 0.598 0.592 0.601 0.631 0.651

32 yeast-0-2-5-7-9 vs 3-6-8 0.800 0.809 0.787 0.814 0.802 0.866

33 yeast-0-3-5-9 vs 7-8 0.364 0.296 0.399 0.610 0.574 0.555

34 yeast-0-5-6-7-9 vs 4 0.650 0.637 0.604 0.662 0.658 0.718

35 yeast-1 vs 7 0.277 0.440 0.414 0.421 0.560 0.534

36 yeast-1-2-8-9 vs 7 0.080 0.089 0.081 0.195 0.160 0.000

37 yeast-1-4-5-8 vs 7 0.080 0.098 0.000 0.161 0.192 0.115

38 yeast-2 vs 4 0.812 0.808 0.798 0.833 0.862 0.838

39 yeast-2 vs 8 0.553 0.614 0.753 0.552 0.566 0.514

40 yeast4 0.291 0.310 0.291 0.369 0.396 0.326

41 yeast5 0.710 0.727 0.677 0.696 0.723 0.823

42 yeast6 0.388 0.571 0.569 0.633 0.560 0.684

Avg.G-means 0.540 0.591 0.563 0.636 0.664 0.655
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(3) When we use SMOTE to preprocess the highly imbal-
anced data sets, it can improve the performances of
all methods used in the experiment. As shown in
Table 10, HDDT performs statistically significantly

better than C4.5, LazyDT and KLLazyDT at 95% con-
fidence interval according to both the average ranks
of AUC and G-mean. In addition, Tables 8 and 9
also show that HLazyDT and KLLazyDT outperform

Table 8 The AUC results across highly imbalanced data sets with SMOTE

NO Data Sets C4.5 HDDT LazyDT HLazyDT KLLazyDT SVM

1 cleveland-0 vs 4 0.959 0.957 0.945 0.963 0.963 0.988

2 ecoli-0-1 vs 2-3-5 0.884 0.923 0.889 0.952 0.959 0.964

3 ecoli-0-1 vs 5 0.909 0.943 0.918 0.934 0.932 0.984

4 ecoli-0-1-3-7 vs 2-6 0.991 0.993 0.991 0.993 0.987 0.976

5 ecoli-0-1-4-6 vs 5 0.944 0.958 0.946 0.958 0.956 0.981

6 ecoli-0-1-4-7 vs 2-3-5-6 0.887 0.921 0.887 0.918 0.919 0.953

7 ecoli-0-1-4-7 vs 5-6 0.925 0.941 0.920 0.945 0.938 0.979

8 ecoli-0-2-3-4 vs 5 0.931 0.941 0.929 0.940 0.934 0.967

9 ecoli-0-2-6-7 vs 3-5 0.926 0.938 0.928 0.938 0.938 0.975

10 ecoli-0-3-4 vs 5 0.911 0.947 0.917 0.944 0.956 0.969

11 ecoli-0-3-4-6 vs 5 0.924 0.951 0.924 0.943 0.935 0.970

12 ecoli-0-3-4-7 vs 5-6 0.927 0.927 0.903 0.931 0.935 0.961

13 ecoli-0-4-6 vs 5 0.924 0.942 0.929 0.951 0.956 0.981

14 ecoli-0-6-7 vs 3-5 0.932 0.954 0.940 0.935 0.945 0.970

15 ecoli-0-6-7 vs 5 0.945 0.951 0.942 0.942 0.938 0.975

16 ecoli4 0.979 0.985 0.981 0.987 0.983 0.991

17 glass-0-1-4-6 vs 2 0.806 0.859 0.829 0.896 0.870 0.926

18 glass-0-1-5 vs 2 0.806 0.827 0.813 0.852 0.852 0.916

19 glass-0-1-6 vs 2 0.757 0.809 0.757 0.814 0.800 0.934

20 glass-0-1-6 vs 5 0.994 0.970 0.969 0.989 0.989 0.994

21 glass-0-4 vs 5 0.994 0.994 0.994 0.994 0.994 1.000

22 glass-0-6 vs 5 0.995 0.957 0.950 0.985 0.985 1.000

23 glass2 0.766 0.820 0.779 0.845 0.822 0.929

24 glass4 0.963 0.985 0.970 0.970 0.945 0.990

25 glass5 0.993 0.988 0.983 0.990 0.995 0.995

26 poker-8 vs 6 0.996 1.000 0.996 1.000 1.000 0.985

27 poker-8-9 vs 5 0.960 0.979 0.963 0.973 0.966 0.975

28 poker-8-9 vs 6 0.999 1.000 0.998 1.000 0.999 0.979

29 poker-9 vs 7 0.981 0.991 0.972 0.972 0.979 0.998

30 vowel0 0.988 0.994 0.982 0.982 0.990 0.998

31 yeast-0-2-5-6 vs 3-7-8-9 0.825 0.852 0.824 0.840 0.834 0.856

32 yeast-0-2-5-7-9 vs 3-6-8 0.918 0.934 0.922 0.927 0.925 0.939

33 yeast-0-3-5-9 vs 7-8 0.776 0.810 0.765 0.805 0.804 0.848

34 yeast-0-5-6-7-9 vs 4 0.852 0.875 0.842 0.873 0.864 0.919

35 yeast-1 vs 7 0.829 0.869 0.839 0.871 0.867 0.913

36 yeast-1-2-8-9 vs 7 0.860 0.909 0.865 0.891 0.879 0.919

37 yeast-1-4-5-8 vs 7 0.844 0.892 0.852 0.869 0.856 0.906

38 yeast-2 vs 4 0.938 0.950 0.937 0.945 0.944 0.974

39 yeast-2 vs 8 0.923 0.918 0.890 0.918 0.907 0.917

40 yeast4 0.907 0.926 0.909 0.913 0.916 0.950

41 yeast5 0.968 0.979 0.969 0.977 0.976 0.983

42 yeast6 0.931 0.945 0.930 0.940 0.931 0.946

Avg.ROC 0.916 0.933 0.914 0.933 0.930 0.959
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Table 9 The G-means results across highly imbalanced data sets with SMOTE

NO Data Sets C4.5 HDDT LazyDT HLazyDT KLLazyDT SVM

1 cleveland-0 vs 4 0.959 0.955 0.942 0.956 0.962 0.987
2 ecoli-0-1 vs 2-3-5 0.883 0.922 0.888 0.952 0.954 0.963
3 ecoli-0-1 vs 5 0.909 0.942 0.918 0.934 0.931 0.984
4 ecoli-0-1-3-7 vs 2-6 0.991 0.993 0.991 0.993 0.987 0.976
5 ecoli-0-1-4-6 vs 5 0.944 0.958 0.946 0.946 0.956 0.981
6 ecoli-0-1-4-7 vs 2-3-5-6 0.885 0.920 0.887 0.915 0.918 0.953
7 ecoli-0-1-4-7 vs 5-6 0.925 0.941 0.920 0.939 0.936 0.979
8 ecoli-0-2-3-4 vs 5 0.931 0.941 0.928 0.922 0.936 0.967
9 ecoli-0-2-6-7 vs 3-5 0.926 0.938 0.928 0.938 0.938 0.975
10 ecoli-0-3-4 vs 5 0.910 0.947 0.907 0.941 0.955 0.969
11 ecoli-0-3-4-6 vs 5 0.924 0.951 0.924 0.932 0.934 0.970
12 ecoli-0-3-4-7 vs 5-6 0.926 0.927 0.903 0.931 0.935 0.961
13 ecoli-0-4-6 vs 5 0.923 0.941 0.929 0.950 0.956 0.981
14 ecoli-0-6-7 vs 3-5 0.932 0.953 0.939 0.934 0.944 0.970
15 ecoli-0-6-7 vs 5 0.945 0.950 0.942 0.932 0.937 0.975
16 ecoli4 0.979 0.985 0.981 0.987 0.983 0.990
17 glass-0-1-4-6 vs 2 0.803 0.856 0.827 0.879 0.869 0.925
18 glass-0-1-5 vs 2 0.804 0.824 0.808 0.850 0.851 0.915
19 glass-0-1-6 vs 2 0.754 0.806 0.749 0.810 0.798 0.933
20 glass-0-1-6 vs 5 0.994 0.971 0.969 0.989 0.988 0.994
21 glass-0-4 vs 5 0.994 0.994 0.994 0.994 0.994 1.000
22 glass-0-6 vs 5 0.995 0.956 0.948 0.985 0.985 1.000
23 glass2 0.764 0.819 0.778 0.840 0.822 0.928
24 glass4 0.962 0.984 0.970 0.970 0.945 0.990
25 glass5 0.993 0.987 0.983 0.990 0.995 0.995
26 poker-8 vs 6 0.996 1.000 0.996 1.000 1.000 0.985
27 poker-8-9 vs 5 0.960 0.979 0.959 0.970 0.966 0.975
28 poker-8-9 vs 6 0.999 1.000 0.998 1.000 0.999 0.979
29 poker-9 vs 7 0.981 0.991 0.972 0.972 0.968 0.998
30 vowel0 0.988 0.994 0.982 0.982 0.980 0.998
31 yeast-0-2-5-6 vs 3-7-8-9 0.824 0.852 0.824 0.835 0.830 0.856
32 yeast-0-2-5-7-9 vs 3-6-8 0.918 0.934 0.922 0.926 0.915 0.939
33 yeast-0-3-5-9 vs 7-8 0.775 0.809 0.764 0.803 0.798 0.847
34 yeast-0-5-6-7-9 vs 4 0.852 0.874 0.841 0.864 0.863 0.919
35 yeast-1 vs 7 0.828 0.869 0.839 0.868 0.866 0.912
36 yeast-1-2-8-9 vs 7 0.859 0.909 0.865 0.881 0.876 0.919
37 yeast-1-4-5-8 vs 7 0.843 0.892 0.852 0.862 0.853 0.904
38 yeast-2 vs 4 0.938 0.950 0.936 0.945 0.929 0.974
39 yeast-2 vs 8 0.923 0.918 0.887 0.911 0.904 0.916
40 yeast4 0.907 0.926 0.908 0.913 0.916 0.950
41 yeast5 0.967 0.979 0.969 0.975 0.976 0.983
42 yeast6 0.931 0.945 0.930 0.932 0.930 0.946

Avg.G-means 0.915 0.933 0.913 0.930 0.928 0.959

C4.5 and LazyDT except for SVM and HDDT. However,
HLazyDT and KLLazyDT still achieve the compa-
rable performance (neither significantly worse) than
HDDT according to the average AUCs and G-means,
which can be observed from Figs. 3 and 4 clearly.

Finally, we provide the following analyses and conclusions.

(1) It is obvious that the AUC and G-mean results not
just associate with class imbalance ratio, which can
be observed from Tables 4, 5, 6, 7, 8, and 9. As it
turns out, data set complexity such as overlapping,
lack of representative data, small disjuncts, and others
is the primary determining factor of classification
deterioration [7, 8].
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Fig. 3 Comparison of the
average ROC results for each
method across all data sets

(2) SMOTE preprocessing is very helpful to improve the
performances of all methods used in this experiments
when learning from highly imbalanced data sets.
The main reason is that SMOTE creates artificial
data based on the feature space similarities between
the existing minority class instances and helps in
broadening the decision region for a classifier and
improving generalization [10].

(3) The information gain ratio used by C4.5 prefers to
choose the feature with fewer values and is skew-
sensitive. Thus, C4.5 can not always select the best

split feature. LazyDT uses the information gain to
choose the split feature, which is also skew-sensitive.
Moreover, LazyDT does not take into account the
value of the test instance on the candidate feature
and this strategy may cause LazyDT to remount to
the previous level node and return the most frequent
class, which degrades the classification performance
to some extent. On contrast, HDDT, HLazyDT and
KLLazyDT that all use skew-insensitive splitting
criteria can produce more branches to find more fine-
grained differences in the datasets. Therefore, HDDT,

Fig. 4 Comparison of the
average G-means results for
each method across all data sets
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Table 10 Average Friedman rankings and APVs of various decision trees using Holm’s procedure in ROC and G-means

Datasets Type Value Type C4.5 HDDT LazyDT HLazyDTa KLLazyDTa

Lowly Imbalanced Datasets RankingR 3.477 2.591 3.863 2.568 2.500

APVR 0.121 1.000 0.017
√

1.000 -

RankingG 3.250 2.613 3.863 2.704 2.568

APVG 0.458 1.000 0.027
√

1.000 -

Highly Imbalanced Datasets RankingR 3.8577 3.155 3.583 2.333 2.071

APVR 0.000
√

0.003
√

0.000
√

0.447 -

RankingG 3.940 3.071 3.809 2.190 1.988

APVG 0.000
√

0.003
√

0.000
√

0.555 -

Highly Imbalanced Datasets with SMOTE RankingR 4.000 1.869 4.298 2.167 2.667

APVR 0.000
√

- 0.000
√

0.390 0.041
√

RankingG 3.845 1.786 4.179 2.417 2.774

APVG 0.000
√

- 0.000
√

0.067 0.008
√

Items with a a are approaches modified by this paper

RankingR and RankingG denote average rankings on ROC and G-means respectively

APVR and APVG denote adjusted p-values using Holm’s procedure in ROC and G-means respectively

HLazyDT and KLLazyDT can better distinguish
between minority and majority class than LazyDT and
C4.5. On the other hand, we note that HLazyDT and
KLLazyDT significantly outperform HDDT across
the highly imbalanced datasets. Since the number of
the minority class instances in the highly imbalanced
datasets is very rare, the values of the minority
class instances on the some feature in the test set
may not be include in the training set, which may
cause C4.5, LazyDT and HDDT to remount to the
previous level node and return the most frequent class,
which degrades the classification performance to some
extent. Furthermore, the minority class instances in
the highly imbalanced datasets are indeed abundant
in small disjuncts. Eager decision trees including
C4.5 and HDDT tend to miss out on small disjuncts
because they ignore certain instances when they occur
infrequently, such as instances in very small disjuncts,
while Lazy decision trees do not ignore any instances.
This is the reason why we can still observe that
the performances of LazyDT are superior to C4.5
according to both AUC and G-mean. Consequently,
lazy learning methods are recommended when small
disjuncts abound [44].

(4) In our experiment, we observe that the performances
of SVM are superior to all kinds of decision trees
according to the two evaluation measures, namely
AUC and G-mean. This result is consistent with the
conclusion in [45, 46]. It demonstrates that SVM can
achieve better generalization than decision trees to
deal with nonlinear problems, while decision trees can
suffer from overfitting easily.

6 Conclusion

In this paper, we use Hellinger distance and K-L divergence
as the split criteria to modify lazy decision trees i.e.,
HLazyDT and KLLazyDT to deal with the problem
of imbalanced classification. An experiment framework
using five-fold cross-validation is performed across a
wide range of imbalanced data sets to investigate the
effectiveness of our methods when comparing with the
other methods including lazy decision tree, C4.5, Hellinger
distance based decision tree and support vector machine
according to ROC and G-mean evaluation measures
respectively. Adjusted p-value Holm’s post-hoc procedure
of the Friendman test is used to determine the significance
of the ranks across multiple data sets. Based on the
experiment results, we demonstrate that it can improve
the performances of LazyDT for imbalanced classification
to use Hellinger distance and K-L divergence as the
split criterion . According to the experimental results, we
find that HLazyDT and KLLazyDT outperform the other
decision trees for all imbalanced datasets used in our
experiment. Especially, when using SMOTE to preprocess
the highly imbalanced datasets, HLazyDT and KLLazyDT
still achieve the comparable performance than HDDT. On
the other hand, the performances of SVM are superior
to all kinds of decision trees, which reveals that SVM
can achieve better generalization than decision trees, while
decision trees can suffer from overfitting easily. Finally,
we recommend using HLazyDT and KLLazyDT to deal
with imbalanced learning when limiting the approaches
to decision trees. Meanwhile, we also consider that it
is a good choice to apply HLazyDT and KLLazyDT to
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imbalanced data stream learning such as medical data-
mining and privacy preserving area. In future work, we wish
to extend our methods to deal with continuous features and
multi-class imbalanced problem. Additionally, ensemble
methods have been proven to improve decision trees to solve
imbalanced leaning effectively [47] and a new ensemble
strategy based on optimizing decision directed acyclic graph
is proposed to deal with multi-class classification problems
[48], which inspires us to use ensemble methods to further
improve the ability of HLazyDT and KLLazyDT to tackle
imbalanced learning.
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8. López V, Fernández A, Garcı́a S (2014) An insight into
classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics. Inf Sci 250:113–141

9. Krawczyk B (2016) Learning from imbalanced data: Open
challenges and future directions. Progress in Artificial Intelligence
5(4):221–232

10. Chawla NV, Bowyer KW, Hall LO (2002) SMOTE: Synthetic
minority over-sampling technique. J Artif Intell Res 16:321–357

11. Han H, Wang WY, Mao BH (2005) Borderline-SMOTE: A
new over-sampling method in imbalanced data sets learning.
International Conference on Intelligent Computing. Springer,
Berlin, Heidelberg, pp 878–887

12. He H, Bai Y, Garcia EA (2008) ADASYN: Adaptive Synthetic
sampling approach for imbalanced learning. IEEE International
Joint Conference on Neural Networks, pp 1322–1328

13. Hu S, Liang Y, Ma L (2009) MSMOTE: Improving classification
performance when training data is imbalanced. IEEE 2nd
International Workshop on Computer Science and Engineering, pp
13–17

14. Barua S, Islam MM, Yao X (2014) MWMOTE–Majority weighted
minority oversampling technique for imbalanced data set learning.
IEEE Trans Knowl Data Eng 26(2):405–425

15. Zhou P, Hu X, Li P (2017) Online feature selection for high-
dimensional class-imbalanced data. Knowl-Based Syst 136:187–
199

16. Wu G, Chang EY (2005) KBA: Kernel Boundary alignment
considering imbalanced data distribution. IEEE Trans Knowl Data
Eng 17(6):786–795

17. Xu Y (2017) Maximum margin of twin spheres support vector
machine for imbalanced data classification. IEEE Trans Cybern
47(6):1540–1550

18. Xu Y, Wang Q, Pang X (2018) Maximum margin of twin spheres
machine with pinball loss for imbalanced data classification. Appl
Intell 48(1):23–34

19. Wang S, Yao X (2009) Diversity analysis on imbalanced data sets
by using ensemble models. IEEE Symposium on Computational
Intelligence and Data Mining, pp 324–331

20. Chawla NV, Lazarevic A, Hall LO (2003) SMOTEBOost:
Improving prediction of the minority class in boosting. European
conference on principles of data mining and knowledge discovery.
Springer, Berlin, Heidelberg, pp 107–119

21. Liu XY, Wu J, Zhou ZH (2009) Exploratory undersampling
for class-imbalance learning. IEEE Trans Syst Man Cybern B
(Cybernetics) 39(2):539–550

22. Longadge R, Dongre S (2013) Class imbalance problem in data
mining review. International Journal of Computer Science and
Network 1305:1707

23. Zhang Z, Krawczyk B, Garcı̀a S (2016) Empowering one-vs-one
decomposition with ensemble learning for multi-class imbalanced
data. Knowl-Based Syst 106:251–263

24. Cieslak DA, Chawla NV (2008) Learning decision trees for unbal-
anced data. Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, Berlin, Heidelberg,
pp 241–256

25. Cieslak DA, Hoens TR, Chawla NV (2012) Hellinger distance
decision trees are robust and skew-insensitive. Data Min Knowl
Disc 24(1):136–158

26. Hoens TR, Qian Q, Chawla NV (2012) Building decision trees
for the multi-class imbalance problem. Pacific-asia Conference
on Knowledge Discovery and Data Mining. Springer, Berlin,
Heidelberg, pp 122–134

27. Lyon RJ, Brooke JM, Knowles JD (2014) Hellinger distance trees
for imbalanced streams. IEEE International Conference on Pattern
Recognition, pp 1969–1974

28. Chawla NV, Cieslak DA, Hall LO (2008) Automatically
countering imbalance and its empirical relationship to cost. Data
Min Knowl Disc 17(2):225–252

29. Zhang H (2012) Lazy decision tree method for distributed privacy
preserving data mining. International Journal of Advancements in
Computing Technology 4(14):458–465

30. Quinlan JR (1996) Bagging, boosting, and c4.5. AAAI/IAAI
1:725–730

31. Dietterich TG (2000) An experimental comparison of three
methods for constructing ensembles of decision trees: Bagging,
boosting, and randomization. Mach Learn 40(2):139–157

32. Fern XZ, Brodley CE (2003) Boosting lazy decision trees. In:
Proceedings of the 20th International Conference on Machine
Learning ICML, pp 178–185

33. Guillame-Bert M, Dubrawski A (2016) Batched Lazy Decision
Trees. arXiv:1603.02578

34. Rao CR (1995) A review of canonical coordinates and an
alternative to correspondence analysis using Hellinger distance.
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37. Triguero I, González S, Moyano JM (2017) KEEL 3.0: An
open source software for multi-stage analysis in data mining.
International Journal of Computational Intelligence Systems
10(1):1238–1249

38. Chawla NV (2003) C4.5 and imbalanced data sets: investigating
the effect of sampling method, probabilistic estimate, and decision
tree structure. In: Proceedings of the ICML, 3:66

39. Cortes C, Vapnik V (1995) Support vector machine. Mach Learn
20(3):273–297

40. Raeder T, Forman G, Chawla NV (2012) Learning from
imbalanced data: evaluation matters. Data mining: Foundations
and intelligent paradigms. Springer, Berlin, Heidelberg, pp 315–
331

41. Hand DJ, Till RJ (2001) A simple generalisation of the area under
the ROC curve for multiple class classification problems. Mach
Learn 45(2):171–186
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