
Applied Intelligence (2019) 49:420–434
https://doi.org/10.1007/s10489-018-1275-2

OLAP cube partitioning based on association rules method

Khadija Letrache1 ·Omar El Beggar1 ·Mohammed Ramdani1

Published online: 31 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Partitioning is an optimization method used in Business intelligence (BI) systems to improve query and processing
performances. That is why most of BI vendors integrate partitioning functionality in their solutions. However, they do not
provide partitioning strategies which remain a serious challenge for BI administrators. Some works in the literature have
proposed algorithms and strategies for Data warehouse partitioning. Nevertheless, most of them focused on the relational
data warehouse partitioning and ignore the OLAP cubes although they are the first concerned by the user multidimensional
queries. To deal with this, we propose in this paper a dynamic partitioning strategy for OLAP cubes based on the association
rules algorithm. The first step in the proposal consists on analyzing the user queries for a specific period with a view to
finding the frequent predicates itemsets. Afterwards, we use our proposed algorithm based on the association rules method
to partition the data cube according to the frequent predicates itemsets obtained in the first step. Finally, we present a case
study and experiences results to evaluate and validate our approach.

Keywords Data warehouse · Partition · OLAP cube · Association rules · Cube maintenance · Cube performance

1 Introduction

One of the most important characteristics of OLAP systems
is to facilitate the analysis of huge amounts of data. However,
querying and processing time can become day after day too
significant. Thus, some works in the literature have carried
out the performance issue in data warehouse (DW) systems
using partitioning solutions. Nevertheless, all of them have
been focused on the relational data warehouse and ignored
the OLAP layer.

Actually, partitioning is to break up data into small, man-
ageable physical units [1]. It can be vertical or horizontal.

� Khadija Letrache
khadijaletrache@gmail.com

Omar El Beggar
elbeggar omar@yahoo.fr

Mohammed Ramdani
ramdani@fstm.ac.ma

1 Informatics Department, LIM Laboratory, Faculty of Sciences
and Techniques of Mohammedia, University Hassan II, B.P.
146 Yasmina str. 20658 Mohammedia, Casablanca, Morocco

The vertical partitioning consists on dividing a table into
multiple tables based on columns, while horizontal parti-
tioning aims to divide a table by rows into multiple tables
having the same columns [2]. In this paper we focus on hor-
izontal partitioning. In fact, using horizontal partitioning on
OLAP databases can insure a great improvement of query-
ing and processing performance [3] without changing the
cube structure. Actually, querying is the interrogation of the
cube while processing is the refresh process of this latter.

Besides reducing the number of rows that the system has
to scan for each user query, partitioning reduces the amount
of aggregations that the OLAP system recalculates on each
cube refresh. The partitioning also allows parallel querying
and processing, in addition to facilitating store management
[4].

In fact, besides the query response time that getting slow,
the cube processing time can take many hours depending
on the cube size and the number of fact tables. This
can represent a real issue. For instance, when the users
claim daily reports (having a flash report each hour for
example) this requires to quickly synchronize the cube
many times per day. Another case is related to cube refresh
breakdowns, to which the BI administrators can be faced.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-018-1275-2&domain=pdf
http://orcid.org/0000-0002-4975-6154
mailto: khadijaletrache@gmail.com
mailto: elbeggar_omar@yahoo.fr
mailto: ramdani@fstm.ac.ma

OLAP cube partitioning based on association rules method 421

Actually, the DSS system can be impacted by many external
issues, like power failures or ETL breakdowns, in this
case, the BI administrator should be able to immediately
recover the most urgent partitions and recover the rest
afterward. To deal with all of this, the partitioning can be the
solution.

Even in OLAP meta-modeling standards, the partitioning
is considered. In the CWM [5], an OMG BI standard, the
class Region corresponds to a cube partition. Besides, in
the OIM [6], an MDC standard, the partition class is the
physical container of measure aggregations.

Nowadays most of OLAP vendors likeMicrosoft, Oracle,
Cognos, Mondrian and SAS provide wizards to create
and configure cube partitions. The most challenging issue
however is to decide the efficient strategy of partitioning
which involve specifying, primarily, the set of criteria that
characterize each partition as well as defining partitions
setting like the physical placement, tolerated size, mode of
storage, refresh plan etc.

In this paper we propose a partitioning strategy for OLAP
cube based on the association rules algorithm (Fig. 1). The
first step in our approach is to analyze the user queries from
the log files. The analysis is done using the apriori algorithm
[7] which allows identifying the most frequent predicates
itemsets. Before performing this analysis, a preprocessing
step on queries predicates is required. Afterwards, the
partitioning algorithm uses the frequent predicates itemsets
as input to deduce the best partitioning criteria. Noting that
the partitioning proposal could be periodically performed
when noticing a decrease in cube performances.

The remainder of this paper is organized as follows:
Section 2 presents previous works related to partitioning
approaches especially in data warehouse systems. Section 3
gives a background overview and addresses our partitioning
solution. Next, Section 4 describes the implementation of

Fig. 1 Our approach for OLAP partitioning

our approach and a case study to evaluate it. Finally,
Section 5 presents the conclusion and perspectives.

2 Related work

Data partitioning was discussed by many works in the
literature; in our knowledge, most of them deal only with
relational data warehouse. In [1] and [4], Inmon and
Kimball respectively, both addressed the importance of data
warehouse partitioning especially according to the time
dimension, For example, if the user requires a near real time
report, we define a small partition that contains only data of
the current day.

In [8, 9] the authors Bellatreche et al. propose a
genetic algorithm for horizontal partitioning of relational
data warehouse and a cost model to measure the query
performance. The proposal is to partition the fact table
according to the dimension partitioning schema and
then generating multiple star schemas. The selection of
dimension criterion is based on previous knowledge of user
frequently asked queries. It however ignores the correlation
between predicates. In [10] the authors Hamdi et al. provide
a two-level data partitioning approach for real-time data
warehouse. The first level consists on partitioning the
relational data warehouse according to query workload by
using the predicates usage matrix. The second level aims
to reorganizing the partitions by merging or splitting those
partitions when new data is imported. Another approach
for near real time OLAP is proposed by Baluch et al.
[11], based also on partitioning in addition to multi-core
processing. The solution uses a hot partition to absorb
incoming updates and multi-core processing to speed the
process of partition building, merge and querying. In [12],
the authors Lima et al. propose an adaptive and dynamic
virtual partitioning solution based on clustered databases.
Similarly, Sun et al. [13] proposed a partitioning framework
based on four steps. The first three concern the query
workload analysis. It aims to construct predicates vectors
that the partitioning algorithm uses in the last step. This
latter performs a clustering algorithm to partition data.
The approach aims to minimize the number of partitions
scanned by queries by storing the partitioning schema
in the system catalog. Another partitioning solution is
given by Toumi et al. [14] based on multiple techniques.
The proposal starts by selecting the query predicates and
then using the Jaccard index to calculate the attraction
between predicates, afterwards, clustering the predicates
by using the Ward algorithm. Finally, the proposal uses
a discrete particle swarm optimization to select the best
partitioning schema. In [15] the proposed partitioning

422 K. Letrache et al.

Table 1 Related works summary

Paper Partitioning Partitioning Area Scope Partitioning

paradigm based rule type

L. Bellatreche Genetic algorithm Frequent Relational Data Fact and Horizontal

et al. [8, 9] user warehouse Dimensions

queries

predicate

Lima et al. Physical and User Relational Data Fact and Horizontal

[12] virtual queries warehouse Dimensions

partitioning

with partial

replication

I. Hamdi et al. [10] Two-level data User Real-time Fact and Horizontal

partitioning: queries relational Dimensions

1-partitioning and Data data

according to amount warehouse

query

workload

2- adjustment

of the existing

partitions

after new data

loading

L. Toumi et al. [14] Jaccard index, Predicate Relational Fact and Horizontal

data mining clusters Data Dimensions

and particle warehouse

swarm

optimization

L. Sun et al. [13] Partitioning Predicates Relational Fact and Horizontal

data according vectors Data Dimensions

to predicates warehouse

partitioning at

data loading

time

M. Grund et al. Active and Active and Enterprise Production Vertical

[15] Passive Data Passive Data applications tables and

Horizontal

R. Bouchakri Genetic algorithm and User queries Relational Data Fact and Horizontal

et al. [16, 17] partitions reorganization warehouse Dimensions

when query workload

evolves

Arres et al. [20] Data warehouse Frequent Hadoop- Fact and Vertical

partitioning user based data Dimensions and Horizontal

and placement queries warehouses

policy

Baluch et al. [11] Partitioning Partition Soft real Fact and Horizontal

and multi-core size time OLAP Dimensions

processing

OLAP cube partitioning based on association rules method 423

Table 1 (continued)

Paper Partitioning Partitioning Area Scope Partitioning

paradigm based rule type

Rodriguez et al. [18] Association User Relational Data Fact Vertical

rules algorithm queries warehouse

attributes

Bouakkaz et al. [19] FP-Max algorithm User queries Relational Data Fact Vertical

attributes warehouse

Kim et al. [21] Column partitioning User Relational Fact and Vertical

strategy queries Data Dimensions

and storage warehouse

constraint

solution given by Grund et al. concerns the enterprise
production databases. The proposal is according to the
nature of data. In fact, identifying active and passive data
allows performing horizontal and vertical partitioning to
reduce the amount of data by ignoring the unused ones.
The proposal corresponds, actually, to a kind of archiving
strategy. Moreover, in [16, 17] the authors R. Bouchakri
et al.. deal with the static partitioning of relational data
warehouse when query workload evolves. The solution,
based on the genetic partitioning solution [9], consists on
performing new partitioning schema by merging or splitting
partitions after new query execution. More recently, Arres
et al. [20] proposed a data partitioning and placement for
Hadoop-based data warehouses. The proposal is to partition
the data warehouse tables vertically and horizontally and
then place frequent dimension tables predicate in the same
cluster or closest based on the frequent user queries.
In addition to the k-means algorithm, other data mining
algorithms have been used in the literature for DW
partitioning. In [18], a vertical partitioning approach based
on the association rules algorithm is given by Rodriguez et
al.. It consists on using an attribute usage matrix as input
of the association rules algorithm. This matrix is also used
to determine the min sup threshold which have to satisfy
71% to 75% of cases. Besides, in [19] the authors Bouakkaz
et al. proposed a vertical partitioning approach based on
the FP-Max algorithm inspired from the apriori algorithm.
The approach starts by identifying the frequent attributes
itemsets using the apririori algorithm, and then selecting
the partitioning solution from all possible schemes using
a block estimate function. Moreover, the authors Kim et
al. [21] give a column partitioning strategy based on query
workload. The proposal starts by identifying columns that
appear together in user queries, then, a selection of the
best partitioning schema is performed based on the storage
constraint. Finally, it is worth noting that conversely to the
listed approaches, the data partitioning have been widely

used in the literature to improve data mining algorithms
performances by means of parallel or distributed mining
approaches, especially the association rules algorithm
[22–24]. Table 1 resumes the listed works.

In summary, most of previous works in the literature con-
cern the relational DW. Besides, some works require special
hardware or configuration, or use several techniques. Mean-
while, some works that involve partitions reorganization by
merging or splitting partitions on each data loading or new
query execution cannot be adapted for OLAP cube because
the process is quite time consuming. Finally, most of exist-
ing approaches are either workload or data based.To deal
with this, we propose in this paper a practical and optimized
partitioning solution for OLAP cube, using an association
rules method which takes into account the user queries, the
amount of data cube and storage constraint in addition to the
criticality of queries.

3 Our approach and background overview

3.1 Background overview

Data warehouse partitioning: refers to the breakup of data
into separate physical units that can be handled indepen-
dently [1].

In OLAP model, a partition is a subset of a cube used
for performance or storage reasons. A partition contains
all of the measures and dimensions used by the partition.
A horizontal partition contains all of the measures and
dimensions of its cube. A vertical partition contains a
subset of the measures and dimensions of its cube [6].
Therefore, considering a cube C defined by a set of

dimensions D and a set of measures M, we can define a

cube partition P by: P

⎧
⎨

⎩

Dp ⊆ D

Mp ⊆ M

Yp

where Dp is the set

424 K. Letrache et al.

of dimensions of P,Mp is the set of measures used by P
and Yp the set of dimension members used to drive P.
We note also P(Yp) where the partition has the same

dimensions and measures as the cube.
Since a data warehouse is no more than a denormalized

relational database, partitioning a DW means dividing
tables (facts and dimensions) into smaller tables.
However, in BI architectures using an analytical layer, by
means of OLAP tool, the data is organized differently.
Actually, there exists multiple kind of data storage
techniques, the two most popular ones are namely
the MOLAP (multidimensional OLAP) and ROLAP
(Relational OLAP) modes [25]. In the former, the data
and pre-calculated aggregations are stored in arrays in the
OLAP server, the physical provider of multidimensional
metadata, while in ROLAP mode, the data remains
in the relational database (DW) and the server creates
additional tables in the relational database to store the
aggregations [26]. Hence, in such architecture, the user
queries access data (arrays or tables) from the OLAP
server through OLAP tools. The partitioning process
must thus concern, in this case, the OLAP cube, which
will result on partitioning the aggregation tables or
arrays.
Besides, in MOLAP cube the refreshment of cube’s

data must be done regularly [25], which we call
the processing operation. This latter depends on the
volume of data. Threfore, partitioning the cube also
allows optimizing the processing time in OLAP systems.
Indeed, when a cube is partitioned, in addition to parallel
processing, we can process only the needed partitions
instead of processing the whole cube [27] like processing
only the partition corresponding to the current day for
daily reports [4].
To conclude, the partitioning allows optimizing the

query and processing time, but it must be handled on
the OLAP layer. In case of using MOLAP mode, the
partitioning results on subdividing the cube arrays while
subdi viding the aggregation tables in case of the ROLAP
one.
MultiDimensional eXpressions (MDX): is a powerful
syntax that enables querying multidimensional objects
and provides commands that retrieve and manipulate
multidimensional data from those objects. The MDX
provides functionality for creating and querying mul-
tidimensional structures, its syntax is similar to the
Structured Query Language (SQL), however, its features
can be more complex and robust than SQL’s features
[28].
The MDXmanipulates multidimensional data. We call

Tuple a slice of data from a cube [28]. The tuple is formed
by a combination of dimension members, as long as there
are no two or more members that belong to the same

hierarchy [28], it can also be viewed as a cross-section or
vector of member data in a cube. Considering a cube C
and its D dimensions D = {D1, D2.., Dd} and MBi the
set of members of Di levels, we define a tuple as:

T = mb1 ⊗ mb2.. ⊗ mbn where mbi ∈ MBi

Example: T=([Date].[Year].[2015],[Customer].[Nation].
[France]) is a tuple composed by the members
[Date].[Year].[2015] and [Customer].[Nation].[France].

We call Set a set of tuples as S = {T1, T2.., Tn} where
Ti is a tuple.
Example:

S = {([Date].[Year].[2015], [Product].[Name].[Coat]),
([Date].[Year].[2016], [Product].[Name].[Jeans])}

Association rule: is an implication of the form X → Y

which means that all the transactions in the database that
contain X tend to contain Y. the formal statement of an
association rule is:

Let I = {i1, i2, .., in} be a set of items, a set of items
X ⊂ I is called itemset. Let T be a set of transaction where
each transaction t in T is an itemset such that t ⊆ I .

We call an association rule X −→ Y where X ⊂ I

and Y ⊂ I and X
⋂

Y = ∅ with the confidence factor
(min conf) 0 ≤ c ≤ 1 if at least c% of transactions
in T that satisfy X also satisfy Y, and with a support
s which means that s% of transactions in T contains
X

⋃
Y [29]. It corresponds to a statistical significance that

allows considering only rules with the frequency above
some minimum threshold (min sup), by means of frequent
itemsets [7]. Otherwise a rule is not worth consideration or
simply less preferred [29].

The frequency of an itemset is simply the count of the
itemset [7]. The support can be defined by:

Support (X → Y) = count (X
⋃

Y)

|T | where |T | is the cardinality of T

We note Support (X → Y) by sup(X,Y)
And the confidence is defined by [7]:

Conf idence(X → Y) = count (X
⋃

Y)

Count(X)

We note Conf idence(X → Y) by conf(X,Y)
We call large itemsets, all combinations that have

fractional transaction support above the threshold min sup
[29].

3.2 Our approach

As discussed above, the majority of previous partitioning
approaches concern the relational data warehouse. However,

OLAP cube partitioning based on association rules method 425

Fig. 2 Standard BI Architecture

when the decisional system uses OLAP cubes to interrogate
the DW and to response the user queries, the DW parti-
tioning cannot be the solution. In fact, as discussed above,
in such architecture (Fig. 2) the data and aggregations are
either extracted from the DW and stored in the OLAP server
[31] in case of using the MOLAP mode of storage, or stored
in relational aggregation tables when using the ROLAP
one. The partitioning strategy must thereby concern the
OLAP layer. In this respect, our approach aims to partition
OLAP cubes in order to enhance their query and process-
ing time. Moreover, even if the partitioning is supported by
the most of OLAP vendors, defining an efficient partition-
ing strategy cannot be done by tools. In fact, partitioning
an OLAP cube has to take into account the nature of data
as well as the user requirements. For this reason, our data
cube partitioning proposal is according to the most frequent
predicates itemsets of the user queries. By applying the
association rules algorithm to the logged user queries, we
can deduce the most used predicates and also the correlation
between them. The partitioning algorithm takes, thus, the
large itemsets deduced from the previous step to partition
the OLAP cube. The algorithm rolls up the large itemsets
sorted by frequency (support) to partition the cube until
attaining the minimum support defined before. At last, the
OLAP cube is partitioned according to the user queries fre-
quent predicates. However, non-frequently asked data can
remain untouchable. This data corresponds to rarely used
or inactive data. In this case, we propose to partition this
latter mathematically to satisfy to the storage constraint if
exists.

3.2.1 User queries analysis

Predicates of a user’s queries can be similar to a shopping
basket. Many correlations between predicates can exist, and
that cannot be deduced from the data but from the user
queries themselves. Using an association rules algorithm to
analyze them can provide very interesting results.

Hence, the first step in our proposal is to gather the
user queries from the OLAP system logs. These latter can
have different format (text file, csv, relational table etc)
depending on the used framework, but it always requires
word processing. There exist also tools, like the SQL
profiler and Jmeter, that allows tracing the user queries and
gathering them in a simple format in addition to providing
several useful information like the query execution time, its
duration, user, cube, etc.

Hence, once the user queries are collected, our approach
uses the apriori algorithm to deduce the frequent predicate
itemsets. The resulting itemsets will be used as input of the
partitioning algorithm in the next step.

Before applying the apriori algorithm, we have to
preprocess the user queries by firstly replacing the date
predicates by dynamic formula. In fact, if an itemset
contains a date predicate, it will never be considered as a
frequent itemset, because the date item is not a fixed value.
Nonetheless, if we compare the date predicate with the
query execution date we will deduce a correlation between
the queries.

In Table 2 the predicate [Date].[Year-Month-Date].
[Year].[2016] corresponds to the previous year compared
to the query execution date. We replace the explicit
value 2016 by the MDX formula: ParallelPeriod([Date].
[Year-Month-Date].[Year],1, StrToMember (”[Date].[Year-
Month-Date].[Year].[”+Year(Now())”+]”)) which returns
to the previous year of the current date. Hence the predicate
year-1 will be common to all itemsets containing this latter.
Noting that the function StrToMember converts a string
to an MDX member while the ParallelPeriod returns the
parallel period of the current member according to the
parameter hierarchy level (year, month, day, etc.).

Secondly, the logical operators are also preprocessed.
In fact, in a multidimensional model, the general syntax
of a user query Qi on a cube C is 〈 Select Si from C
where Zi〉 where Si is the list of selected dimension levels
(projection), C is the source cube and Zi is the set of
predicates (selection), we note thus Qi by Qi 〈Si |C|Zi〉. Zi

can be a tuple or a set of tuples, which refers to an ”OR”
logical operator. We can note Zi by:

Zi =
n⋃

j=1

Tj where Tj is a tuple of Zi

Every tuple Tj in Zi represents thus a predicate itemset.
Before using the query Qi we separate it onto multiple
queries Qj each one corresponding to a tuple Tj . Qj is thus
defined by 〈Si |C|Tj 〉.

For example, if the condition in a user query is:

Z = {([Date].[Year].[2015], [Product].[Name].[Coat]),
([Date].[Year].[2016], [Product]. [Name].[Jeans])}

426 K. Letrache et al.

Table 2 Examples of date
predicates pre-processing Query date predicate Query execution date Used predicate

[TIME].[DATE- [TIME].[DATE- ParallelPeriod([TIME].[DATE-

MONTH-YEAR]. MONTH-YEAR]. MONTH-YEAR].[YEAR],1,

[YEAR].&[2016] [YEAR]&[2017] STRTOMEMBER(’[TIME].

[DATE-MONTH-

YEAR].[YEAR].

&[’+cstr(Year(Now()))+’]’)))

[TIME].[DATE- [TIME].[DATE- STRTOMEMBER(’[TIME].

MONTH-YEAR]. MONTH-YEAR]. [DATE-MONTH-

[MONTH].&[20171] [MONTH].&[20171] YEAR].[MONTH].

&[’+cstr(Year(Now()))+

cstr(Month(Now()))+’]’)

[TIME].[DATE- [TIME].[DATE- STRTOMEMBER(’[TIME].

MONTH-YEAR]. MONTH-YEAR]. [DATE-MONTH

[DATE].&[20/01/2017] [DATE].&[20/01/2017] -YEAR].[DATE].

&[’+cstr(Now()))+’]’))

We divide Z into two itemsets (tuples) before using it like:

Z1 = ([Date].[Year].[2015], [Product].[Name].[Coat])
and Z2 = ([Date].[Year].[2016], [Product].[Name].[Jeans])

The last preprocessing task concerns the queries critical-
ity. In fact, there may exist queries that are not frequent
but critical and thus require good performance in terms of
response time and availability, like those used by the top

Fig. 3 Our proposed partitioning process

OLAP cube partitioning based on association rules method 427

management. These queries are neglected when using a
workload-based algorithm. To deal with this, we introduce
a new parameter that we call criticality factor and which
allows increasing the frequency of critical queries. Hence,
the total number of user queries T will be: Count(T) =
n∑

i=1
αCount(Qi) where n is the number of user queries and

α is the criticality factor of Qi . Noting that the default value
of α is 1.

Once the user queries and predicates are preprocessed,
we perform the apriori algorithm [7] to calculate the
frequency of each predicate itemset to find the frequent
itemsets. For that, we use a small min sup threshold, which
is possible because of the small size of user queries, to let the
partitioning algorithm later control the stop condition. The
algorithm sorts the predicates of each itemset by frequency
and also the resulting itemsets.

3.2.2 Partitioning algorithm

Our partitioning algorithm aims to partition OLAP cubes
into smaller partitions to enhance query and processing
time. To do that, our partitioning algorithm (see Algorithm
1), based on the association rules algorithm, loops first
on the large itemsets I={I1, I2, .., In}, resulting from the
queries analysis and sorted by frequency. Afterwards, the
algorithm rolls up all partitions P={P1, P2, .., Pm}, or the
cube in the first iteration, and calculates the support of the
new partitions (Fig. 3).

Indeed, using an itemset Ij to split a partition Pi (or the
parent cube) implies replacing Pi by two new partitions Pi1

and Pi1 as shown in the example in (Fig. 4). The Pi1 verifies
the condition Ij like

Pi = Pi1

⋃
Pi1 and Pi1

⋂
Pi1 = ∅

Hence, to avoid creating too small partitions, the
algorithm calculates the support of Pi1 and Pi1 . If the

Fig. 4 Example of cube partitioning

obtained values are superior to the threshold min sup, thus
the algorithm uses the itemset Ij to partition the current
partition Pi .

For instance, considering an itemset Ij ={CurrentMonth,

Consignment, CustomerCatA} to be used to divide a
partition containing data of Morocco like Pi({Morocco}).
The two resulting partitions are Pi1({CurrentMonth,

Consignment, Customer Cat A, Morocco}) and Pi1

({Current Month, Consignment, Customer Cat A,

Morocco}). The supports of these two partitions whose
formula are respectively

Count({CurrentMonth, Consignment, CustomerCatA,Morocco})
Count (All)

and

Count({CurrentMonth, Consignment, CustomerCatA, Morocco})
Count (All)

must verify the min sup threshold.

Otherwise, the algorithm tries to enlarge the itemset scope
by replacing the predicates by their ancestors. The algorithm
starts thus from the last predicate which means from
the predicate having the smaller support in the itemset,
then replaces it by its first ancestor and so on, until the
satisfaction of the min sup threshold or until attaining

the predicate root, which means that the predicate will be
ignored. The algorithm skips then to the next predicate
etc.

In the same example listed above, if the supports of Pi1

or Pi1 do not satisfy the min sup then the algorithm replaces
the predicate ”Customer Cat A” by its first ancestor, which

428 K. Letrache et al.

corresponds in this case to the root “All”. This means that
the predicate is ignored and Ij becomes

Ij = ({CurrentMonth, Consignment, All})
= ({CurrentMonth, Consignment})

If the supports still do not satisfy the min sup then Ij

becomes

Ij = ({CurrentMonth, J ewelry}) as shown by the
(Fig. 5).

It is worth noting that the partitioning algorithm
does not use a min conf threshold because the aim is
to find the predicate itemsets that represent the better
criteria to partition the cube and constitute a considerable
population instead of looking for the strength of the itemsets
relationship.

The maximum number of created partitions will be N =
2n where n is the number of large predicate itemsets.

The support of an itemset I and a partition Pi(Ypi
) where

Ypi
= {y1, y2, .., ym} is the set of predicates used to drive

Pi, is the occurrence of Ypi

⋃
I in the cube C. To calculate

it in the data cube, we use the pre-calculated aggregations
of the Count measure [30] like:

Sup(Ypi
, I) = Count(Ypi

⋃
I)

|C|
If the supports of the new partitions are like Sup(Ypi

,

I) = 0 or Sup(Ypi
, I) = 0 then I is not interesting in

P(Ypi
). The algorithm skips then to the next partition.

Besides, if the support of Pi is such as:

Sup(Pi) = Sup(Ypi
) = Count(Ypi

)

|C| < 2min sup

the algorithm skips, in this case also,to the next partition.
Indeed, in that case, Pi cannot be divided yet on two new
partitions that both verify the min sup threshold, because
this implies that:

Sup(Ypi
, I) >= min sup and Sup(Ypi

, I) >= min sup

Fig. 5 Illustration of the scope enlargement mechanism

and thus, to be partitioned, Pi must verify Sup(Ypi
) >=

2min sup

On the other hand, the confidence of I calculates its
occurrence in the partition Pi :

Conf (Ypi
, I) = Count(Ypi

⋃
I)

Count (Ypi
)

If the confidence of I is equal to 1 (or 100%) thus Y ⊆ I ,
which means that I (or its descendants) is already used to
obtain Pi , I is then ignored.

Furthermore, as already discussed, the partitioning can
be used to help in storage management, that is why
our partitioning algorithm allows defining a tolerated size
(max size) for the new partitions and which can be used to
estimate the appropriate value of the min sup threshold.

In fact, we can define the size of a cube partition Pi by
[32]:

Size(Pi) = |Pi |
|C| Size(C) (1)

and Size(C) =
n∑

i=1
Size(Pi) where n is the number of

partitions of the cube C.
If the partition size must not exceed a max size threshold

then we must have:

Size(Pi) ≤ max size (2)

(1) and (2) implies that we need to have the following
condition verified:

|Pi |
|C| ≤ max size

Size(C)

We need to have then

Sup(Pi) ≤ max size

Size(C)
(3)

On the other hand, to stop partitioning a partition Pi(Ypi
),

two cases exist. The first one, discussed above, and which is
the ideal one, corresponds to the case where:

Sup(Pi) < 2min sup (4)

Hence, by choosing a min sup like:

min sup <= max size

2Size(C)
(5)

OLAP cube partitioning based on association rules method 429

Fig. 6 Our partitioning framework

and from (4) and (5) we will have:

Sup(Pi) <
max size

Size(C)

Thereby, we insure that (3) and then (2) are verified.
The second case is where the algorithm loops on all the

itemsets. In this case, even if the condition (5) is set, the
condition (2) is not necessarily verified. This means that
the user needs are satisfied but not the size constraint, if
exists. In that case, a range partitioning according to time
dimension can be used as described in Section 3.2.3.

3.2.3 Range partitioning algorithm for inactive data

In data warehouses containing old or inactive data, the
latter does not appear in the users queries. Hence, in any
workload-based partitioning algorithm, the partitioning will
concern only currently used data, while the rarely or unused
data are not affected. Using our partitioning algorithm,
these data are isolated in a separate partition that we
call ”Rest”. This data should be partitioned, in case of
storage constraint, with a minimum maintenance cost. To
deal with this, we propose a complementary algorithm to
the principal partitioning algorithm. The proposed solution
is to partition the ”Rest” data mathematically using the
time dimension until satisfying the storage size constraint.
The algorithm starts by identifying the appropriate time
range of partitioning according to data size. Afterwards, the
algorithm constructs a first partition using the given range.
For example, if the range is the year, the first constructed
partition will be P(y) like y=Max(year,Rest)=2016, if 2016
is the maximal year in the ”Rest” data. After that, the
algorithm increments the partition P, by range intervals,
until reaching the tolerated partition size (see Algorithm
2). This algorithm can be also used to further fragment the
partitions resulting from the first partitioning phase based
on user queries, if they do not satisfy the size constraint.

430 K. Letrache et al.

4 Approach implementation and evaluation

4.1 Implementation and experimental study

To implement the algorithms of user analysis and cube par-
titioning, we used the C# language, which allows manipu-
lating multidimensional objects through the ADOMD.NET
library (Fig. 6). In addition, we considered the TPC-DS
database, a decision support benchmark [33] to verify our
approach. We created the associated OLAP cube using
the Microsoft SQL Server Analysis Services. The cre-
ated cube contains one fact table Store Sales with 24M

Fig. 7 The multidimensional model of our case study

records and five regular dimensions as shown in (Fig. 7):
Date (73K) containing the hierarchy date-month-quarter-
year, Customer (100K) containing the hierarchy customer-
city-state-country, Item (18K) with a hierarchy item-brand-
class-category, Promotion (300) and Store (12) containing
the hierarchy store-city-state-country. The initial size of
the created cube is 175,17MB. Finally, we performed our
experiments on an i3 processor machine.

We generated a sample of 100 queries using the TPC-DS
templates, that we converted to MDX language to perform
the query workload analysis. After preprocessing the MDX
queries as described in Section 3.2.1, by replacing the date
predicates by dynamic formula and separating sets of tuples
and setting the criticality factor to 1 for all queries, we
then performed the apriori algorithm to deduce the most
frequent predicate itemsets. We fixed the support to 5%.
The apriori algorithm identified 24 frequent itemsets. The
results show that the most asked statistics concern the last
two years, especially data of the sports, books and jewelry
item categories.

Next, we performed our partitioning algorithm using the
resulting frequent predicate itemsets. If we consider that the

Table 3 Our case study resulting partitions

Partition Description Size(records) Size(MB)

P1 Current quarter 2040456 12.78

P2 Current year(except current
quarter and sports category)

2297244 14.71

P3 Last year(except sports) 4116760 27.28

P4 Category sports (except
current quarter)

2059041 15.19

P5 Category Jewelry (except 2
last years)

1142632 8.24

P6 OFF-7(except 2 last years) 1318736 7.98

P7 Rest 9311584 64.44

OLAP cube partitioning based on association rules method 431

Table 4 Approaches comparison parameters

Algorithm Fact table size Query
workload size

Number of
attributes

GA[9] 24M 60 12

HC[9] 24M 60 12

SA[9] 24M 60 12

EMeD-Part[14] 24M 100 12

Our approach 24M 100 12

maximum partition size threshold is 30MB, the min sup has
to be inferior to 9%. We fixed the min sup to 5% to test the
ability of the partitioning algorithm to enlarge the scope.

In the first iteration, the predicate itemset is the current
month, which corresponds to the most used predicate.
However the support of this latter is inferior to the min sup.
The algorithm tries, thus, to enlarge the population, instead
of ignoring the itemset, by replacing the month predicate
by its first ancestor in the date hierarchy. The month is
then replaced by the quarter which satisfies the min sup
constraint. This results on the partition P1. The partition P5

is also obtained by replacing the item class ”consignment”
by its ancestor in the Jewelry category. We obtained 7
partitions as described by (Table 3):

The partition named ”Rest” is the non-partitioned data,
which corresponds to rarely or unused data. This partition is
partitioned mathematically to respect the storage constraint,
otherwise the partition is maintained. The reminder is then
partitioned per year to 3 other partitions (P7, P8, P9).

4.2 Results discussion and evaluation

We conducted a set of experiments to measure the efficiency
of our approach. We compared our experiments results with
results obtained by GA, HC,SA[9] and EMeD-Part[14].
The most important setup parameters are described in the
table (Table 4). We started by measuring the execution time
of 100 queries before and after partitioning. We noted a

Fig. 8 Query execution time

Fig. 9 IO cost reduction

great enhancement in queries performances as shown in the
(Fig. 8). The enhancement attains 52% depending on the
query complexity. We also computed the I/O cost before and
after partitioning by calculating the number of pages needed
to load the cube or the partitions in the memory to respond
to a specified query as it is shown by the following formula:
n∑

i=1

Size(Pi)
PS

Where n is the number of partitions Pi needed

to respond to a user query and PS is the system page size.
In fact, the (Fig. 9) shows the percentage of I/O cost
reduction calculated against the non-partitioned cube. The
result is 11.04% of query I/O cost compared to the non-
partitioned cube, which is very satisfactory compared to
other approaches (see (Table 5)).

Besides, we conducted multiple experiments to measure
the performance of our algorithm. We thus measured
the number of iterations of the partitioning algorithm
for different min sup values as shown in (Fig. 10).
The experiments show that the number of iterations
remains less than 500 independently of the min sup value,
meanwhile it is in the order of thousands in the other
approaches[14](2500 in the best case). Therefore, our
algorithm needs 5 times iterations less than EMeD-Part
and genetic approaches. We also measured the number
of generated partitions according to the min sup threshold
(Fig. 11). We noted that the number of partitions is always
reasonable which means a low maintenance cost. For

Table 5 Our approach evaluation

Algorithm Average
query time
enhancement

I/O cost vs. no
partitioning

Number of
iteration

number of
resulting
partitions

GA[9] 13% 37.5% ∼= 5500 80

HC[9] 10.07% 37.78% − 96

SA[9] 26.72% 38.13% − 80

EMeD-Part[14] − 12.5% ∼= 2500 8

Our approach 28.1% 11.04% 198 9

432 K. Letrache et al.

Fig. 10 Number of iterations vs. min sup

instance, our proposal produced 9 partitions for the case
study while the genetic-based algorithms [9] produced 80.
The table (Table 5) resumes the results comparison between
our approach and existing partitioning approaches for the
same amount of data and workload, which do not require
special configurations.

In addition to query performances, our approach gener-
ates dynamic partitions according to the time dimension,
which is not supported by the existing approaches, since
they treat the date predicates as static values. Moreover,
to diminish the number of partitions and hence the main-
tenance cost, the proposal provides a complementary par-
titioning strategy based on time range for non-frequently
asked data (the rest). Conversely, the other approaches parti-
tion the whole cube data by queries predicates which could
generate a huge number of partitions. Moreover, in the
approaches based on a cost model [9, 14], the DBA has to
define complicated parameters like maximum number of IO
and the maximum number of partitions thresholds. Whereas
our approach does not require such complicated parameters.
On the other hand, the partitioning of OLAP cubes enhances
also the processing time which can vary from seconds to
many hours as shown in the (Fig. 12) depending on the par-
tition size. Actually, reducing the processing time can also
help in defining an appropriate cube refresh strategy. For

Fig. 11 Number of partitions vs. min sup

Fig. 12 Processing Time vs. partition siz

instance, in our case study (Fig. 13) the partition P1 related
to data of the current quarter and which processing time is
about 10 seconds, can be used for daily reports and also to
recover immediately the urgent ones in case of synchroniza-
tion breakdowns, and hence being processed many times per
day if needed or simply once in the nighttime, while P2, P3

can be processed once a month and P4, P5, P6, P7, P8 and
P9 once a year.

Finally, we conducted additional experiments to measure
the sensitivity of our approach. Indeed, our partitioning
algorithm is partially a query workload based approach,
which means that while the user queries do not change
considerably, the cube performance remains good. Actually,
query changes could concern projection or selection
columns. To experiment the former case, we considered
a query template Q′ whose we modified its projection
columns. We noted that the performance enhancement
remains above to 28% as shown by the (Fig. 14). We next
modified the query predicates(selection columns), in this
case we noticed performance regression especially when
modifying the query completely (see (Fig. 15)). In our case
study, the regression varies from 3% to 28%. Therefore,
the cube performance (querying and processing) has to be
checked periodically to identify performance regression,
due for instance to business perspectives changes or data

Fig. 13 Processing time of our case study

OLAP cube partitioning based on association rules method 433

Fig. 14 Sensibility vs query projection columns changes

volume scale increase, and thereby re-run the partitioning
algorithm.

5 Conclusion

In our previous works we proposed an MDA architecture
to model and implement OLAP cubes [34, 35]. In this
paper, and to help BI administrators maintaining those
resulting cubes, we presented an approach for OLAP cube
partitioning inspired from the association rules algorithm.
Contrary to existing approaches, which are based on either
workload or data, our approach includes both workload,
data, and criticality of queries. Indeed, the proposal starts by
analyzing the user queries to deduce the frequent predicate
itemsets. Afterwards, by using the resulting predicate
itemsets, the proposal identifies the appropriate partitioning
strategy according to minimum and maximum partitions
size (min sup and max size). This also allows controlling
and insuring regularity of partitions size which helps in
store management beside enhancing cube refresh time
and management also depending on partitions size. The
user queries analysis phase includes a preprocessing step
that especially allows integrating the criticality factor for

Fig. 15 Sensitivity vs query selection columns changes

critical but non-frequent queries and also dealing with date
predicates to provide later dynamic time partitioning.

Besides, our partitioning algorithm, and in order to
provide the best queries performance, tends to create
partitions that fit with the user queries or at least encompass
them by using the dimension hierarchy to enlarge the scope
of the frequent predicate itemset, if needed, instead of
ignoring it.

Moreover, in our approach, contrary to existing ones, the
non-frequently asked data are isolated in a separate partition
that can be partitioned according to storage constraints,
and thereby reducing the maintenance cost, instead of
using the same partitioning schema as the frequently asked
data.

Our proposal comprises the three main advantages
of partitioning which are namely: performance improve-
ment, refresh management (maintenance) and store man-
agement. Finally, the experimental results show the great
enhancement of queries and processing performances after
partitioning.

In our future works, we first envisage to automate the
check process to be integrated in our partitioning approach.
Next, we plan to combine additional optimization method
with our proposal especially indexes and parallelism.
Afterwards, we intend to adapt and improve our algorithm
to support big data and unstructured databases.

References

1. Inmon WH (2005) Building the data warehouse. Wiley, New York
2. Vaisman A, Zimányi E (2014) Data warehouse systems design and

implementation. Springer, Berlin
3. AlHammad N, Taha Y (2016) Performance Evaluation Study of

Data Retrieval in Data Warehouse Environment. ICCIP ’16 ACM,
Singapore

4. Kimball R, Ross M (2002) The data warehouse toolkit second
edition the complete guide to dimensional modeling. Wiley, New
York

5. Common Warehouse Metamodel (CWM) Specification Version
1.1, Volume 1 (March 2003)

6. Meta Data Coalition Open Information Model Version 1.1
(August, 1999)

7. Han J, Kamber M (2006) Data Mining. Elsevier, Amsterdam
8. Bellatreche L, Boukhalfa K (2005) An evolutionary approach to

schema partitioning selection in a data warehouse. In: Proceedings
of the 7th International Conference DaWaK. LNCS, vol 3589.
Springer, Berlin, pp 115–125

9. Bellatreche L, Boukhalfa K, Richard P (2009) Referential
horizontal partitioning selection problem in data warehouses:
hardness study and selection algorithms. Int J Data Warehouse
Min 5(4):1–23

10. Hamdi I, Bouazizi E, Alshomrani S, Feki J (2015) 2LPA-RTDW: a
two-level data partitioning approach for real-time data warehouse.
Computer and Information Science (ICIS). IEEE, Las Vegas

11. Baluch O, Eavis T (2014) Soft real-time OLAP: exploiting
modern hardware without breaking the bank. In: 43rd international
conference IEEE parallel processing workshops (ICCPW),

434 K. Letrache et al.

12. Lima A, Furtado C, Valduriez P, Mattoso M (2009) Parallel OLAP
query processing in database clusters with data replication. Distrib
Parallel Databases 25:97–123

13. Sun L, Krishnan S, Xin RS, Franklin MJ (2014) A partition-
ing framework for aggressive data skipping. In: International
conference on very large data bases, Hangzhou

14. Toumi L, Moussaoui A, Ugur A (2015) EMeD-part: an efficient
methodology for horizontal partitioning in data warehouses. In:
ACM IPAC ’15. Batna

15. Grund M, Krueger J, Mueller J, Zeier A, Plattner H (2011)
Dynamic partitioning for enterprise applications. In: Proceedings
of IEEE IEEM, pp 1010–1015

16. Bellatreche L, Bouchakri R, Cuzzocrea A, Maabout S (2013)
Horizontal partitioning of very-large data warehouses under dyna-
mically-changing query workloads via incremental algorithms.
In: SAC’13 proceedings of the 28th annual ACM symposium on
applied computing, pp 208–210

17. Bouchakri R, Bellatreche L, Faget Z, Breß S (2014) A
coding template for handling static and incremental horizontal
partitioning in data warehouses. J Decis Syst 23:4, 481–498

18. Rodriguez L, Li X (2011) A support-based vertical partitioning
method for database design. In: 2011 8th international conference
on electrical engineering computing science and automatic control
(CCE), pp 1–6

19. Bouakkaz M, Ouinten Y, Ziani B (2012) Vertical fragmentation
of data warehouses using the FP-Max algorithm. In: 2012
international conference on innovations in information technology
(IIT), pp 273–276

20. Arres B, Kabachi N, Boussaid O (2015) A data pre-partitioning
and distribution optimization approach for distributed dataware-
houses. In: Proceedings of the international conference on parallel
and distributed processing techniques and applications (PDPTA),
Athens, pp 454–461

21. Kim JW, Cho SH, Kim I-M (2016) Workload-based column
partitioning to efficiently process data warehouse query. Int J Appl
Eng Res 11(2):917–921

22. Ahmed S, Coenen F, Leng P (2006) Tree-based partitioning of
date for association rule mining. Knowl Inf Syst 315–331

23. Patil DV (2015) Reducing data skew with round robin horizontal
partitioning of data for distributed association rule mining of large
data set. IJETT

24. Le-Khac NA, Kechadi MT, Carthy J (2006) ADMIRE framework:
distributed data mining on data grid platforms. In: Proceedings
of the first international conference on software and data
technologies. ICSOFT

25. Gorla N (2003) Features to consider in a data warehousing system.
Commun ACM 46(11):111–115

26. Cheung DW, Zhou B, Kao B, Kan H, Lee SD (2001) Towards the
building of a dense-region-based OLAP system. Data Knowl Eng
36:1–27

27. Partitions (Analysis Services - Multidimensional Data) https://
msdn.microsoft.com/en-us/library/ms175688.aspx. Accessed: 21
Sep 2017

28. SAS 9.1.3 OLAP Server: MDX Guide, Second Ed - SAS Support,
MDX Introduction and Overview

29. Agrawal R, Imielinski T, Swami A (1993) Mining association
rules between sets of items in large databases. In: Proceedings of
the 1993 ACM SIG MOD Conference. Washington DC, USA

30. Ben Messaoud R, SL Rabasda, Boussaid O, Missaoui R (2006)
Enhanced mining of association rules from data Cubes. In:
DOLAP’06, November 10, 2006. Arlington, USA

31. Ponniah P (2001) Data warehousing fundamentals: a comprehen-
sive guide for IT professionals

32. Shukla A, Deshpande P, Naughton JF (1996) Storage estimation
for multidimensional aggregates in the presence of hierarchies,
http://ai2-s2-pdfs.s3.amazonaws.com

33. TPC-DS database: http://www.tpc.org/tpcds. Accessed: 21 Nov
2017

34. Letrache K, El Beggar O, Ramdani M (2017) The automatic
creation of OLAP cube using an MDA approach. Softw: Pract Exp
47(12):1887–1903

35. El Beggar O, Letrache K, Ramdani M (2017) CIM for data
warehouse requirements using an UML profile. IET Softw 11(4):
181–194

https://msdn.microsoft.com/en-us/library/ms175688.aspx
https://msdn.microsoft.com/en-us/library/ms175688.aspx
http://ai2-s2-pdfs.s3.amazonaws.com
http://www.tpc.org/tpcds

	OLAP cube partitioning based on association rules method
	Abstract
	Introduction
	Related work
	Our approach and background overview
	Background overview
	Our approach
	User queries analysis
	Partitioning algorithm
	Range partitioning algorithm for inactive data

	Approach implementation and evaluation
	Implementation and experimental study
	Results discussion and evaluation

	Conclusion
	References

