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Abstract
RNA Structure Prediction (RSP) is an optimization problem, where a stable secondary structure is obtained from an RNA
primary sequence. To solve the RSP problem, many exact and metaheuristic algorithms were established in recent years.
We have proposed an approach based on metaheuristic algorithm named Chemical Reaction Optimization (CRO) to solve
the RSP problem. CRO is a population-based metaheuristic which has been employed in different optimization problems
and works better than all other related existing algorithms. We have redesigned the reaction operators of CRO algorithm and
calculated the minimum free energy of the RNA structure to solve RSP problem. The operators spread out the population
entirely on the solution space using both local and global searches and find the better structure, which makes the proposed
algorithm more unique. We have designed a novel operator called Repair function to verify and remove the repeated stem
from the solution of an RNA sequence, which makes the process more time efficient. Both the quality of solutions and
execution time are considered in designing the basic operators and the repair function. Thus, the proposed methodology gives
robustness, efficiency, and effectiveness in solving the problem. The results of the proposed CRO based algorithm for RSP
problem are compared with genetic algorithm (RNAPredict), simulated annealing algorithm (SARNA-Predict), coincidence
algorithm (COIN), two-level particle swarm optimization algorithm (TL-PSOfold) and Changing Range Bat Algorithm
(CRBA) to present that, the proposed work gives better results than those. The significance testing using Kruskal-Wallis test
followed by post-hoc analysis also proves that the proposed work outperforms the five related methods.

Keywords Chemical reaction optimization · RNA structure prediction · Ribonucleotide sequences · Minimum free energy

1 Introduction

RNA has a fundamental role in protein synthesis and it
is also important in genetic and evolution process. RNA
is a macromolecule made from the nucleotide sequence.
Four types of nucleotides are possible in RNA: adenine
(A), uracil (U), cytosine (C), and guanine (G). Usually,
RNA is single-stranded but stable double helix structures
of correspondent strands can be formed. RNA bends and
folds back to form hydrogen bonds between correspondent
nucleotides and builds base pairs. The canonical base pairs
in RNA are the stable Watson-Crick base pairs A-U and
C-G, and the less stable ‘wobble’ pair G-U [1]. In protein
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synthesis, three categories of RNA are used: messenger
RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA
(tRNA). The mRNA contains the information needed for
protein synthesis, while the rRNA is a ribosome component
and tRNA transfers amino acids to the ribosome as basic
materials for protein synthesis [2].

RNA has three types of structure; the nucleotide
sequence is the primary structure. The secondary structure
is the bonded base pairs in a two-dimensional way. RNA
molecules in 3D space are called tertiary structure. RNA
structure prediction is a process to calculate possible legal
stems and select some of them to obtain an optimal result
by constructing the secondary structure of RNA. At present,
determining the structure of RNA has become the target of
many researchers as it is one of the main issues in inventing
new drugs and finding out the genetic diseases. Determining
secondary structure is the first action in predicting the 3-
D structure of RNA and interpretation of the biological
function of the RNA molecules. The secondary structure
provides numerous information about molecule structure.
X-ray crystallography and Nuclear Magnetic Resonance
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(NMR) spectroscopy are also used to obtain the secondary
structure. These processes are difficult, slow and costly. On
that account, it is needed to implement mathematical and
computational methods to solve the RSP problem.

Dynamic Programming (DP) was the first approach to
solving RSP problem based on the minimization of the free
energy and successfully predicts the secondary structure of
the small pseudoknot-free RNA molecule [3]. DP based
mfold was developed by Zuker [4] for inventing the
pseudoknot-free RNA secondary structure. Thermodynamic
models were used to calculate the free energy of an RNA
secondary structure [5].

The use of Simulated Annealing (SA) for predicting
RNA secondary structures was first described by Schmitz
and Steger [6]. In this method, iterative formation and sepa-
ration of the single base pair through SA is used. Tsang and
Grypma presented a permutation-based algorithm SARNA-
Predict, for RSP problem which is based on simulated
annealing [2]. They studied the synchronism behavior of
the algorithm. The method requires a process of remov-
ing conflicted helix to correct the structure. This process
is quite tedious especially in a sequence that has a large
number of possible helices. N. McMillan investigated a
solution for RSP problem using Ant Colony Optimization
(ACO) [3]. Initially, all feasible stems are recognized using
a brute-force algorithm for a particular RNA sequence.
Then, using ACO, new stems are summed up probabilisti-
cally by an ant to build a possible secondary structure. The
procedure is repeated for a number of ants and also for a
particular iteration, the pheromone trails for all the struc-
tures are improved depending on the ideal ant, in the matter
of minimum free energy.

Particle Swarm Optimization (PSO) is known as useful
in solving many different types of optimization problems
and known for being able to find out the global opti-
mal outcomes in the solution space [7]. Several methods
were introduced based on the PSO for the RSP problem.
HelixPSO was introduced for finding RNA secondary struc-
tures with minimum free energy by Geis and Middendorf
[8]. Another approach is set-based PSO to optimize the
RNA molecule structure using an advanced thermodynamic
model which was proposed by Neethling and Engelbrecht
[9]. An improved PSO (IPSO) model was presented by Liu
[10]. The authors designed an objective function accord-
ing to the number of selected stems, the average length
of selected stems and the minimum free energy. Another
author, Xing, introduced PSOfold based on improved PSO.
An adaptive parameter controller of PSO is applied to pro-
mote the balance between exploration and exploitation [11,
12]. In PSOfold, some crucial stems were ignored while pre-
dicting secondary structure. Genetic Algorithm (GA) based
method named RNAPredict was proposed by Wiese using
thermodynamic models [7]. In this method, a set of feasible

helices is produced from a given RNA sequence with helix
generation algorithm [1]. A permutation of the helix num-
bers represents each chromosome. If two or more helices in
any chromosome share some common base pairs, then the
conflict helices are not added to the RNA fold. After that
crossover and mutation operators are used to improve the
chromosome to find a minimum free energy finally [13]. For
the sequences with a large number of helices, this method
is time-consuming. For global optimization, another meta-
heuristic algorithm is known as the Bat algorithm. Changing
Range Bat Algorithm (CRBA) was introduced for finding
RNA Secondary Structure Prediction by Zhihua, Li, Cao
and Zhu [32]. This paper represents an updated version of
Bat algorithm. Bat algorithm describes microbats echoloca-
tion behavior. To predict RNA secondary structure CRBA
showed the prediction for ten shorter sequences. And the
results were compared with mfold.

In this paper, we have proposed an algorithm based
on the Chemical Reaction Optimization (CRO) to solve
the RNA structure prediction problem. Our main target
is to find out the most stable secondary structure of
an RNA sequence. The chemical reaction is a process
involving the rearrangement of the molecular and ionic
structure of substances. There is a common nature of this
universe that every molecule or ion that is not in the
stable state wants to be stable by chemical reaction. The
CRO algorithm follows this exact behavior. The important
feature of CRO is its searching ability. It has both local
and global search properties. Another feature of CRO is
the high flexibility of designing reaction operators and
population generation. These two features help CRO to
fit for any optimization problem and finding out the
global best results of the optimization problems. In recent
years CRO has successfully solved many optimization
problems and showed better results than other meta-
heuristics approaches. To solve 0-1 knapsack problem, the
CRO with Greedy strategy showed a better result than
ant colony optimization, genetic algorithm and quantum-
inspired evolutionary algorithm [14]. CRO was also applied
to the quadratic assignment problem [15], cognitive radio
spectrum allocation problem [16], and network coding
optimization [17]. To solve multiple choice 0-1 knapsack
problem, the artificial CRO outperforms the genetic
algorithm [18].

Contribution and novelty of this work are summarized
below.

1. We have redesigned four reaction operators: On-wall
ineffective collision, Decomposition, Inter-molecular
ineffective collision and Synthesis to find the global
optimal point. These operators make the whole process
able to search best structures of RNA sequences. On
the other hand, the proposed method gives the most
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stable structures for both shorter and longer sequences
because of these operators.

2. A novel efficient approach has been proposed here.
Chemical Reaction Optimization (CRO) algorithm has
been successfully applied to solve different NP-hard
problems, however it was not used or proposed for
solving RNA structure prediction problem.

3. A new solution generation process has been introduced
for CRO Algorithm. The process is efficient in
generating valid solution for RNA structure prediction
problem.

4. Repair function is one of our other novel tasks. With the
help of repair function we verify and remove the dupli-
cate stem number(s). While a solution is generated by
any of the four basic operators of CRO, if there exist
duplicates of stem numbers during the construction pro-
cess of secondary structure then duplicate stem numbers
are taken into consideration repeatedly, consequently
the process takes lot a time. So the repair function
makes the CRO algorithm robust and time efficient.

5. Our proposed work follows the hydrogen bond model
(INN-HB) which is a group of thermodynamics model
to estimate minimum free energy (MFE). This model
is subtle and easy to implement and takes less time
to obtain minimum free energy than all other models.
These properties of the proposed work make it possible
to give better results than other methods. The outcomes
of the proposed work are compared with the previous
related methods such as RNAPredict (GA) [7], the
SARNA-Predict (SA) [2], COIN [13], TL-PSOfold
[19] and CRBA [32] to show the performance of the
proposed method.

2 Problem statement

The RSP is a problem to anticipate RNA secondary
structure. Here, an RNA sequence is given to compute
the correct secondary structure. The secondary structure of
RNA is described by a list of base pairs formed from the
primary sequence.

Let = S = s1, s2, ..., sn be an RNA sequence. Here S is a
string of alphabet

∑ = {a, u, g, c}. A pair (x, y) is called a
base pair (complimentary) if {x, y} = {a, u} or {x, y} = {g, c}.
Pairs like {a, g}, {c, u}, {a, c} are not treated as a base pair
[20]. The most stable and common of these base pairs are {g,
c}, {a, u}, and {g, u}, and their opposite, {c, g}, {u, a}, and {u,
g}. When all the pairs are built, the RNA strand folds back
to produce the secondary structure. Our main objective is to
maximize the number of the stem to create RNA secondary
structure from a given sequence and select the most stable
secondary structure. The stability of a structure depends on
the Gibbs free energy(�G). The structure with minimum

energy is accepted.(�G) is used to calculate the total energy
of different structures (RNA) of the same sequence. We
use the individual nearest-neighbor hydrogen bond model
(INN-HB) [21] for calculating the free energy of a helix in
the RNA secondary structure. Now we define an objective
function for the RNA structure prediction.

R = min{�Gi}; where 1 ≤ i ≤ n; n

= number of secondary structure
for one sequence

(1)

�G◦
37 = �G◦

37init + ∑ [
�G◦

37NN

]

+�G◦
37AU/GUend(perAU/GUend)

+�G◦
37sym

(2)

This Eq. (2) is widely used to calculate the fitness of the
RNA secondary structure. The values of these parameters
are taken based on [22]. In Table 1, the meaning of every
symbol is given.

In RNA structure pseudoknots are formed by the cross
of base pairs, the cross of stems can form pseudoknotted
structure. It is difficult for a prediction algorithm to compute
large RNA molecules with pseudoknots. Jens and Robert
proposed an algebraic dynamic programming algorithm for
finding RNA pseudoknotted structure that takes a lot of time
and space because of the pseudoknotted structure of RNA
[20]. Another approach for RNA pseudoknotted structure
of predigesting model based on minimum free energy
presented by Rivas and Eddy which takes more time and
space [23]. The problem for predicting RNA pseudoknotted
secondary structure is an NP-complete and maximizing the
number of stacking pairs makes it NP-hard. In mimic RNA
structure, there exist pseudoknots. Several publications
show that extending the RNA structures including arbitrary
pseudoknots indicates the problem of finding the optimum
structure is NP-hard [24, 25].

3 Related works

In the recent years, different approaches were proposed to
predict RNA secondary structure. Some of them are briefly
described here.

3.1 Dynamic programming

DP (Dynamic Programming) is a method of solving any
complex problem by splitting up the problem into small
problems. Then each small problem is solved and the results
are stored, and later, they are calculated by the recursive
algorithm. DP based algorithm, mfold was developed by
Zuker [4] for inventing the pseudoknot-free RNA secondary
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Table 1 Symbol table for (2)

Symbol Meaning

�G◦
37init It is a constant and used for the entropy loss when the first base pair is formed and initiation occurs.

�G◦
37AU/GUend(perAU/GUend)

+�G◦
37sym Per each AU or GU pair at the end of a helix, it is applied once.

�G◦
37sym It is a symmetry correction. 0.43kcal/mol for self-complementary duplexes and 0 for otherwise.

∑ [
�G◦

37NN

]
It is a sum of all base pairs that are formed by sliding window of size two through a helix from left to right.

The value for each base pair depends on the nearest neighbor base pair of that base pair.

structure with minimized free energy. For the prediction of
secondary structure of RNA, “mfold web server” represents
a number of closely nearly connected software applications
accessible on World Wide Web (WWW). The web server
takes the primary RNA sequence as input and computes
pseudoknot-free secondary structure with minimized free
energy (MFE) and predicts some suboptimal structures. A
possible secondary structure is anticipated by computing
the sum of free energies from each optimal substructure,
for all probable combinations of substructures and at last,
the combination with minimum free energy is selected.
In the mfold (multiple folds) web server, users get some
options to choose a window for optimal substructure and
push some selected base pairs to take up some reserve
information into account. The main algorithm brings the
energy dot plot matrices for the base pairs involved in
the folding. Although dynamic programming algorithm
produces optimal and suboptimal structures with minimum
free energy, it is incapable of considering the kinetic effects
concerned to easily approachable states in RNA folding.

3.2 Simulated annealing

Simulated annealing (SA) is a searching approach for
finding the comparative global optimum of a given
operation. The method is a metaheuristic to estimate
global optimization within vast search space. The use
of Simulated Annealing for predicting RNA secondary
structures, using free energy minimization approach, was
first proposed by Schmitz and Seger [6]. The secondary
structure is predicted by iterative formation and disruption
of single base pairs. Another prediction based on SA
was presented by Tsang and Grypma, a permutation-based
algorithm [2]. The structure of SARNA-Predict is developed
by four elements. These are i) state representation, ii)
perturbation/mutation function, iii) evaluation function and
iv) decision mechanism. They compared the performance
of the inversion mutation operator to the percentage swap
mutation operator used in SARNA-Predict. Then, they
evaluated the use of different annealing schedules used in
tandem with the two mutation operators. For testing data,

13 different RNA sequences were used and they were taken
from the comparative RNA web site [26]. The results of the
experiments of the process include sensitivity, specificity,
and F-measure. It also includes Known bps, Predicted bps,
true positive base pairs (TP), false positive base pairs (FP),
and false negative base pairs (FN) [2]. It showed good
results in term of sensitivity, selectivity, and F-measure. The
results suggest that the inversion mutation operator could
be used in place of the swap mutation operator when using
geometric scheduled simulated annealing. It is useful only
for lower energy sequences. In adaptive scheduling, at a
given temperature the iterations number in the search space
is variable which takes a long time in searching.

3.3 Genetic algorithm

A genetic algorithm is usually used to produce ideal solu-
tions for optimization and search problems using muta-
tion, crossover, and selection operators. Wiese proposed a
method named RNAPredict based on thermodynamic mod-
els [7]. In that paper, at first, they evaluated the performance
of the stacking energy based thermodynamic models, Indi-
vidual Nearest Neighbor Hydrogen Bond (INN-HB) model
precisely by assessing the statistical correlation between
the free energy in a structure and the number of true pos-
itive base pairs. Then they measured the accuracy of 19
structures from four RNA classes predicted by RNAPre-
dict by comparing them to known structures and compare
the prediction accuracy of RNAPredict and the mfold DPA.
They demonstrated that evolutionary computation is a fea-
sible technique for RNA secondary structure prediction.
They also demonstrated that RNAPredict gives more min-
imum �G structures than mfold [7]. TP, FP, and FN have
been calculated and showed the sensitivity, specificity, and
F-measure to further quantify the performance of RNAPre-
dict and mfold. Another approach was proposed by Tong
and Cheung [27]. They predicted RNA secondary structures
with pseudoknots using GA. They named it GAknot and
used two valid datasets for testing. TheGAknot was shown
to be the best prediction method in terms of accuracy and
speed compared to several competitive prediction methods
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[27]. One dataset is constructed from a subset of sequences
used in HotKnots that contains 41 sequences and another
dataset contains RNA secondary structures with pseudo-
knots. They calculated sensitivity and positive prediction
value (PPV) to evaluate the attainment of the method.GA
gives a population of solutions as suboptimal structures and
makes it probable to search not only the MFE structures but
also other structures that are closer to the natural fold. GA is
also suitable for estimating certain energy parameters but it
takes a long time for predicting RNA structure of sequences
with a large number of helices.

3.4 Two-level particle swarm optimization algorithm

A set-based algorithm named two-level particle swarm
optimization algorithm (TL-PSOfold) was applied to solve
RSP problem [19]. The first objective of the method is
to maximize the number of the stems for a given RNA
sequence. After that, they have analyzed the minimum free
energy. The procedure consists of an initialization stage,
where the sets of levels one and two for each swarm are
initialized, and then the procedure goes through two levels.
In each level, the velocity and position of the level are
updated, and the fitness value is evaluated. After that, the
best and global best values are updated for the level. If
the procedure meets the stopping criteria, it exports global
best secondary structure. The outcomes of TL-PSOfold
is compared with HelixPSO v1, HelixPSO v2, PSOfold,
SetPSO, IPSO, FPSO, RNAfold, mfold and RNA-Predict,
SARNA-Predict in terms of sensitivity, specificity, and F-
measure. They have also shown the hypothesis test using the
Kruskal-Wallis test followed by post-hoc analysis. All the
results and analyses prove the higher prediction accuracy of
TL-PSO than the other algorithms.

3.5 Coincidence algorithm

An evolutionary algorithm named coincidence algorithm
was introduced by Srikamdee [13] to solve RSP problem.
The main task of the algorithm was to obtain the feasible
combination of helices from a sequence that has the
minimum free energy among all combinations. At first, all
the helices from a sequence is found by a helix generation
algorithm. For this, the canonical base pairs are obtained at
the beginning of the algorithm. After getting the population,
they evaluated the population by calculating free energy by
the INN-HB model. In the next step, the good solutions are
selected as candidate solutions. At last the generator matrix
is updated, which contains the probability of any helix
that can appear together. They have taken 10 sequences
for testing and the test results are compared with the two
algorithms SARNA-Predict and RNA-Predict.

3.6 Changing range bat algorithm

Bat algorithm is another metaheuristic algorithm for global
optimization. Zhihua, Li, Cao and Zhu introduced a new
approach of Bat algorithm known as Changing Range
Bat Algorithm (CRBA) [32]. This paper represents an
updated version of Bat algorithm. Bat algorithm describes
microbats echolocation behavior. The original bat algorithm
has different variables for virtual bats: frequency, velocity,
location etc. The bat algorithm adjusts its frequency first
and updating its velocity and position next. By walking
randomly, a new solution is picked from the current
solution for the best solution. This paper improves the
exploitation capability by generating each bat location using
the random walk. Average loudness and rate of the pulse
are used in the new algorithm, which indicates loudness
decreases while the rate of pulse emission increases. The
new algorithm improves on the previous the bats algorithm.
Here the first bat has the best performance and the
performance goes down with the list. They have taken
10 different sequences to predict secondary structure. The
results of the experiments of the process include sensitivity,
specificity, and F-measure. And to measure these three,
this method calculated TP, FP, and FN. CRBA only took
shorter sequences to compare with mfold. For some of the
sequences, the results of mfold were better than CRBA.

3.7 Advances and assessment of 3D structure
prediction

Miao and Eric discussed advances and assessment of
3D structure prediction [33]. This paper first described
sequence (1D) to secondary (2D) structure, and then non-
Watson-Crick (WC) base pair tertiary structure (3D). Then,
it described previous module detection programs, namely
RMDetect, JAR3D which can correctly identify standard
RNA modules to a degree. RNA Puzzles contains 17
puzzles, which must be tackled by each program. It also
indicated score which programmer can look at and improve
upon it. They showed some results in term of INF for some
sequences.

4 Chemical reaction optimization

Chemical reaction optimization (CRO) is a relatively new
invented metaheuristic for optimization that is influenced by
the nature of chemical reactions. In an atomic glimpse, a
chemical reaction begins with some inconsistent molecules
with enormous energy. The molecules collaborate with each
other through some fundamental reactions and ultimately,
they are altered to those with minimum energy to confirm
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their presence. Such a characteristic is inflicted in CRO to
solve optimization problems. When a molecule occupies
excessive energy, which means it is unstable, it manipulates
itself to reduce excessive energy to stabilize, and this
process is called chemical reaction [28]. Chemical reaction
ends with a stable product with minimum energy which is
alike to a stepwise process of finding the optimal point.
The energy of molecules is of two types: kinetic energy
(KE) and potential energy (PE). KE is a positive number
and it evaluates the tolerance of the system accepting a
worse solution than the current one. PE is represented as
the objective function value of the corresponding solution.
The change of the molecule from its unstable to a stable
state is generated by a collision and two types of collisions
exist such as unimolecular and inter-molecular collisions.
The first type defines the status when the molecule hits
on some external elements like a wall of a container. The
second type defines the collision between a molecule and
other molecules.

There are four elementary reactions of CRO: on-wall
ineffective collision, inter-molecular ineffective collision,
decomposition, and synthesis. Whereas an on-wall or

inter-molecular ineffective collision occurs, the number of
molecules earlier and then remains the same. Besides,
when decomposition and synthesis occurs, the number
becomes more or less [28]. For neighborhood search, the
on-wall ineffective reaction is applied where the minimal
change in molecular structure gives almost identical
solutions [29]. Decomposition refers to the situation
when a molecule hits a wall and then breaks into
several molecules. Drastic change occurs in the molecular
structure of new molecules in this reaction. The solution
bounces to other portions of the solution space and
in this way a global search is attained. Inter-molecular
collision contains inter-molecular ineffective collision and
synthesis. An inter-molecular ineffective collision occurs
when multiple molecules clash with each other and after
that bounce away. The molecularity remains unchanged
before and after the process. This reaction is applied
to the local search where the reactant molecules have
minimal change in their molecular structure. Synthesis acts
opposite of decomposition. A synthesis reaction occurs
when multiple molecules hit against each other and integrate
together. The elementary reaction can only occur when

Fig. 1 (a) a sequence matrix in which the individual row and column represent the primary sequence (b) reported stem list with info of start, end,
and length (c) Some sequences after permutation (d) a randomly selected sequence of stem numbers
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it assures the energy conservation condition as given
below:
∑k

i=1(PEωi + KEωi) ≥ ∑l
i=0 PEω′i (3)

Here, ω and ω′ are the structures of input and output
molecules, respectively used in a reaction. The number of
molecules that takes part in the reaction is denoted by k.

Literally, the steps of the chemical reaction optimiza-
tion are achieved by generating a population of initial
molecules(solutions) randomly first, and then calculating
each solution’s objective function value as its PE and initial-
ize each molecule’s other attributes. Then by mean of the
parameter Molecoll (1 or 0) we choose one or twomolecules
from the population randomly by selecting one of the four
elementary reactions and generate the new molecule(s)
according to the corresponding reaction layout. If there is
acceptable energy for the new molecule(s) to be generated,
change the original molecule(s) with the new one(s) and
then renew the KE. When the stopping criterion is met, the
global minimum solution is obtained. This solution is the
resultant solution.

4.1 Algorithm design

In the proposed methodology, we have applied CRO to solve
RSP problem and CRO is a population-based metaheuristic,
it contains three stages: initialization, iterations and the
final stage. In initialization, the parameters of the algorithm
are assigned, the algorithm analyzes the solution space in
iterations, and it terminates with the best output so far in the
final stage.

4.1.1 Initialization and population generation

At first, the values are assigned to the parameters such
as PopSize, KELossRate, MoleColl, buffer, InitialKE, two
thresholds (α and β) and the initial population of molecules
is constructed in the initialization phase. To construct
the population of molecules possible candidate stems are
found. The construction of candidate stems is easy: for
a given RNA sequence with length n, we take a matrix.
In the matrix, a distinct row and a column denote the
corresponding nucleotide in the input RNA sequence.

When, an element in the matrix can build a canonical
Watson-Crick base pair (AU, GC) or Wobble base pair (GU)
then the element is marked as 1 otherwise, it will be 0.
When the matrix is filled, we can find a list of maximal
stems. Maximal stems are found by checking the 1s from
bottom left to top right of the diagonals (shown in ellipses).
A feasible RNA structure has a minimum stem length of
three. That means, if a stem has three base pairs or more,
it is taken for secondary structure. If the number of 1s
in a diagonal is three or more than three, we consider

that stem for the count otherwise, the stem is neglected.
When all the maximal stems are found, we build a list of
stems. In the list, each element stores the stem number,
the start, the end, and length of the stem. After that, by
permuting the stem numbers of the stem list, we select a
sequence which is said to be the randomly selected molecule
(Fig. 1).

Algorithm 1 represents a generation of the population.
After population generation, it is needed for initialization
of the parameters of each molecule. To do this, “Molecule-
CRO” class is built with some attributes and methods to
initialize the parameters of the molecules. The attributes are
ω, PE, KE, NumHit, MinStruct, MinPE, MinHit. There are
five methods in the class, including the class constructor and
the four elementary reactions. The constructor identifies the
details of a molecule when it is created according to the
class. The initial set of solutions randomly generates in the
solution space, a random solution to ω in the constructor
is assigned. Algorithm 2 represents the Molecule-CRO
class. PopSize, a number of molecules are created from
“Molecule-CRO” to produce the initial population of
molecules. PE is measured by the (2).
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4.1.2 Iteration and operator design

After the initialization, an operator is chosen to trigger. The
decision depends on certain criteria. We have reconstructed
the four reaction operators of CRO for the RSP problem.
The four reaction operators are described below.

On-wall ineffective collision For neighborhood search, the
on-wall ineffective reaction is used. Here, the new solution
is near to the initial solution. In Fig. 2 m new is the
newly generated molecule from molecule m. Algorithm 3
represents the on-wall ineffective collision.

A position i in the molecule m is randomly chosen and a
random integer r chosen within the length of the molecule
m. Next, we verify the following condition to put a value to
the ith position of m new:

Fig. 2 On-wall Ineffective Collision

i) If the value m[i] + r is less than or equal to the
length of m, m[i] + r is assigned to m new[i].

ii) If m[i] is greater than r, the value m[i] - r is assigned
to m new[i].

iii) Otherwise the value, r - m[i] is assigned to
m new[i].

The other values are copied from the respective positions
(indices) of m to m new. Suppose that i =3 then m[i] = 2 as
shown Fig. 2. We select r = 4 and get m[i] + r = 6, which
is equal to the length of m. So, the value 6 is put to m new
[i]. After getting the new molecule m new a Repair function
(operator) is called to correct it.

Repair function Repair function is applied to the resultant
(output) solution generated by any of the four basic
operators. When a new solution is produced by any of
the four operators, it may have duplicate repeated stem
number(s). As a result, during the constructing process of
the secondary structure, the duplicate stem numbers are
taken into account repeatedly. This repeated consideration
of duplicate stem number(s) takes a lot of execution time.
In Fig. 3, an example of constructing process of a secondary
structure is given. A solution with a duplicate stem is taken
in this example. From the figure, we can see that, the same
phenomenon is happening twice for the repeated stems. If
we do not remove the duplicate stem then the same checking
to be done twice. This repetition of the same task makes the
procedure time-consuming. For this, it is required to remove
the duplicated stem(s) to avoid excessive run time.

The main task of the repair function is to remove the
duplicate stem number from the resultant solution and adjust
the values in the solution by shifting the values after the
duplicate stem number. So, there will be no repetition in
the solution and no extra consideration is needed during the
process of secondary structure. In Fig. 4, m is a solution
built by any operator and m new is the solution after
applying repair function. In the solution, stem number 5 has
a duplicate number. After eliminating the duplicate stem
number(s) by the repair function, m new is the updated
solution and it makes the whole process time efficient.
Algorithm 4 is for the repair function. Here, 0 is assigned
to every index of the flag[i] at the beginning. Then within
a loop, the values of flag array are checked and have been
changed by putting 1s. If there is any repetition, it would be
detected because it was already changed (there is 1 in that
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Fig. 3 Constructing a secondary
structure of a solution with
repeated stems

index of the flag array). So, the respective value is removed
and the length is decreased.

Decomposition The decomposition is used to analyze
another area of the search space. There are enormous
changes in the molecular structure of the newly generated
product by decomposition. At first in this reaction, the input

Fig. 4 Repair function

molecule is divided into two equal parts. For the output
of this operator, we get two molecules m1 and m2. The
values from the first half of m are copied and pasted to the
respective half of m1. Next, the values of the second half
of m are copied and pasted them to the respective half of
m2. The other halves of m1 and m2 are created by randomly
generated values from [0. . . n], where n is the length of the
molecule. The scenario is depicted in Fig. 5.

Hence, the reaction looks for another region of solution
space to find out the global minimum solution. The
algorithm for decomposition is given in Algorithm 5.

Inter-molecular Ineffective Collision This reaction operator
uses two molecules m1 and m2 randomly from the
population and produces two new molecules m1-new and
m2-new as shown in Fig. 6.
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Fig. 5 Decomposition

Here two points x1 and x2 have been chosen randomly
such that the points divide both input solutions into three
parts. Then the odd parts of the m1 and the even part of
the m2 join up to form m1-new and the even part of the
m1 and the odd parts of the m2 join up to form m2-new.
The two-third portions of the molecule remain unchanged
and one-third is changed. The points x1 and x2 are picked
randomly and with the help of these two values, the new
molecule would be created. If the index i is between x1
and x2, m1-new takes values from m1 and m2-new takes
values from m2, otherwise m1-new gets values from m2 and
m2-new gets values from m1. Algorithm 6 represents this
reaction.

Synthesis Two molecules m1 and m2 from the population
are combined to form a new molecule m new in the
synthesis reaction. This reaction is the opposite of
decomposition reaction. Two molecules m1 and m2 are
chosen randomly from the population as shown in Fig. 7.
The second step is to take a random value between 0 and
1. This random value helps to determine the molecule to
choose. If the random value is less than 0.5, m1 is chosen to
select value(s) otherwise, m2 is chosen to select the value(s)
for m new.

4.2 Parameter settings

The efficiency of the CRO algorithm depends on values
of the parameters The results of RNA Structure Prediction
(RSP) using CRO algorithm greatly depend on the values
of these parameters. The parameters with their respective
values in CRO have been given in Table 2.

4.3 Operator selection

In this section, we describe the operator selection process in
the CRO algorithm. A flowchart (Fig. 8)is given that depicts
the stages step by step and the selection of the operator. The
START and END express the initiation and the completion
of CRO algorithm.

Fig. 6 Inter-molecular
Ineffective Collision
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Fig. 7 Synthesis

The algorithm starts with the stage initialization then a
number of iterations are executed and at the final stage,
it terminates. In the initialization, values are assigned to
some variables and control parameters. Based on the actions
of decomposition and synthesis, the number of solutions
spaces can be changed as the CRO is a population-based
metaheuristic algorithm.

At first, the population is created by producing the
number of solutions randomly which is called POPSize.
From these solutions, the feasible solution is searched out.
A number of iterations are executed at the iteration stage
and a collision is chosen. A decision is made whether the
collision is a unimolecular or an intermolecular collision by
generating a random number t which lies between 0 and 1.
Unimolecular collision occurs if t is greater than MoleColl
else an inter-molecular collision takes place (if there is
only one molecule in the population then the unimolecular
collision takes place). The flowchart of operator selection
is shown in Fig. 8. After that, an applicable number of
molecules from the population is selected randomly, based
on the decision of collision type. Literally, the molecules
occupied in collision forms on their physical location in
the container. Later a decision of collision type is made
by testing the criteria of decomposition and synthesis
(at the left of the flowchart: on-wall ineffective collision

Table 2 Parameters of CRO for RSP problems with their initial values

Symbol Value

With repair Without repair

POPSize 200 200

KELossRate 0.8 0.8

MoleColl 0.3 0.3

InitialKE 2 3

A 1 1

B 8 8

Buffer 0 0

NumHit 0 0

MinHit 0 0

PE Objective function Objective function

or decomposition, at the right of the flowchart: inter-
molecular ineffective collision or synthesis). The iteration
stage continues until it meets the termination criteria.
The termination criteria may be defined by the maximum
number of iterations performed. The output solution is
determined in the final stage with the lowest value found in
the objective function.

5 Experimental results

For the experiment, two datasets were taken from the RNA
STRAND v2.0 where in the first dataset there are 20 RNA
sequences and in the second dataset there are 10 RNA
sequences [30]. These sequence sets or datasets had been
taken from the website (http://www.rnasoft.ca/strand/). The
characteristic of each sequence of data set 1 is given in
Table 3 and the information about each sequence of data set
2 is given in Table 4. The first column is for the sequence
number which is maintained properly in other tables. The
second column is for sequence name with an accession
number. The third column defines the RNA class. The fourth
column is for the length and the last column shows the
number of base pairs in the sequence. Parameter settings
for our proposed method were given in Table 2. For the
comparison of the experimental results, we use the word
CRO for our proposed work and other five algorithms such
as RNAPredict, SARNA-Predict, COIN, TL-PSOfold and
Changing Range Bat Algorithm are represented by GA, SA,
COIN, TL-PSO and CRBA respectively.

The prediction accuracy is calculated by comparing
the predicted structure with the known structure. The
performance measures for the predicted structure are
defined as follows: a total number of true positive base
pairs of the prediction is TP, the total number of false
positive base pairs of the prediction is FP, and the total
number of false negative base pairs of the prediction is
FN. On the other hand, sensitivity is the proportion of
correctly predicted base pairs of the total number of base
pairs found in the known structure. It is computed using
(4). The specification is the proportion of all predicted
true positive base pairs to all predicted base pairs. It is
computed by (5). F-measure and INF are computed using

http://www.rnasoft.ca/strand/
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Fig. 8 Flowchart of operator selection

Table 3 Dataset 1: RNA
sequence detail taken from the
RNA STRAND V2.0

Seq No. Sequence RNA class Accession number Length (nt.) #Base pair

S-1 G.stearothermophilus 5s rRNA AJ251080 117 38
S-2 S.cerevisiae 5s rRNA X67579 118 37
S-3 E. coli 5s rRNA V00336 120 40
S-4 H.marismortui 5s rRNA AF034620 122 38
S-5 T.aquaticus 5s rRNA X01590 123 40
S-6 D.radiodurans 5s rRNA AE002087 124 40
S-7 M.anisopliae(3) Group I intron, 23S RNA AF197120 394 120
S-8 C.saccharophila Group I intron, 16S RNA AB058310 454 126
S-9 M.anisopliae(2) Group I intron, 23S RNA AF197122 456 115
S-10 A.lagunensis Group I intron, 16S RNA U40258 468 113
S-11 H. rubra Group I intron, 16S RNA L19345 543 141
S-12 A. griffini Group I intron, 16S RNA U02540 556 131
S-13 P.leucosticta Group I intron, 16S RNA AF342746 605 121
S-14 C. elegans 16S RNA X54252 697 189
S-15 D. virilis 16S RNA X05914 784 233
S-16 A.cahirinus 16S RNA X84387 940 260
S-17 X. laevis 16S RNA M27605 945 251
S-18 H.sapiens 16S RNA J01415 954 266
S-19 A.fulgens 16S RNA Y08511 964 265
S-20 S.acidocaldarius 16S rRNA D14876 1492 458
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Table 4 Dataset 2: RNA sequence detail taken from the RNA
STRAND V2.0

Seq No. Sequence Length (nt.) #Base pair

S-1 Zea mays 81 22

S-2 Aspergillus fumigatus 73 20

S-3 Canis familiaris 84 20

S-4 Drosophila melanogaster(1) 73 20

S-5 Acidobacteria bacterium 89 24

S-6 Aquifex aeolicus 95 31

S-7 Drosophila melanogaster(2) 125 24

S-8 Kluyveromyces lactis 139 21

S-9 Sulfolobus shibatae 260 59

S-10 Alpha Purple Bacteria 289 71

(6) and (7) respectively. We have taken the best results of
ten iterations for every sequence of the proposed method.
Our algorithm was implemented on Asus personal laptop.
Model number: K46CA with Intel Corei3-3217u CPU @
1.80GHz (4CPUs), 1.8GHz, 8192MB RAM and running on
Windows 10 (64 bit). For the implementation, programming

language C# 6.0 and Microsoft Visual Studio 2013 IDE had
been used.

Sensitivity = T P
T P+FN

(4)

Specif icity = T P
T P+FP

(5)

F − measure = 2∗sensitivity∗specif icity
sensitivity+specif icity

(6)

INF =
√

T P
T P+FP

∗ T P
T P+FN

(7)

The proposed CRO, GA and SA methods have been
tested using 20 RNA sequences given in Table 3. The results
of TP, FP, and FN found in the CRO, GA and SA are shown
in Table 5. The proposed CRO gives the better TPs for all
sequences than all other methods. The results of CRO for
both with and without function are given in the table. The
results of CRO with repair function are better than those
of CRO without repair function. For the sequences of short
length, the values of TP, FP, and FN are the same or close to
the previous methods. The best outcomes are shown in bold
text.

Table 5 Results of CRO, GA and SA in terms of TP, FP, and FN

Seq TP FP FN

No. GA SA CRO
With-
out
repair

CRO
with
repair

GA SA CRO
with-
out
repair

CRO
with
repair

GA SA CRO
with-
out
repair

CRO
with
repair

S-1 23 22 35 35 10 20 3 2 15 16 3 3

S-2 33 33 34 34 6 4 0 0 4 4 3 3

S-3 10 20 37 38 29 26 1 1 30 20 3 2

S-4 27 27 34 37 3 3 0 0 11 11 4 1

S-5 33 26 37 38 3 23 1 1 7 14 3 2

S-6 25 18 36 36 8 21 0 2 15 22 4 4

S-7 75 67 95 96 46 52 32 32 45 53 25 24

S-8 86 64 94 97 51 126 47 42 40 62 32 29

S-9 55 48 87 92 80 90 54 47 60 67 28 23

S-10 68 67 85 91 63 64 51 39 45 46 28 22

S-11 79 74 113 112 82 88 59 62 59 64 28 29

S-12 81 79 107 107 80 100 61 61 50 52 24 24

S-13 63 45 88 91 90 203 74 70 58 76 33 30

S-14 55 43 127 129 147 160 163 156 134 146 62 60

S-15 65 55 167 170 177 191 146 144 168 178 66 63

S-16 74 111 165 166 154 207 143 145 186 149 95 94

S-17 93 103 169 169 147 133 157 156 158 148 85 85

S-18 89 111 171 174 161 146 149 147 177 155 97 94

S-19 82 92 172 176 160 162 152 149 183 173 93 89

S-20 224 219 336 345 412 254 157 144 235 249 123 114
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Table 6 Results of CRO, GA, and SA in terms of sensitivity and specificity

Seq Sensitivity Specificity

No. GA SA CRO without CRO with GA SA CRO without CRO with
repair repair repair repair

S-1 60.5 57.9 92.1 92.1 69.7 52.3 92.1 94.5
S-2 89.2 89.1 91.8 91.8 84.6 89.1 100 100
S-3 25.0 50 92.5 95 25.6 43.5 97.4 97.4
S-4 71.1 71 89.5 97.3 90 90 100 100
S-5 82.5 65 92.5 95 91.7 53.0 97.3 100
S-6 62.5 45 90 92.3 75.8 46.2 100 94.7
S-7 62.5 55.8 79.2 80 62 56.3 74.8 75
S-8 68.3 50.8 74.6 76.9 62.8 33.7 66.7 69.7
S-9 47.8 41.7 75.6 80 40.7 34.7 61.7 66.1
S-10 60.2 59.2 75.2 80.5 51.9 51.1 62.5 70
S-11 57.2 53.6 80.1 79.4 49.1 65.6 65.6 64.4
S-12 61.8 60.3 81.7 81.7 50.3 44.1 63.6 63.6
S-13 52.1 37.2 72.7 75.2 41.2 18.1 54.3 56.5
S-14 29.1 22.7 67.2 68.2 27.2 21.1 43.8 45.2
S-15 27.9 23.6 71.6 72.9 26.9 22.3 52.7 53.3
S-16 28.5 42.6 63.5 63.8 32.5 34.9 53.6 53.4
S-17 37.1 41 66.5 66.5 38.8 43.6 51.8 52
S-18 33.5 41.7 63.8 64.9 35.6 43.1 53.4 54.2
S-19 30.9 34.7 64.9 66.4 33.9 36.2 53.1 54.1
S-20 48.8 46.7 73.2 75.1 35.2 46.3 68.2 70.5

Table 7 Results of CRO, GA, and SA in terms of F-measure and INF

Seq F-measure INF

No. GA SA CRO without CRO with GA SA CRO without CRO with

repair repair repair repair

S-1 64.8 55 92.1 93.3 64.94 55.03 92.1 93.29
S-2 86.8 89.1 95.7 95.7 86.87 89.1 95.81 95.81
S-3 25.3 46.5 94.9 96.2 25.3 46.64 94.92 96.19
S-4 79.4 79.38 94.4 98.6 79.99 79.94 94.59 98.64
S-5 86.8 58.4 94.9 96.2 86.98 58.69 94.87 97.47
S-6 68.5 45.6 94.7 92.3 68.83 45.6 94.87 93.49
S-7 62.2 56.05 76.9 77.4 62.25 56.05 76.97 77.46
S-8 65.4 40.5 70.4 73.2 65.49 41.38 70.54 73.21
S-9 44 37.88 67.9 72.4 44.11 38.04 68.3 72.72
S-10 55.7 54.85 68.2 74.9 55.9 55 68.56 75.07
S-11 52.8 49.28 72.2 71.1 53 59.3 72.49 71.51
S-12 55.5 50.94 71.5 71.5 55.75 51.57 72.08 72.08
S-13 46 24.4 62.2 64.5 46.33 25.95 62.83 65.18
S-14 28.1 21.87 53 54.4 28.13 21.89 54.25 55.52
S-15 27.4 22.93 61.1 62.1 27.4 22.94 61.43 62.33
S-16 30.3 38.4 58 58.1 30.43 38.56 58.34 58.37
S-17 37.9 42.26 58.2 58.3 37.94 42.28 58.69 58.8
S-18 34.5 42.39 58.2 59 34.53 42.39 58.37 59.31
S-19 32.3 35.43 58.4 59.6 32.37 35.44 58.7 59.94
S-20 40.9 46.5 70.5 72.7 41.45 46.5 70.66 72.76
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Table 8 The results of CRO, COIN method in terms of TP, FP, and FN

Seq TP FP FN

No. COIN CRO without CRO with COIN CRO without CRO with COIN CRO without CRO with

repair repair repair repair repair repair

S-2 33 34 34 1 0 0 4 3 3
S-4 33 34 37 0 0 0 5 4 1
S-7 82 95 96 35 32 32 38 25 24
S-9 59 87 92 66 54 47 56 28 23
S-10 71 85 91 46 51 39 42 28 22
S-11 81 113 112 68 59 62 60 28 29
S-12 80 107 107 83 61 61 51 24 24
S-14 50 127 129 91 163 156 139 62 60
S-15 66 167 170 149 146 144 167 66 63
S-17 107 169 169 129 157 156 144 85 85

Table 9 The results of CRO, COIN in terms of sensitivity and specificity

Seq Sensitivity Specificity

No. COIN CRO without CRO with COIN CRO without CRO with

repair repair repair repair

S-2 89.2 91.8 91.8 97.1 100 100
S-4 86.8 89.5 97.3 100 100 100
S-7 68.3 79.2 80 70.1 74.8 75
S-9 51.3 75.6 80 47.2 61.7 66.1
S-10 62.8 75.2 80.5 60.7 62.5 70
S-11 57.4 80.1 79.4 54.4 65.6 64.4
S-12 61.1 81.7 81.7 49.1 63.6 63.6
S-14 26.5 67.2 68.2 35.5 43.8 45.2
S-15 28.3 71.6 72.9 30.7 52.7 53.3
S-17 42.6 66.5 66.5 45.3 51.8 52

Table 10 The results of CRO, COIN in terms of F-measure and INF

Seq F-measure INF

No. COIN CRO without CRO with COIN CRO without CRO with

repair repair repair repair

S-2 93 95.7 95.7 93.07 95.81 95.81

S-4 93 94.4 98.6 93.17 94.59 98.64

S-7 69.2 76.9 77.4 69.19 76.97 77.46

S-9 49.2 67.9 72.4 49.21 68.3 72.72

S-10 61.7 68.2 74.9 61.74 68.56 75.07

S-11 55.9 72.2 71.1 55.88 72.49 71.51

S-12 54.4 71.5 71.5 54.77 72.08 72.08

S-14 29.5 53 54.4 30.67 54.25 55.52

S-15 43.9 61.1 62.1 29.48 61.43 62.33

S-17 56.2 58.2 58.3 43.93 58.69 58.8
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Table 11 Results of CRO, TL-PSO method in terms of TP, FP, and FN

Seq TP FP FN

No. TL-PSO CRO without CRO with TL-PSO CRO without CRO with TL-PSO CRO without CRO with

repair repair repair repair repair repair

S-1 27 35 35 7 3 2 11 3 3
S-2 33 34 34 5 0 0 4 3 3
S-4 31 34 37 5 0 0 7 4 1
S-5 36 37 38 3 1 1 4 3 2
S-14 88 127 129 102 163 156 94 62 60
S-15 104 167 170 127 146 144 123 66 63
S-17 122 169 169 123 157 156 126 85 85
S-18 132 171 174 139 149 147 128 97 94
S-19 106 172 176 127 152 149 151 93 89
S-20 276 336 345 168 157 144 182 123 114

Table 12 Results of CRO, TL-PSO method in terms of sensitivity and specificity

Seq Sensitivity Specificity

No. TL-PSO CRO without CRO with TL-PSO CRO without CRO with

repair repair repair repair

S-1 71.1 92.1 92.1 79.4 92.1 94.5
S-2 89.2 91.8 91.8 86.8 100 100
S-4 81.6 89.5 97.3 81.6 100 100
S-5 90.0 92.5 95 92.3 97.3 100
S-14 48.4 67.2 68.2 46.3 43.8 45.2
S-15 45.8 71.6 72.9 45.1 52.7 53.3
S-17 49.2 66.5 66.5 49.8 51.8 52
S-18 50.8 63.8 64.9 48.7 53.4 54.2
S-19 41.3 64.9 66.4 45.5 53.1 54.1
S-20 60.3 73.2 75.1 62.2 68.2 70.5

Table 13 Results of CRO, TL-PSO method in terms of F-measure and INF

Seq F-measure INF

No. TL-PSO CRO without CRO with TL-PSO CRO without CRO with

repair repair repair repair

S-1 75.5 92.1 93.3 75.14 92.1 93.29

S-2 88 95.7 95.7 87.99 95.81 95.81

S-4 83.8 94.4 98.6 81.6 94.59 98.64

S-5 91.1 94.9 96.2 91.14 94.87 97.47

S-14 47.3 53 54.4 47.34 54.25 55.52

S-15 45.4 61.1 62.1 45.41 61.43 62.33

S-17 49.5 58.2 58.3 49.5 58.69 58.8

S-18 49.7 58.2 59 49.74 58.37 59.31

S-19 43.3 58.4 59.6 43.35 58.7 59.94

S-20 61.2 70.5 72.7 61.24 70.66 72.76
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Table 14 Results of CRO, CRBA method in terms of TP, FP, and FN

Seq TP FP FN

No. CRBA CRO without CRO with CRBA CRO without CRO with CRBA CRO without CRO with

repair repair repair repair repair repair

S-1 17 20 20 7 8 7 5 2 2

S-2 12 15 16 5 6 6 8 5 4

S-3 7 14 13 14 12 10 13 6 7

S-4 12 17 16 14 11 11 8 3 4

S-5 17 18 20 2 3 2 7 6 4

S-6 12 21 21 15 13 14 19 10 10

S-7 16 17 19 18 15 14 8 7 5

S-8 16 15 16 5 4 4 5 6 5

S-9 26 35 37 24 18 17 33 24 22

S-10 22 47 49 43 32 30 49 24 22

In Tables 6 and 7, the results of Sensitivity, Specificity
and F-Measure, INF of CRO are compared with the
Sensitivity, Specificity, and F-Measure, INF of the GA and
the SA respectively. The proposed method shows relatively
better results than the other two methods. The best outcomes
are shown in bold text. Results of CRO with repair function
are better than those of CRO without repair function.

In the papers [13], the method COIN was tested for
10 sequences. The CRO has been tested for the same 10
sequences. Table 8 shows the results of CRO and COIN in
terms of TP, FP and FN. We have given the results of CRO
and COIN with respect to sensitivity, specificity in Table 9
and in Table 10 the results of CRO and COIN with respect
to F-measure and INF have been given. From the results, it
can be proved that CRO gives better results than those of

COIN. The results of CRO with and without repair function
are shown. The best results are given in the bold text.

In the papers [19], the method TL-PSO was tested for
a specific 10 sequences. The CRO has been tested for the
same 10 sequences. Table 11 depicts the results of CRO and
COIN in terms of TP, FP and FN. We have shown the results
of CRO and COIN with respect to sensitivity, specificity in
Table 12. Table 13 shows the results in terms of F-measure
and INF. From the results, it can be seen that CRO gives
better results than then those of TL-PSO. The results of
CRO with and without repair function are shown. The best
results are given in the bold text.

The method Changing Range Bat Algorithm (CRBA)
was tested for 10 sequences in the paper [32]. This method
took the dataset 2 for the experiment. Our method CRO has

Table 15 Results of CRO, CRBA method in terms of sensitivity, specificity, and F-measure

Seq Sensitivity Specificity F-measure

No. CRBA CRO without CRO with CRBA CRO without CRO with CRBA CRO without CRO with

repair repair repair repair repair repair

S-1 77.3 90.91 90.91 70.8 71.43 74.07 73.9 80 81.63

S-2 60 75 80 70.6 71.43 71.43 64.9 73.17 75.47

S-3 35 70 65 33.3 53.85 58.33 34.1 60.87 61.49

S-4 60 85 80 46.2 60.71 60.71 52.2 70.83 69.04

S-5 70.8 75 83.33 89.5 85.71 90 79.1 80 86.54

S-6 38.7 67.74 67.74 44.4 61.76 60 41.4 64.62 63.64

S-7 66.7 70.83 79.17 47.1 53.13 54.84 55.2 60.71 64.79

S-8 76.2 71.43 76.19 76.2 78.95 78.95 76.2 75 77.54

S-9 44.1 59.32 62.71 52 66.04 67.31 47.7 62.5 64.93

S-10 31 66.2 69.01 33.8 59.49 61.04 32.4 62.67 64.78
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Table 16 Simulation results in terms of Sensitivity and Specificity of CRO with repair function

Seq Sensitivity Specificity

No. Best Soln. Worst Soln. Avg Soln. Std. Dev. Best Soln. Worst Soln. Avg. Soln. Std. Dev.

S-1 92.1 84.1 88.1 2.2 94.5 91.4 92.5 1.8
S-2 91.8 78.3 86.4 3.8 100 96.6 98.7 1.6
S-3 95 82.5 88.2 3.5 97.4 91.6 93.9 2.8
S-4 97.3 89.4 92.1 2.1 100 100 100 0
S-5 95 87.5 91.5 2.1 100 92.3 96.1 2.4
S-6 92.3 80 84.5 4.0 94.7 91.4 93.0 1.9
S-7 80 68.3 73.5 3.7 75 65.6 70.0 3.0
S-8 76.9 67.4 72.6 3.0 69.7 59.7 64.4 3.3
S-9 80 67.8 72 4.0 66.1 56.5 60.6 2.8
S-10 80.5 66.3 73.4 4.2 70 58.5 62.3 3.1
S-11 79.4 70.9 75.9 3.5 64.4 56.0 61.4 4.5
S-12 81.7 71.7 76.1 3.0 63.6 58.0 62.1 2.4
S-13 75.2 66.1 69.8 2.2 56.5 48.7 54.1 3.9
S-14 68.2 62.9 65.5 1.5 45.2 41.0 43.0 1.1
S-15 72.9 65.2 68.7 2.8 53.3 48.4 50.3 1.9
S-16 63.8 59.2 61.9 1.7 53.4 49.5 51.5 1.3
S-17 66.5 60.6 64.0 1.8 52 47.8 50.7 1.2
S-18 64.9 58.2 62.3 2.0 54.2 48.5 52.3 1.6
S-19 66.4 61.5 63.6 1.3 54.1 50.3 52.5 1.0
S-20 75.1 69.9 72.7 1.8 70.5 66.8 68.3 1.2

Average is denoted by Avg, Standard deviation is denoted by Std Dev and Solution is denoted by Soln

Table 17 Simulation results in terms of F-measure and INF of CRO with repair function

Seq F-measure INF

No. Best Soln. Worst Soln. Avg Soln. Std. Dev. Best Soln. Worst Soln. Avg. Soln. Std. Dev.

S-1 93.3 87.6 90.2 1.8 93.29 87.67 90.27 1.99
S-2 95.7 86.5 92.1 2.6 95.81 86.97 92.35 2.47
S-3 96.2 86.8 90.9 2.7 96.19 86.93 91.01 3.13
S-4 98.6 94.4 95.8 1.1 98.64 94.55 95.97 0
S-5 96.2 90.9 93.7 1.8 97.47 89.87 93.77 2.24
S-6 92.3 85.3 87.9 2.1 93.49 85.51 88.65 2.76
S-7 77.4 66.9 71.7 3.3 77.46 66.94 71.73 3.33
S-8 73.2 63.6 68.2 3.1 73.21 63.43 68.38 3.15
S-9 72.4 61.6 65.8 3.3 72.72 61.89 66.05 3.35
S-10 74.9 63.7 67.4 3.3 75.07 62.28 67.62 3.61
S-11 71.1 61.7 67.5 5.1 71.51 63.01 68.27 3.97
S-12 71.5 64.1 69.1 3 72.08 64.49 68.74 2.68
S-13 64.5 56.1 61.8 4.3 65.18 56.74 61.45 2.93
S-14 54.4 49.6 51.9 1.3 55.52 50.78 53.07 1.28
S-15 62.1 55.5 58.4 2.2 62.33 56.18 58.78 2.31
S-16 58.1 53.9 56.2 1.5 58.37 54.13 56.46 1.49
S-17 58.3 53.4 56.6 1.4 58.8 53.82 56.96 1.47
S-18 59 52.9 56.8 1.7 59.31 53.13 57.08 1.79
S-19 59.6 55.3 57.5 1.1 59.94 55.62 57.78 1.14
S-20 72.7 68.3 70.4 1.4 72.76 68.33 70.47 1.47

Average is denoted by Avg, Standard deviation is denoted by Std Dev and Solution is denoted by Soln
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Table 18 Simulation results in terms of Sensitivity and Specificity of CRO without repair function

Seq Sensitivity Specificity

No. Best Soln. Worst Soln. Avg Soln. Std. Dev. Best Soln. Worst Soln. Avg. Soln. Std. Dev.

S-1 92.1 78.9 85.9 4.2 92.1 90.9 93.3 2.3
S-2 91.8 81.1 85.9 4.8 100 96.7 98.2 1.6
S-3 92.5 85 89 3.3 97.4 91.8 95.6 2.4
S-4 89.4 84.21 87.4 2.8 100 100 100 0
S-5 92.5 82.5 88.5 3.7 97.3 92.1 93.3 2.2
S-6 90 85 86.5 2.2 100 91.9 94.5 3.3
S-7 79.2 67.5 72.8 3.4 74.8 66.9 69.9 1.9
S-8 74.6 71.4 73.4 1.4 66.7 62.4 63.8 1.5
S-9 75.6 66 72.5 3.9 61.7 57.1 61.4 2.4
S-10 75.2 69 72.2 2 62.5 58.2 61.9 2.2
S-11 80.1 68.7 75 6.1 65.6 56 61.4 4.5
S-12 81.7 71.7 78 3.9 63.6 58 62.1 2.4
S-13 72.7 66.1 72.2 4.8 54.3 48.7 54.1 3.9
S-14 67.2 60.3 64 2.9 43.8 40.2 42.2 1.5
S-15 71.6 62.6 66 2.9 52.7 47.5 49.8 1.9
S-16 63.5 60 62.8 2.7 53.6 50 52.6 1.9
S-17 66.5 62.2 63.7 1.5 51.8 49.5 51 1.9
S-18 63.8 59.7 62.6 2.3 53.4 50.3 52.3 1.8
S-19 64.9 61.5 65.1 2.1 53.1 51 53.3 1.4
S-20 73.2 69 70.9 1.9 68.2 66.5 67.1 0.7

Average is denoted by Avg, Standard deviation is denoted by Std Dev and Solution is denoted by Soln

Table 19 Simulation results in terms of F-measure and INF of CRO without repair function

Seq F-measure INF

No. Best Soln. Worst Soln. Avg Soln. Std. Dev. Best Soln. Worst Soln. Avg. Soln. Std. Dev.

S-1 92.1 84.5 89.5 2.8 92.1 84.69 89.52 3.11
S-2 95.7 88.2 91.6 2.9 95.81 88.56 91.84 2.77
S-3 94.9 88.1 92.2 2.8 94.92 88.33 92.24 2.81
S-4 94.4 91.4 93.2 1.6 94.55 91.77 93.49 0
S-5 94.9 88 90.9 2.5 94.87 87.17 90.87 2.85
S-6 94.7 88.3 90.3 2.6 94.87 88.38 90.41 2.69
S-7 76.9 67.8 71.4 2.1 76.97 67.2 71.34 2.54
S-8 70.4 67.1 68.3 1.4 70.54 66.75 68.43 1.45
S-9 67.9 61.2 66.5 3 68.3 61.39 66.72 3.06
S-10 68.2 63.1 66.6 2 68.56 63.37 66.85 2.1
S-11 72.2 61.7 67.5 5.1 72.49 62.03 67.86 5.24
S-12 71.5 64.1 69.1 3 72.08 64.49 69.6 3.06
S-13 62.2 56.1 61.8 4.3 62.83 56.74 62.5 4.33
S-14 53 48.3 50.8 1.9 54.25 49.23 51.97 2.09
S-15 61.1 54 57 2.3 61.43 54.53 57.33 2.35
S-16 58 54.5 57.3 2.2 58.34 54.77 57.47 2.26
S-17 58.2 55.2 56.7 1.7 58.69 55.49 57 1.69
S-18 58.2 54.6 57 2 58.37 54.8 57.22 2.03
S-19 58.4 55.8 58.6 1.6 58.7 56 58.91 1.71
S-20 70.5 67.9 69 1.2 70.66 67.74 68.97 1.15

Average is denoted by Avg, Standard deviation is denoted by Std Dev and Solution is denoted by Soln
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Fig. 9 The graph for the
comparison of the CRO without
repair function, CRO without
repair function GA, SA, COIN
and TL-PSO in terms of (a)
sensitivity, (b) specificity and
(c) F-measure

Table 20 Execution time of
CRO, GA [7] and SA [2] (in
seconds)

Seq No. Length Execution time

GA SA CRO without CRO with

repair repair

S-1 117 98.07 398.23 59.37 51.52
S-2 118 101.89 401.34 86.74 81.81
S-3 120 99.09 397.56 73.21 69.05
S-4 122 102.66 479.08 68.6 62.29
S-5 123 120.45 481.98 111.17 114
S-6 124 123.55 490 92.00 74.75
S-7 394 604.67 502.78 121.34 107.21
S-8 454 689.78 509.33 112.33 89.56
S-9 456 670.72 511.48 145.32 98.45
S-10 468 703.45 508.22 642.74 490.49
S-11 543 750.67 630.07 603.3 385.44
S-12 556 748.89 527.93 445.45 390.45
S-13 605 790.45 550.3 479.34 269.1
S-14 697 905.7 578.25 523.76 211.41
S-15 784 922.67 705.98 673.34 523.59
S-16 940 1200.78 708.4 678.5 497.73
S-17 945 1178.66 700.71 690 458.89
S-18 954 1223.35 711.2 659.4 5 499.08
S-19 964 1267.56 809.33 734.45 567.98
S-20 1492 3598.33 3002.48 2519.45 1166.24
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Fig. 10 Line graph for the comparison of execution time of the CRO without repair function and with the repair function

been tested for the same dataset. Table 14 depicts the results
of CRBA and CRO in terms of TP, FP and FN. We have also
shown the results of sensitivity, specificity, and F-measure
in the Table 15. For all ten sequences, the outcomes of CRO
are more appreciable than CRBA.

The simulation of the best, the worst, the average
solutions, and the standard deviation of the sensitivity,
specificity, and F-measure of each sequence by the proposed
method are given. In Tables 16 and 17 it shows the same
outcome in terms of F-measure and INF. Tables 16 and 17
show the results of CRO with repair function and Tables 18

Table 21 CRO is compared with the SA [2], TL-PSO [19], RNAfold
[31] in terms of Minimum Free Energy (in KCAL/MOL)

Seq No. Minimum free energy

SA TL PSO RNAfold CRO

S-1 −47.04 −47.2 −48.1 −57.85

S-2 −57.52 −47.4 −48.3 −48.89

S-3 −60.54 − − −64.14

S-4 −54.94 −53.4 −53.4 −68.8

S-5 −58.32 −55.8 −57.1 −69.87

S-6 −66.6 − − −70.56

S-7 −158.54 − − −173.24

S-8 −178.39 − − −211.4

S-9 −185.74 − − −189.68

S-10 −182.06 − − −183.15

S-11 −223.45 − − −246.84

S-12 −208.45 − − −207.32

S-13 −197.23 − − −217.05

S-14 −175.82 −119.2 −126.8 −255.31

S-15 −201.11 −132.0 −136.4 −253.59

S-16 −228.3 − − −344.21

S-17 −305.83 −221.4 −233.1 −380.63

S-18 −299.66 −207.4 −222.8 −383.63

S-19 −284.02 −176.8 −196 −353.97

S-20 −709.08 −702.8 −779.6 −784.91

Table 22 Secondary structure comparison of Saccharomyces
cerevisiae

Base-pair form by CRO Benchmark base-pair form

i j i j
1 117 1 117
2 116 2 116
3 115 3 115
4 114 4 114
5 113 5 113

6 112
7 111 7 111
8 110 8 110
9 109 9 109
14 64 14 64
15 63 15 63
16 62 16 62
17 61 17 61
18 60 18 60
19 59 19 59
20 58 20 58
21 57 21 57
26 53 26 53
27 52 27 52
28 51 28 51
29 48 29 48
30 47 30 47
31 46 31 46
32 45 32 45

66 107
67 106 67 106
68 105 68 105
69 104 69 104
70 103 70 103
78 97 78 97
79 96 79 96
80 95 80 95
81 94 81 94

82 93
83 92 83 92
84 91 84 91
85 90 85 90
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Table 23 Sensitivity comparison by Kruskal-Wallis test followed by
post-hoc analysis

GA SA COIN TL-PSO CRO

GA − � � � �

SA − � � �

COIN − � �

TL-PSO − �

CRO −

The sign � represents significant and � represents not significant

and 19 show the results of CRO without repair function.
From these tables, it can be seen that there are enough
changes in the results while using the repair function. Repair
function improves the results of the sensitivity, specificity,
F-measure, and INF.

Figure 9 represents the graphs of the comparison of the
proposed methods of GA and SA, COIN and TL-PSO in
terms of sensitivity, specificity, and F-measure. From the
graphs, it is proved that CRO outperforms the mentioned
four methods. We have also implemented two algorithms of
GA and SA to prove the time efficiency of our proposed
work. After implementing two mentioned algorithms, it was
concluded that the CRO takes less time in predicting RNA
structure than GA and SA. The comparisons of execution
time between the proposed method and the methods of GA
as well as SA are demonstrated in Table 20. The execution
time is shown in seconds in the table. The execution time
of CRO with and without repair function CRO is given
in Table 20 to show that the proposed method with repair
function is faster than without repair function. Figure 10
represents the line graph which shows the comparison of
the execution time of the proposed method (CRO) with and
without the repair function.

In Table 21 the proposed method (CRO) is compared
with the methods of SA and RNAfold [31] and TL-
PSO method in terms of Minimum Free Energy (in
KCAL/MOL). The values of minimum free energy in
method RNAfold were given in the paper of TL-PSO [19],
where RNAfold gives the best results than TL-PSO. So, we

Table 24 Specificity comparison by Kruskal-Wallis test followed by
post-hoc analysis

GA SA COIN TL-PSO CRO

GA − � � � �

SA − � � �

COIN − � �

TL-PSO − �

CRO −

The sign � represents significant and � represents not significant

Table 25 F-Measure comparison by Kruskal-Wallis test followed by
post-hoc analysis

GA SA COIN TL-PSO CRO

GA − � � � �

SA − � � �

COIN − � �

TL-PSO − �

CRO −

The sign � represents significant and � represents not significant

have compared the results of CRO and those of RNAfold in
terms of minimum free energy to verify that our proposed
method also outperforms the RNAfold in minimum free
energy. As in the other two methods RNAPredict (GA)
and COIN there were no minimum free energies of the
tested sequences, so we could not provide their results. Any
algorithm which has not tested for a particular sequence is
denoted by − in the table. From the results, it is proved that
CRO gives the lowest free energy as well as most stable
structures for nineteen sequences than any other methods.
For only one sequence the method of SA gives better result
than CRO. However, the results of SA and CRO are very
close.

Here, in Table 22 for the sequence, Saccharomyces
cerevisiae, the known base pairs and the predicted base
pairs of the proposed method is shown. The Saccharomyces
cerevisiae has 38 base pairs. The primary sequence of
Saccharomyces cerevisiae is given below. Both the known
secondary structure of Saccharomyces cerevisiae and the
predicted structure are given in dot parenthesis form
in Table 17. In the table, i denotes the index of the
opening parenthesis and j denotes the index of the closing
parenthesis index. The pairs (6-112), (66-107) and (82-93)
are not predicted by the proposed method. That is why the
base pairs are called false negative (FN) base pairs. They
are shown in bold text. Tables 23, 24, 25, and 26 represent
the results of significance testing using Kruskal-Wallis test
followed by post-hoc analysis to confirm that, the proposed
method significantly outperforms the algorithms of GA, SA,

Table 26 INF comparison by Kruskal-Wallis test followed by post-hoc
analysis

GA SA COIN TL-PSO CRO

GA − � � � �

SA − � � �

COIN − � �

TL-PSO − �

CRO −

The sign � represents significant and � represents not significant
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COIN and TL-PSO. The results of every algorithm for all
sequences are not available. For example, T. aquaticus has
been used in TL-PSO and CRO (the proposed method) but
it was not used in SA.

So, when the significance was tested, the groups
were formed by removing the unavailable sequences. The
significance has been tested for the results of sensitivity,
specificity, F-measure, INF. The results of sensitivity,
specificity, F-measure and INF are compared in Tables 23–
26 where the lower portion has been removed to avoid
repetition. From the comparison, it is verified that the
proposed method outperforms all other algorithms.

Sequence: GGUUGCGGCCAUAUCUACCAGAAAG-
CACCGUUUCCCG
UCCGAUCAACUGUGUUAAGCUGGUAGAGCCUGA
CCGAGUAGUGUAUGGGUGACCAUACGCGAAACU
CAGGUGCU GCAAUCU

Secondary structure by CRO:
Dot-parenthesis form: [(((((.(((....((((((((....(((((((.........

...))))..)))...))))))))

..((((.......((((.(((....)))..))).....))))).))).))))).]
Benchmark secondary structure:
Dot-parenthesis form: [(((((((((....((((((((....(((((((.........

...))))..)))...)))))))).
(((((.......((((((((....)))))))).....))))).))))))))).]

6 Conclusion

Over the past decade, prediction of RNA structure
achieved vital attention to researchers, as it has a
crucial role in molecular biology. This work presents
the popular optimization problem of RNA secondary
structure prediction which is implemented using population-
based metaheuristic algorithm called Chemical Reaction
Optimization (CRO). The operators of CRO have been
redesigned to solve the RSP problem using CRO algorithm.
The hard tasks during the implementation of the problem
were calculating the free energy of the structure and
maintaining the accuracy of the predicted structure which
depends on the value of TP (True base pairs), FP (False
positive base pairs) and FN (False negative base pairs).
The results of the RNA structure prediction problem
using CRO algorithm are compared with the related
metaheuristic algorithms such as RNAPredict, the SARNA-
Predict, COIN, TL-PSOfold and CRBA and the results show
that the proposed RNA structure prediction problem using
CRO algorithm performs very well and gives more stable
structures. The additional repair function helps to predict
RNA structure in less time by eliminating the duplicate stem
from the resultant solution.

We have not done any experiment with the pseudoknotted
RNA sequences because of its complication in estimating

the structures. In future work, the experiment of the RNA
with pseudoknots could be considered.

Compliance with Ethical Standards

Conflict of interests The authors have no conflict of interest.

References

1. Ray SS, Pal SK (2013) RNA Secondary structure prediction
using soft computing. IEEE/ACM Trans Comput Biol Bioinform
10:2–17

2. Grypma P, Tsang HH (2014) SARNA-Predict: using adaptive
annealing schedule and inversion mutation operator for RNA
secondary structure prediction. In: 2014 IEEE symposium
on computational intelligence in multi-criteria decision-making
(MCDM). IEEE, pp 150–156

3. McMellan N (2006) RNA secondary structure prediction using
ant colony optimisation. Master Thesis, School of Informatics,
University of Edinburgh

4. Zuker M (2003) Mfold web server for nucleic acid folding and
hybridization prediction. Nucleic Acids Res 31:3406–3415

5. Eddy SR (2004) How do RNA folding algorithms work? Nat
Biotechnol 22:1457

6. Schmitz M, Steger G (1996) Description of RNA folding by
simulated annealing. J Mol Biol 255:254–266

7. Wiese KC, Deschenes AA, Hendriks AG (2008) Rnapredict—an
evolutionary algorithm for RNA secondary structure prediction.
IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB) 5:25–41

8. Geis M, Middendorf M (2007) A particle swarm optimizer for find-
ing minimum free energy RNA secondary structures. In: Swarm
intelligence symposium, 2007. SIS 2007. IEEE. IEEE, pp 1–8

9. Neethling M, Engelbrecht AP (2006) Determining RNA sec-
ondary structure using set-based particle swarm optimization. In:
IEEE congress on evolutionary computation, 2006. CEC 2006.
IEEE, pp 1670–1677

10. Liu Y, Dong H, Zhang H et al (2011) Prediction of RNA
secondary structure based on particle swarm optimization. Chem
Res Chin Univ 27:108–112

11. Xing C, Wang G, Wang Y et al (2011) A novel method for
RNA secondary structure prediction. In: 2011 7th international
conference on natural computation (ICNC). IEEE, pp 1136–1140

12. Xing C, Wang G, Wang Y et al (2012) PSOFold: a metaheuristic
for RNA folding. J Comput Inf Syst 8:915–923

13. Srikamdee S, Wattanapornprom W, Chongstitvatana P (2016)
RNA secondary structure prediction with coincidence algorithm.
In: 16th international symposium on communications and
information technologies (ISCIT), 2016. IEEE, pp 686–690

14. Truong TK, Li K, Xu Y (2013) Chemical reaction optimization
with greedy strategy for the 0–1 knapsack problem. Appl Soft
Comput 13:1774–1780

15. Lam AY, Li VO (2010) Chemical-reaction-inspired metaheuristic
for optimization. IEEE Trans Evol Comput 14:381–399

16. Lam AY, Li VO (2010) Chemical reaction optimization for cog-
nitive radio spectrum allocation. In: Global telecommunications
conference (GLOBECOM 2010), 2010 IEEE. IEEE, pp 1–5

17. Pan B, LamAY, Li VO (2011) Network coding optimization based
on chemical reaction optimization. In: Global telecommunications
conference (GLOBECOM 2011), 2011 IEEE. IEEE, pp 1–5

18. Truong TK, Li K, Xu Y et al (2013) An artificial chemical
reaction optimization algorithm for multiple-choice knapsack



Chemical reaction optimization for RNA structure prediction 375

problem. In: Proceedings on the international conference on
artificial intelligence (ICAI). The Steering Committee of the
World Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), p 1

19. Lalwani S, Kumar R, Gupta N (2016) An efficient two-
level swarm intelligence approach for RNA secondary structure
prediction with bi-objective minimum free energy scores. Swarm
Evol Comput 27:68–79

20. Mizuno H, Sundaralingam M (1978) Stacking of Crick Wobble
pair and Watson-Crick pair: stability rules of GU pairs at ends
of helical stems in tRNAs and the relation to codon-anticodon
Wobble interaction. Nucleic Acids Res 5:4451–4462

21. Xia T, SantaLucia J Jr, Burkard ME et al (1998) Thermodynamic
parameters for an expanded nearest-neighbor model for formation
of RNA duplexes with Watson-Crick base pairs. Biochemistry
37:14719–14735

22. Turner DH, Mathews DH (2009) NNDB: the nearest neighbor
parameter database for predicting stability of nucleic acid
secondary structure. Nucleic Acids Res 38:D280–D282

23. Rivas E, Eddy SR (1999) A dynamic programming algorithm
for RNA structure prediction including pseudoknots1. J Mol Biol
285:2053–2068

24. Liu Z, Zhao S, Ye H et al (2016) The PTAS of Prediction for RNA
Pseudoknotted Structure. In: 12th international conference on
computational intelligence and security (CIS), 2016. IEEE, pp 1–4

25. Akutsu T (2000) Dynamic programming algorithms for RNA
secondary structure prediction with pseudoknots. Discret Appl
Math 104:45–62

26. Cannone JJ, Subramanian S, Schnare MN et al (2002) The
comparative RNA web (CRW) site: an online database of
comparative sequence and structure information for ribosomal,
intron, and other RNAs. BMC Bioinformatics 3:2

27. Tong K-K, Cheung K-Y, Lee K-H, Leung K-S (2013) GAknot:
RNA secondary structures prediction with pseudoknots using
Genetic Algorithm. In: 2013 IEEE symposium on computa-
tional intelligence in bioinformatics and computational biology
(CIBCB). IEEE, pp 136–142

28. Lam AY, Li VO (2012) Chemical reaction optimization: a tutorial.
Memetic Computing 4:3–17

29. Islam MR, Saifullah CK, Asha ZT, Ahamed R (2018) Chemical
reaction optimization for solving longest common subsequence
problem for multiple string. Soft Comput, pp 1–25

30. Andronescu M, Bereg V, Hoos HH, Condon A (2008) RNA
STRAND: the RNA secondary structure and statistical analysis
database. BMC Bioinformatics 9:340

31. Lorenz R, Bernhart SH, Zu Siederdissen CH et al (2011)
ViennaRNA package 2.0. Algorithms Mol Biol 6:26

32. Cui Z, Cao Y, Li F, Zhu Z (2015) Changing range bat algorithm
for RNA secondary structure prediction. J Comput Theor Nanosci
12:1968–1971

33. Miao Z, Westhof E (2017) RNA Structure: advances and assess-
ment of 3D structure prediction. Annu Rev Biophys 46:483–503

Rayhanul Kabir currently
working as Software Engi-
neer in Data Path Ltd in
Bangladesh. He has completed
his B.Sc. in Computer Science
and Engineering from Khulna
University, Bangladesh. He has
several publications on diffe-
rent international conference
and journal. His research inter-
est includes Bio-informatics,
Information Security, Data
mining etc.

Rafiqul Islam obtained
Ph.D. in Computer Science from
Universiti Teknologi Malaysia
(UTM) in 1999 and a com-
bined Master (MS) and
Bachelor Degree in Engi-
neering (Computers) from
Azerbaijan Polytechnic Insti-
tute (Azerbaijan Technical
University at present) in 1987.
He was a visiting fellow
(a post doctoral researcher)
in Japan Advance Institute
of Science and Technology
(JAIST) in 2001. He worked
as head of the Discipline of

Computer Science and Engineering of Khulna University and as
the Dean of the School of Science, Engineering and Technology of
Khulna University. He worked as a Professor in the Department of
Computer Science of American International University-Bangladesh
(AIUB) in Dhaka about five years. Currently he is working as a
Professor of Computer Science and Engineering Discipline of Khulna
University. He has 24 years of teaching and research experiences.
He has published about 90 papers, which have been published in
international and national journals as well as in referred international
conference proceedings published by IEEE, Springer and others. He
has reviewed papers submitted to International journals of IEEE,
Wiley, Springer; papers submitted to journals of different universities
of Bangladesh and papers submitted to several International Confer-
ences. His research areas include design and analysis of algorithms
in the area of cloud computing, external sorting, Information secu-
rity, data compression, bioinformatics, information retrieval, grid
computing and data mining etc.


	Chemical reaction optimization for RNA structure prediction
	Abstract
	Introduction
	Problem statement
	Related works
	Dynamic programming
	Simulated annealing
	Genetic algorithm
	Two-level particle swarm optimization algorithm
	Coincidence algorithm
	Changing range bat algorithm
	Advances and assessment of 3D structure prediction

	Chemical reaction optimization
	Algorithm design
	Initialization and population generation
	Iteration and operator design
	On-wall ineffective collision
	Repair function
	Decomposition
	Inter-molecular Ineffective Collision
	Synthesis


	Parameter settings
	Operator selection

	Experimental results
	Conclusion
	Compliance with Ethical Standards
	Conflict of interests
	References


