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Abstract
The objective of this work is to present novel correlation coefficient measures for measuring the relationship between the two
complex intuitionistic fuzzy sets (CIFSs). In the existing studies of fuzzy and its extension, the uncertainties present in the data
are handled with the help of degrees of membership which are the subset of real numbers, and may lose some useful informa-
tion and hence consequently affect on the decision results. An alternative to these, complex intuitionistic fuzzy set handles
the uncertainties with the degrees whose ranges are extended from real subset to the complex subset with unit disc and hence
handle the two-dimensional information in a single set. Thus, motivated by this, we develop correlation and weighted cor-
relation coefficients under the CIFS environment in which pairs of the membership degrees represent the two-dimensional
information. Also, some of the desirable properties of it are investigated. Further, based on these measures, a multicriteria
decision-making approach is presented under the CIFS environment. Two illustrative examples are taken to demonstrate the
efficiency of the proposed approach and validate it by comparing their results with the several existing approaches’ results.

Keywords Intuitionistic fuzzy set · Complex intuitionistic fuzzy set · Correlation coefficient · MCDM · Medical diagnosis

1 Introduction

Multicriteria decisionmaking (MCDM) process involves the
analysis of a finite set of alternatives and ranking them in
terms of how credible they are to decision-maker(s) when
all the criteria is considered simultaneously. In this process,
the rating values of each alternative include both precise
data and experts’ subjective information. But, traditionally,
it is assumed that the information provided by them are crisp
in nature. However, due to the complexity of the system day-
by-day, the real-life contains many MCDM problems where
the information is either vague, imprecise or uncertain in
nature. To deal with it, the theory of fuzzy set (FS) [1] or
extended fuzzy sets such as intuitionistic fuzzy set (IFS) [2],
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interval-valued IFS (IVIFS) [3] are the most successful ones,
which characterize the criterion values in terms ofmembership
degrees. From their applications, researchers found that none
of these models are able to represent the partial ignorance of
the data and its fluctuations at a given phase of time during
their execution. Furthermore, in our day-to-day life, uncer-
tainty and vagueness which are present in the data occur
concurrently with changes to the phase (periodicity) of the
data. Thus, the existing theories are insufficient to consider
this information and hence there is an information loss dur-
ing the process. To overcome it, Ramot et al. [4] initiated
a complex fuzzy set (CFS) in which the range of member-
ship function is extended from real number to the complex
number with the unit disc. As the complex fuzzy set consid-
ers only the membership degree, but doesn’t weight on the
non-membership portion of the data entities, which likewise
assume an equal part in assessing the object in the decision-
making process. However, in the real world, it is regularly
hard to express the estimation of the membership degree
by an exact value in a fuzzy set. In such cases, it might be
easier to depict vagueness and uncertainty in the real world
using a 2-dimensional information instead of a single one.
Consequently, an extension of the existing theories might
be extremely valuable to depict the uncertainties because
of his/her reluctant judgment in complex decision-making
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problems. For this reason, Alkouri and Salleh [5] extended
the concept of CFS to complex intuitionistic fuzzy sets
(CIFSs) by adding the degree of complex non-membership
functions and studied their basic operations. Henceforth, a
CIFS is a more generalized extension of the existing theories
such as FSs, IFSs, CFSs. Clearly, the advantage of the CIFSs
is that it can contain substantially more data to express the
information.

Presently, correlation measure is one of the most important
measures which will help not only in comparing one data
entity with other but also show the extent of association
between them and their direction. Also, CIFSs have power-
ful ability to model the imprecise and ambiguous infor-
mation in real-world applications than the existing theories
such as FSs, IFSs, and CFSs [6]. Therefore, keeping the
advantages of this set and taking the importance of corre-
lation measure, this paper presents the theory of the corre-
lation coefficients among the CIFS. As per our knowledge,
in the aforementioned studies, the correlation measures can-
not be utilized to handle the CIFS information. Thus, in
order to achieve it, we first define the informational ener-
gies and the covariance between the two CIFSs that involves
both uncertainty and periodicity semantics. Then, based on
these, we propose some correlation coefficients for CIFSs
and investigate their properties. Further, some weighted cor-
relation coefficients are proposed to address the situations
where the element in the set is correlative. Furthermore, we
propose a decision-making approach based on the proposed
correlation coefficients for CIFSs. The feasibility, as well as
superiority of the approach, has been demonstrated through
two numerical examples.

To do so, the rest of the manuscript is summarized as fol-
lows. Section 2 is a literature review that presents papers on
the correlation measures. In Section 3, we briefly present an
overview related to the concepts of IFSs, CFSs, and CIFSs.
In Section 4, we introduce correlation and weighted cor-
relation coefficients for CIFSs and obtain some properties.
In Section 5, we present a multicriteria decision-making
approach based on the proposed correlation coefficients
under CIFSs environment, where each element of the set is
characterized by complex intuitionistic fuzzy numbers. In
Section 6, two illustrative examples are presented to discuss
the functionality of the proposed approach and compare
their results with some of the existing approaches results in
Section 7. Finally, Section 8 summarizes this study.

2 Related work

To process an uncertain and imprecise information during
the decision-making process, numerable attempts have been
made by different researchers in processing the informa-
tion values using aggregation operators [7–12], information

measures [13–16], score and accuracy functions [17, 18]
under IFS, IVIFS environments. Among all these concepts,
one of the significant ways to solve such type of prob-
lems by using the concept of correlation coefficient which
provides us with the measurement of the dependence of
the two variables. In statistical analysis, one of the impor-
tant measures is correlation coefficients which give us an
idea of the strength and direction of a linear relationship
between the pairs of two variables. On the other hand, in
fuzzy set theory, these measures determine the degree of the
dependency between the two fuzzy sets. In that direction,
Gerstenkorn and Manko [19] firstly introduced the concept
of coefficient of correlation for measuring the interrelation
of IFSs. Later on, Hong and Hwang [20] extended its con-
cept into the probability spaces. Hung and Wu [21] studied
the correlation coefficients by using the centroid method.
Bustince and Burillo [22] extended the concept of corre-
lation from IFS to IVIFS environment. Zeng and Li [23]
presented a decision-making approach based on the corre-
lation coefficients. Garg [24, 25] presented the correlation
coefficients for Pythagorean fuzzy sets and intuitionistic
multiplicative set respectively. Ye [26] presented the cosine
similarity measures for IFSs. Garg [27] presented some
improved cosine similarity measures for IFS and applied them
to solve the decision-making problems. However, apart from
these, some other kinds of the correlation coefficients [28–30]
have been proposed by the different researchers and they
applied them to solve the multicriteria decision-making
problems.

The above measures and their corresponding approaches
are widely used by the researchers, but from these stud-
ies, it has been analyzed the data under the FSs, IFSs or
its generalizations is only able to handle the uncertainty
and vagueness that exists in the data. But, simultaneously,
none of these existing models are able to represent the par-
tial ignorance of the data and its fluctuations, with changes
to the phase (periodicity), at a given phase of time during
their execution. To overcome it, Ramot et al. [4] initiated
a complex fuzzy set (CFS) in which the range of member-
ship function is extended from real number to the complex
number with the unit disc. Ramot et al. [31] generalized tra-
ditional fuzzy logic to complex fuzzy logic in which the sets
used in reasoning process are complex fuzzy sets, character-
ized by complex valued membership functions. Greenfield
et al. [32] extended the concept of CFS by taking the grade
of the membership function as an interval-number rather
than single numbers. Furthermore, Alkouri and Salleh [5]
extended the concepts of CFS to complex intuitionistic
fuzzy sets (CIFSs) by adding the degree of complex non-
membership functions and studied their basic operations.
Alkouri and Salleh [33] introduced the concepts of complex
intuitionistic fuzzy relation, composition, projections and
proposed a distance measure between the two CIFSs. Rani
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and Garg [34] presented some series of distance measures
under CIFS environment and their application in the decision-
making process. Rani and Garg [35] presented power aggre-
gation operators for different CIFSs. Kumar and Bajaj [36]
proposed some distance and entropy measures for complex
intuitionistic fuzzy soft sets.

In CIFS theory, membership and non-membership degrees
are complex-valued and are represented in polar coordi-
nates. The amplitude term corresponding to the membership
(non-membership) degree gives the extent of belongings
(not-belongings) of an object in a CIFS and the phase
term associated with membership (non-membership) degree
gives the additional information, generally related with peri-
odicity. Since, in the existing IFSs theory, it is observed
that there is only one parameter to represent the information
which results in information loss in some instances. How-
ever, in day-to-day life, we come across complex natural
phenomena where we need to add the second dimension to
the expression of membership and non-membership grades.
By introducing this second dimension, the complete infor-
mation can be projected in one set, and hence loss of
information can be avoided. For instance, suppose a cer-
tain company decides to set up biometric-based attendance
devices (BBADs) in all of its offices spread all over the
country. For this, the company consults an expert who gives
the information regarding the two-dimensions namely, mod-
els of BBADs and their corresponding production dates of
BBADs. The task of the company is to select the most opti-
mal model of BBADs with its production date simultane-
ously. It is obviously seen that such type of problems cannot
be modeled accurately by considering both the dimensions
simultaneously using the traditional IFS theories. Thus, for
such types of problem, there is a need to enhance the exist-
ing theories and hence a CIFS environment provides us with
an efficient way to handle the two-step judgment scenar-
ios in which an amplitude term may be employed to give
a company’s decision regarding model of BBADs and the
phase terms may be used to represent company’s decision
regarding the production date of BBADs in the decision
making process. Similarly, some other types of examples
under CIFSs include the large amounts of data sets that are
generated from medical research, as well as government
databases for biometric and facial recognition, audio, and
images etc. Henceforth, a CIFS is a more generalized exten-
sion of the existing theories such as FSs, IFSs, CFSs.
Clearly, the advantage of the CIFSs is that it can contain
substantially more data to express the information.

Therefore, keeping the advantages of this set and taking
the importance of correlation measure, this paper presents
the theory of the correlation coefficients among the CIFSs.
Also, it is being computed that the several existing corre-
lation measures can be easily obtained from the proposed
measures.

3 Preliminaries

In this section, some basic concepts related to the IFSs,
CFSs and CIFSs are reviewed over the universal set U �= φ.

Definition 1 [2, 9] An Atanassov’s Intuitionistic fuzzy
set(IFS) S defined on U is an ordered pair given by

S = {(x, μS(x), νS(x)) : x ∈ U} , (1)

where μS, νS : U → [0, 1] are real-valued membership and
non-membership functions respectively such that μS(x) +
νS(x) ≤ 1 for all x ∈ U . Also, πS(x) = 1− μS(x) − νS(x)

is called the degree of hesitation of x to S. For convenience,
this pair of membership and non-membership degrees is
called as intuitionistic fuzzy number (IFN) and is denoted
by S = (μ, ν), where 0 ≤ u, v ≤ 1 and u + v ≤ 1.

Definition 2 [23] For two IFSs A = {(x, μA(x), νA(x)) :
x ∈ U} and B = {(x, μB(x), νB(x)) : x ∈ U} defined on
U = {x1, x2, . . . xn}, [23] defined the correlation between
them as

C1(A, B) = 1

n

n∑

j=1

(
μA(xj )μB(xj ) + νA(xj )νB(xj ) + πA(xj )πB(xj )

)
(2)

and hence defined the correlation coefficient between A

and B as:

ρ1(A, B) = C1(A, B)√
C1(A, A) · C1(B, B)

(3)

and showed that it satisfies the following properties:

1. ρ1(A, B) = ρ1(B, A)

2. 0 ≤ ρ1(A, B) ≤ 1
3. A = B ⇔ ρ1(A, B) = 1

Ramot et al. [4] extended the theory of fuzzy set to the
complex fuzzy set (CFS) by incorporating the phase angle
into the analysis, which has been defined as follows:

Definition 3 [4] A CFS S defined on U is defined as a set
of pairs given by

S = {(x, μS(x)) : x ∈ U} , (4)

where μS is a membership function which can assign any
element x ∈ U a complex valued grade of membership.
The value of μS(x) lies in a unit circle in the complex
plane and is of the form μS(x) = rS(x)eiwrS

(x) where
i = √−1, rS(x) ∈ [0, 1] and wrS (x) is real valued.

Later on, [5] extended the concept of CFS to complex
intuitionistic fuzzy set (CIFS) by taking the degree of
non-membership function into the analysis as follows:
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Definition 4 [5] ACIFS S overU is defined as a set given by

S = {(x, μS(x), γS(x)) : x ∈ U} , (5)

where μS : U → {a : a ∈ C, |a| ≤ 1} and γS : U →
{a : a ∈ C, |a| ≤ 1} are complex valued membership and
non-membership functions respectively given by:

μS(x) = rS(x)eiwrS
(x), γS(x) = kS(x)eiwkS

(x).

Here rS(x), kS(x) ∈ [0, 1] such that rS(x)+kS(x) ≤ 1. Also
wrS (x) and wkS

(x) are real valued which satisfy the condi-
tions wrS (x), wkS

(x) ∈ [0, 2π ] and wrS (x) + wkS
(x) ≤ 2π

for each x ∈ U . For the sake of convenience, we shall
denote the set

{
(x, rS(x)eiwrS

(x) , kS(x)eiwkS
(x)) : x ∈ U

}

as S =
(
rS(x)eiwrS

(x), kS(x)eiwkS
(x)
)
.

4 Correlation coefficient for CIFSs

In this section, we propose some correlation coefficients for
the CIFSs which can be applied in numerous engineering
and scientific fields to rank the objects. For it, throughout
this paper, we shall use U = {x1, x2, . . . xn} as the universe
of discourse.

Let A =
(
rA(x)eiwrA

(x), kA(x)eiwkA
(x)
)

and B =
(
rB(x)eiwrB

(x), kB(x)eiwkB
(x)
)
be two CIFSs defined onU .

Then, the informational energies of two CIFSs A and B are
defined as

T (A) =
n∑

j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))
, (6)

T (B) =
n∑

j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))
. (7)

The correlation of the CIFSs A and B is defined as

C(A, B) =
n∑

j=1

⎡

⎢⎢⎣
rA(xj )rB(xj ) + 1

4π2
wrA(xj )wrB (xj )

+ kA(xj )kB(xj ) + 1

4π2
wkA

(xj )wkB
(xj )

⎤

⎥⎥⎦ . (8)

From Eq. (8), it is clearly seen that correlation of CIFSs
satisfies the following properties:

(P1) C(A, B) = C(B, A)

(P2) C(A, A) = T (A)

Then, based on these, we defined the correlation
coefficient between CIFSs A and B, as follows:

Definition 5 If A = (rA(x)eiwrA
(x), kA(x)eiwkA

(x)) and
B = (rB(x)eiwrB

(x), kB(x)eiwkB
(x)) be two CIFSs defined

on U , then the correlation coefficient between them is
denoted by K1(A, B) and is defined as

K1(A, B) = C(A, B)√
T (A) × T (B)

=

n∑
j=1

(
rA(xj )rB(xj ) + 1

4π2

(
wrA(xj )wrB (xj )

)

+kA(xj )kB(xj ) + 1
4π2

(
wkA

(xj )wkB
(xj )

)
)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n∑

j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))

×
√

n∑
j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9)

Theorem 1 The correlation coefficientK1 between twoCIFSs
A and B defined on U satisfies the following properties:

(P1) 0 ≤ K1(A, B) ≤ 1.

(P2) K1(A, B) = K1(B, A).

(P3) K1(A, B) = 1, if A = B.

(P4) If A ⊆ B ⊆ C then, K1(A, C) ≤ K1(A, B) and
K1(A, C) ≤ K1(B, C) for CIFS C defined on U .

Proof Let A =
(
rA(x)eiwrA

(x), kA(x)eiwkA
(x)
)
and B =

(
rB(x)eiwrB

(x), kB(x)eiwkB
(x)
)
be two CIFSs defined onU .

Then, we have

1. The inequality K1(A, B) ≥ 0 is obvious due to
C(A, B) ≥ 0 is obtained from the Eq. (8). Now
we shall prove K1(A, B) ≤ 1. For it, based on the
Definition 5, we get
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K1(A, B) = C(A, B)√
C(A, A) × C(B, B)

=

n∑
j=1

(
rA(xj )rB(xj ) + 1

4π2 wrA(xj )wrB (xj )

+kA(xj )kB(xj ) + 1
4π2 wkA

(xj )wkB
(xj )

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n∑

j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))

×
√

n∑
j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎛

⎜⎜⎝

n∑
j=1

rA(xj )rB(xj ) +
n∑

j=1

(
wrA

(xj )

2π

) (
wrB

(xj )

2π

)

+
n∑

j=1
kA(xj )kB(xj ) +

n∑
j=1

(
wkA

(xj )

2π

) (
wkB

(xj )

2π

)

⎞

⎟⎟⎠

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n∑

j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))

×
√

n∑
j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Now, by using Cauchy-Schwarz inequality which
states that, in Euclidean space Rn with standard inner
product, we have:
⎛

⎝
n∑

j=1

ujvj

⎞

⎠
2

≤
⎛

⎝
n∑

j=1

u2j

⎞

⎠

⎛

⎝
n∑

j=1

v2j

⎞

⎠

where u = (u1, u2, . . . un) and v = (v1, v2, . . . vn) ∈
Rn and equality holds if and only if u and v are
linearly dependent vectors. Therefore,

K1(A, B) ≤

⎛

⎜⎜⎜⎜⎝

√
n∑

j=1
r2A(xj )

√
n∑

j=1
r2B(xj ) +

√
n∑

j=1

(
wrA

(xj )

2π

)2
√

n∑
j=1

(
wrB

(xj )

2π

)2

√
n∑

j=1
k2A(xj )

√
n∑

j=1
k2B(xj ) +

√
n∑

j=1

(
wkA

(xj )

2π

)2
√

n∑
j=1

(
wkB

(xj )

2π

)2

⎞

⎟⎟⎟⎟⎠

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n∑

j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))

×
√

n∑
j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

By taking the notations,
n∑

j=1
r2A(xj ) = a,

n∑
j=1

r2B(xj )=

b,
n∑

j=1
k2A(xj ) = c,

n∑
j=1

k2B(xj ) = d,
n∑

j=1

(
wrA

(xj )

2π

)2 =

p,
n∑

j=1

(
wrB

(xj )

2π

)2 = q,
n∑

j=1

(
wkA

(xj )

2π

)2 = r and

n∑
j=1

(
wkB

(xj )

2π

)2 = s, the above inequality reduces to

K1(A, B) ≤
√

ab + √
cd + √

pq + √
rs√

(a + c + p + r)(b + d + q + s)
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Therefore,

(K1(A, B))2 − 1 ≤
(√

ab + √
cd + √

pq + √
rs
)2

(a + c + p + r)(b + d + q + s)
− 1

=
(√

ab + √
cd + √

pq + √
rs
)2 − (a + c + p + r)(b + d + q + s)

(a + c + p + r)(b + d + q + s)

=

⎛

⎝
ab + cd + pq + rs + 2

√
abcd + 2

√
pqrs + 2

√
abpq + 2

√
abrs

+2
√

cdpq + 2
√

cdrs − ab − ad − aq − as − cb − cd − cq

−cs − pb − pd − pq − ps − rb − rd − rq − rs

⎞

⎠

(a + c + p + r)(b + d + q + s)

= −

⎛

⎜⎜⎜⎝

(
√

ad − √
bc)2 + (

√
ps − √

qr)2 + (
√

aq − √
bp)2

+(
√

as − √
br)2 + (

√
cq − √

dp)2 + (
√

cs − √
dr)2

(a + c + p + r)(b + d + q + s)

⎞

⎟⎟⎟⎠

≤ 0

Hence, K2
1 (A, B) ≤ 1 which implies K1(A, B) ≤ 1.

So, 0 ≤ K1(A, B) ≤ 1.
2. For any two CIFSs A and B, we have

K1(A, B) =

n∑
j=1

(
rA(xj )rB(xj ) + 1

4π2 wrA(xj )wrB (xj )

+kA(xj )kB(xj ) + 1
4π2 wkA

(xj )wkB
(xj )

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n∑

j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))

×
√

n∑
j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

n∑
j=1

(
rB(xj )rA(xj ) + 1

4π2 wrB (xj )wrA(xj )

+kB(xj )kA(xj ) + 1
4π2 wkB

(xj )wkA
(xj )

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n∑

j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))

×
√

n∑
j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= K1(B, A)

3. If A=B this implies that rA(xj )= rB(xj ), kA(xj )=
kB(xj ), wrA(xj ) = wrB (xj ) and wkA

(xj ) = wkB
(xj )

for all j and thus from Eq. (9), it follows that
K1(A, B) = 1.

4. Geometrically, if A ⊆ B ⊆ C, then the angle
between A and C should be larger than the angle
between B and C for any element xj and cos θ is
decreasing function within interval [0, π

2 ]. Therefore,
K1(A, C) ≤ K1(A, B) and K1(A, C) ≤ K1(B, C).

Hence, the theorem holds.

Example 1 Let U={x1, x2, x3} be the universal set andA ={
(x1, 0.6ei2π(0.7),0.2ei2π(0.2)),(x2, 0.7ei2π(0.5), 0.3ei2π(0.4)),

(x3, 0.5ei2π(0.4), 0.4ei2π(0.1))
}
, B = {

(x1, 0.5ei2π(0.6),

0.1ei2π(0.2)),(x2, 0.7ei2π(0.4), 0.1ei2π(0.4)), (x3, 0.6ei2π(0.5),

0.3ei2π(0.4))
}
are twoCIFSs defined on the universal setU. By

applying Eq. (6), we obtain the informational energy of A as:

T (A) =
n∑

j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))

= (0.6)2 + (0.2)2 + 1

4π2

[
(2π × 0.7)2 + (2π × 0.2)2

]
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+(0.7)2 + (0.3)2 + 1

4π2

[
(2π × 0.5)2 + (2π × 0.4)2

]

+(0.5)2 + (0.4)2 + 1

4π2

[
(2π × 0.4)2 + (2π × 0.1)2

]

= 0.36 + 0.04 + 0.49 + 0.04 + 0.49 + 0.09 + 0.25

+0.16 + 0.25 + 0.16 + 0.16 + 0.01

= 2.5

Similarly, the informational energy of CIFS B is:

T (B) =
n∑

j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))

= (0.5)2 + (0.1)2 + 1

4π2

[
(2π × 0.6)2 + (2π × 0.2)2

]

+ (0.7)2 + (0.1)2 + 1

4π2

[
(2π × 0.4)2 + (2π × 0.4)2

]

+ (0.6)2 + (0.3)2 + 1

4π2

[
(2π × 0.5)2 + (2π × 0.4)2

]

= 0.25 + 0.01 + 0.36 + 0.04 + 0.49 + 0.01 + 0.16

+ 0.16 + 0.36 + 0.09 + 0.25 + 0.16

= 2.34

By using Eq. (8), the correlation between CIFSs A and B

is computed as:

C(A, B) =
n∑

j=1

(
rA(xj )rB(xj ) + 1

4π2 wrA(xj )wrB (xj )

+kA(xj )kB(xj ) + 1
4π2 wkA

(xj )wkB
(xj )

)

= 0.6 × 0.5 + 0.2 × 0.1 + 1

4π2 (2π(0.7) × 2π(0.6) + 2π(0.2) × 2π(0.2))

+0.7 × 0.7 + 0.3 × 0.1 + 1

4π2 (2π(0.5) × 2π(0.4) + 2π(0.4) × 2π(0.4))

+0.5 × 0.6 + 0.4 × 0.3 + 1

4π2 (2π(0.4) × 2π(0.5) + 2π(0.1) × 2π(0.4))

= 0.30 + 0.02 + 0.42 + 0.04 + 0.49 + 0.03 + 0.20 + 0.16 + 0.30

+0.12 + 0.20 + 0.04

= 2.32

Thus, the correlation coefficient between A and B is
given by Eq. (9) as

K1(A, B) = C(A, B)√
T (A) × T (B)

= 2.32√
2.5 × 2.34

= 0.9592

Definition 6 Let A =
(
rA(x)eiwrA

(x), kA(x)eiwkA
(x)
)
and

B =
(
rB(x)eiwrB

(x), kB(x)eiwkB
(x)
)
be two CIFSs defined

on U . Then, the correlation coefficient, denoted by K2, is
defined as

K2(A, B) = C(A, B)

max{T (A), T (B)}

=

n∑
j=1

(
rA(xj )rB(xj ) + 1

4π2

(
wrA(xj )wrB (xj )

)

+kA(xj )kB(xj ) + 1
4π2

(
wkA

(xj )wkB
(xj )

)
)

max

⎧
⎪⎪⎨

⎪⎪⎩

n∑
j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))
,

n∑
j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))

⎫
⎪⎪⎬

⎪⎪⎭

(10)

Theorem 2 The correlation coefficient of two CIFSs A and
B, as defined in Eq. (10), satisfies the following properties:

(P1) 0 ≤ K2(A, B) ≤ 1.

(P2) K2(A, B) = K2(B, A).
(P3) K2(A, B) = 1 if A = B.
(P4) If A ⊆ B ⊆ C then, K2(A, C) ≤ K2(A, B) and

K2(A,C)≤K2(B,C) for any CIFS C defined on U .
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Proof Since A, B ∈ CIFSs, then 0 ≤ rA(xj ), kA(xj ) ≤
1, 0 ≤ wrA, wkA

≤ 2π and rA(xj ) + kA(xj ) ≤ 1 and
wrA + wkA

≤ 2π for all xj ∈ U and thus from Eq. (10),
we can obtain the inequality K2(A, B) ≥ 0. The inequality
K2(A, B) ≤ 1 can be proven directly by using the well-
known Cauchy-Schwarz inequality:

n∑

j=1

ajbj ≤

√√√√√

⎛

⎝
n∑

j=1

a2j

⎞

⎠ ·
⎛

⎝
n∑

j=1

b2j

⎞

⎠ (11)

with equality if and only if the two vectors a = (a1, a2, . . .,
an) and b = (b1, b2, . . . , bn) are linearly dependent.

In fact, by Eq. (11), we have

n∑

j=1

aj bj ≤

√√√√√

⎛

⎝
n∑

j=1

a2j

⎞

⎠ ·
⎛

⎝
n∑

j=1

b2j

⎞

⎠ ≤

√√√√√

⎛

⎝max

⎧
⎨

⎩

n∑

j=1

a2j ,

n∑

j=1

b2j

⎫
⎬

⎭

⎞

⎠
2

= max

⎧
⎨

⎩

n∑

j=1

a2j ,

n∑

j=1

b2j

⎫
⎬

⎭

and from Eq. (10), it follows that 0 ≤ K2(A, B) ≤ 1 which
completes the proof of (P1). In addition, by Eq. (10), we have

K2(A, B) =

n∑
j=1

(
rA(xj )rB(xj ) + 1

4π2

(
wrA(xj )wrB (xj )

)

+kA(xj )kB(xj ) + 1
4π2

(
wkA

(xj )wkB
(xj )

)
)

max

⎧
⎪⎪⎨

⎪⎪⎩

n∑
j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))
,

n∑
j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))

⎫
⎪⎪⎬

⎪⎪⎭

=

n∑
j=1

(
rB(xj )rA(xj ) + 1

4π2

(
wrB (xj )wrA(xj )

)

+kB(xj )kA(xj ) + 1
4π2

(
wkB

(xj )wkA
(xj )

)
)

max

⎧
⎪⎪⎨

⎪⎪⎩

n∑
j=1

(
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

))
,

n∑
j=1

(
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

))

⎫
⎪⎪⎬

⎪⎪⎭

= K2(B, A)

Thus, (P2) also holds. Similarly, we can complete the proofs
of (P3) and (P4).

Hence, the theorem holds.

From Definition 5 and Definition 6, we observe that the
correlation coefficient defined by Eq. (9) uses the geometric
mean of the informational energies of the CIFSs A and
B, and the correlation coefficient defined by Eq. (10)
applies the maximum between them. For the optimistic
decision makers, they tend to use the correlation coefficient
defined by Eq. (9). Contrary to the optimistic decision
makers, the pessimistic decision makers tend to apply the
correlation coefficient defined by Eq. (10).

In the above defined formulas for calculating coefficient
of correlation, equal importance is given to all the elements
of the universal set. But in real life situations, this may
not be always possible. Some elements in the universal
set are more important than the others. So we must take
into account the proper weightage given to the various
elements of the universal set. In the following, we propose
a weighted correlation coefficient between CIFSs. Let ξ =
(ξ1, ξ2, . . . ξn)

T be the weight vector corresponding to the

elements xj (j = 1, 2, . . . , n) with ξj > 0 and
n∑

j=1
ξj = 1.

Then, we extend the above defined correlation coefficients
K1 and K2 to weighted correlation coefficients, K3 and K4

respectively, as follows:

K3(A, B) = Cw(A, B)√
Tw(A) × Tw(B)

=

n∑
j=1

(
ξj

[
rA(xj )rB(xj ) + 1

4π2

(
wrA(xj )wrB (xj )

)

+kA(xj )kB(xj ) + 1
4π2

(
wkA

(xj )wkB
(xj )

)
])

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n∑

j=1

(
ξj

[
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

)])

×
√

n∑
j=1

(
ξj

[
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

)])

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(12)
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and

K4(A, B) = Cw(A, B)

max{Tw(A), Tw(B)}

=

n∑
j=1

(
ξj

[
rA(xj )rB(xj ) + 1

4π2

(
wrA(xj )wrB (xj )

)

+kA(xj )kB(xj ) + 1
4π2

(
wkA

(xj )wkB
(xj )

)
])

max

⎧
⎪⎪⎨

⎪⎪⎩

n∑
j=1

(
ξj

[
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

)])
,

n∑
j=1

(
ξj

[
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

)])

⎫
⎪⎪⎬

⎪⎪⎭

(13)

It can be easily verified that, if ξ =(1/n, 1/n, . . . , 1/n)T

then Eqs. (12) and (13) reduce to the correlation coefficients
given in Eqs. (9) and (10) respectively. Further, can be
deduced that the correlation coefficientsK3 andK4 between
CIFSs A and B also satisfies the property of 0 ≤
K3(A, B) ≤ 1 and 0 ≤ K4(A, B) ≤ 1.

Theorem 3 Let A and B be two CIFSs defined on U . If
ξ = (ξ1, ξ2, . . . , ξn)

T be the weight vector corresponding to

xj , (j = 1, 2, . . . , n) with ξj > 0 and
n∑

j=1
ξj = 1 then the

weighted correlation coefficient K3(A, B) between the two
CIFSs A and B defined in Eq. (12), satisfies the following
properties:

(P1) 0 ≤ K3(A, B) ≤ 1
(P2) K3(A, B) = K3(B, A)

(P3) K3(A, B) = 1 if A = B

(P4) If A ⊆ B ⊆ C then, K3(A, C) ≤ K3(A, B) and
K3(A, C) ≤ K3(B, C) for any CIFS C defined on U.

Proof The properties (P2)-(P4) are straightforward, so we
omit to proof here. Now, we shall proof only (P1) property.
For it, let A = (rA(x)eiwrA

(x), kA(x)eiwkA
(x)) and B =

(rB(x)eiwrB
(x), kB(x)eiwkB

(x)) be two CIFSs defined on U .
From the Eq. (12), it is clearly seen that, K3(A, B) ≥ 0. So,
we will prove only K3(A, B) ≤ 1.

K3(A, B) = Cw(A, B)√
Tw(A) × Tw(B)

=

n∑
j=1

(
ξj

[
rA(xj )rB(xj ) + 1

4π2

(
wrA(xj )wrB (xj )

)

+kA(xj )kB(xj ) + 1
4π2

(
wkA

(xj )wkB
(xj )

)
])

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n∑

j=1

(
ξj

[
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

)])

×
√

n∑
j=1

(
ξj

[
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

)])

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎛

⎜⎜⎝

n∑
j=1

(√
ξj rA(xj )

) (√
ξj rB(xj )

)+
n∑

j=1

1
4π2

(√
ξjwrA(xj )

) (√
ξjwrB (xj )

)

+
n∑

j=1

(√
ξj kA(xj )

) (√
ξj kB(xj )

)+
n∑

j=1

1
4π2

(√
ξjwkA

(xj )
) (√

ξjwkB
(xj )

)

⎞

⎟⎟⎠

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n∑

j=1

(
ξj

[
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

)])

×
√

n∑
j=1

(
ξj

[
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

)])

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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By using Cauchy-Schwarz inequality, we obtain

K3(A, B) ≤

⎛

⎜⎜⎜⎜⎝

√
n∑

j=1
ξj r

2
A(xj )

√
n∑

j=1
ξj r

2
B(xj ) +

√
n∑

j=1
ξj

(
wrA

(xj )

2π

)2
√

n∑
j=1

ξj

(
wrB

(xj )

2π

)2

+
√

n∑
j=1

ξj k
2
A(xj )

√
n∑

j=1
ξj k

2
B(xj ) +

√
n∑

j=1
ξj

(
wkA

(xj )

2π

)2
√

n∑
j=1

ξj

(
wkB

(xj )

2π

)2

⎞

⎟⎟⎟⎟⎠

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n∑

j=1

(
ξj

[
r2A(xj ) + k2A(xj ) + 1

4π2

(
w2

rA
(xj ) + w2

kA
(xj )

)])

×
√

n∑
j=1

(
ξj

[
r2B(xj ) + k2B(xj ) + 1

4π2

(
w2

rB
(xj ) + w2

kB
(xj )

)])

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

By using the following notations

n∑

j=1

ξj r
2
A(xj ) = a,

n∑

j=1

ξj r
2
B(xj ) = b,

n∑

j=1

ξj

(
wrA(xj )

2π

)2

= p,

n∑

j=1

ξj k
2
A(xj ) = c,

n∑

j=1

ξj k
2
B(xj ) = d,

n∑

j=1

ξj

(
wrB (xj )

2π

)2

= q,

n∑

j=1

ξj

(
wkA

(xj )

2π

)2

= r,

n∑

j=1

ξj

(
wkB

(xj )

2π

)2

= s,

we can reduce the above inequality to

K3(A, B) ≤
√

ab + √
cd + √

pq + √
rs√

(a + c + p + r)(b + d + q + s)

Therefore,

(K3(A, B))2 − 1 ≤
(√

ab + √
cd + √

pq + √
rs
)2

(a + c + p + r)(b + d + q + s)
− 1

=
(√

ab + √
cd + √

pq + √
rs
)2 − (a + c + p + r)(b + d + q + s)

(a + c + p + r)(b + d + q + s)

=

⎛

⎝
ab + cd + pq + rs + 2

√
abcd + 2

√
pqrs + 2

√
abpq

+2
√

abrs + 2
√

cdpq + 2
√

cdrs − ab − ad − aq − as − cb

−cd − cq − cs − pb − pd − pq − ps − rb − rd − rq − rs

⎞

⎠

(a + c + p + r)(b + d + q + s)

= −

⎛

⎜⎜⎜⎝

(
√

ad − √
bc)2 + (

√
ps − √

qr)2 + (
√

aq − √
bp)2

+(
√

as − √
br)2 + (

√
cq − √

dp)2 + (
√

cs − √
dr)2

(a + c + p + r)(b + d + q + s)

⎞

⎟⎟⎟⎠

≤ 0

which implies that K3(A, B) ≤ 1. Hence, 0 ≤ K3(A, B) ≤
1.

Theorem 4 The correlation coefficient of two CIFSs A

and B, as defined in Eq. (13) i.e., K4, satisfies the same
properties as those in Theorem 2.

Proof The proof is similar to Theorem 2, so we omit
here.

5MCDM approach based on the proposed
correlation coefficients

In this section, we utilize the proposed correlation
coefficients of CIFSs to present the multicriteria decision
making method.

For a multi criteria decision-making with complex intu-
itionistic fuzzy information, assume that there are m dif-
ferent alternatives denoted by A1, A2, . . . , Am which have
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to be evaluated under the set of the n criteria denoted by
C1, C2, . . . , Cn. Assume that an expert is invited to evalu-
ate these alternatives under the set of each criteria. Further,
assume that the importance of each criteria is considered in
the form of the weight vector as ξ = (ξ1, ξ2, . . . , ξn)

T such

that ξq > 0 and
n∑

q=1
ξq = 1. Consider an expert provide the

values under the CIFS environment and these values can
be considered as a complex intuitionistic fuzzy element.
The rating values corresponding to each alternative are rep-
resented in the form of CIFS Ap(p = 1, 2, . . . , m) as
follows

Ap =
{(

Cq, rpq(Cq)eiwrpq (Cq ), kpq(Cq)e
iwkpq (Cq )

)
|q =1, 2, . . . , n

}
;

p=1, 2, . . . , m.

where rpq(Cq) ∈ [0, 1] represent the satisfaction degree
of the alternative Ap towards the criteria Cq and kpq(Cq)

represent the possible degree of the rejection for the
alternative Ap under the criteria Cq . For convenience, we

denote this CIFS by αpq =
(
rpqeiwrpq , kpqe

iwkpq

)
where

rpq, kpq ∈ [0, 1], wrpq , wkpq ∈ [0, 2π ] and rpq + kpq ≤
1, wrpq + wkpq ≤ 2π for p = 1, 2, . . . , m; q = 1, 2, . . . , n
and call it as complex intuitionistic fuzzy numbers (CIFNs).
Then, we utilize the following steps based on the proposed
correlation coefficients for solving the MCDM problems
under the CIFSs environment.

Step 1: Construct the ideal reference set to find the best
alternative in the decision set whose rating values
are taken under the CIFSs environment. We denote
such reference set by B.

Step 2: Construct the decision matrix based on the
collective information of the alternatives Ap(p =
1, 2, . . . , m) under the set of criteria Cq(q =
1, 2, . . . , n) as provided by an expert in terms of

CIFNs αpq =
(
rpqeiwrpq , kpqe

iwkpq

)
. We denote

such matrix as D = (αpq)m×n which can be
represented as

D =

C1 C2 . . . Cn

A1

A2
...

Am

⎛

⎜⎜⎜⎝

α11 α12 . . . α1n

α21 α22 . . . α2n
...

...
. . .

...
αm1 αm2 . . . αmn

⎞

⎟⎟⎟⎠

Step 3: Calculate the correlation coefficient between the
alternatives Ap(p = 1, 2, . . . , m) and the refer-
ence set B by using either K1 or K2 or by using
weighted correlation coefficients K3 or K4, to

compute the degree of the relationship among the
alternatives.

Step 4: Rank the alternatives based on the index values
of correlation coefficients as obtained from
argmax{K}. As larger the value of correlation
coefficients, the better is the alternative Ap(p =
1, 2, . . . , m).

6 Illustrative examples

In order to demonstrate the above mentioned approach
based on correlation coefficients, we present two illustrative
examples which are described as follows.

6.1 Example 1: Decision-making problem

An earthquake of 7.8 magnitude, also called as Gorkha
earthquake, racked Nepal on 25 April 2015 at a depth of
approximately 15km and lasted nearly fifty seconds and
its epicenter was about 21 miles east southest of Lamjung
and 48 miles northwest of Kathmandu and its focus was
9.3 miles underground and it destroyed thousands of houses
across many districts of the country with entire villages flat-
tened especially near the epicenter. An aftershock occurred
on 12 May 2015 in Nepal which heightened the fears and
tensions among the affected people. The two earthquakes
together resulted in many damages, economic losses in
almost 35 districts out of which 5 regions were severely
affected namely: A1 : Lalitpur, A2 : Kathmandu, A3 :
Gorkha, A4 : Bhaktapur and A5 : Makwanpur. An earth-
quake relief camp decided to help victims of the earthquake
in these five different regions Ap(p = 1, 2, . . . , 5) of the
affected area with a different intensity of an earthquake.
The panel decided that they will plan their budget by con-
sidering the four basic needs of victims, considered as
criterion, namely C1(Food), C2(Shelter), C3(Clothes) and
C4(Medical requirements) and decided to allocate the bud-
get firstly to the most affected region so that by initial
efforts only, a large strata of people get relief. The weight
vector corresponding to these basic needs is taken as ξ =
(0.30, 0.25, 0.15, 0.30)T . Clearly, according to the intensity
of the earthquake, the basic needs of victims will be affected
and changed. The target of this problem is to find the most
affected region out of A1, A2, . . . , A5 so as to allocate the
proper budget and all the necessary facilities to them. To
achieve this, we utilize the developed approach to rank the
regions and the best one(s) can be found by implementing
the steps of the proposed approach as follows:

Step 1: Assume that an expert gives their preference in
terms of maximum possible needs of all the five
regions over the each basic needCq(q =1, 2, 3, 4)
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as a complex intuitionistic fuzzy set. The rating
values of this set, denoted by B and called as

a “reference set” in order to evaluate the given
five regions are summarized as below:

B =
{ (

C1, 0.7ei2π(0.5), 0.1ei2π(0.3)
)
,
(
C2, 0.4ei2π(0.6), 0.5ei2π(0.2)

)
,(

C3, 0.5ei2π(0.5), 0.3ei2π(0.1)
)
,
(
C4, 0.8ei2π(0.7), 0.2ei2π(0.1)

)
}

Step 2: An expert evaluates each region Ap(p = 1,
2, . . . , 5) individually and estimate the require-
ments under the set of criteria Cq(q = 1, 2, 3, 4).

Their rating values towards each region is
expressed in terms of CIFNs whose values are
summarized as follows.

D =

C1 C2 C3 C4

A1

A2

A3

A4

A5

⎛

⎜⎜⎜⎜⎝

(
0.6ei2π(0.7), 0.1ei2π(0.2)

) (
0.9ei2π(0.8), 0.1ei2π(0.1)

) (
0.5ei2π(0.4), 0.3ei2π(0.4)

) (
0.6ei2π(0.4), 0.2ei2π(0.1)

)
(
0.4ei2π(0.2), 0.3ei2π(0.1)

) (
0.5ei2π(0.3), 0.1ei2π(0.1)

) (
0.6ei2π(0.4), 0.2ei2π(0.3)

) (
0.8ei2π(0.6), 0.1ei2π(0.2)

)
(
0.7ei2π(0.7), 0.1ei2π(0.2)

) (
0.4ei2π(0.6), 0.3ei2π(0.1)

) (
0.7ei2π(0.7), 0.1ei2π(0.1)

) (
0.6ei2π(0.5), 0.3ei2π(0.4)

)
(
0.7ei2π(0.6), 0.3ei2π(0.3)

) (
0.4ei2π(0.9), 0.2ei2π(0.1)

) (
0.7ei2π(0.7), 0.2ei2π(0.3)

) (
0.5ei2π(0.3), 0.3ei2π(0.6)

)
(
0.2ei2π(0.8), 0.5ei2π(0.1)

) (
0.7ei2π(0.3), 0.3ei2π(0.3)

) (
0.6ei2π(0.5), 0.1ei2π(0.3)

) (
0.6ei2π(0.5), 0.3ei2π(0.4)

)

⎞

⎟⎟⎟⎟⎠

Step 3a: By applying the correlation coefficientK1 as given
in Eq. (9) between the alternativesAp(p=1, 2, 3,
4, 5) and the reference set B, we can obtain
their measurement values as K1(A1, B) =
0.8936, K1(A2, B) = 0.9068, K1(A3, B) =
0.9424, K1(A4, B) = 0.8830 and K1(A5, B) =
0.8450. On the other hand, by utilizing the
correlation coefficient K2 given in Eq. (10),
their corresponding measurement values are
K2(A1, B) = 0.8722, K2(A2, B) = 0.7522,
K2(A3, B) = 0.9316, K2(A4, B) = 0.8228 and
K2(A5, B) = 0.8251.

Step 3b: If we assign the weight vector ξ = (0.30,
0.25, 0.15, 0.30)T to the criteria, then by
utilizing a weighted correlation coefficient K3 as
given in Eq. (12) to compute the measurement
values between the alternatives Ap(p = 1, 2, . . .,
5) and set B, we get K3(A1, B) = 0.8965,
K3(A2, B) = 0.9087, K3(A3, B) = 0.9439,
K3(A4, B) = 0.8747 and K3(A5, B) = 0.8351.
Similarly, by using correlation coefficient K4, we
get their corresponding results are K4(A1, B) =
0.8920, K4(A2, B) = 0.7379, K4(A3, B) =
0.9299, K4(A4, B) = 0.8429 and K4(A5, B) =
0.8058.

Step 4: From these computed measurement values, we
conclude that the ranking order of the regions
Ap(p = 1, 2, . . . , 5) is A3 
 A2 
 A1 
 A4 

A5, where “
” stands for “preferred to” when K1

correlation coefficient index has been used while
A3 
 A1 
 A5 
 A4 
 A2 when K2 index
has been used. Similarly, the ranking order of
the region by considering the weight factor into

the account is A3 
 A2 
 A1 
 A4 
 A5

and A3 
 A1 
 A4 
 A5 
 A2 respectively,
when either the correlation coefficient K3 or
K4 is utilized. It is observed from this analysis
that the ranking order of the region is different
for the different indices. However, the best
alternative i.e., the most affected area remains
same (A3) while the worst changes according
to the optimistic to pessimistic behavior. Hence,
based on the behavior of the decision makers’
toward the ranking order related to optimistic
and pessimistic behavior, they can choose the
desired one accordingly. For instance, related
to an optimistic decision maker’s behavior, they
tend to prefer A4 over A5 due to ranking order
A4 
 A5 while a pessimistic attitude will choose
towards the region, they tend to choose A5 over
A4 regions to allocate the funds due to A5 

A4. Therefore, based on the attitude behavioral
characteristic of the decision maker, they can
use the best and worst region to allocate the
budget.

6.2 Example 2: Medical diagnosis

Consider a decision-making problem with respect to the
medical diagnosis which consists of a set of four diseasesQ=
{Q1(Viral fever), Q2(Malaria), Q3(Typhoid), Q4(Stomach
Problem)} and a set of symptoms S = {s1(Temperature),
s2(HeadAche), s3(Stomach Pain), s4(Cough)}. Assume that
the patient P , with respect to all the symptoms, has been
evaluated by an expert in order to find which diseases
are patient affected by the most. So, the target of this



508 G. Garg, D. Rani

decision-making problem is to diagnose the disease of the
patient P among Q1, Q2, Q3, Q4. For it, we utilized the
steps of the proposed approach to obtain the suitable ranking
of the diagnoses and are summarized as follows:

Step 1: The patient P is treated as a reference set and
an expert gave their preferences with respect
to all the symptoms in terms of CIFSs and is
represented by the following set:

P =
{ (

s1, 0.8ei2π(0.6), 0.1ei2π(0.2)
)
,
(
s2, 0.9ei2π(0.7), 0.1ei2π(0.2)

)
,(

s3, 0.7ei2π(0.8), 0.2ei2π(0.1)
)
,
(
s4, 0.6ei2π(0.5), 0.2ei2π(0.4)

)
}

Step 2: The rating values of each diagnosis Qp(p =
1, 2, 3, 4) are expressed by a doctor (called as an
expert) under the set of symptoms sq(q =1, 2, 3, 4)

and are summarized as a complex intuitionistic
fuzzy decision matrix D as

D =

s1 s2 s3 s4

Q1

Q2

Q3

Q4

⎛

⎜⎜⎝

(
0.8ei2π(0.7), 0.1ei2π(0.2)

) (
0.9ei2π(0.6), 0.1ei2π(0.2)

) (
0.7ei2π(0.8), 0.2ei2π(0.1)

) (
0.8ei2π(0.7), 0.2ei2π(0.1)

)
(
0.6ei2π(0.4), 0.1ei2π(0.5)

) (
0.4ei2π(0.9), 0.5ei2π(0.1)

) (
0.5ei2π(0.5), 0.3ei2π(0.3)

) (
0.4ei2π(0.9), 0.5ei2π(0.1)

)
(
0.3ei2π(0.8), 0.3ei2π(0.1)

) (
0.8ei2π(0.3), 0.1ei2π(0.6)

) (
0.7ei2π(0.6), 0.2ei2π(0.2)

) (
0.2ei2π(0.7), 0.8ei2π(0.2)

)
(
0.5ei2π(0.3), 0.4ei2π(0.6)

) (
0.3ei2π(0.1), 0.6ei2π(0.3)

) (
0.8ei2π(0.3), 0.1ei2π(0.5)

) (
0.1ei2π(0.3), 0.6ei2π(0.5)

)

⎞

⎟⎟⎠

Step 3a: By applying the correlation coefficient K1

between the set Qp(p = 1, 2, 3, 4) and
the patient P , we get their measurement val-
ues are K1(Q1, P ) = 0.9800, K1(Q2, P ) =
0.8582, K1(Q3, P ) = 0.8446 and K1(Q4, P ) =
0.7037. On the other hand, if we utilize the
correlation coefficient K2, then their correspond-
ing measurement values are K2(Q1, P ) =
0.9412, K2(Q2, P ) = 0.8109, K3(Q3, P ) =
0.8132 and K4(Q4, P ) = 0.5923.

Step 3b: If we assign the weightage to the set of symp-
toms sq(q = 1, 2, 3, 4) as ξ = (0.30, 0.20, 0.10,
0.40)T then by applying the weighted correla-
tion coefficient K3 and K4, we get their respec-
tively measurement values are K3(Q1, P ) =
0.9696, K3(Q2, P ) = 0.8486, K3(Q3, P ) =
0.8008, K3(Q4, P ) = 0.6980 and K4(Q1, P ) =
0.9015, K4(Q2, P ) = 0.8433, K4(Q3, P ) =
0.7935, K4(Q4, P ) = 0.5969.

Step 4: Based on the optimal values of the diseases, we
conclude that its ranking order is Q1 
 Q2 

Q3 
 Q4 when the K1 correlation coefficient
index has been used, while Q1 
 Q3 
 Q2 

Q4 when K2 index has been used. From this
analysis, it is concluded that the patient P suffer
from theQ1 diseases. Further, from these ranking
orders, we observe that when decision maker
utilize the K1 correlation coefficient by keeping
his mind towards the optimistic view, then the
second most diseases affected to the patient is
Q2. On the other hand, if the decision maker’s
attitude towards the diseases is pessimistic in
nature, they will tend towardsQ3 to be the second
most diseases affected to the patient P . Similarly,

we get the ranking order of the diseases affected
to the patient corresponding to the utilization of
K3 and K4 as Q1 
 Q2 
 Q3 
 Q4.

7 Comparative analysis

In this section, we compare the performance of the proposed
measures with some of the existing approaches under the
CIFS as well as IFS environment. The detailed analysis of
the above considered examples is explained as below.

7.1 Comparative studies of Example 1 under CIFS
environment

In order to compare the proposed approach results with
some of the existing approaches [33, 34] under the CIFS
environment, an analysis has been conducted for the consid-
ered data. The results corresponding to these approaches are
summarized as follows:

(i) If we utilize the distance measure, denoted by
d1, as proposed by [33] to the considered data,
then corresponding to each region the measurement
values from the reference set B are d1(A1, B) =
0.1817, d1(A2, B) = 0.1917, d1(A3, B) = 0.1400,
d1(A4, B) = 0.2167 and d1(A5, B) = 0.2600. Since
d1(A3, B) < d1(A1, B) < d1(A2, B) < d1(A4, B) <

d1(A5, B) and hence the ranking order of the given
regions is A3 
 A1 
 A2 
 A4 
 A5. Thus, it has
been computed that thatA3 is the most affected region.

(ii) If we utilize the weighted Euclidean distance measure,
denoted by d2, as defined by [34] to the considered
problem, then the measurement values of each region
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are computed as d2(A1, B) = 0.1871, d2(A2, B) =
0.1803, d2(A3, B) = 0.1374, d2(A4, B) = 0.2086
and d2(A5, B) = 0.2225. Since d2(A3, B) <

d2(A2, B) < d2(A1, B) < d2(A4, B) < d2(A5, B)

and hence ranking order of the region is A3 
 A2 

A1 
 A4 
 A5. Therefore, we conclude that A3 is
again the most affected region.

From these comparative studies, it is concluded that the best
region obtained from the proposed measure coincides with
the existing measures hence it validates the feasibility of the
approach under the CIFS environment.

7.2 Comparative studies of Example 1 under IFS
environment

In order to compare the proposed approach results with
the results obtained under IFSs environment, we conducted
an analysis by executing some of the existing approaches
[23, 26, 28, 29] to the considered data. Since IFS is
a special case of the CIFS, so we firstly convert the
CIFS environment data into the IFS environment data by
setting phase term corresponding to each criteria to 0 in
every CIFN. Then, based on these existing approaches, we
conduct the following analysis to compute the most affected
region(s) under the IFS environment.

(i) If we apply the correlation coefficient, denoted
by ρ1, as defined by [23] to the considered
problem, then we get the measurement value of
each region is ρ1(A1, B) = 0.8740, ρ1(A2, B) =
0.8874, ρ1(A3, B) = 0.9442, ρ1(A4, B) = 0.8822
and ρ1(A5, B) = 0.8262. Since ρ1(A3, B) >

ρ1(A2, B) > ρ1(A4, B) > ρ1(A1, B) > ρ1(A5, B)

and hence we conclude that A3 is the most affected
region.

(ii) If we apply the correlation coefficient, denoted
by ρ2, as defined by [26] on the reduced data,
then we get ρ2(A1, B) = 0.8808, ρ2(A2, B) =
0.9106, ρ2(A3, B) = 0.9551, ρ2(A4, B) = 0.9246
and ρ2(A5, B) = 0.8250. Since, ρ2(A3, B) >

ρ2(A4, B) > ρ2(A2, B) > ρ2(A1, B) > ρ2(A5, B)

and hence ranking order is A3 
 A4 
 A2 
 A1 

A5. Thus, we conclude that A3 is the most affected
region which coincides with the proposed one.

(iii) If we utilize correlation coefficient (ρ3) as presented
by [28], then the corresponding indices to each region
are computed as ρ3(A1, B) = −0.4603, ρ3(A2, B) =
0.0000, ρ3(A3, B) = 0.5198, ρ3(A4, B) = 0.1143
and ρ3(A5, B) = −0.6336. Since, ρ3(A3, B) >

ρ3(A4, B) > ρ3(A2, B) > ρ3(A1, B) > ρ3(A5, B)

and hence again the most affected region is A3 and it
coincides with the proposed measure results.

(iv) By utilizing the similarity measure [29], denoted by
ρ4, on the considered data, we get their measurement
values are ρ4(A1, B) = 0.8221, ρ4(A2, B) =
0.8527, ρ4(A3, B) = 0.8827, ρ4(A4, B) = 0.8492
and ρ4(A5, B) = 0.7562. From it, we get the ranking
order of the regions is A3 
 A2 
 A4 
 A1 
 A5

and hence we conclude that the most affected region
is again A3.

Thus, from this analysis, it has been clearly seen that the
results computed by the existing approaches coincides with
the proposed one and hence it supports the proposed results.

7.3 Comparative studies of Example 2 under CIFS
environment

To compare the performance of the proposed approach
with some of the existing approaches under the CIFSs
environment, an analysis has been done and their results are
summarized as follows.

(i) By applying the approach of [33] using distance mea-
sures, denoted by d1 to the considered data, we get the
measurement values of each disease as d1(Q1, P ) =
0.0967, d1(Q2, P ) = 0.2717, d1(Q3, P ) = 0.2867
and d1(Q4, P ) = 0.3550. From these values,
we observed that d1(Q1, P ) < d1(Q2, P ) <

d1(Q3, P ) < d1(Q4, P ) and hence conclude that the
patient P suffers from disease Q1.

(ii) By utilizing the distance measure (d2) as proposed by
[34] to the considered problem, then the measurement
values for each disease are computed as d2(Q1, P ) =
0.1194, d2(Q2, P ) = 0.2291, d2(Q3, P ) = 0.2669
and d2(Q4, P ) = 0.3004. Since measurement value
of Q1 is minimum among all these and hence we
conclude that patient P suffers from disease Q1 which
again coincides with the proposed measure results.

7.4 Comparative studies of Example 2 under IFS
environment

In order to validate the efficiency of the proposed approach
under the IFS environment, we conducted an analysis based
on some of the existing correlation coefficients [23, 26,
28, 29]. The results corresponding to its are summarized as
follows.

(i) If we utilize correlation coefficient (ρ1) as pro-
posed by [23], then their measurement values for
each diagnosis are summarized as ρ1(Q1, P ) =
0.9856, ρ1(Q2, P ) = 0.8461, ρ1(Q3, P ) = 0.7959
and ρ1(Q4, P ) = 0.7258. From it, we conclude that
ρ1(Q1, P ) > ρ1(Q2, P ) > ρ1(Q3, P ) > ρ1(Q4, P )

and hence the patient P suffers from disease Q1.
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(ii) By applying the correlation coefficient(ρ2) as defined
by [26] to the considered data then we get ρ2(Q1, P )=
0.9912, ρ2(Q2, P )=0.8585, ρ2(Q3, P )=0.7265 and
ρ2(Q4, P )=0.6645. Thus ρ2(Q1, P )>ρ2(Q2, P )>

ρ2(Q3, P ) > ρ2(Q4, P ). From it, we conclude that
patient P suffers from disease Q1.

(iii) If we apply the correlation coefficient(ρ3) as proposed
by [28] to the data, then the measurement values
are obtained as ρ3(Q1, P ) = 0.8485, ρ3(Q2, P ) =
0.1907, ρ3(Q3, P ) = 0.6608 and ρ3(Q4, P ) =
−0.0690. Thus ρ3(Q1, P ) > ρ3(Q3, P ) >

ρ3(Q2, P ) > ρ3(Q4, P ) which implies that the
ranking order of Qp(p = 1, 2, 3, 4) is Q1 
 Q3 

Q2 
 Q4. From it, we conclude that patient P suffers
from disease Q1.

(iv) On applying the similarity measure (ρ4) as
defined by [29] on the considered information,
then we get ρ4(Q1, P ) = 0.9642, ρ4(Q2, P ) =
0.7394, ρ4(Q3, P ) = 0.7725 and ρ4(Q4, P ) =
0.6538. As, ρ4(Q1, P ) > ρ4(Q3, P ) > ρ4(Q2, P ) >

ρ4(Q4, P ) and hence we conclude that patient P

suffers from disease Q1.

Thus, from the above analysis, it has been seen that results
computed by the proposed approach coincide with the
existing approaches which validates the feasibility of the
proposed approach.

7.5 Advantages of the proposed approach

From the existing studies and the proposed measures,
we address the following merits of the proposed method
to solve the decision-making problem under the CIFS
environment.

(i) A complex intuitionistic fuzzy set is a generalization
of the existing studies such as complex fuzzy sets
[4], intuitionistic fuzzy sets [2], fuzzy set [1] by
considering much more information related to an
object during the process and to handle the two-
dimensional information in a single set. For instance,
CIFS contains information (both the membership
and non-membership degrees are complex valued)
with amplitude and phase terms than the CFS
(contains only complex valued membership degree),
IFS (with a real-valued membership and non-
membership degrees and only considered amplitude
term), FS (with only crisp membership degrees with
amplitude term only). Thus, the proposed correlation
coefficients under CIFSs environment are more
generalized than the existing correlation coefficients
[19–30].

(ii) It is revealed from the present study that the
correlation coefficients under IFSs, FSs [19–30] are

the special cases of the proposed measures. Thus, the
proposed correlation coefficients can be equivalently
utilized to solve the MCDM problem under these
existing environment by setting phase term to be zero
while the existing measures [19, 21–23, 26, 27] are
unable to solve the problems under the environment
considered in the present paper.

(iii) The major advantages of the proposed decision-making
approach are to consider the much more information
to access the alternative to reduce the information
loss. Further, the correlation coefficients based on the
optimistic and pessimistic with or without weighting
factor will help the decision maker to select the best
alternative(s) more accurately. In other words, we can
say that the proposed correlation coefficients will give
the various choices to the decision makers based on
their optimistic and pessimistic behavior towards the
decision-making process.

8 Conclusion

In this article, an attempt has been made to present different
kinds of the coefficients of correlation for decision-
making process under the complex intuitionistic fuzzy
set environment. Earlier, various existing coefficients of
correlation have been defined under the IFSs environment
where the range of their corresponding membership and
non-membership degrees is the subset of the real numbers.
But this condition has been relaxed in the present
manuscript by considering the CIFSs where the ranges
of the membership degrees are extended from the real
numbers to the complex numbers with the unit disc.
Therefore, considered environment models the information
in a better way for time-periodic problems and has the
ability to handle two-dimensional information in the single
set. Keeping these points in view, under this environment,
we present various coefficients of correlation and studied
their properties in detail. Further, based on them, a decision-
making approach is presented to find the best alternative in
the CIFSs environment. Two numerical examples are taken
for illustrating the developed approach and their results are
compared with some of the existing correlation measures to
show the validity of it. From the studies, we conclude that
the proposed approach can be efficiently used in decision-
making problems where two-dimensional information is
clubbed in a single set. Also, it is observed that the
existing correlation measures under the IFSs environment
can be taken as a special case of the proposed measure. In
the future, we will extend the study of CIFS to present some
aggregation operators and the results of this paper to complex
interval-valued IFS, type-2 fuzzy set, Pythagorean fuzzy set,
multiplicative fuzzy set [37–40].
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